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RESUMO

Existem varias técnicas de inteligéncia artificial (IA) que t€m como objetivo a classificacdo de
padroes. Classificar padroes significa classificar um padrio desconhecido dentre varias
classes possiveis. O uso de técnicas de aprendizado de mdquina para classificacdo de padrdes
vem aumentando nos dltimos anos e ja existem diversas dreas onde o beneficio advindo desse
tipo de técnica € bastante positivo. Uma dessas dreas € a de reconhecimento de imagens. O
objetivo deste trabalho é estudar, implementar e comparar algoritmos de aprendizagem de
maquina baseados na regra do vizinho mais proximo para a classificacdo de imagens.
Algoritmos baseados na regra do vizinho mais préximo, como K-Nearest Neighbor (KNN) e
Pairwise Opposite Class-Nearest Neighbor (POC-NN), foram implementados para
classificacdo de imagens e seu desempenho foi comparado com um método construtivo para
treinamento de redes neurais do tipo RBF (Radial Basis Function). Também foram propostas
e implementadas duas modificacdes inéditas para o algoritmo POC-NN. Essas modificag¢des
geraram dois novos algoritmos: o S-POC-KNN e S-POC-NN com niicleo RBF. O
desempenho desses € comparado com o algoritmo original e com o RBF-DDA-SP.

Palavras-chave: Regra do Vizinho Mais Préximo. POC-NN. Aprendizagem de Madquina.
Reconhecimento de Padrdes. Reconhecimento de Imagens.
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ABSTRACT

There are many techniques of Artificial Intelligence (AI) which focus the classification of
patterns. Classifying patterns means to classify an unknown pattern among a several possible
classes. The use of machine learning techniques for making the pattern classification has been
increasing in the latest years and there are lots of areas where the benefit that came from this
kind of technique is very positive. One of these areas is the image recognition. This work goal
is studying, making a comparison and implementing algorithms of machine learning based on
the rule of the nearest neighbor for the classification of images. Algorithms based on the
nearest neighbor rule K-Nearest Neighbor (KNN) and Pairwise Opposite Class-Nearest
Neighbor (POC-NN) were implemented for the classification of images and its performance
was compared with a constructive method for RBF (Radial Basis Function) network training.
In addition, it was proposed and implemented two unheard modifications for the POC-NN
algorithm. These modifications created two new algorithms: the S-POC-KNN and S-POC-NN
with a kernel RBF. The performance of both algorithms is compared with the original
algorithm and with the RBF-DDA-SP.

Keywords: Nearest Neighbor Rule. POC-NN. Machine Learning. Pattern Recognition. Image
Recognition.
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Capitulo 1

Introducao

Inteligéncia Artificial (IA) [1] € uma das dreas mais importantes do ramo da computagdo
atualmente. Ela pode ser definida de forma simplista como ‘“‘a inteligéncia exibida por
qualquer coisa que tenha sido construida pelo homem” [32], no entanto, este conceito leva ao
questionamento do que seria “inteligéncia”. Segundo o dicionario Aurélio Buarque de
Holanda [11], inteligéncia pode ser definida como “Faculdade de aprender; qualidade ou
capacidade de compreender e adaptar-se facilmente” e uma definicdo mais precisa para IA
seria “Ramo da ciéncia da computacdo dedicado a desenvolver equivalentes computacionais
de processos peculiares a cognicao humana” [11].

IA tem demonstrado bastante sucesso em dreas onde é possivel se construir abstracdes
do mundo real. Geralmente, tais abstracdes se baseiam em modelos simples que, através de
uma abordagem bottom-up, buscam modelar sistemas complexos do mundo real, tentando
imitar os sistemas naturais em algumas de suas caracteristicas.

A area de IA € subdividida em diversos ramos, sendo os principais: a aprendizagem de
mdquina, [A simbdlica, as redes neurais artificiais (RNA), dentre outros. O foco deste
trabalho € a utilizacdo de técnicas de aprendizagem de mdquina, em particular, as técnicas
baseadas na regra do vizinho mais préximo.

Técnicas de aprendizagem de mdquina t€m como objetivo a classificacdo de padrdes.
Um algoritmo de aprendizagem de maquina para classificacdo de padrdes tem como meta
classificar padroes desconhecidos dentre as vdrias classes possiveis de um determinado
problema.

Diversas aplicacdes utilizam técnicas de 1A para a classificacdo de imagens por uma
mdquina. Vdrias pesquisas tentam aperfeicoar o desempenho dos classificadores para o
reconhecimento de imagens. Dentre os problemas mais relevantes de reconhecimento de
imagens podemos citar: o reconhecimento de letras e digitos manuscritos, a classificagdo de
imagens de satélite, a biometria, dentre outros.

No decorrer da monografia sdo apresentados e propostos algoritmos de treinamento de
maquina baseados na regra do vizinho mais préximo, originalmente chamada de Nearest
Neighbor (NN) [31], com o objetivo de classificagdo de padrdes para o reconhecimento de
imagens. Além disso, apresentamos resultados de simulacdes usando nossas implementacdes
desses algoritmos.

Os algoritmos baseados na regra do vizinho mais préximo necessitam de recursos
computacionais significantes, dentre esses os mais requisitados sao recursos de memoria e de
processamento, como ¢ o caso do algoritmo K-Nearest Neighbor (KNN) [31] . Existem
muitos algoritmos baseados na regra do vizinho mais préximo que buscam diminuir o tempo
computacional e os recursos necessdrios. Vale citar como exemplo o Pairwise Opposite
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Class-Nearest Neighbor (POC-NN) [26][27], que é usado como base para os métodos
propostos neste trabalho.

1.

Portanto, este trabalho possui os seguintes objetivos:

Implementar técnicas baseadas na regra do vizinho mais préximo proposta nas
referéncias [7][27][31];

Propor novos algoritmos baseados na técnica do POC-NN;

Avaliar os algoritmos propostos, comparando-os com os demais algoritmos baseados
no NN, em problemas de classificacao de imagens;

Comparar os algoritmos baseados em vizinhos mais préximos, considerados neste
trabalho, com redes neurais do tipo RBF-DDA-SP, tanto com relagdo ao desempenho
de classifica¢do quanto em relagdo a complexidade.
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Capitulo 2
Aprendizagem de Maquina

Este capitulo mostra uma visdo geral sobre aprendizagem de maquina e o contexto de
Inteligéncia Artificial no qual este tema esta inserido. S@o analisadas também as dificuldades
que circundam o reconhecimento de imagens por parte de uma mdaquina. Por fim, sdo
examinados alguns conceitos de redes neurais artificiais e redes neurais artificiais do tipo RBF
(Radial Basis Function).

2.1 Contexto Historico

O primeiro trabalho na &drea de redes neurais artificiais foi o do neurdnio artificial de
McCulloch e Pitts chamado de MCP (McCulloch and Pitts Perceptron). O trabalho foi
publicado em 1943 e intitulado A Logical Calculus of the Ideas Immament in Nervous
Activity. Segundo [9]: “O trabalho de McCulloch e Pitts se concentrava muito mais em
descrever um modelo artificial de um neurdnio e apresentar suas capacidades computacionais
do que em apresentar técnicas de aprendizado”.

Em 1958, Rosenblatt criou um modelo chamado Perceptron que usava o MCP e
permitia a realizag¢do de treinamentos para classificacao de padrdes. No entanto, o Perceptron
possuia um ponto fraco: s era capaz de classificar padrdes linearmente separdveis; ou seja,
ele s6 resolvia problemas cuja soluc@o podia ser obtida dividindo-se o espaco de entrada em
duas regides através de uma reta. Na Figura 1, pode-se observar padrdes de duas classes,
quadrado ( ) e bola (O), de forma que, na Figura 1 (a) esses padrdes estdo dispostos de forma
linearmente separdvel e na Figura 1 (b) estdo dispostos de forma ndo linearmente separdvel.

O O O

] O 0

(a) (b)

Figura 1. (a) Problema linearmente separdvel. (b) Problema ndo linearmente separdvel.
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Em 1966, a regra do vizinho mais préximo, Nearest Neighbor Rule (NN), foi proposta
por Cover e Hart. Eles mostraram que essa técnica era muito eficiente para problemas de
classificac@o de padrdes. Um outro motivo para a utilizacao da regra do vizinho mais préximo
seria que ela é simples e de facil implementacdo, mas possui alguns pontos fracos, tais como:
(a) requerer uma grande quantidade de memoria, pois necessita armazenar todos os padroes
de treinamento; (b) o algoritmo requer uma grande quantidade de tempo computacional; (c) é
sensivel a ruido e falsos padroes [26].

Uma variacdo bastante antiga e consagrada para o algoritmo NN é K-Nearest
Neighbor, que, apesar de possuir os mesmos problemas inerentes ao algoritmo NN original,
em alguns casos apresenta resultados melhores do que o algoritmo NN original. Uma variacao
recente e inovadora para o algoritmo NN é o Pairwise Opposite Class-Nearest Neighbor.
Detalhes sobre esse algoritmo s@o apresentados no Capitulo 3.

2.2 Reconhecimento de Imagens

Uma boa definicdo para o reconhecimento de imagens € dada em [24]: “Diversas
denominagdes tém sido dadas a este campo multidisciplinar que aproveita os conhecimentos
relacionados com o Processamento de Sinais, Inteligéncia Computacional, Neurofisiologia e
outros [...] De uma forma geral, é o processo de cognicao de uma imagem, que pertence a area
do Reconhecimento e Andlise de Padroes”.

A partir da década de 80, com os avancos verificados no campo da eletronica, as
técnicas digitais passaram a ser empregadas com o intuito de se obter um mecanismo para
classificacdo de imagens. Atualmente as técnicas de inteligéncia artificial vém sendo
empregadas, permitindo novas abordagens para o problema [24].

Nos ultimos anos, a area de processamento e reconhecimento de imagens ganhou
grande visibilidade devido ao amadurecimento das técnicas de inteligéncia artificial. Existem
diversas aplicacOes possiveis para o reconhecimento de imagens. Um exemplo bastante
popular sdo as técnicas de OCR [22] (Optical Character Recognition), que executam o
reconhecimento Optico de caracteres em imagens de texto. Ao final do processo de OCR ¢é
gerado um arquivo de texto correspondente a imagem digitalizada.

Mesmo com toda a tecnologia atual, muitas tarefas do cotidiano ainda utilizam escrita
manual. Tarefas bastante corriqueiras como o preenchimento de um cheque, a escrita de
enderecos em envelopes postais € até mesmo notas escritas em um PDA (Personal Digital
Assistants) utilizam caracteres manuscritos. Dessas tarefas cotidianas surgiu a necessidade de
mecanismos que fizessem com que uma mdaquina fosse capaz de reconhecer caracteres
escritos a2 mao. Com essa finalidade, surgiram as técnicas de reconhecimento de caracteres
manuscritos [25].

As técnicas de reconhecimento de imagens geralmente necessitam usar técnicas de
processamento de imagens para pré-processar os dados contidos na imagem e apresentd-los de
forma que possam ser tratados pelo algoritmo de treinamento. Pode-se ver na Figura 2,
retirada de [24], as fases pelas quais uma imagem tem que passar, na maioria dos sistemas,
antes que se possa extrair as informagdes nela contidas. Inicialmente a imagem sofre um pré-
processamento, onde ocorre uma série de transformacdes que retiram da imagem alguns
elementos desnecessarios, como por exemplo, o fundo da imagem, que ndo ¢ interessante para
o sistema. Apds o pré-processamento, a imagem terd suas caracteristicas extraidas através da
utilizacdo de métodos estatisticos. Um fato importante a ser observado é que o nimero de
caracteristicas varia de acordo com o problema em andlise, como serd visto no Capitulo 5.
Ap6s as caracteristicas serem extraidas, o classificador serd capaz de utilizar diversas técnicas
de inteligéncia computacional para realizar a classificacdo dos padrdes que representam cada
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imagem. Um exemplo de imagem que poderia ser usada como entrada do sistema da Figura 2
€ o de caracteres escritos a mao, o que pode ser visto na Figura 3, obtida de [25].

Imagem Darenn o
Eﬁ —¥| Processamento cle Classificarlor
Caracteristicas

Figura 2. Sistema que realiza pré-processamento, extracao de caracteristicas e
classificac@o de imagens.

No mundo inteiro, diversos sistemas de autenticagdo tentam aumentar a seguranga no
acesso a infra-estrutura das empresas. Autenticacdo ¢ uma forma de evitar o acesso nao
autorizado a informagdes e a alguns locais restritos dentro de uma organizacdo. Diversas
técnicas sdo usadas com a finalidade de se obter um maior nivel de seguranca na autenticacao.
Uma dessas técnicas é a biometria [12]. Além da autenticacdo — que compara os dados da
pessoa que quer entrar em um sistema com os dados da pessoa que ela diz ser — a biometria
pode ser usada em sistemas de criminalistica para identificacdo de pessoas. Para essa
finalidade o sistema realiza uma busca, num determinado banco de dados, por informagdes
iguais as da pessoa que se deseja identificar, até que se encontre a correta.

Figura 3. Exemplos de caracteres escritos a mao segmentados de uma imagem.

Existem vdrias caracteristicas que podem ser utilizadas para realizar o reconhecimento
biométrico automatico de pessoas. Impressdes digitais, iris, face e outras caracteristicas
podem ser usadas em sistemas que utilizam a biometria como forma de identificacdo. Porém,
cada uma delas possui suas dificuldades e peculiaridades. A identificacdo de impressdes
digitais, por exemplo, tem sua identificacdo dificultada pela forma como a digital € capturada.
Existem diversas dificuldades inerentes ao processo de captura, como exemplo, a impressao
digital pode ser capturada de forma parcial, em angulos diferentes (Figura 4) ou até mesmo
com distor¢des advindas da pressao que € feita sobre a superficie de captura [12].
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Figura 4. Uma mesma digital capturada em angulos diferentes em imagens distintas [25].

2.2.1 Classificacao de Padroes

Nos ultimos anos, novas aplicacdes para classificagdo de padrdes surgiram, principalmente na
area de classificacdo de imagens. Podem ser citadas como exemplo: a classificacdo de digitos
manuscritos, a classificacdo de faces e de impressdes digitais (biometria), a classificagdo de
caracteres, classificacdo de imagens de satélite, dentre outras.

Antes de iniciar o treinamento de um algoritmo, deve-se lancar mdo do uso de
algumas técnicas de comparacao de classificadores, como € o caso da técnica de holdout [28],
que foi usada neste estudo. A técnica de holdout é simples e computacionalmente rdpida,
consistindo na divisdo da base de dados original em dois conjuntos: um de treinamento e
outro de teste.

Alguns fatores advindos da divisdo do holdout, como a quantidade de padrdes
contidos nos conjuntos de treinamento e teste, a quantidade de padrdes de uma mesma classe
armazenados no conjunto de treinamento, podem influenciar na avaliacdo final do algoritmo.

Pode-se fazer a seguinte andlise com relagcdo a quantidade de padrdes de uma mesma
classe armazenados no conjunto de treinamento: caso o conjunto de treinamento possua mais
padrdoes de uma dada classe “X”, durante a fase de teste o algoritmo terd uma maior
capacidade de generalizacdo para classificacdo de padroes dessa determinada classe “X”.
Dessa forma, o ideal seria que o conjunto de treinamento possuisse padrdes representativos
para cada uma das varias classes consideradas [4].

Na classificagdo de padrdes, o algoritmo responsdvel pela classificacdo deve
primeiramente “aprender” como classificar os padrdes do problema ao qual se deseja obter
resposta, ou seja, deve-se primeiramente treinar o algoritmo de forma a tornd-lo capaz de,
apds o treinamento, classificar um padrdo desconhecido dentre uma das classes existentes.
Nessa fase, € usado o conjunto de treinamento advindo do holdout.

A fase de treinamento possui um peso muito grande no desempenho do algoritmo
como um todo. Ou seja, durante essa fase o algoritmo deve armazenar protétipos (que podem
ser padrdes de treinamento) que sejam capazes de generalizar a0 maximo a classificacdo feita
para os padrdes desconhecidos.

Apds a fase treinamento o algoritmo deve passar pela fase de teste. Essa fase é
responsdvel por medir o desempenho da classificacdo feita pelo algoritmo, ou seja, o
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desempenho do classificador é avaliado antes de ser usado na pratica. Ao final da fase de
teste, devem ser apresentadas as porcentagens de padrdes incorretamente classificados, para,
dessa forma, se analisar o desempenho do classificador para o problema em questdo. Durante
a fase de teste € usado o conjunto de teste advindo do holdout.

2.3 Redes Neurais Artificiais

A humanidade tem aprendido muito através da imitacdo dos fatos da natureza. Atualmente o
homem tenta imitar algumas caracteristicas da cognicdo humana e da inteligéncia do cérebro
através de sistemas que utilizam técnicas de inteligéncia artificial. Dessa forma, as Redes
Neurais Artificiais (RNAs) vém sendo usadas em diversas dreas onde é possivel se construir
abstracdes do mundo real. Diferentemente da programacgdo algoritmica convencional, baseada
em regras, as RNAs tentam imitar o funcionamento do cérebro humano. Assim como o
cérebro humano € composto por diversos neurdnios que trabalham em paralelo, as RNAs sdo
compostas por diversas unidades de processamento simples chamadas de nodos, que também
trabalham em paralelo, e que calculam determinadas funcdes matematicas.

O cérebro humano possui cerca de 10" neurdnios, segundo [4], que sdo as suas células
fundamentais. Os neurdnios sao divididos em trés partes conforme destacado na Figura 5 de
[8]: corpo da celular, dendritos e axodnios. O neurdnio humano transmite informagdes na
forma de sinais elétricos através de seu axoOnio, e essas informagdes sdo entdo repassadas
através das sinapses quimicas para os dendritos do neurdnio subseqiiente. Assim, quando
esses sinais chegam aos dendritos da célula seguinte, passam entdo ao corpo celular e
posteriormente para o axonio, iniciando novamente o processo de transmissao de informacdes
[13]. Conjuntamente esses processos de transmissdo vao formar as redes neurais bioldgicas,
como pode ser visto na Figura 6 de [8].

Axinios de outros -Dendritos

NeUrsnios

—

m_\ /A
|

Si.na.'pses J

Figura 5. Neur6nio humano.

Os nodos de uma RNA sdo dispostos em uma ou mais camadas, de forma semelhante
as redes neurais bioldgicas. As camadas de uma RNA sio interconectadas por um grande de
nimero de conexdes, onde cada conexdo estd associada a um peso que representa O
conhecimento armazenado nela. Na Figura 7 € exibida a representacio de uma RNA com
multiplos nodos agrupados em trés camadas interligadas por conexdes unidirecionais.
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Figura 7. Rede neural artificial.

Para simular o comportamento das sinapses, as entradas de um neurdnio artificial
possuem pesos, que podem possuir valores positivos ou negativos, sendo estes valores
inibitérios ou excitatdrios, respectivamente. Na Figura 8 existe um neurdnio artificial do tipo
MCP com trés entradas, que descreve esse modelo em questio.

Figura 8. Neur6nio artificial com trés entradas.
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Os nodos de uma RNA possuem uma fung¢do de ativacdo que faz a comparagdo da

soma ponderada das entradas com um valor de limiar, também conhecido como threshold. Se

a soma das entradas for maior do que o threshold, a saida do neurdnio € ativada,

permanecendo desativada caso contrario. Nos neurdnios do tipo MCP a funcdo de ativacgdo é

dada pela funcdo limiar, descrita formalmente pela Equacdo 2.1, onde n é a quantidade de

entradas, P; é o peso associado a cada entrada [; e 8 é o threshold do neur6nio. Na Figura 24

podem ser vistos quatro tipos de fun¢do de ativacdo [4]: a funcdo linear, a fung¢do rampa, a
funcdo degrau e a fungdo sigmoidal.

1,se Y PI >0
i=0
Y= n 2.1
0,se > PI, <0
i=0
) b
F ¥ 3
cl @

¥

Figura 9. Quatro tipos de funcdes de ativagdo: (a) a fung¢ao linear, (b) a fungdo rampa, (c)
a fungdo degrau e (d) a funcdo sigmoidal.

Um fator de suma importincia em RNAs é a definicdo da arquitetura que serd
utilizada pela rede, pois dependendo do tipo de arquitetura escolhida, uma RNA pode estar
habilitada ou ndo a resolver determinados tipos de problema, como por exemplo, problemas
ndo-linearmente separdveis. Tendo em vista o impacto inerente a escolha da arquitetura de
uma RNA, Braga [4] apresenta alguns exemplos de arquitetura na Figura 10 e analisa os
quatro parametros que definem uma arquitetura: o nimero de camadas da rede, o nimero de
nodos em cada camada, o tipo de conexao entre os nodos e a topologia da rede. Com relagdo
ao nimero de camadas, em uma rede com apenas uma camada sé existe um n6 entre qualquer
entrada e qualquer saida (Figura 10 (a), (e)). J4 em uma rede com muiltiplas camadas, existe
mais de um né entre alguma entrada e alguma saida da rede (Figura 10 (b), (c), (d)). Quanto
aos tipos de conexdes, elas podem ser aciclicas ou ciclicas. Nas aciclicas, também conhecidas
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como feedforward, a saida de um nodo na n-ésima camada da rede nao pode ser usada como
entrada de nodos em camadas de indice menor ou igual a n (Figura 10 (a), (b), (c)); nas
ciclicas, também conhecidas como feedback, a saida de um nodo na n-ésima camada da rede é
usada como entrada de nodos em camadas com indice menor ou igual a n (Figura 10 (d), (e)).
As redes também podem ser classificadas como fracamente (ou parcialmente) conectada
(Figura 10 (b), (c),(d)) e como completamente conectada (Figura 10 (a), (e)).
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Figura 10. Arquiteturas de RNAs.

2.3.1 Aprendizado de uma Rede Neural Artificial

A soluc@o de problemas utilizando RNAs passa inicialmente por uma fase onde a rede tem
que ser treinada. Essa etapa também € conhecida como fase de aprendizagem. No entanto,
antes de se iniciar o treinamento, ocorre a preparagdo dos dados que servirdo de entrada,
assim como a escolha do modelo e da arquitetura de RNA a serem utilizadas. Um fato
importante a ser observado é que o treinamento de uma RNA ndo possui um tempo
determinado de execuc¢do, e durante ele € determinada a intensidade das conexdes entre os
neurdnios. Ao final da fase treinamento, o ajuste que foi realizado nos pesos das conexdes €
usado para criar uma representacdo propria do problema em questdo. Essa representacao serd
usada posteriormente para classificar padrdes desconhecidos.

Sobre a resolucao de problemas através do uso de RNAs, Braga [4] destaca que: “A
capacidade aprender através de exemplos e de generalizar a informacao aprendida é, sem
davida, o atrativo principal da solu¢do de problemas através de RNAs”. A generalizacdo das
RNAs estd ligada a sua capacidade de dar respostas coerentes para padrdoes nao conhecidos.
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Ou seja, a RNA armazena informacdes durante fase de treinamento e depois essas
informacdes sdo usadas para classificar padrdes desconhecidos.

Existem diversos algoritmos que sdo utilizados para o treinamento de RNAs. Esses
algoritmos consistem de um processo iterativo de ajuste dos pardmetros da rede, e
basicamente eles diferem um do outro pela maneira como € feito o ajuste dos pesos. De uma
forma geral os métodos de treinamento podem ser agrupados em dois paradigmas: o
aprendizado supervisionado e o aprendizado ndo supervisionado. Para andlise dos dois
paradigmas de aprendizado, nas subsecdes 2.3.1.1 e 2.3.1.2, sdo utilizadas adaptacOes de
exemplos dados por Braga [4].

2.3.1.1 Aprendizado Supervisionado

O aprendizado supervisionado é o paradigma mais utilizado para treinamento de RNAs. Ele é
chamado dessa forma porque a entrada e a saida desejada sdo fornecidas por um supervisor
externo. A Figura 11 ilustra o funcionamento do mecanismo de aprendizagem supervisionada,
mostrando que a saida calculada pela RNA para cada padrio ¢ comparada com a saida
desejada professor. Apds isso ela recebe informagdes sobre o erro da resposta atual. Esse erro
¢ usado pela RNA para fazer o ajuste dos pesos das conexdes de forma a minimizar o erro a
cada etapa do treinamento.

Saida desejada

Protessor

. RN Saida
Entrada A

Erro

Figura 11. Diagrama do mecanismo de aprendizagem supervisionada.

O treinamento, quando € supervisionado, possui duas formas de implementagdo: off-
line e on-line. No modo off-line, os padrdes de treinamento ndo mudam e apds a obtengdo de
uma solucdo para a rede, esta permanece fixa. Se o conjunto de treinamento sofrer adi¢ao de
novos padrdes, um novo treinamento deve ser realizado usando todos os padrdes. No modo
on-line, os padrdes de treinamento mudam de forma continua, o que faz com que a rede seja
ajustada sucessivamente.

Como foi visto anteriormente, o ajuste dos pesos das conexoes € feito de acordo com o
erro advindo da diferenca entre a resposta atual e a saida desejada. Esse erro é calculado como
descrito na Equacdo 2.2, onde e(t) € o erro, d(t) é a saida desejada e y(t) € a resposta calculada
pela RNA no tempo ¢. Ja o ajuste dos pesos € feito conforme a Equacao 2.3, onde w;(t+1) é o
peso ajustado, w;(f) € o peso atual, # € a taxa de aprendizado, e(t) € o erro e x;(f) é a entrada do
neurdnio i no instante de tempo ¢. A taxa de aprendizado de uma RNA € uma constante de
proporcionalidade no intervalo [0,1], onde o processo de ajuste do peso é proporcional a essa
variavel, que também influéncia na velocidade do treinamento.
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e(r) =d(t) - y(1) (2.2)

w,(t+1) =w, (1) +ne(t)x, (1) (2.3)

2.3.1.2 Aprendizado Nao-supervisionado

No aprendizado nao-supervisionado ndo existe a presenca de um professor para orientar o
processo de aprendizagem. Nesse tipo de aprendizado, os padrdes sdo passados como entrada
para rede sem se saber qual a saida desejada para cada um deles. A Rede entdo ird ajustar seus
pesos de acordo com a regularidade estatistica de suas entradas. Assim sendo, serdo criadas
codificagdes internas para o mapeamento de caracteristicas e criadas novas classes e grupos
automaticamente. Um fato importante é que esse tipo de aprendizagem s € possivel quando
existe redundancia dos dados de entrada, pois sem redundancia ndo seria possivel encontrar
padrdes e caracteristicas nos dados de entrada. A Figura 12 apresenta um diagrama do
mecanismo de aprendizagem nao-supervisionada.

Estado do
Meio Fxterno melo externo > BENA Resposta
- %’

Figura 12. Diagrama do mecanismo de aprendizagem nao-supervisionada.

2.3.2 Redes Neurais Artificiais do Tipo RBF

Nos ultimos anos, RNAs do tipo RBF vém sendo objeto de diversas pesquisas e estudos.
Como resultado desse esforgo, diversos algoritmos e melhorias tém sido propostos para
otimizar as técnicas conhecidas até entdo. As redes RBF utilizam fun¢Ges de base radial e sao
uma alternativa as redes multicamadas do tipo feedforward [8]. Uma rede RBF € uma funcao
multidimensional ndo-linear que depende da distancia dos vetores de entrada e seu vetor
central.

As fungdes de base radial representam conjunto de funcdes cujo resultado varia de
acordo com a distancia em relagdo ao seu ponto central. Vdrias fun¢gdes de base radial podem
ser usadas em redes do tipo RBF. Dessa forma, sdo observados a seguir alguns exemplos
dados por Gupta[8]:

(a) Fun¢ao Gaussiana: ¢(r) = eV 2.4)
(b) Funcdo cubic spline: ¢(r)=r’ 2.5)
(c) Funcdo thin-plate-spline: ¢(r)=r*log(r) (2.6)

Dadas as Equacdes 2.4, 2.5 e 2.6, r é a distancia euclidiana entre o vetor de entrada x e
o centro da fun¢do radial ¢. A distancia Euclidiana calcula a distancia entre dois vetores no
espaco n-dimensional e é dada pela Equacdo (2.7). A Figura 20, retirada de [8], mostra a
representacao grafica das Equacdes 2.4, 2.5 e 2.6.

HX _Xk” = \/(xl =) (G = 3) et (6, = y,) 27)
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Figura 13. Representacdo grafica das funcdes de base radial: (a) Funcdo Gaussiana, (b)
Funcao cubic spline e (c¢) Fungao thin-plate-spline.

Redes do tipo RBF geralmente possuem apenas uma camada intermedidria, embora ja
tenha sido proposta a utilizacdo de multiplas camadas. Uma arquitetura tipica de uma RNA
com apenas uma camada intermedidria pode ser vista na Figura 14, onde é importante frisar
um detalhe nos nodos da camada intermedidria que sdo fungdes de base radial. A camada
intermedidria e de saida desempenham um papel fundamental para uma rede tipo RBF. A
camada intermedidria recebe da camada de entrada um conjunto de padrdes ndo linearmente
separaveis. Esses padrdes serdo agrupados pela camada intermedidria em um conjunto de
saida com dados linearmente separdveis. A camada de saida por sua vez ird classificar os
dados que foram recebidos da camada anterior.

Camada de
saida

Camada
mtermediaria

Camada de
entrada

Figura 14. Arquitetura de uma RNA do tipo RBF

Cada nodo da camada intermedidria define uma hiperelipséide no espaco n-
dimensional, as quais serdo responsaveis por fazer a divisao do espaco de entrada, conforme
ilustrada na Figura 15. Com a divisdo do espago de entrada, as redes RBF constroem entdo
aproximadores locais, e assim irdo classificar apenas padrdes que sejam das mesmas classes
apresentadas durante o treinamento, o que faz com que a rede nao esteja susceptivel a padrdes
espurios - padrdes adulterados ou falsos padrdes.
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Figura 15. Divisao do espaco de entrada bidimensional feita por unidades RBF.

2.3.2.1 Algoritmo de treinamento DDA

Muitos algoritmos podem ser utilizados para fazer o treinamento de uma rede RBF. Porém, a
maioria desses algoritmos possui uma arquitetura fixa que ndo permite modificagdo apds o
inicio do treinamento. Em redes RBF, pode-se utilizar um algoritmo para treinamento
chamado DDA (Dynamic Decay Adjustment) [2] [16][20], que ndo possui uma arquitetura
fixa como os outros algoritmos e realiza o treinamento de forma bastante rdpida. O DDA foi
criado a com intuito de resolver uma deficiéncia de um algoritmo chamado P-RCE
(Probabilistic Restricted Coulomb Energy), que nao classificava padrdes em areas de conflito.
Area de conflito é uma regiio onde duas ou mais gaussianas se sobrepdem. Se um novo
padrao da classe B ficasse em uma regido desse tipo, como ilustra a Figura 16, ele nao
conseguiria ser classificado pelo P-RCE, porém o algoritmo DDA iria classifica-lo como
sendo da classe B.

o |

RA(X) Novo Padrio de Area de Conflito
Entrada (Classe B)

Figura 16. Regiao de conflito entre duas gaussianas.
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O algoritmo DDA € um algoritmo de treinamento construtivo. No inicio do processo
de treinamento a camada escondida ndo possui nenhum neurdnio, € a partir do momento que a
fase treinamento se inicia, novos neurdnios vao sendo adicionados dentro dessa camada caso
haja necessidade. Ou seja, a quantidade de neurdnios que devem fazer parte da camada
escondida ndo € determinada inicialmente, ela sera determinada automaticamente durante o
treinamento pela analise de dois pardmetros, o 8" e o &, que serdo analisados a seguir. Nas
redes RBF-DDA, os nodos da camada de entrada sdo totalmente conectados aos neurdnios da
camada intermediaria. Dessa forma, se um novo neurdnio for adicionado a camada
intermedidaria, ele devera ser conectado a todas as entradas.

O algoritmo DDA utiliza dois pardmetros para decidir se um novo neurdnio devera ser
introduzido na camada intermedidria [2] [3][20]. O primeiro parametro € o threshold positivo,
ou 0, que possui um valor padrdo de 0,4 e que verifica se para um novo padrio, usado
durante o treinamento da rede, existe algum protétipo da mesma classe com ativacdo acima do
0". Caso exista, nenhum novo protétipo serd adicionado a rede. O segundo parimetro é
threshold negativo, ou &, que possui um valor padrdao de 0,1 e é utilizado para solucionar
problemas de conflito de padrdes que possam vir a existir durante o treinamento [2][20].

Na camada de saida para uma rede RBF-DDA existe uma quantidade n de neur6nios,
de forma que essa quantidade € igual ao nimero de classes utilizadas pelos padrdes de
treinamento. Ou seja, se durante o treinamento tivemos padrdes de 4 classes diferentes, na
camada de saida teremos 4 unidades presentes e cada uma delas representa a saida de uma
dessas classes. Para realizar essa classificacdo, os neurdnios da camada saida competem
através do método conhecido como winner-takes-all, onde o neur6bnio que contiver o maior
valor de ativacdo serd usado para realizar a classificagdo.

O algoritmo de treinamento do DDA pode possuir varias épocas. Uma época é uma
passagem completa por todos os exemplos da base de treinamento. O algoritmo DDA, para
uma época, pode ser descrito da seguinte forma: inicialmente ele zera os pesos de todos os
protétipos da rede para ndo acumularem valores duplicados sobre os padrdes de treinamento.
Ap0s isso ele compara, para cada padrao de treinamento, o valor de ativagdo com o parametro
0", onde esse valor de ativacdo é a interseccdo do centro do novo protétipo com a gaussiana
de mesma classe. Se o valor de ativa¢io for maior ou igual ao 8", o peso (altura) da gaussiana
¢ incrementado em uma unidade. Caso a ativacio seja menor do que o 8, um novo protétipo
serd adicionado a rede com centro igual vetor de entrada e o peso igual a 1. O dltimo passo é
fazer o ajuste das larguras das gaussianas, por conta das regides de conflito. Para isso, as
gaussianas sdo ajustadas através da intersec¢do do ¢ com o centro das gaussianas de classes
conflitantes.

A Figura 17 é um exemplo apresentado por Berthold [2], onde este ilustra os passos do
funcionamento do DDA:

(a) Um novo padrdo classe A € apresentado, entdo uma nova gaussiana € adicionada.

(b) Um novo padrio da classe B ¢é apresentado, entdo uma nova gaussiana ¢é
adicionada e suas larguras sdo ajustadas através da intersec¢do do 8 com o centro
da gaussiana da classe conflitante.

(¢) Um novo padrao da classe B € apresentado, entdo a amplitude da gaussiana B é
incrementada em uma unidade, pois valor de ativacdo ficou acima do 6; e a
largura da gaussiana A € ajusta através da intersec¢do dela com & e o centro do
padrao da classe B que foi apresentado como entrada.

(d) Um novo protétipo da classe A € apresentado, entdo serd introduzida uma nova
gaussiana, pois o valor de ativa¢do ficou abaixo do 6, e a largura dessa nova
gaussiana serd ajustada de acordo com a interseccdo dela o 6 e o centro da
gaussiana de classe conflitante.
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Figura 17. Treinamento do DDA.

2.3.2.2 Variacdes do algoritmo de treinamento DDA

Desde o surgimento das redes neurais do tipo RBF-DDA, argumenta-se que os parametros §*
e 6 tém pouca influéncia no desempenho das redes RBF. Originalmente, recomendava-se que
os parAmetros fossem mantidos com seus valores padrdes, ou seja, 07=0,4 ¢ =0,1 [2]. Em
contraste com a recomendacdo original, pesquisas demonstraram que, em alguns casos, a
variacdo do parametro § apresenta um resultado considerdavel no desempenho de classificagao
do algoritmo [17][20].

O método de selecao do & propde a utilizagdo de valores menores do que o valor
padrdo de 0,1. Para selecionar um valor ideal para o 6, é usado um método de selecdo que
tem o objetivo de escolher um valor 6timo para esse parametro, ou seja, um valor que
proporcionasse a maior capacidade de generalizacdo possivel para um determinado problema
e que nao causasse overfiting na rede, devido ao aumento do nimero de neurdnios na camada
escondida. O overfiting ocorre quando a rede perde sua capacidade de generalizacdo e passa a
representar internamente cada padrdo como uma classe, devido ao alto nimero de neurdnios
armazenados.

Para evitar o overfiting, é feita uma divisdo do conjunto de treinamento em duas
partes, sendo uma parte de teste e outra de validacdo. O conjunto de treinamento serd usado
para ajuste dos pesos, e o conjunto de validacdo serd utilizado para estimar a capacidade de
generalizacdo da rede durante o processo de treinamento. Nesse caso o treinamento deve ser
interrompido quando o erro do conjunto de validagdo comegar a crescer.

Um outro método que propde modificagdes para o RBF-DDA é o RBF-DDA-T.
Segundo Paetz [21], durante o treinamento das redes RBF-DDA muitos neurénios supérfluos
sdo inseridos na camada intermedidria. Essa insercao ocorre por conta de dados com ruido, ou
seja, dados nulos e dados com parametros preenchidos inadequadamente. O método RBF-
DDA-T propde a utilizacdo de neurdnios temporarios [21], que sdo podados em tempo de
execugdo de forma a reduzir o nimero de neurdnios armazenados na camada intermedidria.
Com este método houve uma redu¢dao média de 57,70% do nimero de neur6nios armazenados
na camada escondida.

O RBF-DDA-T propde modificagdes ao algoritmo de treinamento DDA de forma que,
sempre que um novo neurdnio € adicionado a camada intermedidria ele ¢ imediatamente
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marcado como tempordrio. Durante o treinamento os neurdnios vao sendo incrementados,
conforme foi visto na se¢do 2.3.2.1, e a medida que isso vai acontecendo, eles vdo sendo
marcados como permanentes. Depois de cada época de treinamento, todos 0s neurénios nao
representativos, ou seja, todos os neurodnios supérfluos, sdo excluidos da camada intermediéria
e ndo serdo usados durante a préxima época do treinamento.

Outra otimizagdo para o método RBF-DDA ¢é o método proposto por Oliveira em [18].
Esse novo método ¢ chamado de RBF-DDA-SP. Assim como o algoritmo DDA, o RBF-
DDA-SP ¢ um método para treinamento construtivo de redes neurais do tipo RBF.

O RBF-DDA-SP propde a juncao da técnica de selecao do parametro § com a técnica
de poda proposta pelo RBF-DDA-T. Como ja foi visto, o algoritmo de selecdo do 8 aumenta
a capacidade de generalizacdo da rede, porém aumenta o nimero de neur6nios na camada
escondida em relacdo ao algoritmo DDA original. Por conta dessa desvantagem, foi proposta
a juncdo do método de selecio do & com o RBF-DDA-T. Essa juncdo tem o objetivo de
aumentar a capacidade de generalizacdo sem gerar redes muito grandes.

Durante a integracdo dos dois algoritmos, observou-se que ocorria uma alta taxa de
poda dos neur6nios quando se usavam valores pequenos para o 6. Assim foram colocados
muito menos neurdnios na camada escondida, e conseqiientemente ocorreu uma queda no
desempenho do classificador.

Por conta do grande nimero de neurdnios excluidos da rede, o algoritmo RBF-DDA-
SP, ao contrario do que propunha o algoritmo original do RBF-DDA-T, faz a poda dos
neurdnios somente apds a ultima época de treinamento do algoritmo DDA. Dessa forma, o
algoritmo primeiro constrdi a rede usando o algoritmo DDA original, e na fase subseqiiente,
apos construida a rede, faz a poda de uma porcentagem P dos neurdnios que tiveram a funcao
de ativacdo (amplitude da gaussiana) igual a 1. A escolha dos neurdnios que serdo podados é
feito de forma randomica. O RBF-DDA-SP possui dois parametros que influenciam
diretamente no resultado final da rede, o & e a porcentagem P de neurdnios que serio
podados. O melhor ajuste para esses dois parametros € feito via validac¢do cruzada dos dados
de entrada.

A validagdo cruzada [6][23] é uma técnica que melhora a divisdo da base de dados
feita pelo holdout. Essa técnica funciona de forma que o conjunto de treinamento é dividido
em K partes com tamanhos aproximadamente iguais. Apds essa etapa, o treinamento € feito de
forma que, a cada rodada de execug¢do do algoritmo, um subconjunto de K é usado para teste e
os outros K-/ subconjuntos sao usados juntos para treinamento. A cada rodada do treinamento
¢ calculado um erro de classificacdo, e, no final, serd calculada a média do erro de todas as K
tentativas.

Os resultados obtidos pelo algoritmo RBF-DDA-SP para bases de reconhecimento de
imagens sdo utilizados no Capitulo 5 para efeito de comparagao de desempenho entre os
algoritmos baseados no NN, implementados durante este trabalho.
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Capitulo 3
Algoritmo NN

O algoritmo Nearest Neighbor [7][26][31] foi proposto por Cover e Hart em 1966. Essa
técnica € um método de estimacdo de densidade bastante simples conceitualmente e de facil
implementagdo. Durante o Capitulo de experimentos sdo analisados os resultados obtidos para
a classificacdo de imagens usando o algoritmo NN e algumas variantes desse algoritmo que
foram implementadas durante o desenvolvimento do trabalho, como o K-Nearest Neighbor, o
Pairwise Opposite Class-Nearest Neighbor (POC-NN) e outras variantes propostas neste
trabalho.

Para demonstrar a maneira como os algoritmos apresentados neste capitulo funcionam
para a classificacdo de um padrdo desconhecido, sdo usadas adaptacdes de exemplos dados
por Raicharoen e colaboradores em [27]. Nesses exemplos, é dado um padrao desconhecido x,
e um conjunto de padrdes de treinamento, com suas classes previamente conhecidas. Dessa
maneira, os padroes da classe 1, sdo simbolizados por “+”, e os padrdoes da classe 2, sdo
simbolizados por “# .

3.1 Conceito Sobre NN

A classificacdo de padrdes usando o algoritmo Nearest Neighbor é dividida em duas fases: a
primeira, de treinamento, e a segunda, de teste. Durante a primeira fase de execucao do NN, é
usada uma base de treinamento obtida através da técnica de holdout. Apds o término da etapa
de treinamento, inicia-se a fase de teste, na qual se usa a base de dados de teste, também
obtida pela técnica de holdout.

3.1.1 Fase de Treinamento e Fase de Teste

A fase de treinamento do algoritmo NN ¢ bastante simples e consiste em, dada uma base de
treinamento TR"={X;, ... , X,,} onde n é o numero de padrdes armazenados em TR, armazenar
na memoria todos os padrées de TR. Um padrdo X qualquer, que pertenga a base de
treinamento ou a base de teste, possui duas caracteristicas: um vetor de valores e uma classe.
A primeira € um vetor de valores que armazena todas as suas caracteristicas e a segunda ¢é
uma varidvel que armazena a qual classe o padrao pertence.

Durante a fase de teste do algoritmo é que se avalia o desempenho do classificador
para a classificacdo de novos padrdes. Para isso, durante a fase de teste, dada uma base de
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teste TE"={X,, ..., X,/ onde a classe de cada padrido X, e TE é conhecida e n é o nimero de
padrdes contidos em TE, deve-se calcular a taxa de erro do classificador para o dado conjunto
de teste através da Equacdo 3.1. Para que se calcule a taxa de erro do conjunto de teste, o
algoritmo deve encontrar para cada padrio X e TE um padrdo X 'e TR, de forma que X',
dentre todos os padrdes de treinamento de TR, seja o que possui a menor distancia Euclidiana
em relacdo a X,. Entdo X, € classificado pelo algoritmo como sendo da mesma classe do
padrao X'. Como a classe de X, era previamente conhecida, durante a fase de teste deve-se
avaliar se o algoritmo errou na classificacdo do padrdao ou ndo, e como ja foi visto, ao final de
todos os padrdes de teste, calcular a taxa de erro através da Equacgao 3.1.

N.° de Padroes Classificados Incorretamente (3.1)
N.° de Padrdes do Conjunto de Teste

Tx. de Erro = 100X

De forma resumida, um pseudocddigo para o algoritmo NN pode ser visto através
dos passos descritos no Algoritmo 1. Segundo Duda [7], o algoritmo NN cria uma parti¢do no
espaco n-dimensional em células de Voronoi, onde cada célula € rotulada com a classe do
padrao que a originou. Um exemplo da divisdo do espagco bidimensional em células de
Voronoi, feita pelo algoritmo NN, € dado por Duda [7] e apresentado na Figura 18, onde os
pontos pretos representam os padrdes da classe 1 e os pontos vermelhos os padrdes da classe
2.

Fase de Treinamento:
¢ Dada uma base de treinamento TR" | TR"={P;, ..., P,}
1. Para cada padrao P, TR", adicionar o padrdo P, a lista de padrdes de treinamento
[TREINA]
Fase de Classificacao:
¢ Dado um padrao desconhecido P,

1. Achar o padrio P e [TREINA] , tal que P, seja o padrdo com menor distincia

Euclidiana em relagdo a P,
2. C(lassificar P; como sendo da mesma classe que P,

Algoritmo 1. Pseudocédigo NN para a classificacdo de um padrdo desconhecido.

As células de Voronéi, também conhecidas como poligonos de Voronoi, sao, no
caso do espacgo bidimensional, regides V; criadas por um dado padrio de treinamento x;. Dessa
maneira um padrdo desconhecido x, pertencerd a regido V; se e somente Il x;, x4I<Il x;, x;ll, para
todo j diferente de i. Dessa forma, Carvalho [5] afirma que: “Cada uma destas desigualdades
representa o semiplano contendo x; determinado pela mediatriz do segmento x;x;. Assim, V; €
um poligono convexo, por ser a intersecdo de n—1 semiplanos”, como pode ser visto na Figura
19. Os semiplanos de uma célula de Voronoi servem como limite de decisdo para o algoritmo.

Um exemplo de como funciona a classificacdo feita pelo NN pode ser visto na Figura
20. Nela podemos ver um padrao desconhecido x,; entre padrdes da classe 1 e padroes da
classe 2. Usando o algoritmo NN, descrito nessa secao, o padrdo x, € classificado como sendo
da classe “+”, que € a classe do seu vizinho mais préximo.
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Figura 18. Divisdo do espaco em células de Vorondi feita pelo NN.

Figura 19. Diagrama de Voron6i para pontos do plano.

+ + +
2 *
0 ¥ ©
Xa
2 *
*
4
8 +

10 = 1 5 1 15
X1
Figura 20. Classificacao feita pelo NN para um padrio desconhecido.
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3.2 Algoritmos para Aprendizagem de Maquina
Baseados no Algoritmo NN

Diversas variagdes foram propostas para o algoritmo original do NN com o objetivo de
otimizar seu desempenho na classificacdo de padrdes, diminuir o esforco computacional e
outras caracteristicas negativas desse algoritmo.

Uma variagao bastante simples do algoritmo NN, que surgiu com objetivo de melhorar
o desempenho de classificacdo, é a do algoritmo K-Nearest Neighbor [7][31], que propde
modificacdes durante a fase de teste/classificacao do algoritmo NN original. Essa varia¢do do
NN ¢ analisada em maiores detalhes na se¢do 3.2.1. Assim como o KNN, também surgiram
outras propostas de melhoria para o algoritmo NN.

O desempenho dos algoritmos de treinamento baseados na regra do vizinho mais
proximo pode ser medido pela anédlise de diversos fatores. Porém, existem trés varidveis que
influenciam diretamente o desempenho de um algoritmo:

(a) O nimero de protétipos armazenados durante a fase treinamento;

(b) O tempo computacional necessario para se classificar um padrao desconhecido;

(c) A taxa de erro do conjunto de teste.

Dessa forma, um algoritmo que armazena muitos padrdes, como € o caso do NN e do
KNN, necessita de um tempo computacional muito grande para classificar um novo padrao.
Por outro lado, o fato de armazenar muitos padrdes traz alguns beneficios, pois pode ocorrer
uma diminuicdo da taxa de erro do conjunto de teste. Por fim, o desempenho de um algoritmo
baseado no NN pode ser medido através de andlise custo versus beneficio dessas 3 varidveis.
Assim, se o nimero de protétipos armazenados aumentar, o tempo computacional aumenta e a
taxa de erro do conjunto de teste tende a sofrer uma diminui¢do. Caso contrério, se 0 nimero
de protétipos armazenados diminuir, o tempo computacional diminui e a taxa de erro do
conjunto de teste tende a sofrer um aumento.

3.2.1 Algoritmo KNN

O algoritmo KNN € uma variacdo do algoritmo NN. Esse algoritmo propde uma modificacdo
em relacdo ao algoritmo original, que se da durante a fase de teste/classificagdo, onde o
algoritmo faz uso dos K-vizinhos mais préximos, ao invés de usar apenas o vizinho mais
préximo, como propunha o algoritmo original.

Para estimar a classe de um novo padrdo X, o algoritmo KNN calcula os K-vizinhos
mais proximos a X e classifica-o como sendo da classe que aparece com maior freqii€ncia
dentre os seus K-vizinhos. Durante a fase de classificagdo do KNN, algumas vezes ocorre um
problema, onde, dado um padrao de teste X, os seus K-vizinhos mais préximos sdo de uma
mesma classe e o algoritmo ndo consegue decidir com qual classes dos K-vizinhos ele deve
comparar o padrao X. Para resolver essa situa¢do, o padrio que teve o problema citado
anteriormente serd rodado de forma recursiva pelo algoritmo, o qual agora usaré apenas (K-1)
vizinhos para o cdlculo, até que uma das classes dos K-vizinhos apareca com maior
freqiiéncia em relagcdo as demais.

Apesar de melhorar o desempenho de classificacdo em relacdo ao algoritmo original
em alguns problemas, o KNN mantém as mesmas deficiéncias encontradas no NN, pois
continua a armazenar todos os padrdes de treinamento na memoria, como também ainda exige
um grande esfor¢co computacional.

Segundo Webb [31]: “O KNN é um método simples de estimacdo de densidade”. O
KNN recebe essa denominacdo pelo ao fato dele estimar a densidade local de padrdes de
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treinamento na vizinhanca de um padrao desconhecido durante a classificagdo. O KNN
determina um volume V que contém os K-vizinhos mais proximos centrados em um padrdo X,
o qual se deseja classificar. Por exemplo, se X; é o K-ésimo vizinho de X, entdo V serd uma
esfera centrada em X e com raio igual a distancia Euclidiana entre X e X, ou seja, IIX- Xll. O
volume V da esfera, de raio r em n-dimensdes, é dado pela Equacdo 3.2 [31], onde /(x) é a
funcdo gama [7] dada pela Equacdo 3.3.

n n/2
_ 2}" T (3.2)
nl'(n/2)
T(n+1)= j x"e "dx (33)
0

O KNN possui um parametro chamado K, que indica o nimero de vizinhos que serdo
usados pelo algoritmo durante a fase de teste. O parametro K faz com que algoritmo consiga
uma classificagdo mais refinada, porém o valor 6timo de K varia de um problema para o
outro, o que faz com que, para cada base de dados, sejam testados varios valores diferentes de
forma a descobrir qual o melhor valor de K para determinado problema.

Um exemplo simples de como funciona a classificacao feita pelo algoritmo KNN pode
ser visto na Figura 21, onde se pode ver o padrao desconhecido x, entre padrdes da classe 1, e
os padrdes da classe 2. A tarefa do KNN ¢ classificar o padrdo x,; como sendo pertencente a
uma das classes exibidas no exemplo. Dependendo do nimero de K-vizinhos, x; serd
classificado da seguinte forma: se K=1, x; serd classificado como “+7”; se K=3, x; serd

TR

classificado como “+”’; se K=5, x; sera classificado como “* .

X2

s + i

_8 1 ] 1 ]
-10 -5 0 10 15

o

X1
Figura 21. Classificacdo feita pelo KNN para um padrao desconhecido x;, .
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Capitulo 4
Algoritmo POC-NN

No Capitulo 2, foram analisadas as vantagens e desvantagens do algoritmo Nearest Neighbor.
Também foi visto o algoritmo KNN, uma variagao do algoritmo NN que, apesar de trazer um
melhor desempenho de classificacdo em alguns problemas, apresenta as mesmas defici€éncias
do algoritmo original, principalmente no que diz respeito ao tempo computacional para a
classificagcdo de novos padrdes.

Durante este capitulo, serd analisada uma nova variagdo do algoritmo Nearest
Neighbor, que foi criada com o objetivo de diminuir o nimero de padrdes armazenados na
memoria durante a fase treinamento, e, conseqiientemente, diminuir o esforco computacional
para se classificar um novo padrdo. Este novo algoritmo é chamado de Pairwise Opposite
Class-Nearest Neighbor (POC-NN).

4.1 Motivacao e Conceitos Sobre POC-NN

Visando diminuir o tempo computacional do algoritmo original, o POC-NN [26][27] propde
duas aproximacdes, chamadas Selecdo de Prototipos (Prototype Selection) e Troca de
Protétipos (Prototype Replacement). A primeira deu origem ao algoritmo S-POC-NN,
enquanto que a segunda deu origem ao algoritmo R-POC-NN.

O S-POC-NN e o R-POC-NN realizam um pré-processamento sobre o conjunto de
padrdes de treinamento, armazenando na memoria apenas os padrdoes que possuem uma maior
capacidade de generalizagdo. Assim a quantidade de padrdes armazenados em memoria
diminui drasticamente e, conseqiientemente, o uso dos recursos computacionais.

4.1.1 Fase de Treinamento do POC-NN

O objetivo da fase de treinamento do POC-NN € encontrar um subconjunto de padrdes, dentre
todos os padrdes do conjunto de treinamento, que formard o conjunto de protétipos a serem
usados na fase classificacio/teste. O subconjunto encontrado define os limites de decisdo e a
maneira como o algoritmo deve classificar quem estd dentro ou fora desse limite. A fase de
treinamento do POC-NN ¢ dividida em etapas, que variam de acordo com a aproximagao
utilizada. Sdo elas [26][27]:

(a) Finding-POC-NN;,

(b) Selecting-POC-NN;
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(c) Calculo do intervalo de aceitagao;

(d) Replacing-POC-NN.

Durante as subsec¢des relacionadas ao treinamento do POC-NN, sao usados exemplos
dados por Raicharoen em [26][27]. Esses exemplos possuem duas classes de padrdes, onde os
padroes da Classe 1 sdo representados pelo simbolo “+” e os padroes da Classe 2 sdo
representados por “:*”, assim como também o padrdo médio (x,) € simbolizado por “0”,
enquanto que os protétipos POC-NN, x,,; € x,2, s30 os padrdes que estdo circulados.

4.1.1.1 Finding-POC-NN

Dado um conjunto de treinamento S, composto por duas classes de padrdes distintas S’ e 52,
de forma que S'NS*> = e onde n; é a quantidade de padrdes de S’ e n, é quantidade padrdes
de $°. A funcdo Finding-POC-NN pode ser vista no Algoritmo 2:

Funcao Finding-POC-NN(S)

1. Dados que S" e §% sdo duas classes de padrdes distintas e que n; e n, sao seus
respectivos tamanhos

2. SEn;>ny
ENTAO

3. X, = Protétipo médio de s!
3.1. x,, serd o padrdo pertencente a $? mais préoximo de x,,

3.2. x,; serd o padrilo pertencente a S' mais préximo de x,,
SENAO

4. Xx,, = Protétipo médio de s?
4.1. x,; serd o padrio pertencente a S' mais préximo de x,,
4.2. x> sera o padrdo pertencente a S mais proéximo de x,;
Fim do SE

5. Retorne o padrdao POC-NN (x,;, x,,2)

Algoritmo 2. Funcdo Finding-POC-NN.

A Figura 22 ilustra o funcionamento do algoritmo Finding-POC-NN. De forma
resumida, o algoritmo Finding-POC-NN tem o objetivo de encontrar os prototipos POC-NN
de duas classes distintas. Um detalhe importante a ser observado € que os prototipos POC-
NN, x,; € x,, entre duas classes serdo sempre os mesmos, independentemente da ordem dos
padrdes do conjunto de treinamento.

Ap6s os protétipos do POC-NN terem sido encontrados (Passo 5 do Algoritmo 2), é
gerado um hiperplano que serd usado como limite de decisdo pelo algoritmo. Assim, cada
regido de decisdo serd limitada por um hiperplano. O hiperplano encontrado serd
ortogonalmente colocado na distancia média entre os protétipos x,; € x,2. Este hiperplano
servird como limite de decisdo para o algoritmo, de forma semelhante aos semiplanos que
servem de limite para as células de um diagrama de Vorondi. Os limites de decisao para cada
uma das regides sdo definidos pelos correspondentes hiperplanos de separacdo, que foram
gerados pelos protétipos POC-NN encontrados em cada uma das regides do espagco de
entrada.
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Figura 22. Func¢ao Finding-POC-NN.

4.1.1.2 Selecting-POC-NN

O fungdo Selecting-POC-NN é um método inovador para sele¢ao de protétipos, de forma que
o algoritmo ndo tenha que armazenar na memoria todos os padrdes de treinamento. O
Selecting-POC-NN € um algoritmo recursivo que realiza a classificacao de padrdes entre duas
classes, porém pode ser estendido para classificagdo de multiplas classes.

O Selecting-POC-NN recebe como entrada um conjunto de treinamento S composto
por n padrdes de duas classes distintas, o retorno do algoritmo é um conjunto chamado POC-
NN-SET, que armazena na memoria os protdtipos de treinamento € 0S seus respectivos
hiperplanos. Vale salientar que, quando o Selecting-POC-NN inicia, o POC-NN-SET esta
vazio e que ele segue as regras de um conjunto, onde cada objeto adicionado nio deve se
repetir. O funcionamento do Selecting-POC-NN pode ser visto no Algoritmo 3.

O exemplo da Figura 23 mostra como ¢ feita a separacdo de padrdes de duas classes
ndo linearmente separaveis através do Selecting-POC-NN. Inicialmente pode-se ver que os
padroes x,; € x,, criaram o hiperplano H;, Figura 23(a), que gerou alguns padrOes
classificados incorretamente do lado direito. Todos os padrdes do lado direito de H; devem
ser considerados como sendo um novo conjunto de padrdes de treinamento, 0 novo conjunto
serd passado de forma recursiva para a funcdo Selecting-POC-NN, até que ndo existam mais
padrdes classificados erroneamente, como na Figura 23 (b).

O algoritmo POC-NN possui duas abordagens, a primeira é do algoritmo S-POC-NN
que utiliza o método Selecting-POC-NN, descrito nesta secdo para a redu¢do do nimero de
padrdes armazenados na memoria. A segunda abordagem do POC-NN ¢ o algoritmo R-POC-
NN que utiliza o0 método Replacing-POC-NN. Este ¢ um método de troca que reduz ainda
mais o nimero de padrdes armazenados na memoria; serd descrito na secdo 4.1.1.4.
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Funcio Selecting-POC-NN( S)

1. Encontrar os protétipos POC-NN usando ( x,;, x,2 )=Finding-POC-NN( §)

. . x] +Xx
2. Determinar o Center Point usando ¢ =—2—"2

3. Criar um Hiperplano para separacdo H, de forma que H:{x | w.x-b=0}, onde
xpl -

x]72
w= e b=w.c

xpl - 'x]72

4. Salvar no POC-NN-SET os prototipos ( x,7, Xp2 ) € 0 hiperplano H
5. Dividir todos os padrdes de S em duas regides, chamadas R1 e R2, onde

Rl={x,e Slwx,-b=20} e R2={x,e Slw.x,—b <0}, Vi comi variando de 1...n

ENTAO

FIM DO SE

fazer: Selecting-POC-NN(R1)
FIM DO SE

fazer: Selecting-POC-NN(R2)

12. RETORNE o POC-NN-SET

9. SE existe algum padrio classificado incorretamente em R2

11. SE nao existe mais padrodes classificados incorretamente

6. Encontre algum padrao classificado incorretamente em ambas as regides, R1 e R2
7. SE existe algum padréo classificado incorretamente em R1
ENTAO

8. Considerar todos os padrdes contidos em R1 como sendo um novo conjunto de dados e

10. Considerar todos os padrdes contidos em R2 como sendo um novo conjunto de dados e

Algoritmo 3. Funcio Selecting-POC-NN.

5 . 5 T .
i | Classe 2
45¢ | 45+ Regi;ﬁlﬁie{:?me 1 I'-_ Reqido 1 da Classe 2
| .
4L - I|I e 4 L + II| *
+ | * -+ 1 *
1
ast - + H, " 35} + + Hi.L' * ¢ 3
1 \ m
33 + g+ B N3 + et % @
x| p2 X i n2 X
P \ L 2y
25| + x| 25} + | 2 2
+ \ + \
2 + ek + 2|+ T %+
i + \ o+
1.5 ; 1.5} | + Classe1 {
I|I | Regido 2 da Classe 1
1 L L 1 A 1 i 1 1 1 L 1 1 1 't 1 'l I| 1 1 L 1 A
0 05 1 15 2 25 3 4 4.5 0 0.5 1 15 2 25 3 35 4 45 &
(a) X1 (b) X1

Figura 23.Funcionamento do Selecting-POC-NN. (a) Separacdo feita pelo hiperplano

inicial H;; (b) segunda separacdo feita pelo hiperplano H..
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4.1.1.3 Intervalo de aceitagao

O POC-NN utiliza um intervalo de aceitacdo durante a busca por padrdes classificados
incorretamente (passos 7 € 9 do Algoritmo 3). Este intervalo faz com que haja uma redugao da
complexidade e da sensibilidade a ruidos no algoritmo POC-NN. Para reduzir a complexidade
do algoritmo, um hiperplano de separacao pode ser considerado como uma fatia, chamada de
intervalo de aceitacdo, onde esta fatia possui uma largura o. A largura do intervalo de
aceitacdo € proporcional a distancia d entre os dois prototipos POC-NN. Dessa forma, a
largura o pode ser calculada como: o = a-ratio x d, para a-ratio variando entre 0< a-ratio <1.

Com o uso intervalo de aceitagdo, os padrdes que estiverem dentro deste intervalo, do
hiperplano de separag@o, serdo considerados como classificados corretamente. Porém os
padrdes devem ser descartados, pois também s@o considerados como ruidos ou outliers.

Dado um padrdo x;, um hiperplano de separacdo H : w.x-b = 0 e um intervalo de
aceitacdo com a > 0, se lw.x;-b = 0l < a, entdo o padrao x; estard dentro da fatia do intervalo
de aceitacao e deverd ser descartado, pois serd considerado como um ruido/outlier.

Na Figura 24, pode ser visto um exemplo onde o a-ratio foi definido como 0,2. Apds
uma iteracdo do algoritmo Selecting-POC-NN, serdo encontrados dois prot6tipos € o espago
serd dividido em duas regides pelo hiperplano H . Neste exemplo, 3 padroes classificados
incorretamente sdo ignorados por estarem dentro do intervalo de aceitacdo. As Figuras 25 e 26
fazem referéncia ao problema da Figura 24, porém nessas o a-ratio foi definido como 0,1.
Com isso apenas dois padrOes ficaram dentro do intervalo de aceitagdo e um padrdo foi
considerado como classificado incorretamente (Figura 25). Logo ap6s, o algoritmo Selecting-
POC-NN ¢ rodado recursivamente € novos prototipos € um hiperplano sdo encontrados
(Figura 26), com objetivo de classificar o padrdo classificado incorretamente. Assim o espaco
fica dividido em trés regioes.

25
'\.\ 1
2 Y !
‘-\.\ E 3 **
15 \ i *
N * *«t’}f} |
p @ 3 *
1 NaP\ T W R R R .
L "y =
£ A
*» 05| + \;..:nzri;e
'::Bx ! 1-‘\
+ + nt b
0| |ﬁ \‘\
5\
-0.5 iy
=1 |
05 1 1 2 25 3 35 4 45 5 55
A1

Figura 24. Divisao do espaco com a-ratio=0,2.
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Figura 26. Segunda fase da divisdo do espago com a-ratio =0,1.

4.1.1.4 Replacing-POC-NN

Uma segunda abordagem da solu¢@o proposta pelo POC-NN é a do R-POC-NN, onde a
fungdo usada € a Replacing-POC-NN [26][27]. Essa funcdo apresenta, em alguns casos,
resultados melhores do que a funcdo Selecting-POC-NN, e, geralmente, armazena menos
protétipos na memoria. A funcdo Selecting-POC-NN divide o espaco em diversas regides,
cada regido possui protétipos de selecdo que a representam. Por sua vez, o algoritmo
Replacing-POC-NN armazena na memoria protétipos de troca que nao necessariamente
coincidem com algum padrdo do conjunto de treinamento original. Assim sendo, para cada
regido encontrada, o Replacing-POC-NN realiza uma troca de todos os protétipos de sele¢do
de cada regido por um padrdo médio, chamado prototipo de troca.
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Para a obtencdo da funcdo Replacing-POC-NN € necessdria uma modificagdo na

funcdo Selecting-POC-NN (Algoritmo 3). O retorno da funcdo também é modificado, ou seja,

o conjunto de saida POC-NN-SET ¢ substituido por um MOR-NN-SET. Os detalhes da

implementacdo estdo no algoritmo a seguir (Algoritmo 4), que recebe como entrada um
conjunto de treinamento S:

Funcao Replacing-POC-NN( §)
1. Encontrar os protétipos POC-NN usando (x,; , x,2)=Finding-POC-NN(S )

. ) X +x
2. Determinar o Center Point usando ¢ = —2—22

3. Criar um Hiperplano para separacdo H, de forma que H:{x | w.x-b=0}, onde

'xpl _'po

w= H e b=w.c

X X

pl - p2
4. Salvar no POC-NN-SET prototipos (x,; , x,2) € o hiperplano H
5. Dividir todos os padrdes de S em duas regides, chamadas R/ e R2, onde

Rl={x.e Slwx,—b=20} e R2={x,e S|lw.x,—b <0}, Vi com i variando de 1...n

6. Encontre algum padrao classificado incorretamente em ambas as regides, R/ e R2
7. SE existe algum padrio classificado incorretamente em R/
ENTAO
8. Considerar todos os padrdes contidos em R/ como sendo um novo conjunto de dados e
fazer: Replacing-POC-NN(R/)
SENAO
9. Salve X0, que € 0 padrao médio de R1 no MOR-NN-SET
FIM DO SE
10. SE existe algum padrao classificado incorretamente em R2
ENTAO
11. Considerar todos os padrdes contidos em R2 como sendo um novo conjunto de dados e
fazer: Replacing-POC-NN(R2)
SENAO
12. Salve Xy, que € o padrao médio de R2 no MOR-NN-SET
FIM DO SE
13. SE ndo existem mais padrdes classificados incorretamente
ENTAO
14. Salve x,,,,, que € o padrao médio de Rl no MOR-NN-SET
Salve X0, que € o padrao médio de R2 no MOR-NN-SET
15. Retorne o MOR-NN-SET

Algoritmo 4. Funcao Replacing-POC-NN [26][27].

Para demonstrar o funcionamento da fung¢do Replacing-POC-NN sera usado, por
motivo de comparacdo, o0 mesmo exemplo usadona Figura 23. Na Figura 27 pode-se ver que
quando o algoritmo converge, o espaco ¢ dividido em trés regides de padrdes corretamente
classificados. E importante frisar que o niimero de protétipos armazenados pelo Replacing-
POC-NN ¢é menor que no Selecting-POC-NN. Este fato pode ser observado se compararmos o
exemplo da Figura 23 com o da Figura 27, o primeiro armazena quatro protétipos no POC-
NN-SET, enquanto que o segundo armazena apenas trés protétipos no MOR-NN-SET.
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Figura 27. Funcionamento do Replacing-POC-NN.
4.1.2 Classificacao Para Muiltiplas Classes

As funcdes Selecting-POC-NN e Replacing-POC-NN do POC-NN foram construidas para
fazer classificacdo bindria, ou seja, classificacdo de problemas que possuem apenas duas
classes. Para estender os limites do POC-NN para classificagdo de multiplas classes é usada
uma técnica chamada one-against-one (1-n-1) [26][27][31], que realiza a combinagdo de
diversos classificadores bindrios para a criacdo de solugdes para problemas de multiplas
classes.

A técnica one-against-one faz a combinacdo de diversos classificadores bindrios. O
nimero de combinagdes ird variar de acordo com o nimero de classes existentes no problema
em andlise. O nimero de combinagdes feitas pelo one-against-one é dado pela Equagdo 4.1.

Na Figura 28, é possivel ver o funcionamento do one-against-one para um problema
de multiplas classes, onde existem quatro classes distintas. O algoritmo realiza o treinamento
entre todas as combinag¢des bindrias das classes existentes. Cada combinag¢do entre duas
classes ird retornar padroes de treinamento que serdo armazenados no POC-NN-SET. E
importante frisar que o uso dessa técnica no POC-NN merece alguns cuidados, pois, pode

fazer com que um mesmo padrdo de treinamento possa ser armazenado mais de uma vez
dentro do POC-NN-SET, fato este que deve ser evitado.

FASE DE
TREINAMENTO

Classe 1
Classe 2

Classe 1
Classe 3

Classe 1 Armazenar
Cl 4
asse \ protétipos de cada
combinag¢édo no

Classe 2 POC-NN-SET

Classe 3

Classe 2
Classe 4

Classe 3
Classed

Figura 28. One-against-one para problemas com quatro classes distintas.
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K(K-1) (4.1)

Combinagdes do one-against-one = >

4.1.3 Fase de Teste POC-NN

A fase de teste do POC-NN € idéntica a fase de teste do NN. Dessa forma, durante a fase teste
do algoritmo se avalia o desempenho do classificador para a classificagdo de novos padrdes.
Para isso, durante a fase de teste, dada uma base de teste TE"={X}, ..., X,,}, onde a classe de

7z

cada padrdo X, € TE € conhecida € n € o numero de padrdes contidos em TE, deve-se

calcular a taxa de erro do classificador para o dado conjunto de teste através da Equacdo 3.1.
Se estivermos usando o S-POC-NN, para que se calcule a taxa de erro do conjunto de teste, o
algoritmo deve encontrar para cada padrdo X, K € TE um padrao X 'e POC-NN-SET de

forma que X', dentre todos os protétipos de POC-NN-SET, seja o que possui a menor
distancia Euclidiana em relacdo a X, . Entdo X sera classificado pelo algoritmo como sendo

da mesma classe do protétipo X '. Como a classe de X, era previamente conhecida, deve-se
avaliar se o algoritmo errou na classifica¢do do padrao ou nio.

4.2 Vantagens do POC-NN

O algoritmo POC-NN traz muitas vantagens em relacdo ao algoritmo original Nearest
Neighbor e suas variantes, como o K-Nearest Neighbor. Cada uma das duas abordagens do
POC-NN, S-POC-NN e R-POC-NN, possuem vantagens que sdo peculiares a cada uma delas,
porém existem algumas vantagens que sio independentes da abordagem. A primeira é que as
duas abordagens reduzem significativamente o numero de padrdoes de treinamento
armazenados na memoria e a segunda é uma conseqiiéncia da primeira, pois, como 0 nimero
de padrdes diminui, o tempo de classificacdo de novos padrdes também diminui.

Um fato importante a ser frisado é que as taxas de erro obtidas pelo POC-NN para o
conjunto de teste sdo piores do que as taxas obtidas pelos algoritmos NN e KNN. Porém, se
for analisado o parametro custo versus beneficio entre os algoritmos, serd observado que os
resultados obtidos pelo POC-NN sdo bastante significativos no que diz respeito ao ndimero de
padrdes armazenados e ao tempo de classificacdo de novos padrdes. A andlise custo versus
beneficio, para esse tipo de algoritmo, pode ser feita analisando-se as varidveis descritas na
secdo 3.2.

O algoritmo de selecdo de protétipos ou S-POC-NN possui algumas caracteristicas
que valem a pena serem observadas. A primeira delas é que a fungdo para selecdo de
protétipos apresenta o mesmo resultado, independente da ordem que os padrdes de
treinamento sdo apresentados durante a fase de treinamento. Outro fator interessante e
favoravel ao S-POC-NN € que o algoritmo sempre converge depois de n—1 iteracdes, onde n
¢ o nimero padroes POC-NN.

Em relacdo a abordagem R-POC-NN, a sua principal vantagem € a quantidade de
protétipos reduzidos que ele armazena durante a fase de treinamento. Além disso, algumas
vezes 0 R-POC-NN apresenta uma taxa de erro menor que o S-POC-NN. O R-POC-NN,
assim como o S-POC-NN, apresenta o mesmo resultado independente da ordem que os
padrdes de treinamento sdo apresentados durante a fase de treinamento.
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4.3 Algoritmos Propostos

O estudo do Nearest Neighbor e de duas de suas variantes, KNN e POC-NN, permitiu a
criacdo de uma ferramenta de treinamento de maquina utilizando esses algoritmos, de forma
que fosse possivel gerar uma andlise dos mesmos. Através desta andlise foi possivel propor
melhorias aos algoritmos existentes até entdo. Dessa forma surgiram o S-POC-KNN e o S-
POC-KNN com nitcleo RBF.

A metodologia usada para a criacdo dos novos algoritmos foi a de combinar duas
técnicas distintas, de modo que fosse possivel resolver um dado problema usando as
vantagens das técnicas em questdo.

4.3.1 S-POC-KNN

O algoritmo S-POC-KNN propde uma modificagdo simples para o algoritmo S-POC-NN e
que traz bons resultados. A fase de teste das duas abordagens do POC-NN (4.1.3), S-POC-NN
e R-POC-NN, ¢ idéntica a fase teste do algoritmo Nearest Neighbor (3.1.1). Com isso cada
padrao X, seja ele do conjunto de teste ou um padrdo desconhecido, é classificado pelo
algoritmo como sendo da mesma classe de um protétipo pertencente ao POC-NN-SET que
possua a menor distancia Euclidiana em relagao a X.

Para a criacdo do S-POC-KNN uniram-se as vantagens do algoritmo KNN com as do
S-POC-NN. Dessa maneira foi alcancado o objetivo de melhorar o desempenho do algoritmo
S-POC-NN original. O S-POC-KNN utiliza a abordagem selecao de protétipos do POC-NN.
Assim, o S-POC-KNN armazena em memoria a mesma quantidade de padrdes que o S-POC-
NN, porém a sua fase teste foi modificada de forma a assimilar os beneficios advindos da fase
de teste do KNN (3.2.1). Por conseguinte a fase de teste passa a ndo levar em consideracdo
somente o vizinho mais préximo, mas também os K-vizinhos mais préoximos, da mesma
forma que ocorre no algoritmo KNN. Os resultados obtidos com o S-POC-KNN podem ser
observados no Capitulo 5.

4.3.2 S-POC-KNN-RBF

Outra variacdo criada para o S-POC-NN que apresentou bons resultados € o algoritmo S-
POC-NN com ntcleo RBF (S-POC-NN-RBF). Este algoritmo une as vantagens do algoritmo
S-POC-NN com as do nicleo RBF. Tanto o algoritmo POC-NN original quanto o Nearest
Neighbor, utilizam a distancia Euclidiana como maneira de medir a distancia entre padrdes n-
dimensionais. A proposta do algoritmo S-POC-NN-RBF € substituir a maneira como o
algoritmo calcula a distancia entre dois padrdes no espaco n-dimensional.

Uma série de trabalhos propde a utilizagdo do NN em espagos ndo euclidianos. Esses
trabalhos utilizam diversas maneiras de se calcular a distancia entre dois padrdes no espaco n-
dimensional. O NNSRM (Nearest Neighbor Structural Risk Minimization) [14] € um método
de classificagdo de padrdes que utiliza o NN junto com outras técnicas de classificacdo e
utiliza a distancia Euclidiana para calcular a distancia entre dois padrées no espaco. Em
Karacali [15] € proposta uma modificacdo para do método NNSRM através de uma
modificagdo do espaco usando operadores de kernel e utilizando-se do nicleo RBF, também
chamado de kernel RBF, para calcular a distdncia entre padrdoes. Apds essa modificagdo,
observou-se que a técnica demonstrou ser mais robusta para condi¢cdes onde se usa kernel.
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Nestas condi¢des foi observado um baixo custo computacional em relacdo a técnica
convencional.

Diante dos resultados obtidos por essas pesquisas, foi proposto que a distancia
Euclidiana fosse substituida pelo cdlculo da distincia através do nucleo RBF, também
conhecida como distancia gaussiana. A fungdo para o célculo da distancia utilizando nicleo
RBF ¢é dada pela Equacdo 4.2, onde 7 € a variancia, e representa um novo parametro que
pode ser configurado pelo usudrio para ajustes no desempenho do algoritmo.

2
sz) - z_z*exp(_w) 4.2)

distancia(X >
2%(77)

rl’

Apds a implementagdo do algoritmo S-POC-NN-RBF, o mesmo foi estendido de
forma a realizar a juncdo das caracteristicas obtidas até entdo com as vantagens do KNN, para
melhorar o desempenho do S-POC-NN-RBF. Esse algoritmo é chamado de S-POC-KNN-
RBF; esse armazena em memoria a mesma quantidade de padrdes que o S-POC-NN-RBF,
porém sua fase teste foi modificada, de forma assimilar os beneficios advindos da fase de
teste do KNN (3.2.1). Assim sendo, a fase de teste passa a nao levar em consideracdo somente
o vizinho mais pr6ximo, mas leva em consideracdo os K-vizinhos mais proximos, da mesma
forma que ocorre no algoritmo KNN.

Para o algoritmo S-POC-NN-RBF sido possiveis a configuragao de trés parametros: (a)
o nimero de K-Vizinhos; (b) o a-ratio; (c) o valor de 7. Durante os experimentos realizados
com S-POC-KNN-RBF ndo foi possivel medir o grau de influéncia do parametro a-ratio, pois
aparentemente esse valor apresenta uma grandeza diferente das distancias obtidas pelo nicleo
RBF. Dessa forma, a andlise do grau de influéncia e a grandeza desse parametro devem ser
feitos em estudo posterior. Ainda por conta desse fato, durante os experimentos realizados
com S-POC-NN-RBF o parametro a-ratio foi mantido com o valor padrdo, ou seja, a-ratio=0,
pois mesmo pequenas variagdes deste parametro causavam uma queda considerdvel no
desempenho final do classificador. Os resultados obtidos com o S-POC-KNN-RBF podem ser
observados no Capitulo 5.
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Capitulo 5

Experimentos

Durante este trabalho, foi desenvolvida uma ferramenta para treinamento e avaliacdo de
técnicas de aprendizagem de madaquina, de forma que fosse possivel a realizacdo de uma
andlise dos algoritmos implementados. Na Figura 29 € possivel observar a interface grafica do
software desenvolvido. Nesta interface grafica é possivel ao usudrio escolher qual tipo de
algoritmo de aprendizagem de mdquina ele deseja utilizar, como também a configuracdo dos
parametros de cada um dos algoritmos. No Apéndice podem ser vistos os codigos-fonte para
as principais classes do aplicativo.

= DSC{Departamento de Sistemas Computacionais) - NNe ...

Figura 29. Interface grafica do software.
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5.1 Bases de Dados Para Reconhecimento de
Imagens

Sao usadas algumas bases do UCI Machine Learning Repository [30] para se fazer o estudo
comparativo de desempenho entre cada algoritmo. Essas bases sdo publicas e sao usadas para
validar e avaliar algoritmos de aprendizado de mdquina. Sao usadas cinco bases de dados: (a)
Iris Plant Database, base de dados com 3 classes de classifica¢do possiveis, onde cada classe
representa uma variedade de uma planta chamada Iris; (b) Letter Recognition Database, que
tem o objetivo de identificar cada pixel de um visor preto-e-branco e classificar a saida como
sendo uma das 26 letras do alfabeto inglé€s; (c) Optical Recognition of Handwritten Digits,
base de dados usada para reconhecimento Optico de digitos escritos a mao; (d) Pen-Based
Recognition of Handwritten Digits, base de dados obtida de 44 escritores através de uma mesa
digitalizadora (Pressure Sensitive Tablet); (e) Statlog Project Databases, base de dados usada
na classificacdo de imagens multi-espectrais de satélite; (f) Wisconsin Breast Cancer
Databases, apesar de ndo ser uma base de dados para reconhecimento de imagens, ela foi
usada durante a implementagdo dos algoritmos para validar se os resultados obtidos tém uma
qualidade de desempenho equivalente ao algoritmo original, a base Cancer, como ¢é
popularmente conhecida, foi criada pela University of Wisconsin Hospitals para reconhecer se
um tumor é maligno ou benigno.

Durante os experimentos, visando a validacdo dos nossos resultados em relacido aos
dos algoritmos originais, os conjuntos de treinamento e teste foram mantidos da mesma forma
que estdo dispostos em sua fonte [30]. Na Tabela 1, podem ser vistas as caracteristicas de
cada base dados. Podem ser observados também o nimero de padrdes de treinamento e de
teste, assim como o ndmero de caracteristicas e o nimero de classes de cada base.

Tabela 1. Propriedade das bases de dados.

Base de Numero de padrdes Numero de Nuimero de Nuimero
Dados de treinamento padrdes de teste parametros de classes

Cancer 500 199 9 2
Iris 100 50 4 3
Letter 15000 5000 16 26
Optdigits 3823 1797 64 10
Pendigits 7494 3498 16 10
Satimage 4435 2000 36 6

5.2 Resultados obtidos pelo KNN

Nesta secdo sdo analisados os resultados obtidos pelo algoritmo KNN. A Tabela 2 mostra os
resultados obtidos pelo KNN, onde o valor do parametro K indica a quantidade de vizinhos
que serd utilizada pelo algoritmo. A quantidade de K-vizinhos foi variada de forma a se
encontrar o melhor ajuste dessa varidvel, para cada base de dados. Os melhores resultados de
cada base estdo destacados em negrito.

Ao final desses experimentos podemos verificar que ndo existe um valor ideal para o
nimero de K vizinhos. O melhor valor de K varia de acordo com o problema em andlise.
Algumas vezes as variagdes do erro sdo pequenas, porém devem ser levadas em consideracao
quando se vai fazer a comparagio desses resultados com os obtidos por outro algoritmo. E de
grande importincia se observar também que nem sempre o KNN apresenta resultados
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melhores do que o NN. Na Tabela 2, por exemplo, as bases Letter e Optdigits obtiveram a
menor taxa de erro quando o K=1, ou seja, para o algoritmo NN tradicional.

Tabela 2. Erros de classificacdo do conjunto de teste obtidos com o algoritmo KNN para
vdrios valores de K.

Base de Taxa de Erro do Conjunto de Teste para K-Vizinhos
Dados K=1 K=3 K=5 K=7

Cancer 2,51% 1,00% 1,50% 2,01%
Iris 6,00% 6,00% 4,00 % 4,00%
Letter 4,56 % 4,64% 5,08% 4,92%
Optdigits 2,00% 2,11% 2,11% 2,28%
Pendigits 2,25% 2,17 % 2,37% 2,48%

Satimage 10,65% 9,35% 9,60% 10,05%

5.3 Resultados Obtidos Pelo S-POC-NN

Esta secdo analisa os resultados obtidos pelo S-POC-NN. Na Tabela 3, € possivel observar os
resultados obtidos através do S-POC-NN, os melhores resultados estdo em negrito e foram
obtidos através da variacdo do parametro a-ratio num intervalo que vai de 0 a 1, como ser
visto nos Graficos de 1 a 6. Uma andlise dessa tabela mostra que as taxas de erro obtidas pelo
S-POC-NN, geralmente, sdo maiores do que as taxas de erro obtidas pelo KNN. Se forem
levados em consideracdo os resultados obtidos pelo S-POC-NN (Tabela 3) e pelo KNN
(Tabela 2) para a base Iris, serd visto que os resultados da taxa de erro de classificacdo
tiveram o mesmo desempenho (4,00%), no melhor dos casos. Porém, a quantidade de
protétipos armazenados pelo S-POC-NN € muito menor, o que acarreta uma diminui¢do do
uso de recursos computacionais e do tempo necessdrio para a classificagdo de padrdes
desconhecidos. Enquanto que o KNN armazena 100 padrdes de treinamento, o que equivale a
100% dos padrdes da base treinamento Iris, o S-POC-NN, no melhor dos casos, onde o a-
ratio, descrito na tabela como o, € igual 0,51, armazena apenas 7 padrdes, o que equivale a
apenas 7% dos padroes da base de treinamento [Iris.

Uma varidvel que desempenha um papel importante no desempenho do S-POC-NN ¢ a
oy, que determina o tamanho do intervalo de aceitacao (4.1.1.3), que serd usado pelo algoritmo
durante a fase de treinamento. O intervalo de aceitacdo € usado durante a busca por padrdes
classificados incorretamente, passos 7 € 9 do Algoritmo 3. Este intervalo faz com que haja
uma redu¢do da complexidade e da sensibilidade a ruidos no algoritmo POC-NN.

A Tabela 3 analisa os resultados obtidos pelo S-POC-NN para os valores de a-ratio=0
e para alguns valores de a-ratio # 0. Mas, através dessa, ndo é possivel analisar a influéncia
da variac@o do parametro a-ratio (0,) sobre o desempenho do S-POC-NN. Para este fim foram
construidos graficos (Graficos de 1 a 6) que mostram o impacto da variacdo do parametro
alfa-rate (0,) sobre cada umas das bases.

Se analisarmos a variagdo do a-ratio nos gréaficos, podemos ver o impacto causado
pela variacdo deste parametro, como também podemos observar alguns fatos interessantes.
Por exemplo, vemos que no grafico da base Iris (Gréafico 2) ocorrem regides de
descontinuidade tanto da taxa de erro, quanto no nimero de padrdes armazenados. Esse fato
pode ser justificado por conta da base Iris possuir poucos padrdes para treinamento e teste.
Para os graficos de bases maiores, como por exemplo, os da base Letter (Grafico 3) e os das
base Pendigits (Gréafico 5) veremos que esse fato ndo ocorre.
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Grafico 1.  Resultado do S-POC-NN para a variagao do pardmetro a-ratio sobre a base
Cancer.
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Grafico 2.  Resultado do S-POC-NN para a variagao do pardmetro a-ratio sobre a base
Iris.
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Grafico 3.  Resultado do S-POC-NN para a variagao do paradmetro a-ratio sobre a base
Letter.
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Grafico4.  Resultado do S-POC-NN para a variagao do pardmetro a-ratio sobre a base
Optdigits.
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Grafico 5.  Resultado do S-POC-NN para a variagao do pardmetro a-ratio sobre a base
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Tabela 3. Erros de classificacdo do conjunto de teste obtidos com o algoritmo S-POC-
NN.
Base de o,=0 o, 70
Dados Prototipos Taxa de Erro Oy Prototipos Taxa de Erro
Treinamento Conj. Teste Treinamento Conj. Teste
Total | Arm. Total | Arm.
Cancer 500 66 5,53% 0,01 500 63 5,03 %
Iris 100 10 6,00% 0,51 100 7 4,00 %

Letter 15000 | 7018 5,16% 0,05 | 15000 | 6057 5,62%
Optdigits | 3823 722 4,73% 0,03 | 3823 613 4,34 %
Pendigits | 7494 700 3,86% 0,04 | 7494 622 3,32%
Satimage | 4435 1154 13,25% 0,03 | 4435 937 13,80%

5.4 Resultados Obtidos pelo S-POC-KNN

O S-POC-KNN foi proposto com intuito de melhorar o desempenho do S-POC-NN. Para
criacdo desse novo algoritmo uniram-se as vantagens do KNN com as do S-POC-NN. Desta
maneira o desempenho do algoritmo S-POC-NN foi melhorado consideravelmente para
algumas bases de dados.

A Tabela 4 analisa os resultados obtidos pelo S-POC-KNN para k=1, K=3, k=5 e K=7.
Os valor do alfa-ratio (o,) sdo advindos dos melhores resultados obtidos para cada base pelo
S-POC-NN, encontrados na Tabela 3. Os resultados do S-POC-NN estao dispostos na coluna
onde K=1 (Tabela 4). Se forem comparados como valores obtidos pelo S-POC-KNN,
verifica-se uma diminui¢do significativa na taxa de erro de classificagdo para trés bases. Na
Tabela 4 os valores em negrito representam os melhores resultados obtidos pelo S-POC-KNN
para cada base. Para o S-POC-KNN, a quantidade de prot6tipos armazenados para cada base
de dados € a mesma, tendo em vista que a modifica¢ao proposta ocorre durante a fase de teste,
onde apenas o valor do parametro K é variado. Ou seja, os valores contidos na coluna
quantidade de prototipos € independente do valor de K.

Tabela 4. Desempenho do S-POC-KNN para K=3, k=5 e K=7.

Base de Oy Quantidade | Taxa de erro de classificacio para conjunto de
Dados de prototipos teste do S-POC-KNN
K=1 K=3 K=5 K=7
Cancer | 0,01 63 5,03% 3,02% 3,02% 2,51%
Iris 0,51 7 4,00 % 14,00% | 68,00% | 70,00%
Optdigits | 0,03 613 4,34% 3,23% 3,84% 3,78%
Pendigits | 0,04 622 3,32% 3,66% 3,46% 3,80%
Letter 0,00 7018 5,16 % 5,22% 5,62% 6,10%
Satimage | 0,00 1154 13,25% 12,05% | 11,35% | 10,95%
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5.5 Resultados obtidos pelo S-POC-KNN-RBF

Uma outra variacdo para o algoritmo S-POC-NN e para o S-POC-KNN, proposto neste
trabalho, € o algoritmo S-POC-KNN-RBF. Esse algoritmo une as vantagens do algoritmo S-
POC-NN com as do nucleo RBF e do KNN. Dessa maneira ele consegue melhorar o
desempenho em relacdo ao S-POC-NN original.

Durante os experimentos o parametro a-ratio foi mantido com o valor padrdo, ou seja,
a-ratio=0. Os resultados obtidos pelo POC-NN-RBF (k=1) podem ser observados nos
graficos de 7 a 10. Os melhores resultados do parametro 7 obtidos dos graficos de 7 a 10,
para cada base de dados, foram agrupados na Tabela 5 e estendidos pelo algoritmo S-POC-
KNN-RBF, para que fossemos usados os K-vizinhos mais proximos. Na Tabela 5 os valores
em negrito representam os melhores resultados obtidos para cada base de dados.

Ainda na Tabela 5, a coluna com a quantidade de protétipos armazenados para cada
base de dados possui os mesmos valores, independentemente do valor de K, ou seja, os
valores da coluna quantidade de prototipos nao depende dos valores de K.
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Grafico 7.  Resultado do POC-NN-RBF para a varia¢do do pardmetro 7 sobre a base
Cancer.
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Grafico 12. Resultado do POC-NN-RBF para a varia¢do do pardmetro 7 sobre a base

Satimage.

Tabela 5. Desempenho do S-POC-KNN-RBF para K=3, k=5 e K=7.

Base de T oy Quantidade de | Taxa de erro de classificacao para conjunto de
Dados prototipos teste do S-POC-KNN-RBF
K=1 K=3 K=5 K=7
Cancer 0,80 | 0,00 63 5,53% 4,02% 3,02% 2,51%
Iris 0,80 | 0,00 10 6,00 % 14,00% 34,00% 34,00%
Optdigits | 4,00 | 0,00 707 3,67% 3,34% 3,51% 3,67%
Pendigits | 13,80 | 0,00 684 3,37% 3,34 % 3,49% 3,54%
Letter 1,60 | 0,00 7013 5,24 % 5,28% 5,48% 6,20%
Satimage | 10,20 | 0,00 1161 13,1% 14,05% 13,55% 15,10%

5.6 Comparacao Entre Resultados

Até o momento, ja foram analisados os desempenhos individuais de vdrios algoritmos de
treinamento de maquina como o KNN, o S-POC-NN, o S-POC-KNN e o S-POC-KNN-RBF,
para o problema de classificacdo de imagens. Nessa se¢do, o desempenho dos algoritmos &
comparado com os resultados obtidos em [18] por um algoritmo de treinamento de redes
neurais, chamado RBF-DDA-SP. Os desempenhos de cada algoritmo também sdo
comparados entre si.

A Tabela 6 analisa o desempenho do S-POC-NN em relagdo ao algoritmo RBF-DDA-
SP. Os valores de o, da Tabela 6 foram configurados de acordo com os melhores resultados
obtidos por cada base na Tabela 3. E importante observar que as taxas de erro obtidas pelo
RBF-DDA-SP foram menores do que as do S-POC-NN, porém o S-POC-NN armazena uma
quantidade muito menor de padroes em memdria.

A Tabela 7 analisa o desempenho do S-POC-KNN em rela¢do ao algoritmo RBF-
DDA-SP. Os valores de o, da Tabela 7 foram configurados de acordo com os melhores
resultados obtidos por cada base na Tabela 3. E importante observar que a quantidade de
padrdes armazenados pelo S-POC-KNN ¢ igual as do S-POC-NN. Porém, muitas vezes, o
desempenho é melhorado pela variacdo do nimero dos K vizinhos, como por exemplo na base
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Optdigits e Satimage. Os resultados obtidos pelo S-POC-KNN se aproximam dos obtidos pelo
RBF-DDA-SP, mas com a vantagem de armazenar muito menos padrdes.

Tabela 6. Erros de classificacdo do conjunto de teste para os algoritmos S-POC-NN e

RBF-DDA-SP.

Base de S-POC-NN RBF-DDA-SP

Dados o Taxa de Erro Taxa de erro
(30%, O sel.) (40%, O sel.) (50%, O sel.)
Optdigits 0,03 4,34% [613] 3,13% [2672] 3,30% [2292] 3,57% [1912]
Pendigits 0,04 3,32% [622] 3,04% [4344] 3,17% [3884] 3,29% [3424]
Letter 0,00 | 5,16% [7018] 6,54% [9358] | 7,10% [8191] 8,00% [7023]
Satimage 0,00 | 13,25% [1154] | 9,18% [2934] | 9,59% [2546] 10,05% [2157]

Tabela 7. Erros de classificacdo do conjunto de teste para os algoritmos S-POC-KNN e

RBF-DDA-SP.
Base de S-POC-KNN RBF-DDA-SP
Dados Uy Taxa de Erro Taxa de Erro
K=3 K=5 K=7 (30%, © (40%, 6 (50%, 6
sel.) sel.) sel.)
Optdigits | 0,03 | 3,23% 3,84% 3,78% 3,13% 3,30% 3,57%
[613] [613] [613] [2672] [2292] [1912]
Pendigits | 0,04 | 3,66% 3,46% 3,80% 3,04% 3,17% 3,29%
[622] [622] [622] [4344] [3884] [3424]
Letter 0,00 | 5,22% 5,62% 6,10% 6,54% 7,10% 8,00%
[7018] [7018] [7018] [9358] [8191] [7023]
Satimage | 0,00 | 12,05% | 11,35% | 10,95% 9,18% 9,59% 10,05%
[1154] [1154] [1154] [2934] [2546] [2157]

Na Tabela 8, é analisado o desempenho do S-POC-KNN-RBF em relacdo ao
algoritmo RBF-DDA-SP. Os valores de 7 e K da Tabela 8 foram configurados de acordo
com os melhores resultados obtidos por cada base na Tabela 5. Os valores do o, foram
omitidos da Tabela 8, tendo em vista que esse parametro foi configurado com o valor padrao,
onde o,=0. Os resultados conseguidos pelo S-POC-KNN-RBF sao préximos aos obtidos pelo
RBF-DDA-SP, porém armazenam uma quantidade muito menor de padrdes e para a base
Letter obteve melhores resultados.

Tabela 8. Erros de classificacdo do conjunto de teste para os algoritmos S-POC-KNN-
RBF e RBF-DDA-SP.
Base de S-POC-KNN-RBF RBF-DDA-SP
Dados 7 | K| TaxaErro Taxa Erro
(30%, 6 sel.) (40%, 6 sel.) (50%, 6 sel.)

Optdigits 4 |3 3,34% [707] 3,13% [2672] 3,30% [2292] 3,57% [1912]
Pendigits | 13,8 | 3 3,34% [684] 3,04% [4344] 3,17% [3884] 3,29% [3424]

Letter 1,6 | 1| 5,24% [7013] 6,54% [9358] 7,10% [8191] 8,00% [7023]
Satimage | 10,2 | 1| 13,1% [1161] 9,18% [2934] 9,59% [2546] 10,05% [2157]
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Na Tabela 9, € analisado o desempenho do KNN em relacdo ao algoritmo RBF-DDA-

SP. Os valores do parametro K da Tabela 9 foram configurados de acordo com os melhores

resultados obtidos por cada base na Tabela 2. Como pode ser visto na Tabela 9, os resultados

das taxas de erro do KNN foram melhores do que os resultados do RBF-DDA-SP e dos outros

algoritmos baseados na regra do vizinho mais préximo. O inconveniente é que o KNN
armazena em memoria todos os padrdes de treinamento.

Tabela 9. Erros de classificacdo do conjunto de teste para os algoritmos KNN e RBF-
DDA-SP.
Base de KNN RBF-DDA-SP
Dados K Taxa Erro Taxa Erro
(30%, 6 sel.) (40%, 6 sel.) (50%, 6 sel.)

Optdigits 1 2,00% [3823] 3,13% [2672] 3,30% [2292] 3,57% [1912]
Pendigits 3 2,17% [7494] 3,04% [4344] 3,17% [3884] 3,29% [3424]

Letter 1 | 4,56% [15000] | 6,54% [9358] 7,10% [8191] 8,00% [7023]
Satimage 3 9,35% [4435] 9,18% [2934] 9,59% [2546] 10,05% [2157]

A Tabela 10 foi construida com o objetivo de comparar os resultados dos algoritmos
propostos neste trabalho, S-POC-KNN e S-POC-KNN-RBF, com os resultados S-POC-NN.
Através dessa tabela é possivel uma anélise dos melhores resultados de cada algoritmo e uma
compara¢do mais aprofundada entre eles.

Tabela 10. Melhores resultados do S-POC-KNN-RBF, S-POC-KNN e S-POC-NN.
Base de S-POC-KNN-RBF S-POC-KNN S-POC-NN
Dados T K| Taxade o | K| TaxadeErro | a; Taxa de Erro
Erro
Optdigits 4 3 0,03 |3 3,23% 0,03 4,34 %
3,34% [707] [613] [613]
Pendigits | 13,8 | 3 0,04 |5 3,46% 0,04 3,32 %
3,34% [684] [622] [622]
Letter 1,6 |1 5,24% 0,00 | 1| 5,16% [7018] | 0,00 5,16 %
[7013] [7018]
Satimage | 10,2 | 1 13,1% 0,00 | 7 10,95% 0,00 | 13,25 % [1154]
[1161] [1154]
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Capitulo 6

Conclusao e Trabalhos Futuros

Existem diversos métodos de treinamento de maquina baseados na regra do vizinho mais
proximo. Porém, o algoritmo POC-NN € um algoritmo recente e inovador. O POC-NN, em
relacdo a outros algoritmos baseados na regra do vizinho mais préximo, como KNN,
consegue diminuir o tempo computacional e exige menor quantidade de padroes armazenados
na memoria. A implementagdo e a comparacdo dos dois algoritmos tornou possivel ver
claramente a inovacgdo trazida pelo POC-NN, suas vantagens e também tornou possivel que
fossem sugeridas melhorias para o algoritmo POC-NN original.

6.1 Contribuicoes

Uma das inovagdes deste trabalho, e que vale a pena ser destacada, ¢ a de que o criador do
POC-NN testou o algoritmo em bases variadas [26][27], enquanto que neste estudo foi
realizada a implementagdo do POC-NN juntamente com uma andlise do seu desempenho em
bases maiores e de reconhecimento de imagens. Os resultados advindos da andlise de
desempenho do POC-NN para bases de reconhecimento de imagens foram comparados com
os resultados obtidos nestas bases por outra pesquisa [18], que utiliza o algoritmo RBF-DDA-
SP.

Durante a monografia foi realizada uma andlise de desempenho dos algoritmos para o
reconhecimento de imagens, envolvendo um significativo grau de complexidade. Sugestdes
para a solucdo de problemas relacionados ao tema também foram propostas. Dessa forma,
surgiram o S-POC-KNN e o S-POC-KNN-RBF, propostos neste trabalho. Ao final, temos
uma visdo mais profunda sobre os problemas de aprendizado de madaquina e
classificacao/reconhecimento de imagens.

6.2 Sugestoes para trabalhos futuros

Como sugestdo de continuidade deste trabalho, estd a implementagdao do algoritmo R-POC-
NN. Dessa forma serd possivel analisar profundamente o impacto trazido por essa abordagem
do POC-NN. Através da implementacdo do R-POC-NN serd possivel realizar sugestdes de
melhorias, como, por exemplo, a junc¢do do algoritmo original com o KNN e com o nticleo
RBF. Outra sugestdo muito importante para continuidade deste trabalho é a de estender a
andlise feita sobre a influéncia do parametro alfa-ratio para o algoritmo S-POC-KNN-RBF.
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Apéndice
Coédigos Fonte

Classes Basicas

[E*

* @author Miguel Bezerra

*

*/

public class Pattern implements Comparable{
private double valoresDoPadraol];
private String classeDoPadrao;

public Pattern(int numParametros){
valoresDoPadrao=new double[numParametros];
}
/**Retorna a classe a qual o padrao pertence
* @return Classe do padrao
*/
public String getClasseDoPadrao() {
return classeDoPadrao;
}
/**Retorna os valores de um determinado padrao
* @return Array de todos os valores de um padrao
*/
public double[] getValoresDoPadrao() {
return valoresDoPadrao;

}
/**

* Retorna o valor de uma posi¢ao qualquer do padrao
* @param pos Posicdo do valor que serd lido

* @return Valor da posi¢do "pos"

*/
public double getValorDoPadrao(int pos) {

return valoresDoPadrao[pos];

}

/**Define a classe a qual o padrao pertence
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* @param classeDoPadrao Classe a qual o padrao pertence
*/
public void setClasseDoPadrao(String classeDoPadrao) {
this.classeDoPadrao = classeDoPadrao;

}

Yok

* Define o valor de uma posicao qualquer dentro do Array[] de valores do padrao
* @param pos Posicdo do Array
* @param value Valor que serd inserido na posi¢ao
*/
public void setValorDoPadrao(int pos,double value) {
this.valoresDoPadrao[pos] = value;

}

/**

* Define todos os valores dentro do Array[] de valores do padrao

* @param valores Array com os valores que serdo inseridos

*/

public void setValoresDoPadrao(double valores[]){
// valoresDoPadrao=(double[])valores.clone();
valoresDoPadrao=valores;

}
/**
* Permite que os objetos PatternComDistancia possam ser comparados, o que permite
* que eles sejam ordenados
*/
public int compareTo(Object obj){
int compara=0;
int count=0;
double valores[] = ((Pattern)obj).getValoresDoPadrao();

while (count<valoresDoPadrao.length){
if(this.valoresDoPadrao[count] != valores[count] ){
if (this.valoresDoPadrao[count] < valores[count])
compara=-1;
else compara=1;

}/fim do if

count++;
}/fim do while

return compara;
}/fim do compareTo

Voo

* Retorna o Padrao em formato de String
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* @return String String que representa o conteudo do padrao
*/
public String getPadraoComoString() {
int count=0;
String padrao="";

while (count < valoresDoPadrao.length){
padrao+=valoresDoPadrao[count]+" ";
count++;

}
padrao+=this.getClasseDoPadrao();

return padrao;

}

}/fim da Classe Pattern

[FxE

* @author Miguel Bezerra
b3

*/

public class PatternComDistancia extends Pattern implements Comparable{
private double distancia;

/**
* Construtor de PatternComDistancia recebendo um pattern e inicializando distancia
com valor -1
* @param padrao Pattern que sera especializado para um PatternComDistancia
*/
public PatternComDistancia(Pattern padrao){
super(padrao.getValoresDoPadrao().length);
super.setValoresDoPadrao(padrao.getValoresDoPadrao());
super.setClasseDoPadrao(padrao.getClasseDoPadrao());
this.distancia=-1;

}

/ Kk
* Construtor de PatternComDistancia
* @param numParametros Numero de parametros do padrao
* @param distancia Distancia entre o padrao de teste e de treinamento para ordenagao
*/
public PatternComDistancia(int numParametros, double distancia){
super(numParametros);
this.distancia=distancia;

}

Yok

* Permite que os objetos PatternComDistancia possam ser comparados, o que permite
* que eles sejam ordenados
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*/
public int compareTo(Object obj){
if( this.getDistancia() < ((PatternComDistancia)obj).getDistancia() ) return -1;
if( this.getDistancia() == ((PatternComDistancia)obj).getDistancia() ) return 0;
if( this.getDistancia() > ((PatternComDistancia)obj).getDistancia() ) return 1;
else return O;

}

Voo

* Retorna a distancia entre o Padrao de teste e o de treinamento
* @return Distancia entre os Padroes
*/
public double getDistancia() {
return distancia;

}

Voo

* Seta a distancia entre o Padrao de teste e o de treinamento
* @param distancia Distancia entre os Padroes
*/
public void setDistancia(double distancia) {
this.distancia = distancia;

}

}/ fim da classe PatternComDistancia
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Classes para implementacao do NN e do KNN

[EE

* @author Miguel Bezerra

*

*/

public class KNN {

/**
* Os metodos contaPadroes(), contaEntradas(), contaSaidas() foram colocados
* como private pois s6 devem ser chamados internamente na classe NN, isso
* evitara problemas de leitura aos arquivos, pois os mesmo devem ser lidos

* numa ordem especifica
*/

private BufferedReader leitorTreinamento, leitorTeste;
private int numPadroes, numEntradas, numSaidas;

private ArrayList padroesTreinamento=new ArrayList();
private ArrayList padroesTeste=new ArrayList();

private ArrayList padroesComDistancia=new ArrayList();
private int numVizinhos;

public KNN(){
}

/**

* Func¢do que realiza a fase de treinamento do algoritmo NN
* @param file Arquivo de treinamento

*/

public void treinamento(File file){

try{
leitorTreinamento=new BufferedReader(new FileReader(file));

}/fim do try
catch(IOException e){
JOptionPane.showMessageDialog(null,
"O arquivo de treinamento ndo pdde ser lido",
"IOException ",
JOptionPane. ERROR_MESSAGE);
}H/fim do catch

numPadroes=contaPadroes(leitorTreinamento);
numEntradas=contaEntradas(leitorTreinamento);
numSaidas=contaSaidas(leitorTreinamento);

//L€ os padroes de treinamento
lerPadroes(leitorTreinamento,padroesTreinamento,numEntradas,numSaidas);

}/fim do metodo treinamento
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* Fungdo que realiza a fase de teste do algoritmo NN
* @param file Arquivo com base de teste
* @param k Numero de vizinhos mais préximos

*/

public void teste(File file, int k){

DecimalFormat formatar = new DecimalFormat("0.00000");
int numPadroes, numEntradas, numSaidas;

double erroTotal, taxaDeErro;

numVizinhos=k;

try{
leitorTeste=new BufferedReader(new FileReader(file));

}/fim do try
catch(IOException e){
JOptionPane.showMessageDialog(null,
"O arquivo de teste ndo pode ser lido",
"IOException ",
JOptionPane. ERROR_MESSAGE);
}H/fim do catch

/**

* Le o cabecalho do arquivo de teste

*/
numPadroes=contaPadroes(leitorTeste);
numEntradas=contaEntradas(leitorTeste);
numSaidas=contaSaidas(leitorTeste);

/**

* e os padroes de teste

*/
lerPadroes(leitorTeste,padroesTeste,numEntradas,numSaidas);

colocaDistanciaNoPattern(padroesTreinamento,padroesComDistancia);
erroTotal=0;

for (int contaTeste=0; contaTeste<padroesTeste.size(); contaTeste++){
Pattern padraoTeste, padraoTreinamento;
ArrayList kVizinhos=new ArrayList();
ArrayList arrayClasse=new ArrayList();
padraoTeste=(Pattern)padroesTeste.get(contaTeste);

Voo

* Ird colocar as distancia nos padroes do ArrayList padroesComDistancia
* extender de Pattern-> PatternComDistancia

*/
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for (int
contaTreina=0;contaTreina<padroesComDistancia.size();contaTreina++){
double distancia;

padraoTreinamento=(PatternComDistancia)padroesComDistancia.get(contaTreina);
distancia=distanciaEuclidiana(padraoTeste,(Pattern)padraoTreinamento);

((PatternComDistancia)padroesComDistancia.get(contaTreina)).setDistancia(distancia);

}/fim do for

[H*

* Ird ordenar o ArrayList padroesComDistancia de acordo com ditancia
* até o padrao de teste

*/

Collections.sort(padroesComDistancia);

/**

* Ird colocar no ArrayList kVizinhos os K-vizinhos mais préximos

*/

kVizinhos=vizinhosMaisProximos(padroesComDistancia, numVizinhos);

/**

* arrayClasse ird guardar as quantas vezes cada classe aparece em kVizinhos
*/

arrayClasse = contaClasses(kVizinhos);

/**
* Vai procurar em arrayClasse qual classe aparece mais vezes
*/
Classe classeEscolhida=selectClasse(arrayClasse, numVizinhos);

if (!padraoTeste.getClasseDoPadrao().equals(classeEscolhida.getClasse())){
erroTotal++;
H/fim do if
}/fim do for

taxaDeErro=(erroTotal/numPadroes);

String texto = "O ndmero de padroes de teste foi de: " + (int)numPadroes
+"\n"+
"O numero de padroes classificados incorretamente foi de: "+
(int)erroTotal +"\n\n" + "A taxa de erro foi de: " +
formatar.format(taxaDeErro*100) + "%";

JOptionPane.showMessageDialog(null, texto, "Resultado”,
JOptionPane.INFORMATION_MESSAGE);

}H/fim de teste
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/**

* Copia o conteudo de um ArrayList de Pattern para um ArrayList de

PatternComDistancia

* @param orig ArrayList de Pattern

* @param dest ArrayList de PatternComDistancia

*/
private void colocaDistanciaNoPattern(ArrayList orig, ArrayList dest){

int count=0;

while(count<orig.size()){
dest.add(new PatternComDistancia( (Pattern)orig.get(count) ));
count++;

}H/fim do while

}/ fim de colocaDistanciaNoPattern

/**
* Ird retornar um ArrayList com K-vizinhos mais proximos
* @param array ArrayList com todos os PatternComDistancia
* @param numVizinhosK Numero de K-vizinhos
* @return ArrayList com K-vizinhos mais préximos
*/
private ArrayList vizinhosMaisProximos (ArrayList array, int numVizinhosK){

ArrayList vizinhos = new ArrayList();
int count=0;

while (count < numVizinhosK){
vizinhos.add(array.get(count));
count++;

}H/fim do while

return vizinhos;

}H/fim do metodo vizinhosMaisProximos

/**
* Ird retornar um ArrayList que informa quantas vezes cada classe aparece no ArrayList
de entrada
* @param array ArrayList no qual serdo contadas as classes
* @return ArrayList de Classes
*/
private ArrayList contaClasses(ArrayList array){
int count=0;
ArrayList arrayClasse = new ArrayList();
while(count < array.size()){

if(arrayClasse.isEmpty()){
arrayClasse.add( new
Classe(((PatternComDistancia)array.get(count)).getClasseDoPadrao()));
count++;
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}else{
Classe classe = new
Classe(((PatternComDistancia)array.get(count)).getClasseDoPadrao());
int cnt=0;
int size=arrayClasse.size();

while(cnt<size){
if (classe.compareTo(arrayClasse.get(cnt))==1){
((Classe)arrayClasse.get(cnt)).incrementaQuantidade();

}else if(cnt==size-1) //indica que esta no ultimo elemento
arrayClasse.add(classe);
cnt++;
}H/fim do while
count++;
}/ fim do else
}H/fim do while

return arrayClasse;
}/fim do metodo contaClasses

[H*

* Retorna a Classe que serd comparada com o padrao de teste

* @param array ArrayList que guardar as quantas vezes cada classe aparece em
kVizinhos

* @return Classe que serd comparada com o padrao de teste

*/

private Classe selectClasse(ArrayList array, int numK){

Classe classe=null;

int repeticoesDaClasse=-1;

int vezes[]=new int[array.size()];

int count;

int vizinhos=numK;

Stack pilha = new Stack();

count=0;

while(count<array.size()){
vezes[count]=((Classe)array.get(count)).getQuantidade();
count++;

}H/fim do while

Arrays.sort(vezes);

/**

* Inverte o array usando pilha

*/

count=0;

while(count<vezes.length){
pilha.push(new Integer(vezes[count]));
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count++;
}H/fim do while
count=0;
while(count<vezes.length){
vezes[count]=((Integer)pilha.pop()).intValue();
count++;
}H/fim do while

if (vezes.length>1){
if (vezes[O]==vezes[1]){
vizinhos-=1;
/IKNN-Regressivo
return
selectClasse(contaClasses(vizinhosMaisProximos(padroesComDistancia, vizinhos)),
vizinhos);
H/ fim do if
H/im do if

count=0;
while(count<array.size()){

int quantidade=((Classe)array.get(count)).getQuantidade();

if (count == 0 Il quantidade > repeticoesDaClasse) {
classe = ( (Classe) array.get(count));
repeticoesDaClasse = quantidade;

} //fim do if

count++;
}/fim do while

return classe;
}/fim do metodo selectClasse

/**
* Calcula a distancia entre dois padroes
* Para calcular a distancia usamos a formula:
A yNN2 = (x1-yDA2 4+ (x2-y2)2 + ... + (Xn-yn)"2
* @param p1l Padrao 1
* @param p2 Padrao 2
* @return Distancia entre os Padroes
*/
public double distanciaEuclidiana(Pattern p1, Pattern p2){

double p1Valores[]=pl.getValoresDoPadrao();
double p2Valores[]=p2.getValoresDoPadrao();
double distancia=0;
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/ltesta se os dois arrays s@o do mesmo tamanho

if (p1Valores.length==p2Valores.length){
for (int count=0; count<plValores.length; count++){

distancia+=Math.pow((p1Valores[count]-p2Valores[count]),2);
/ldistancia+=(p1 Valores[count]-
p2Valores[count])*(p1Valores[count]-p2Valores[count]);

}H/fim do for

H/fim do if

return (Math.sqrt(distancia));
}H/fim de distanciaEuclidiano
/**
* L& cada padrao de treinamento, cria o objeto Pattern e armazena no ArrayList
* @param in Leitor do arquivo
*/
private void lerPadroes(BufferedReader in, ArrayList patterns, int entradas, int saidas){
String line="";
StringTokenizer token=new StringTokenizer(line);

/Ipatterns=new ArrayList();

/**
* while conta até ele ler o primeiro padrao que é composto
* por entradas+saidas tokens
*/
while (token.countTokens()!= entradas+saidas){
try {
line=in.readLine();
}H/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException",
JOptionPane. ERROR_MESSAGE);
} //fim do catch

try{
token=new StringTokenizer(line);

}catch (NullPointerException nullPointerException) {
JOptionPane.showMessageDialog(null,
"Erro de leitura - Verifique o cabeg¢alho do seu arquivo",
"NullPointerException",
JOptionPane. ERROR_MESSAGE);
} //fim do catch
}H/fim do while

//Neste ponto line ja contem os dados do 1° padrao do arquivo
do{

System.out.println(line);

Pattern padrao = new Pattern(numEntradas);
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int count=0;
token=new StringTokenizer(line);
//Tra preencher os valores do padrao
do{

padrao.setValorDoPadrao(count,Double.parseDouble(token.nextToken()));
count++;
}while(count!=entradas);
//Tr& preencher os valores do padrao

if (saidas==1){
padrao.setClasseDoPadrao(token.nextToken());
telse {
padrao.setClasseDoPadrao(line.substring( line.length()-((2 *numSaidas)-
1),line.length() ));
}/ fim do else

//Adiciona o novo padrao no vetor
patterns.add(padrao);
//Le a proxima linha
try {
line=in.readLine();
}/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException",
JOptionPane. ERROR_MESSAGE);

}H/fim do catch
}while (line!=null);
}H/fim de lerPadroes
/>l<>l<

* Conta a quantidade de padroes contidos no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de padroes de entrada
*/
private int contaPadroes(BufferedReader in){
String line =" ";
String valor ="";
StringTokenizer token;
try {
line=in.readLine();
System.out.println(line);
}/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException",
JOptionPane. ERROR_MESSAGE);
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}H/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
return Integer.parselnt(valor);
}/fim de contaPadroes

/**
* Conta a quantidade de entradas contidas no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de entradas
*/
private int contaEntradas(BufferedReader in){
String line =" ";
String valor = "";
StringTokenizer token;
try {
line=in.readLine();
System.out.println(line);
}/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Entradas",
"IOException ",
JOptionPane. ERROR_MESSAGE);
}/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
return Integer.parselnt(valor);
}/fim de contaEntradas

Vioka

* Conta a quantidade de saidas contidas no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de saidas
*/
private int contaSaidas(BufferedReader in){
String line =" ";
String valor ="";
StringTokenizer token;
try {
line=in.readLine();
System.out.println(line);
}H/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Saidas",
"IOException",
JOptionPane. ERROR_MESSAGE);



}H/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
return Integer.parselnt(valor);
}/fim de contaSaidas

Yok

* @return Retorna o valor de numEntradas.

*/
public int getNumEntradas() {
return numEntradas;

}

Yiaka
* @return Retorna o valor de numPadroes.
*/
public int getNumPadroes() {
return numPadroes;

}
H/fim da Classe NN
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Classe principal para implementacao do POC-NN e do POC-KNN

[xE

* @author Miguel Bezerra
b3

*/
public class PocNN {

/>I<>I<

* Os metodos contaPadroes(), contaEntradas(), contaSaidas() foram colocados

* como private pois s6 devem ser chamados internamente na classe PocNN, isso
* evitara problemas de leitura aos arquivos, pois 0s mesmo devem ser lidos

* numa ordem especifica
*/

private BufferedReader leitorTreinamento, leitorTeste;
private int numPadroes, numEntradas, numSaidas;
private ArrayList padroesTreinamento=new ArrayList();
private ArrayList padroesTeste=new ArrayList();

private ArrayList padroesComDistancia=new ArrayList();
private PocNNSet pocNNSet = new PocNNSet();

private double alfaRatio;

private int numPadroesTreinamento;

public PocNN(double intervalo){
this.alfaRatio=intervalo;

}

[E*

* Metodo que realiza o treinamento do algoritmo
* @param file Arquivo de treinamento
*/
public void treinamento(File file){
ArrayList arrayDeSubSets = null;

try{
leitorTreinamento=new BufferedReader(new FileReader(file));

}/fim do try
catch(IOException e){
JOptionPane.showMessageDialog(null, "[OException ",
"O arquivo de treinamento ndo pode ser lido",
JOptionPane. ERROR_MESSAGE);
}/fim do catch

numPadroes=contaPadroes(leitorTreinamento);
numEntradas=contaEntradas(leitorTreinamento);

numSaidas=contaSaidas(leitorTreinamento);

numPadroesTreinamento=numPadroes;



-

ESCOLA POLITECNICA
DE PERNAMBUCO

72

//L€ os padroes de treinamento
lerPadroes(leitorTreinamento,padroesTreinamento,numEntradas,numSaidas);

arrayDeSubSets=separaClasses(padroesTreinamento);

Yok

* Faz com que o algoritmo funcione para multiplas classes
*/

int vezes=0;
int vezesAlgoritmo=0;
int dupla=0;
int count=0;
while(count<arrayDeSubSets.size()-1){
int countInterno=count+1;
while(countInterno<arrayDeSubSets.size()){
PocNNSet poc = new PocNNSet();
ArrayList sq = new ArrayList();
sq.addAll((ArrayList)arrayDeSubSets.get(count));
sq.addAll((ArrayList)arrayDeSubSets.get(countInterno));

poc=selectingPocNN(sq);

System.out.println("Quantidade prototipo Classel + Classe2: "+
sq.size() + "\n" +
"Classe 1: " +

((Pattern)((ArrayList)arrayDeSubSets.get(count)).

get(0)).getClasseDoPadrao() + "\n"
+ "X + "\n" +

"Classe 2: " +
((Pattern)((ArrayList)arrayDeSubSets.

get(countlnterno)).get(0)).getClasseDoPadrao() + "\n" +
"N°. Prototipos
Armazenados: " +

selectingPocNN(sq).getPrototipos().size()+ "\n"+
"Combinagao
nimero: "+ vezesAlgoritmo + "\n" );

vezesAlgoritmo++;

if (poc.getPrototipos().size() >= sq.size())
vezes++;

pocNNSet.appendPocNN(poc);
/lpocNNSet.appendPocNN(selectingPocNN(sq));
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dupla++;
countInterno++;
}//fim do while
count++;
}/fim do while

System.out.println(vezes);
}//fim do metodo treinamento

[EE

* Metodo que realiza o teste do algoritmo

* @param file Arquivo de teste

*/

public void teste (File file, int numVizinhos){

DecimalFormat formatar = new DecimalFormat("0.00");
padroesTreinamento=pocNNSet.getPrototipos();
double taxaDeErro;
int erroTotal;

try{
leitorTeste=new BufferedReader(new FileReader(file));

}/fim do try
catch(IOException e){
JOptionPane.showMessageDialog(null, "IOException ",
"O arquivo de teste ndo pode ser lido",
JOptionPane. ERROR_MESSAGE);
}H/fim do catch

numPadroes=contaPadroes(leitorTeste);
numEntradas=contaEntradas(leitorTeste);
numSaidas=contaSaidas(leitorTeste);

/L€ os padroes de teste
lerPadroes(leitorTeste,padroesTeste,numEntradas,numSaidas);

colocaDistanciaNoPattern(padroesTreinamento,padroesComDistancia);
erroTotal=0;

for (int contaTeste=0; contaTeste<padroesTeste.size(); contaTeste++){
Pattern padraoTeste, padraoTreinamento;
ArrayList kVizinhos=new ArrayList();
ArrayList arrayClasse=new ArrayList();
padraoTeste=(Pattern)padroesTeste.get(contaTeste);
System.out.println(contaTeste + "\n");
/>I<>I<
* Ird colocar as distancia nos padroes do ArrayList
padroesComDistancia
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* extender de Pattern-> PatternComDistancia
*/
for (int

contaTreina=0;contaTreina<padroesComDistancia.size();contaTreina++){
double distancia;

padraoTreinamento=(PatternComDistancia)padroesComDistancia.get(contaTreina);
distancia=distanciaEuclidiana(padraoTeste,(Pattern)padraoTreinamento);

((PatternComDistancia)padroesComDistancia.get(contaTreina)).setDistancia(distancia

);
H/fim do for
/>I<>I<
* Ird ordenar o ArrayList padroesComDistancia de acordo com ditancia
* até o padrdo de teste
*/
Collections.sort(padroesComDistancia);
/>I<>I<
* Ira colocar no ArrayList kVizinhos os K-vizinhos mais préximos
*/
kVizinhos=vizinhosMaisProximos(padroesComDistancia,
numVizinhos);
/>I<>I<
* arrayClasse ird guardar as quantas vezes cada classe aparece em
kVizinhos
*/
arrayClasse = contaClasses(kVizinhos);
/>I<>I<
* Vai procurar em arrayClasse qual classe aparece mais vezes
*/
Classe classeEscolhida=selectClasse(arrayClasse, numVizinhos);
if
(!padraoTeste.getClasseDoPadrao().equals(classeEscolhida.getClasse())){
erroTotal++;
H/fim do if
}H/fim do for
taxaDeFErro=((double)erroTotal/numPadroes);
String texto = "\nO Alfa-Ratio foi de: "+ alfaRatio + "\n" +
"O nimero de padrdes de treinamento foi de: "+ numPadroesTreinamento
+"\n"+

"O nimero de padrdes de teste foi de: " + (int)numPadroes +"\n"+
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"O namero de padroes classificados incorretamente foi de: "+ (int)erroTotal +
"\nO ndmero de protétipos armazenados foi de:
"+padroesTreinamento.size()+"\n\n"+
"A taxa de erro foi de: " + formatar.format(taxaDeErro*100) + "%";

JOptionPane.showMessageDialog(null, texto, "Resultado”,
JOptionPane.INFORMATION_MESSAGE);

System.out.println(texto);

}/fim de teste

[k

* Retorna a Classe que serd comparada com o padrao de teste
* @param array ArrayList que guardar as quantas vezes cada classe aparece em
kVizinhos
* @return Classe que serd comparada com o padrao de teste
*/
private Classe selectClasse(ArrayList array, int numK){
Classe classe=null;
int repeticoesDaClasse=-1;
int vezes[]=new int[array.size()];
int count;
int vizinhos=numK;
Stack pilha = new Stack();

count=0;

while(count<array.size()){
vezes[count]=((Classe)array.get(count)).getQuantidade();
count++;

}H/fim do while

Arrays.sort(vezes);

Voo

* Inverte o array usando pilha

*/

count=0;

while(count<vezes.length){
pilha.push(new Integer(vezes[count]));
count++;

}H/fim do while

count=0;

while(count<vezes.length){
vezes[count]=((Integer)pilha.pop()).intValue();
count++;

}H/fim do while

if (vezes.length>1){
if (vezes[O]==vezes[1]){



_aed

PQ..'
ESCOLA POLITECNICA
DE PERNAMBUCO
76
vizinhos-=1;
//KNN-Regressivo
return
selectClasse(contaClasses(vizinhosMaisProximos(padroesComDistancia, vizinhos)),
vizinhos);
H/ fim do if
H/fim do if
count=0;

while(count<array.size()){

int quantidade=((Classe)array.get(count)).getQuantidade();

if (count == 0 |l quantidade > repeticoesDaClasse) {
classe = ( (Classe) array.get(count));
repeticoesDaClasse = quantidade;

} //fim do if

count++;
}/fim do while

return classe;
}//fim do metodo selectClasse

[k

* Ir4 retornar um ArrayList que informa quantas vezes cada classe aparece no
ArrayList de entrada
* @param array ArrayList no qual serdo contadas as classes
* @return ArrayList de Classes
*/
private ArrayList contaClasses(ArrayList array){
int count=0;
ArrayList arrayClasse = new ArrayList();
while(count < array.size()){

if(arrayClasse.isEmpty()){
arrayClasse.add( new
Classe(((PatternComDistancia)array.get(count)).getClasseDoPadrao()));
count++;
}else{
Classe classe = new
Classe(((PatternComDistancia)array.get(count)).getClasseDoPadrao());
int cnt=0;
int size=arrayClasse.size();

while(cnt<size){
if (classe.compareTo(arrayClasse.get(cnt))==1){
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((Classe)arrayClasse.get(cnt)).incrementaQuantidade();

Jelse if(cnt==size-1) //indica que esta no tltimo
elemento
arrayClasse.add(classe);

cnt++;

}H/fim do while

count++;

H/ fim do else
}H/fim do while

return arrayClasse;
H/fim do metodo contaClasses

/>I<>I<
* Ird retornar um ArrayList com K-vizinhos mais préximos
* @param array ArrayList com todos os PatternComDistancia
* @param numVizinhosK Numero de K-vizinhos
* @return ArrayList com K-vizinhos mais proximos
*/
private ArrayList vizinhosMaisProximos (ArrayList array, int numVizinhosK){

ArrayList vizinhos = new ArrayList();

int count=0;

while (count < numVizinhosK){
vizinhos.add(array.get(count));
count++;

}H/fim do while

return vizinhos;

}//fim do metodo vizinhosMaisProximos

[k

* Funcdo que Seleciona o PocNNSet
* @param dataSet Base da dados de treinamento
*/
public PocNNSet selectingPocNN(ArrayList dataSet){
PocNNSet pocnnSet = new PocNNSet();
ArrayList findedPocNN, duasRegioes;
double centerPoint[];

/**

*PASSO 1

*/
findedPocNN=findingPocNN(dataSet);

Voo

*PASSO 2
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*/
centerPoint=findCenterPoint(findedPocNN);

/**

* PASSO 3

*/

HiperPlano w = new HiperPlano(centerPoint,findedPocNN,alfaRatio);

/**

* PASSO 4

*/

pocnnSet.setHiperPlano(w);
pocnnSet.setPrototipos(findedPocNN);

/**

* PASSO 5

*/
duasRegioes=divideEmDuasRegioes(w,dataSet);

/**
*PASSO 6¢7
*/
if(hasMisclassified((ArrayList)duasRegioes.get(0))){
/>I<>I<
* PASSO 8
*/
pocnnSet.appendPocNN(
selectingPocNN((ArrayList)duasRegioes.get(0)) );
H/fim do if
/**
* PASSO 9
*/
if (hasMisclassified((ArrayList)duasRegioes.get(1))){
/>I<>I<
* PASSO 10
*/
pocnnSet.appendPocNN(
selectingPocNN((ArrayList)duasRegioes.get(1)) );
H/ fim do if

Voo

*PASSO 11 e 12
*/
return pocnnSet;

}//fim de selectingPOCNN

[EE

*Testa se tem algum padrao mal classificado em uma regiao
* @param regiao Regido que serd verificada
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* @return Boleano true (caso tenha algum padrao mal classificado) ou false
*/
private boolean hasMisclassified(ArrayList regiao){
Pattern padrao = (Pattern)regiao.get(0);
boolean retorno = false;
int count=0;

while(count < regiao.size()){

if (!padrao.getClasseDoPadrao().equals(
((Pattern)regiao.get(count)).getClasseDoPadrao() ) ){
retorno = true;
break;
H/fim do if

count++;
}/fim do while

return retorno;
}//fim de hasMisclassified

/>l<>l<
* Usard o Hiperplano w para separar os padroes em duas regides
* @param w Hiperplano que ird separas os padroes em duas regioes
* @param dataSet Padroes a serem separados
* @return ArrayList que contém os padroes separados em duas regides
*/
private ArrayList dividleEmDuasRegioes(HiperPlano w, ArrayList dataSet){
ArrayList duasRegioes = new ArrayList();
ArrayList R1 = new ArrayList();
ArrayList R2 = new ArrayList();
double resultado;
int count=0;

while(count<dataSet.size()){

resultado=w.divideInTwoRegions( (
(Pattern)dataSet.get(count)).getValoresDoPadrao() );

if (resultado>=w.getIntervaloAceitacao())
R1.add(dataSet.get(count));

else if (resultado<=-w.getIntervaloAceitacao())
R2.add(dataSet.get(count));

count++;
}H/fim do while

duasRegioes.add(R1);
duasRegioes.add(R2);
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return duasRegioes;
}//fim de divideEmDuasRegioes

/>I<>I<
* Acho o valor do centerPoint ¢
* @param dataSet Base da dados de treinamento
* @return Vetor com o valor do centerPoint
*/
private double[] findCenterPoint(ArrayList dataSet){
Pattern ¢ = new Pattern(numEntradas);
int contaEntradas=0;

while (contaEntradas < numEntradas){
int contaPadroes=0;
double media=0;

while(contaPadroes < dataSet.size()){
media+=((Pattern)
dataSet.get(contaPadroes)).getValorDoPadrao(contaEntradas);
contaPadroes++;
}//fim do while

media = media/2;
c.setValorDoPadrao(contaEntradas,media);

contaEntradas++;
}H/fim do while

return c.getValoresDoPadrao();

}/fim de findCenterPoint

/>I<>I<
* Seleciona os dois prototipos xpl e xp2
* @param dataSet Base da dados de treinamento
* @return ArrayList com os dois prototipos xp1 e xp2
*/
private ArrayList findingPocNN(ArrayList dataSet){
ArrayList arrayDeSubSets = null;
ArrayList findedPOCNN = new ArrayList();
Pattern xp1=null;
Pattern xp2=null;

Voo

* Ird separar os padroes em classes
*/
arrayDeSubSets=separaClasses(dataSet);
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if ( ((ArrayList)arrayDeSubSets.get(0)).size() >
((ArrayList)arrayDeSubSets.get(1)).size()){

Pattern xm = padraoMedio((ArrayList)arrayDeSubSets.get(0));

/>X<>X<

* xpl e xp2 irdo receber o vizinho mais proximo
*/

PatternComDistancia vizinhoMaisProx;

vizinhoMaisProx = calculaVizinhoMaisProx(xm,

(ArrayList)arrayDeSubSets.get(1));
xp2=new Pattern(vizinhoMaisProx.getValoresDoPadrao().length);

xp2.setValoresDoPadrao(vizinhoMaisProx.getValoresDoPadrao());
xp2.setClasseDoPadrao(vizinhoMaisProx.getClasseDoPadrao());

vizinhoMaisProx=calculaVizinhoMaisProx(xp2,

(ArrayList)arrayDeSubSets.get(0));
xpl=new Pattern(vizinhoMaisProx.getValoresDoPadrao().length);

xpl.setValoresDoPadrao(vizinhoMaisProx.getValoresDoPadrao());
xpl.setClasseDoPadrao(vizinhoMaisProx.getClasseDoPadrao());

}else{
Pattern xm = padraoMedio((ArrayList)arrayDeSubSets.get(1));

/>I<>I<

* xpl e xp2 irdo receber o vizinho mais proximo
*/

PatternComDistancia vizinhoMaisProx;

vizinhoMaisProx=calculaVizinhoMaisProx(xm,

(ArrayList)arrayDeSubSets.get(0));
xpl=new Pattern(vizinhoMaisProx.getValoresDoPadrao().length);
xpl.setValoresDoPadrao(vizinhoMaisProx.getValoresDoPadrao());

xpl.setClasseDoPadrao(vizinhoMaisProx.getClasseDoPadrao());

vizinhoMaisProx=calculaVizinhoMaisProx(xp1,

(ArrayList)arrayDeSubSets.get(1));
xp2=new Pattern(vizinhoMaisProx.getValoresDoPadrao().length);

xp2.setValoresDoPadrao(vizinhoMaisProx.getValoresDoPadrao());
xp2.setClasseDoPadrao(vizinhoMaisProx.getClasseDoPadrao());

H/fim do else

findedPOCNN.add(xp1);
findedPOCNN.add(xp2);

return findedPOCNN;
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}// fim de findingPOCNN
/ sk

* Retorna o vizinho (Pattern) mais proximo de um determinado padrao
* @param pat Padrao do qual se deseja descobrir o vizinho mais préximo
* @param dataSet Base da dados de treinamento
* @return Vizinho (Pattern) mais proximo
*/
private PatternComDistancia calculaVizinhoMaisProx(Pattern pat, ArrayList dataSet){
ArrayList padroesComDistancia=new ArrayList();

colocaDistanciaNoPattern(dataSet,padroesComDistancia);

/**
* Ird colocar as distancia nos padroes do ArrayList padroesComDistancia
* em relacdo xm
* extender de Pattern-> PatternComDistancia
*/
for (int contador=0;contador<padroesComDistancia.size();contador++){
double distancia;

distancia=distanciaEuclidiana(pat,(Pattern)padroesComDistancia.get(contador));

((PatternComDistancia)padroesComDistancia.get(contador)).setDistancia(distancia);
}H/fim do for

Voo

* Ird ordenar o ArrayList padroesComDistancia de acordo com ditancia
* até o padrao de teste

*/

Collections.sort(padroesComDistancia);

return (PatternComDistancia)padroesComDistancia.get(0);

}//fim de calculaVizinhoMaisProx

[EE

* Separa os padroes em classes
* @param dataSet Base da dados de treinamento
* @return Arrays lista com a base da dados de treinamento separa em classes
*/
private ArrayList separaClasses(ArrayList dataSet){
int contaPadrao=0;
int contador=0;

ArrayList copiaDataSet = new ArrayList();
copiaDataSet.addAll(dataSet);
ArrayList subConjuntos=new ArrayList();



-

ESCOLA POLITECNICA
DE PERNAMBUCO

83

while (!copiaDataSet.isEmpty()){
int count=0;
int tamDataSet=copiaDataSet.size();
Pattern padraoN = (Pattern)copiaDataSet.get(contaPadrao);
ArrayList arrayN = new ArrayList();

[EE

* Coloca em arrayN todos os padroes da mesma classe que
* padraoN

*/

while (count<tamDataSet){

if(padraoN.getClasseDoPadrao().

equals(((Pattern)copiaDataSet.get(count)).getClasseDoPadrao())){

arrayN.add(((Pattern)copiaDataSet.get(count)));
copiaDataSet.remove(count);
tamDataSet=copiaDataSet.size();
continue;

}H/fim do if

count++;

}//fim do while

contador++;
subConjuntos.add(arrayN);
}//fim do while

return subConjuntos;
}//fim de separaClasses

[EE

*Retorna o padrao médio (Xm) de uma classe
* @param dataSet ArrayList que contem todos os padroes de uma classe
* @return Retorna o padrao médio (Xm)
*/
private Pattern padraoMedio(ArrayList dataSet){
Pattern xm = new Pattern(numEntradas);
int contaEntradas=0;

while (contaEntradas < numEntradas){
int contaPadroes=0;
double media=0;

while(contaPadroes < dataSet.size()){
media+=((Pattern)
dataSet.get(contaPadroes)).getValorDoPadrao(contaEntradas);
contaPadroes++;
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}//fim do while

media = media/dataSet.size();
xm.setValorDoPadrao(contaEntradas,media);

contaEntradas++;
}/fim do while

xm.setClasseDoPadrao(((Pattern) dataSet.get(0)).getClasseDoPadrao());

return xm;
}//fim de padraoMedio

/>I<>I<
* Copia o conteudo de um ArrayList de Pattern para um ArrayList de
PatternComDistancia
* @param orig ArrayList de Pattern
* @param dest ArrayList de PatternComDistancia
*/
private void colocaDistanciaNoPattern(ArrayList orig, ArrayList dest){

int count=0;

while(count<orig.size()){
dest.add(new PatternComDistancia( (Pattern)orig.get(count) ));
count++;

}/fim do while

H/ fim de colocaDistanciaNoPattern

[k

* Calcula a distancia entre dois padroes
* Para calcular a distancia usamos a formula:
A2 = (x1-yDA2 4+ (x2-y2)*2 + ... + (Xn-yn)"2
* @param p1 Padrao 1
* @param p2 Padrao 2
* @return Distancia entre os Padroes
*/
public static double distanciaEuclidiana(Pattern p1, Pattern p2){

double p1Valores[]=pl.getValoresDoPadrao();
double p2Valores[]=p2.getValoresDoPadrao();
double distancia=0;

/ltesta se os dois arrays s@o do mesmo tamanho
if (p1Valores.length==p2Valores.length){
for (int count=0; count<p1Valores.length; count++){
distancia+=Math.pow((p1Valores[count]-p2Valores[count]),2);
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//distancia+=(p1Valores[count]-
p2Valores[count])*(p1Valores[count]-p2Valores[count]);
}/fim do for
H/fim do if
return (Math.sqrt(distancia));
}/fim de distanciaEuclidiano
/>l<>l<
* L€ cada padrao de treinamento, cria o objeto Pattern e armazena no ArrayList
* @param in Leitor do arquivo
*/
private void lerPadroes(BufferedReader in, ArrayList patterns, int entradas, int
saidas){
String line="";
StringTokenizer token=new StringTokenizer(line);

/Ipatterns=new ArrayList();

/**
* while conta até ele ler o primeiro padrao que é composto
* por entradas+saidas tokens

*/
while (token.countTokens()!= entradas+saidas){
try {
line=in.readLine();
}/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException",
JOptionPane. ERROR_MESSAGE);
} //fim do catch
try{
token=new StringTokenizer(line);
}catch (NullPointerException nullPointerException) {
JOptionPane.showMessageDialog(null,
"Erro de leitura - Verifique o cabecalho do seu
arquivo",
"NullPointerException”,
JOptionPane. ERROR_MESSAGE);
} //fim do catch
}H/fim do while

//Neste ponto line ja contem os dados do 1° padrao do arquivo
do{

System.out.println(line);

Pattern padrao = new Pattern(numEntradas);

int count=0;

token=new StringTokenizer(line);

//Ira preencher os valores do padrao
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do{

padrao.setValorDoPadrao(count,Double.parseDouble(token.nextToken()));
count++;
}while(count!=entradas);
//Ira preencher os valores do padrao

if (saidas==1){
padrao.setClasseDoPadrao(token.nextToken());
telse {
padrao.setClasseDoPadrao(line.substring( line.length()-((2
*numSaidas)-1),line.length() ));
}/ fim do else

//Adiciona o novo padrao no vetor
patterns.add(padrao);
//Le a proxima linha
try {
line=in.readLine();
}//fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException",
JOptionPane. ERROR_MESSAGE);
}H/fim do catch
}while (line!=null);
H/fim de lerPadroes
/>l<>l<
* Conta a quantidade de padroes contidos no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de padroes de entrada
*/
private int contaPadroes(BufferedReader in){
String line =" ";
String valor ="";
StringTokenizer token;
try {
line=in.readLine();
System.out.println(line);
}H/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Padroes",
"IOException”,
JOptionPane. ERROR_MESSAGE);
}H/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
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return Integer.parselnt(valor);
}/fim de contaPadroes
/>l<>l<
* Conta a quantidade de entradas contidas no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de entradas
*/
private int contaEntradas(BufferedReader in){
String line =" ";
String valor ="";
StringTokenizer token;
try { line=in.readLine();
System.out.println(line);
}/fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Entradas”,
"IOException ",
JOptionPane. ERROR_MESSAGE);
}/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
return Integer.parselnt(valor);
}//fim de contaEntradas
/>I<>I<
* Conta a quantidade de saidas contidas no arquivo de treinamento
* @param in Leitor do arquivo
* @return Quantidade de saidas
*/
private int contaSaidas(BufferedReader in){
String line =" ";
String valor = "";
StringTokenizer token;
try {
line=in.readLine();
System.out.println(line);
}//fim do try
catch (IOException iOException) {
JOptionPane.showMessageDialog(null,
"Nao conegue ler a linha com N° de Saidas",
"IOException",
JOptionPane. ERROR_MESSAGE);
}/fim do catch
token = new StringTokenizer(line);
while (token.hasMoreElements())
valor=token.nextToken();
return Integer.parselnt(valor);
}//fim de contaSaidas
H/fim da Classe PocNN



