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Resumo 

 
Detecção de Intrusão é um dos assuntos que ganha mais visibilidade dentro do atual cenário 

global. Esse fato pode ser explicado pelo aumento significativo da Internet em todo mundo, e 

com ele a exposição das empresas a esse mundo de interação e benefícios. Essa exposição não é 

só benéfica, pois invasões de pessoas não autorizadas estão sendo cada vez mais constantes. Os 

Sistemas de Detecção de Intrusão (IDS) aparecem como uma forma de identificar e realizar 

algum tipo de contramedida para tais invasões. Diversos métodos para reconhecimento de um 

ataque estão em uso ou sendo desenvolvidos. Um deles proposto envolve o uso de aprendizagem 

de máquina para identificação desses ataques. Este trabalho apresenta um estudo comparativo 

entre as técnicas Redes Neurais Artificiais (RNAs), do tipo MLP (Multilayer perceptron) e 

RBFN (Radial Basis Functions Networks) utilizando o algoritmo de treinamento DDA (Dynamic 

Decay Adjustment), Máquinas de Vetor Suporte (SVM) e técnicas que utilizam os vizinhos mais 

próximos (NN e kNN) aplicadas ao problema de detecção de intrusão. A ferramenta LIBSVM foi 

empregada para executar os treinamentos com SVM. O simulador WEKA foi utilizado para 

execução das técnicas NN, kNN e MLP, enquanto que e o SNNS foi utilizado para redes RBF-

DDA. Ainda foi testada uma seleção de parâmetros com as redes RBF-DDA. Todos os 

treinamentos foram comparados empregando o método da validação cruzada. As técnicas foram 

analisadas com relação ao seu desempenho no erro de classificação, complexidade e tempo de 

processamento. As técnicas RBF-DDA e SVM obtiveram os melhores desempenhos.  



ii 

 

ii 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Abstract 

Intrusion Detection is one of the subjects that wins more visibility inside of the current global 

scene. This fact can be explained by the significant Internet increasement around the world, 

added to the exposition of the companies to this interaction and benefits world.  This exposition is 

not only beneficial because there is very often  invasion of non-authorized people. Intrusion 

Detection Systems (IDS) appear as a way to identify and prevent any kind of attack. Some attack 

recognition techniques are being used or being developed. One of them involves the use of 

machine learning in the identification of those attacks. This work presents a comparative study 

among the techniques: Artificial Neural Networks (ANN), MLP (Multilayer Perceptron) type and 

RBFN (Radial Basis Functions Networks), using the training algorithm DDA (Dynamic Decay 

Adjustment), Support Vector Machines (SVM) and other techniques that uses the neighbors (NN 

and kNN) applied to the problem of intrusion’s detection. The tool LIBSVM was used to execute 

the trainings with SVM. The simulator WEKA was used to apply the techniques NN, kNN and 

MLP, while the SNNS was used for nets RBF-DDA. It was also verified a selection of parameters 

with the RBF-DDA nets. All the trainings had been compared using the crossing validation 

method. Those techniques were analyzed by its performance in the error classification, 

complexity and processing time.  The techniques RBF-DDA and SVM had gotten the best 

performances. 
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Introdução 

O número constante e crescente de ataques a redes coorporativas se deve à exposição de 
informações importantes para intrusos que a Internet proporciona [28], por isso Sistemas de 
Detecção de Intrusão (IDS – Intrusion Detection Systems) estão tendo cada vez mais importância 
e visibilidade no mundo atual. Uma intrusão, em geral, é definida como um conjunto de ações 
que comprometem a integridade, a confiabilidade ou a disponibilidade de recursos [29]. Sistemas 
que detectam intrusões, basicamente, são conjuntos de hardware e software que trabalham juntos 
para identificar eventos inesperados, que podem indicar que um ataque irá acontecer, está 
acontecendo ou aconteceu [17]. Esses sistemas podem utilizar diversas técnicas para prever um 
ataque, entre elas Redes Neurais Artificiais (RNAs), caracterizadas por serem uma forma de 
computação não algorítmica e por lembrar, em algum nível, a estrutura do cérebro humano [1]. 
Outras técnicas também podem ser empregadas como Máquinas de Vetor Suporte (SVM) ou 
ainda técnicas que utilizam os vizinhos mais próximos, Nearest Neighbor (NN) e k-Nearest 

Neighbor (kNN). 
 O propósito de um IDS é distinguir entre intrusos e usuários normais. O sensor de um IDS 
é o mecanismo principal para fazer essa distinção, sua função é monitorar um host ou uma rede a 
fim de identificar intrusões, gerar logs localmente e gerar mensagens alertando a respeito da 
ocorrência de tais eventos. Dentro de um sensor existe uma parte nomeada analisador de eventos, 
cuja responsabilidade é identificar se um dado evento é um ataque ou não. É nessa parte que as 
técnicas de aprendizagem de máquina, através do seu poder de classificação, poderão se inserir 
em um IDS. 
 Um exemplo de IDS comercial é o snort que possui código aberto e é muito utilizado. Ele 
não utiliza técnicas de aprendizagem de máquina para analisar ataques. Suas características 
principais são análise de tráfego em tempo real e de registro de pacotes IP, além de gerar alertas 
em tempo real [36].  
 Neste trabalho, comparamos algumas técnicas de aprendizagem de máquina nesse 
problema utilizando a base de dados KDD cup 1999 [20]. Essa base foi concebida através da 
simulação de um ambiente de uma rede militar dos EUA, mais precisamente da força aérea dos 
Estados Unidos. Basicamente ela é composta de conexões “ruins”, denominadas ataques, e de 
conexões “boas” chamadas normais. Esse ambiente foi alimentado com conexões TCP 
(Transmission Control Protocol), cada uma dessas com um tamanho de 100 bytes, durante nove 
semanas. Em meio a essas conexões foram inseridos múltiplos ataques. Essa base de dados 
possui um total de 41 atributos de entrada, que incluem, por exemplo, duração da conexão, 
serviço de rede de destino, dados básicos sobre a conexão TCP, dentre outros (explicitados no 
Capítulo 2). 
 A utilização de RNA nesse problema pode ser justificada pela não linearidade da mesma e 
pela capacidade de adaptação que elas possuem. Isso é importante, pois como estão sendo 
identificados, os ataques atuais são uma combinação de ataques já existentes, por isso o 
analisador de eventos tem que se adaptar a cada uma dessas variantes. Outra vantagem é a 
facilidade de colher eventos para servir de exemplos no treinamento das RNAs, isto é feito 
simulando uma rede de computadores real e adicionando ataques a essa, armazenando os logs de 
cada conexão realizada, seja ela um ataque ou não. 
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 A construção de um IDS que utiliza redes neurais pode ser dividida em três etapas: 
1. Coleta dos dados para treinamento: nessa fase, é onde se obtêm os dados para o 

treinamento, sejam eles fornecidos por uma rede real ou através de uma simulação de uma 
rede; 

2. O treinamento em si da rede: nessa etapa é onde vamos treinar as redes com a mesma base 
de dados, submetendo essa a várias técnicas de redes neurais distintas; 

3. A rede neural treinada: nessa fase, a rede neural está pronta para distinguir ataques 
verdadeiros de conexões normais. 
A utilização de Máquinas de Vetor Suporte é justificada pelo fato desta técnica recente,  

que utiliza apredizagem estatística, ter obtido melhor desempenho de classificação que outra 
técnicas, tais como RNAs em uma série de problemas importantes, como categorização de texto e 
reconhecimento óptico de caracteres (OCR) [11,34,35]. Uma vantagem adicional de SVM  é que 
a técnica normalmente produz classificadores com poucas unidades escondidas. 

As técnicas baseadas no vizinho mais próximo, NN e kNN, foram utilizadas, pois são 
simples e precisas. Além disso, essas técnicas possuem um parâmetro a ser modificado para o 
treinamento. 

O trabalho foi dividido em quatro Capítulos. No primeiro foram introduzidos alguns 
conceitos inerentes ao tema, como as técnicas de aprendizagem de máquina e conceitos dos 
sistemas de detecção de intrusão. 

O segundo Capítulo apresenta a base de dados, relatando como ela foi concebida, seus 
atributos, tipos de ataque que fazem partes dessa base, além de informar ao leitor algumas 
adequações que foram realizadas para formatar essa base para os simuladores utilizados nesse 
trabalho. 

O terceiro Capítulo mostra os resultados obtidos com a utilização dessas quatro técnicas. 
Apresentamos a descrição de cada treinamento efetuado, bem como sua análise levando-se em 
consideração alguns fatores como: tempo de processamento, erro de validação cruzada e 
complexidade da rede. Por fim, foi feito um comparativo entre as técnicas abordadas. 

O quarto Capítulo se refere às conclusões e trabalhos futuros.  
Sistemas de Detecção de intrusão são primordiais para uma empresa que possua 

informações confidenciais e que esteja ligada à Internet, pois o risco de sofrer invasões é muito 
alto. Técnicas de aprendizagem de máquina surgem como um mecanismo interessante para 
detectar, classificar e identificar esses ataques.  
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1 
 

Conceitos Básicos 

Este Capítulo visa explicar conceitos básicos sobre o tema. Abordaremos as técnicas de 
aprendizagem de máquina utilizadas e os sistemas de detecção de intrusão (IDS).  

1.1 Técnicas de aprendizagem de máquina 
 
As técnicas empregadas neste trabalho são: redes neurais artificiais, representada por funções de 
bases radiais (Radial Basis Function - RBF) e perceptrons de multicamadas ( multilayer perceptron - 
MLP), máquinas de vetor de suporte (SVM), técnica do vizinho mais próximo (NN) e técnica dos k-
vizinhos mais próximos (kNN). 

1.1.1 Redes Neurais Artificiais (RNAs) 
 
Redes Neurais artificiais (RNAs), também chamadas de conexionismo ou redes de sistemas 
distribuídos [1], ressurgiram no final da década de 80, e hoje têm se tornando um amplo campo 
de pesquisa. RNAs nos permitem projetar sistemas não-lineares, podendo esses possuir um 
grande número de entradas, com o projeto baseado em relacionamentos do tipo entrada-saída [2]. 
Seus atrativos pricipais são a capacidade de aprender por exemplos  e de generalizar as 
informação aprendidas. A generalização está associada à capacidade da rede de aprender através 
de um conjunto reduzido de exemplos e posteriormente dar respostas coerentes para dados não-
conhecidos [1].  

Outra característica importante é o fato das redes neurais artificiais não serem baseadas 
em regras ou programas, se constituindo assim em uma alternativa para a computação, visto que a 
utilização de algoritmos se restringe para algumas partes da execução de um rede neural artificial. 
Mas, o principal atrativo das RNAs é, sem dúvida, sua capacidade de aprender através de 
exemplos e de generalizar a informação aprendida. RNAs são inspiradas na biologia, 
particularmente na pesquisa do cérebro humano. 

 
 
 

Capítulo 
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1.1.1.1 Inspiração na biologia 
 
As RNAs tentam reproduzir as funções da rede neural biológica, buscando implementar seu 
comportamento básico e sua dinâmica. Como características comuns entre os dois sistemas temos 
que eles são baseados em unidades de computação paralela e distribuída que se comunicam por 
meio de conexões sinápticas, possuem detectores de características, redundância e modularização 
das conexões. A célula fundamental do cérebro é o neurônio, cada um desses neurônios se liga a 
milhares de outros continuamente e em paralelo. Os neurônios são divididos em três partes: corpo 
da célula, dendritos e axônios (Figura 1).   
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figura 1. Partes de um neurônio biológico [31]. 
 

O corpo celular é a parte mais volumosa da célula; nela se localizam o núcleo e a maioria 
das estruturas citoplasmáticas. Os dendritos são prolongamentos finos e, geralmente, ramificados 
que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo 
celular. O axônio é um prolongamento estreito, geralmente mais longo que os dendritos, cuja 
função é transmitir para outras células os impulsos nervosos provenientes do corpo celular. 
Sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e 
a superfície de outra célula. O impulso é transmitido de uma célula a outra através dessas 
sinapses.  

1.1.1.2 Conceitos sobre redes neurais artificiais 
 
Redes neurais artificiais possuem uma estrutura similar a um neurônio biológico. Essa estrutura 
foi desenvolvida por McCulloch e Pitts [1]. Eles modelaram uma estrutura com n terminais de 
entrada x1, x2, ..., xn (no neurônio biológico, poderíamos dizer que essas entradas representam os 
dendritos) e um terminal de saída (seria o axônio) para emular as sinapses. Os terminais de 
entrada têm associados a ele pesos w1, w2, ..., wn. Em um neurônio biológico, um disparo 
acontece quando a soma dos impulsos que ele recebe ultrapassa seu limiar de excitação 
(threshold), já em um neurônio MCP (modelo de neurônio artificial de McCulloch e Pitts), a 
ativação de um neurônio é obtida através da aplicação de uma função de ativação, que ativa ou 
não a saída, dependendo do valor ponderado das suas entradas.  
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No modelo,  a função de ativação é dada por uma função linear, cuja saída pode assumir 
os valores 0 ou 1. Por conseguinte, o nodo MCP ativa ou não sua saída, seguindo a equação 
abaixo: 
 
 

       n 

                                                ∑ xi wi  ≥  θ                     (1.1) 
     i=0 

      
onde n é o número de entradas do neurônio, wi é o peso associado à entrada xi , e θ é o limiar 
(threshold) do neurônio. Uma simplificação realizada por McCulloch e Pitts no seu modelo diz 
respeito ao disparo de cada camada. Isso é feito sincronamente, ou seja, todos os neurônios são 
avaliados ao mesmo tempo. Já no sistema biológico sabe-se que não existe um mecanismo para 
realizar esse sincronismo [1]. Esse modelo possui algumas limitações e dentre elas podemos 
destacar as seguintes: 
 

1. Esse modelo com uma camada só se adequava a problemas linearmente separáveis; 
2. O modelo foi proposto com pesos fixos, não podendo estes ser ajustados. 
 
A Figura 2 representa o modelo de McCulloch e Pitts: 

 
Figura 2. Modelo de um neurônio MCP. 

 
Após o modelo de McCulloch e Pitts, foram propostos vários outros modelos que 

permitem a produção de saídas que não sejam necessariamente 0 ou 1 e com diferentes funções 
de ativação. A função de ativação linear é mostrada na equação abaixo e será exemplificada logo 
em seguida, em conjunto com outro tipos de funções:  

 
                      y = ax      (1.2) 

 
onde a é um número real que define a saída linear para os valores de entrada, y é a saída e x a 
entrada. Em seguida, temos alguns exemplos de funções de ativação para redes neurais artificiais: 
 

1. Função degrau: esssa função tem como valores de saída 0 ou 1 e é definida como: 
 

     




<

≥
=

0    0

0     1
)(

xse

xse
xf            (1.3) 
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2. Função rampa: abaixo está um exemplo desse tipo de função: 
 

                                                              















<

<<−

≥

=

2

1
    0

2

1

2

1
  ,

2

1
     1

)(

xse

xx

xse

xf                                                (1.4) 

 
onde, 0 e 1 são os limites da função e (-½ e ½) é o intervalo que define a saída linear. 
 

3. Função sigmóide: função cujos valores pertencem a intervalo contínuo, por exemplo, 
entre 0 e 1. 

     
)exp(1

1
)(

x
xf

α−+
=      (1.5) 

 
onde, α determina a inclinação da função. 

 
Além da função de ativação, as RNAs possuem uma arquitetura (topologia), cuja 

configuração é importante, pois restringe o tipo de problema que pode ser tratado pela rede [1]. 
Por exemplo, as redes descritas anteriormente, MCP, possuem apenas uma camada e só 
conseguem resolver problemas linearmente separáveis. Na Figura 3, estão ilustrados alguns 
exemplos de arquitetura de RNAs. 

 
Figura 3.  Arquiteturas de RNAs [1]. 
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Essas arquiteturas referem-se a modelos: 
 
1. Com única camada: só existe um nó entre a entrada e a saída (Figura 3. a, e); 
2. Múltiplas camadas: existe mais de um neurônio entre a entrada e a saída (Figura 3. b, c, 

d). 
 

Quanto às conexões entre os nodos podemos ter dois tipos: 
 

1. Feedforward, ou acíclica: a saída de um neurônio em um a camada não pode ser utilizada 
como entrada em nenhuma camada anterior a esta (Figura 3. a, b, c); 

2. Feedback, ou cíclica: a saída de algum neurônio de uma certa camada é utilizada como 
entrada para uma camada anterior a esta (Figura 3. d, e). 
 
Nós já vimos até aqui como a rede neural artificial calcula suas saídas, como é sua 

arquitetura, agora vamos falar um pouco sobre como acontece a aprendizagem de uma RNA, 
visto que essas redes possuem a capacidade de aprender a partir de exemplos e fazer 
interpolações e extrapolações do que aprendem [1]. A aprendizagem se dá através de um 
algoritmo de aprendizagem, a definição de um algoritmo de aprendizagem pode ser: um conjunto 
de procedimentos bem-definidos para adaptar os parâmetros de uma RNA para que ela possa 
aprender uma determinada função [1]. A utilização de uma RNA se inicia por uma fase 
denominada fase de aprendizagem, é nela que, através de um processo iterativo, a rede vai 
ajustando os seus parâmetros que são os pesos das conexões entre as unidades de processamento. 
Essas, por sua vez, armazenam o conhecimento que a rede adquiriu do ambiente em que está 
operando. Diversos métodos de aprendizado foram desenvolvidos sendo que os dois principais 
são: aprendizado supervisionado e aprendizado não-supervisionado. 

Aprendizado supervisionado é o método de aprendizado mais comum. Nesse método, a 
entrada e saída desejadas para a rede são fornecidas por um supervisor (professor) externo. 
Posteriormente, a saída dada é comparada com a saída obtida pela rede, tendo como objetivo 
ajustar os parâmetros da rede de forma a encontrar uma representação interna a partir dos pares 
de entrada e saída fornecidos. Nesse método, a soma dos erros quadráticos de todas as saídas é 
normalmente utilizada como medida de desempenho da rede. Existe uma desvantagem da 
utilização desse método: na ausência do professor a rede não conseguirá aprender novas 
estratégias para situações que não pertençam ao escopo de exemplos conhecidos. A Figura 4 
ilustra o aprendizado supervisionado: 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4.  Treinamento supervisionado [1]. 
 

Aprendizado não-supervisionado: nesse método não existe o professor ou supervisor para 
acompanhar o processo de aprendizado, apenas padrões de entrada são fornecidos para a rede, e 
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através de regularidades estatísticas das entradas são estabelecidas algumas representações 
internas. Desse modo, esse método de aprendizado é possível apenas quando existe redundância 
nos dados de entrada. A Figura 5 demonstra esse tipo de aprendizado. 

 
 

Figura 5. Treinamento não-supervisionado [1]. 
 

 Uma forma de utilizar redes neurais em sistemas de detecção de intrusão, é criar um 
sistema que aprenda a predizer um próximo comando baseado numa seqüência prévia de 
comandos pertencentes a um usuário específico [3]. Em uma empresa, determinados funcionários 
são encarregados de realizar algumas tarefas, e essas exigem certas rotinas que envolvem 
programas nos computadores, a execução desses programas exigem certos comandos nos 
computadores e esses serão aprendidos pela técnica de aprendizagem de máquina. A construção 
de uma rede neural para um IDS consiste em três fases: 
 

1. Coleta dos dados para treinamento, esses dados podem ser obtidos por logs de auditoria 
para cada usuário por um determinado período. Um vetor é formado para cada dia e cada 
usuário, assim ele pode mostrar quais comandos um usuário frequentemente executa; 

2. Treinar a rede neural para reconhecer um usuário através dos vetores de distribuição de 
comandos; 

3. A rede neural identifica um usuário baseado nos vetores de distribuição de comandos; se a 
sugestão da rede for diferente do usuário real, uma anomalia será sinalizada. 

 

1.1.1.3 Redes MLP (MultiLayer Perceptron) 
 
Para resolver problemas não-linearmente separáveis foram criadas as redes MLP, pois esse tipo 
de rede possui pelo menos duas camadas permitindo a aproximação de qualquer função contínua. 
As redes MLP derivam de um modelo denominado perceptron proposto por Frank Rosenblatt em 
1958 [4]. Com esse modelo, apenas problemas linearmente separáveis poderiam ser solucionados. 
A utilização de uma camada escondida aumentou o poder computacional das MLP. A precisão a 
ser obtida e a implementação da função objetivo dependem do número de nodos utilizados nas 
camadas intermediárias. 
 Como já vimos, um dos principais aspectos das redes neurais artificiais é a utilização de 
uma função de ativação. Para redes MLP a mais empregada é a sigmoidal logística. Essa função é 
representada no plano cartesiano mostrado na Figura 6. 
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Figura 6. Função sigmoidal logística. 
 
 Em uma rede multicamada, o processamento realizado por cada nodo é definido pela 
combinação dos processamentos realizados pelos nodos da camada anterior, que estão conectados 
a ele. Para uma rede com duas camadas intermediárias pode-se dizer que o seguinte 
processamento ocorre em cada camada: 
 

• Primeira camada intermediária: cada nodo traça retas (essas retas são criadas de acordo 
com a função de ativação da camada, sua orientação é dada pelo vetor de pesos) no 
espaço de padrões de treinamento; 

• Segunda camada intermediária: cada nodo combina as retas traçadas pelos nodos da 
camada anterior (primeira camada intermediária) conectados a ele, formando regiões 
convexas, onde o número de lados é definido pelo número de unidades conectadas a 
ele. Abaixo, a Figura 7, mostra um exemplo de uma região convexa:  

 

 
Figura 7.  Regiões definidas pelo processamento da segunda camada intermediária. 

  
• Camada de saída: cada nodo forma regiões que são combinações das regiões convexas 

definida pelos nodos conectados a ele da camada anterior (segunda camada 
intermediária). Na Figura 8, demonstramos um exemplo das combinações de regiões 
convexas. 

 
Figura 8.  Regiões definidas pelo processamento da camada de saída. 
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Pode-se dizer que as camadas intermediárias de uma MLP funcionam como detectores 

de características. Eles geram uma representação interna dos padrões de entrada, que é utilizada 
para definição da saída da rede. A camada de saída de uma MLP emprega uma técnica 
denominada winner-takes-all [4], com isso a classe fornecida pela rede corresponderá à maior 
saída da rede.  

O número de nodos contido em cada camada é definido empiricamente, esse número 
depende muito da distribuição dos padrões para treinamento e validação da rede. O número ideal 
de neurônios é influenciado por vários fatores, como: 

 
• Número de exemplos de treinamento; 
• Quantidade de ruído presente nos exemplos; 
• Complexidade da função a ser aprendida; 
• Distribuição estática dos dados de treinamento. 
 

A alocação de unidades intermediárias (neurônios) deve ser suficiente para solucionar o 
sistema em questão. É preciso ter cuidado para não utilizar unidades demais, pois pode levar a 
rede a memorizar os padrões de treinamento, ao invés de extrair as características gerais que 
permitirão a generalização ou o reconhecimento de padrões que não fizeram parte do 
treinamento. Esse problema é denominado overfitting. Por outro lado, se utilizarmos poucos 
neurônios na camada intermediária, podemos fazer com que a rede gaste muito tempo para 
encontrar uma representação ótima.  

Uma das formas empregadas para evitar o overfitting é estimar o erro de generalização 
durante o processo de treinamento. Para isso, a massa de dados é dividida em dois conjuntos: o de 
treinamento e o de validação. O conjunto de treinamento continua sendo utilizado na atualização 
dos pesos, enquanto que o conjunto de validação é empregado para estimar a capacidade de 
generalização da rede durante o processo de aprendizagem. O treinamento deve ser interrompido 
quando o erro de validação chegar ao seu mínimo global. Isto pode ser verificado através de 
técnicas como o critério de parada GL5, onde o treinamento é interrompido quando o erro de 
validação subir por cinco iterações consecutivas. 

Neste trabalho, a forma utilizada para finalizar o treinamento foi o número de épocas 
(quanitdade de vezes que a rede é treinada por inteiro, ou seja, apresentação de todos os padrões 
de treinamento a rede), que ficou definido em 500, visto que em artigos anteriores [2,16], o 
número máximo de épocas de treinamento não chegou a esse número. 

 
Algoritmo de treinamento: back-propagation  

 
O algoritmo de treinamento escolhido para este trabalho foi o back-propagation [1,5]. Esse 
algoritmo foi um dos principais responsáveis pelo ressurgimento do interesse em RNAs, visto que 
desde a criação do perceptron as redes neurais haviam entrado numa fase de decadência, devido 
essa técnica só ser capaz de resolver problemas linearmente separáveis. O back-propagation é um 
algoritmo supervisionado que emprega pares (entrada, saída) e por meio de um mecanismo de 
correção de erros, ajusta os pesos da rede. Ele é dividido em duas fases: forward e backward, a 
primeira calcula a saída da rede para um dado padrão de entrada, já a segunda utiliza a saída 
desejada e a saída fornecida pela rede para ajustar os pesos das conexões. A Figura 9 demonstra 
essas fases. 
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Figura 9.  Fases do algoritmo back-propagation. 

 
 A fase forward se inicia com a apresentação do padrão primeira camada (camada de 
entrada), após os nodos calcularem suas saídas, essas são passadas para a camada posterior 
(camada escondida). Essa camada realiza o mesmo processo e as saídas produzidas pela última 
camada (camada de saída) são comparadas às saídas desejadas, tendo fim a fase forward. 
 A fase backward se inicia a partir dessa comparação feita no último passo da fase 
forward. Os pesos da camada atual são ajustados; os erros das camadas anteriores são calculados 
utilizando os erros dos nodos das camadas seguintes conectados a ele, ponderados pelos pesos 
das conexões entre eles.  

1.1.1.4 Redes RBF (Radial Basis Function) 

RBF são redes que empregam funções de base radiais. Esse nome se deve ao uso dessas funções 
nas camadas intermediárias dessas redes. RBF se diferencia da maioria das redes multicamadas 
por utilizar como argumento da função de ativação a distância entre seus vetores de entrada e de 
pesos, enquanto que MLPs utilizam o produto escalar do vetor de entrada e do vetor de peso para 
um nodo. Com a utilização dessa função na camada intermediária RBF é capaz de separar os 
padrões de classes distintas através de hiperelipsóides. As funções de bases radiais são 
representantes de uma classe de funções, cujo valor diminui ou aumenta em relação a um ponto 
central [1]. As mais comuns para serem empregadas em redes RBF são: 

• Função Gaussiana: )exp()(
2

2

i

v
uf

σ

−
=                                       (1.6) 

• Função multiquadrática: )()( 22
σ+= vuf                    (1.7) 

• Função thin-plate-spline )log()( 2 vvuf =                   (1.8) 
                                                                                                                                                   
Onde |||| µ−= xv  é, geralmente, dado pela distância Euclidiana  x é o vetor de entrada, e µ  e σ 
representam respectivamente o centro e a largura da função radial. 
 A arquitetura de uma rede RBF costuma ter apenas uma camada intermediária. Como 
podemos conferir na Figura 10. A camada intermediária utiliza funções de base radiais, 
agrupando os dados de entrada em clusters. Com isso, essa camada transforma um conjunto de 
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padrões não-linearmente separáveis, ou seja, que não podem ser separados apenas traçando um 
plano ou uma reta, em um conjunto de padrões linearmente separáveis. A camada de saída 
classifica os padrões recebidos da classe anterior. Podem ser utilizadas redes do tipo perceptron 
ou adaline nessa camada, uma vez que seus padrões são linearmente separáveis.  
 

 
 

Figura 10.  Arquitetura de uma rede RBF [32]. 
Quanto ao particionamento do espaço de entrada, as redes RBF, ao contrário das redes 

MLP que empregam hiperplanos para fazer o particionamento, utilizam hiperelipsóides, onde 
cada um desses agrupa padrões de mesma classe formando regiões específicos para cada classe. 
Esse particionamento realizado pela rede RBF implica que a rede só poderá classificar novos 
padrões se esses forem das mesmas classes utilizadas para o seu treinamento. Ou seja, se um 
determinado padrão pertencente à outra classe, que não tenha sido utilizada durante o 
treinamento, for apresentado à rede para ser classificado, a rede não saberá como classificar esse 
novo padrão [1]. 

Uma vantangem deste tipo de abordagem de RNA´s, é o fato de a rede não classificar um 
padrão discrepante, classificando-o como desconhecido. A desvantagem desse tipo de técnica é o 
fato dela ter um bom desempenho para problemas bem definidos [1]. 
 
Algoritmo de treinamento: DDA (Dynamic Decay Adjustment) 
 
Existem vários métodos de treinamento para redes RBF. Neste trabalho, vamos utilizar o 
algoritmo DDA (Dynamic Decay Adjustment) [6,7,8,9,30]. Esse algoritmo se baseia no algoritmo 
contrutivo, utilizado para redes RBF, RCE (Restricted Coulomb Energy) [10]. Ele corrige um 
problema do RCE que é o de se confundir em áreas de conflito como o ilustrado na Figura 11. 
Quando um padrão é apresentado à rede, essa cria uma unidade RBF para classificá-la. Se um 
padrão de uma outra classe for inserido no treinamento, irá também criar uma unidade RBF e isso 
pode gerar uma região comum às duas gaussianas, denominado área de conflito. O algoritmo 
RCE não trata desse caso e, por conseguinte, pode não conseguir classificar corretamente esse 
padrão, podendo este ser atribuído a classe errada.   
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Figura 11.  Exemplo de conflito de padrões [6]. 
 

 O algoritmo DDA tem algumas peculiaridades que o diferenciam tanto na arquitetura 
usada por essas redes, como também no tempo utilizado para realização do treinamento. Quando 
aplicado a uma rede RBF, os nós da camada escondida utilizam funções gaussianas para 
processarem os valores de entrada [1]. 

O algoritmo DDA é um algoritmo construtivo, pois, inicialmente, é criada uma camada 
escondida sem neurônios. Cada gaussiana, apresentada na Figura 11, representa uma unidade na 
camada escondida de uma RBF, ou seja, um nodo. A partir do momento que o treinamento 
ocorre, novas unidades vão sendo adicionadas dentro dessa camada escondida. Se houver a 
necessidade da inclusão de um novo neurônio, isso será determinado dinamicamente durante o 
treinamento. 

O DDA utiliza dois parâmetros específicos para decidir se um novo neurônio deverá ser 
introduzido na camada intermediária da rede RBF [2]. O limiar positivo θ+ é utilizado para 
verificar se, para um novo padrão usado para o treinamento da rede, existe algum protótipo (uma 
gaussiana) da mesma classe com ativação acima do θ+. Caso exista tal protótipo, não será 
adicionado novo protótipo à rede; ao invés disso o peso de um protótipo já existente será 
incrementado. O limiar negativo θ- é utilizado para ajudar a solucionar o problema de conflitos de 
padrões que podem vir a existir durante o treinamento [6, 8]. 

O algoritmo 1, mostra um pseudocódigo para o DDA durante uma época de treinamento. 
 

Algoritmo 1. Algoritmo DDA para treinamento de RBFs (uma época de treinamento) 
 
//inicializa pesos com 0,0: 
FORALL protótipos p

k
i DO 

     A
k
i = 0,0 

ENDFOR 
//treina para uma época completa 
FOR ALL padrão de treinamento (x, c) DO 
    IF Эp

c
i: R

c
i(x) >= θ

+
 THEN 

        A
c
i 
 
+ = 1,0 

    ELSE 
        // introduz um novo protótipo  
       Adiciona um novo protótipo p

c
mc + 1 com: 

       rc
mc + 1 = x  

       σ c
mc + 1 = max k ≠ c /\  1 <= j <= mk {σ:R

c
mc + 1( r

k
j ) < θ

-
} 

       A
c
mc + 1 = 1.0 

       mc + = 1 
    ENDIF 
     //ajusta protótipos conflitantes

  
    FORALL k ≠ c, 1 <= j <= mk DO 
        σk

j = max{σ : Rj
k
( x ) < θ

-
} 

    ENDFOR 
ENDFOR         
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Podemos verificar no algoritmo 1 que, inicialmente, todos os pesos recebem valor 0 para 

cada protótipo presente na rede. Depois da inicialização dos pesos, para cada padrão de 
treinamento, verifica-se o valor de sua ativação e esse valor é comparado com o parâmetro θ+. Se 
a ativação for maior ou igual ao θ+, não é adicionado um novo protótipo à rede e o peso será 
incrementado de 1. Caso a ativação seja menor que o valor do parâmetro θ+, um novo protótipo 
será adicionado à rede com o valor do seu centro igual ao vetor de entrada, o peso do novo 
protótipo será igual a 1 e o número de protótipos é incrementado de 1. O próximo passo é fazer os 
ajustes nos protótipos conflitantes da forma como descreve o algoritmo 1. 
 Temos, a seguir, a Figura 12 que demonstra um exemplo de rede utilizando o algoritmo 
DDA. Na Figura 12 (a), é inserido um padrão de treinamento pertencente à classe A do problema 
em questão, criando uma gaussiana. A seguir na Figura 12 (b), um padrão da classe B é inserido, 
portanto uma nova gaussiana terá que ser criada, e a gaussiana do padrão A terá que se ajustar 
para passar na intersecção do centro de B com o valor θ-. No terceiro passo da Figura 12 (c), um 
novo padrão B é inserido, e como a intersecção do seu centro com a gaussiana do padrão B 
anterior é maior que o θ+, a gaussiana é incrementada, tendo seu peso passado para dois. Na 
Figura 12 (d), um novo padrão A á inserido e a interseção do centro desse novo padrão com a 
gaussiana A já existente é menor que o θ+, sendo assim uma nova gaussiana A teve que ser 
criada. 
 

 
 

Figura 12.  Exemplo da execução do algoritmo DDA [6]. 
 

Neste trabalho, também utilizamos uma técnica de seleção do parâmetro θ- [7, 8, 9]. O 
algoritmo DDA com seleção do parâmetro θ-, propõe a utilização de valores menores que o 
default para o parâmetro θ-, porém utiliza um método para selecionar um valor ótimo para esse 
parâmetro. O conjunto de dados contendo todos os padrões que serão utilizados pela rede neural 
RBF-DDA é dividido, inicialmente, em dois conjuntos: conjunto de treinamento e conjunto de 
teste. Realizada essa divisão inicial nos dados, o conjunto de treinamento é novamente dividido 
em duas novas partes: uma parte é um novo conjunto de treinamento, e outra parte é utilizada 
como um conjunto de validação. Esses dois novos conjuntos de dados serão usados para 
treinamento e validação da rede respectivamente, com o intuito de alcançar um valor para o 
parâmetro θ- que seja ótimo, ou seja, um valor que proporcione uma taxa de generalização ideal 
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para a rede, e essa possa classificar novos valores sem a presença de overfiting. O método para 
seleção do parâmetro θ- usando o algoritmo DDA é mostrado no algoritmo 2.  
 
Algoritmo 2. Algoritmo DDA com seleção de  θ

-.  
 
θ

-
opt = θ

-
 = 10

-1
 

Treinar uma RBF-DDA com θ
-
 usando o conjunto de treinamento reduzido e testa com o conjunto de 

validação para obter ValError = MinValError 
REPEAT 
    θ- 

= θ
-
 x 10

-1
 

    Treinar uma RBF-DDA com o θ
-
 usando o conjunto de treinamento reduzido e testar com o conjunto de 

validação para obter o ValError  
    IF ValError < MinValError  
         MinValError = ValError 
         θ

-
opt = θ

- 

    
  ENDIF 

UNTIL ValError > MinValError OR θ-
 = 10 

-10
 

Treinar uma RBF-DDA com o θ
-
opt usando o conjunto de treinamento completo 

Testar o RBF-DDA otimizado com o conjunto de teste 
 
 

 

1.1.2 Máquinas de vetor de suporte (SVM) 
 
Máquinas de vetor de suporte (SVM) [11, 12, 13] têm obtido sucesso em um grande número de 
aplicações, que variam desde identificação de partículas, identificação de face, categorização de 
texto, bioinformática e em banco de dados de marketing [11]. O modo como a aproximação é 
realizada tem base na teoria estatística [12]. SVM funciona construindo um hiperplano N-
dimencional que otimamente separa os dados em duas categorias de forma ótima [13]. A Figura 
13 demonstra um exemplo de como são separadas duas categorias. 
 

 
Figura 13. Exemplo em duas dimensões da utilização de SVM como classificador [13]. 

 
Na literatura de SVM, uma variável de predição é denominada atributo, e um atributo 

transformado, que é empregado na definição do hiperplano, é chamado característica. A tarefa de 
escolher a representação mais satisfatória é conhecida como seleção de característica. O conjunto 
de características que descrevem um caso é chamado de vetor. Assim, o objetivo de SVM é 
modelar um hiperplano ótimo que separa clusters do vetor. Os vetores perto do hiperplano são os 
vetores de suporte. A Figura 14 ilustra bem esses conceitos. 
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Figura 14. Exemplo em duas dimensões dos vetores de suporte [13]. 
 
Algumas das principais características das SVMs são:  
 

• Boa capacidade de generalização – os classificadores gerados por uma SVM em 
geral alcançam bons resultados em termo de generalização. Essa capacidade é 
medida por sua eficiência na classificação de dados que não pertençam ao conjunto 
utilizado em seu treinamento, portanto, é evitado o overfitting. 

• Robustez em grandes dimensões – as SVMs são robustas diante de grandes 
quantidades de dados.  

• Teoria bem definida – as SVMs possuem uma base teórica bem estabelecida dentro 
da Matemática e Estatística. 

 
 O exemplo descrito nas Figuras 13 e 14 é simples, pois só possui duas dimensões. Nesse 
exemplo, assumimos que existem duas categorias, sendo uma categoria representada por 
retângulos e a outro por círculos. Nesse caso idealizado, uma categoria se localiza no canto 
inferior esquerdo e a outra categoria se localiza no canto superior direito. SVM tentar achar um 
hiperplano com uma dimensão que separe as duas categorias. Existe uma infinidade de 
hiperplanos que podem separar essas categorias. Na Figura 14, temos dois exemplos. O 
hiperplano do lado esquerdo da Figura 14 tem uma margem de separação pequena, enquanto que 
o hiperplano do lado direito da mesma figura tem uma margem de separação maior. As linhas 
pontilhadas paralelas à linha divisória marcam a distância entre essa e os vetores mais próximos 
da linha. A distância entre as linhas pontilhadas é chamada de margem. O vetores mais próximos 
as linha pontilhadas são chamados de vetores de suporte, como descrito no parágrafo anterior e 
ilustrados na Figura 14. 
 Uma SVM tenta achar um hiperplano de forma que o tamanho da margem seja máximo 
para que haja um maior limite de decisão para padrões não-lineares dentro do espaço de entrada. 
Outra decorrência disso é que a rede tende a generalizar melhor. Com a margem máxima há uma 
separação melhor entre as classes que fazem parte do problema. 
 SVM se utiliza de funções denominadas kernel. Essas funções são capazes de mapear o 
conjunto de dados em diferentes espaços, fazendo com que um hiperplano possa ser usado para 
fazer a separação. Os principais tipos de funções kernel são: 
 

• Linear: j

T

iji xxxxK =),(  
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• Polinomial: 0,)(),( >+= γγ
d

j

T

iji rxxxxK  

• Sigmóide: )tanh(),( rxxxxK j

T

iji += γ  

• Função de base radial (RBF): 0),||||exp(),( 2
>−−= γγ jiji xxxxK  

 
A função kernel que vamos utilizar será a função de base radial. Esse tipo de kernel utiliza 

alguns parâmetros para o treinamento, nós utilizamos dois deles que são o C e o V. O parâmetro 
C é o parâmetro de penalidade do termo de erro (C>0) e V é a validação cruzada será explicada 
no Capítulo 3. 

1.1.3 Técnica baseadas nos vizinhos mais próximos (NN e kNN) 
O método do vizinho mais próximo para classificação é simples e preciso [14,15]. Nesse método, 
um nodo padrão é nomeado para a classe do seu vizinho mais próximo de um conjunto de 
treinamento rotulado e armazenado. A Figura 15 demonstra como é feita a classificação do 
método NN. Nela o novo padrão, marcado com uma cruz, será classificado como floco de neve 
(asterisco), devido a esse ser o rótulo do seu vizinho mais próximo. 

 
Figura 15. Exemplo de classificação no método NN [33]. 

 
 Todos os dados rotulados são armazenados e usados no processo, isso faz com que NN 
precise de um tempo significativo para executar e também ocupe bastatnte memória.  
 O método kNN utiliza também a influência dos vizinhos. Entretanto, classifica seus 
padrões de acordo com uma matriz de votos dados por seus k vizinhos mais próximos. O 
funcionamento desse método é explicado dessa forma [24,38]: 
 

1. Calcula-se as distâncias das amostras; 
2. Agrupa-se as amostras por proximidade; 
3. Os vizinhos mais próximos dão seus votos para sua classe; 
4. A classe que possuir mais votos fica com o padrão. 
 

Uma das grandes vantagens do kNN é que ele não depende da distribuição dos dados, 
sendo mais indicado para classificação de dados assimétricos. 
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O ideal quando se escolhe o número k de vizinhos, é escolher um número ímpar para 
evitar que duas classes possuam o mesmo número de votos na escolha da classe de um 
determinado padrão. 

1.2 Sistemas de Detecção de Intrusão (IDS) 

1.2.1  O que é um IDS? 
 
Ataques a computador lançados a partir da Internet, são capazes de causar danos enormes, devido 
ao aumento da importância dos serviços fornecidos pela rede. Esses ataques crescem cada dia, o 
que pode ser comprovado a partir de dados estatísticos de órgãos como CERT e NBSO [19]. É 
complicado prevenir ataques com políticas como firewalls, políticas de segurança ou outros 
mecanismos, pois os sistemas e aplicativos possuem fraquezas desconhecidas ou falhas (bugs). 
Além disso, freqüentemente, os atacantes exploram vulnerabilidades desses sistemas e/ou 
protocolos de rede. Sistemas de detecção de intrusão são projetados para descobrir ataques que 
inevitavelmente acontecem, mesmo com a aplicação das políticas de segurança [16].  
 O processo de detecção de intrusão se caracteriza por identificar e relatar atividade 
maliciosa agindo em computadores e/ou recursos da rede [17]. Tendo em mente essa definição de 
detecção, podemos definir, ainda, um sistema de detecção de intrusão como sendo: um sistema de 
hardware e software que trabalham unidos para identificar eventos inesperados que podem 
indicar se um ataque irá acontecer, está acontecendo ou aconteceu [17]. A função de um IDS 
pode ser também, além de detectar e identificar um ataque, responder ao ataque ativando medidas 
preventivas e alertando o administrador de rede. Um IDS coleta informações de uma variedade de 
sistemas e recursos da rede e assim analisa essas informações para verificar se há algum sinal fora 
da normalidade. As principais funções executadas por um IDS são [18]: 
 

• Análise e monitoração do usuário e do sistema; 
• Avaliação da integridade crítica do sistema e seus arquivo de dados; 
• Reconhecimento de padrões de atividades que indiquem um ataque; 
• Informação ao processo de detecção. 

1.2.2 Conceitos e tipos de um IDS 
 
Alguns conceitos são inerentes a sistemas de detecção de intrusão como [17]: 
 

• Ataque: ação inteligente que põe em risco o funcionamento de um sistema, explora 
vulnerabilidades inerentes ao sistema ou inerentes ao protocolo de rede; 

• Vulnerabilidade: é uma falha que pode ter origem no sistema operacional, no 
protocolo de rede ou em serviços de qualquer componente no sistema que permita 
acesso ou intervenção de pessoas não autorizadas. 

• Sensor: principal parte de um IDS, cuja função é monitorar um host ou rede a fim 
de identificar intrusões gravar logs localmente e gerar mensagens alertando tais 
eventos; 

• Estação de gerenciamento: é uma estação encarregada de gerenciar um ou mais 
sensores; 
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• Evento: é uma ocorrência, detectada pelo sensor, na base de dados; 
• Respostas ou contramedidas: ações que podem ser programadas na ocorrência de 

um determinado evento.  
 

O propósito de um IDS é distinguir entre intrusos e usuários. Devido à enorme 
complexidade das redes atuais, essa distinção se torna difícil. Isso pode acarretar perda de 
desempenho dos IDS. Desse problema descrito, podemos apresentar dois conceitos inerentes, o 
dos falsos positivos e falsos negativos. Os erros de falso positivo ocorrem quando o sensor do 
IDS interpreta mal uma conexão normal, classificando-a como um ataque. Esse erro pode 
degradar a produtividade do sistema pela ativação desnecessária de contramedidas. Os erros de 
falso negativo são fatais, pois acontecem quando uma conexão de ataque é classificada como uma 
conexão normal. 

Várias classificações existem para definir o tipo de IDS. Uma delas é classificá-lo quanto 
à tecnologia do analisador de eventos, que é a parte do sensor responsável pela identificação dos 
ataques. O analisador de eventos pode ter como tecnologia [17]: 

 
• Análise de assinaturas: seu funcionamento é similar a de um antivírus. É o método 

mais utilizado.  
• Análise estatística: constrói modelos estatísticos do ambiente baseados em fatores 

como: duração média de uma sessão de telnet [37], por exemplo. Qualquer desvio 
comportamental do sistema pode ser classificado com suspeito. 

• Sistemas adaptativos: inicia generalizando regras de aprendizado para o ambiente 
em que está inserido, e então determinar o comportamento dos usuários com o 
sistema. Passado esse período, o sistema estará apto para distinguir entre conexões 
normais e ataques.  

 

1.2.3 IDS utilizando aprendizagem de máquina 
 
O propósito deste trabalho, como já foi descrito, é identificar qual técnica de aprendizagem de 
máquina fornece melhores resultados, ou ainda, se adapta melhor para sistemas de detecção de 
intrusão. Para isso o tipo de IDS que trabalha com aprendizagem de máquina são os sistemas 
adaptativos descritos na Seção 1.2.2.  

  As técnicas de aprendizagem de máquina se inserem em um IDS no analisador de eventos, 
que por sua vez, em geral, parte do sensor, e é responsável pela classificação das conexões. Como 
foi descrito na Seção anterior, a implementação desses sistemas obedece a duas fases distintas. 
Na primeira fase, chamada de fase de treinamento, a técnica começa a aprender o funcionamento 
do sistema em questão e como os usuários interagem com o mesmo. Na segunda fase, o sistema 
começa a fazer interpolações e extrapolações daquilo que ele aprendeu na fase de treinamento e, 
desse modo, ele estará habilitado para realizar a distinção das conexões, ou seja, classificá-las em 
normais ou ataques. 

1.2.4 Arquitetura de um IDS  
Todo IDS possui alguns componentes em comum; cada um responsável por uma parte importante 
na detecção de alguma anormalidade danosa ao sistema. A seguir,  temos um  exemplo de 
arquitetura proposto pela IDWG (Intrusion Detection Exchange Format Working Group) [39]. 
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Figura 16. Componentes de um IDS segundo o IDWG [39]. 

 
 Na Figura 16, podemos visualizar o papel de alguns componentes descritos na seção 1.1.2. 
A origem dos dados geralmente é representada pela Internet e apresenta um grande volume de 
informações. O sensor responsável pela obtenção dos eventos gerados fora do IDS, realizando um 
pré-processamento nos dados para adequá-los ao analisador de eventos que, geralmente, faz parte 
de um sensor, e sua função é analisar os dados pré-processados do sensor e classificar em 
conexão normal ou ataque. Essa estrutura básica também contempla o gerente que vai ser 
notificado sobre o ataque, o administrador da rede, responsável pelas políticas de segurança e, por 
sua vez, da configuração do IDS. A origem dos dados, na maioria dos casos, é a Internet. O 
volume de dados advindos da Internet é grande. Também temos a figura do operador que vai 
tomar as devidas providências para barrar o ataque eminente na rede.  
 A parte mais importante de um IDS é o analizador de eventos, pois é ele quem vai 
classificar as conexões contidas no tráfego como normal ou anormal. Como ele necessita 
processar um volume grande de informações em um curto espaço de tempo, poderia se pensar em 
uma implementação em hardware, para o mesmo. 
 

1.2.5 Estudo de caso: SNORT  
 
O snort é um IDS de código aberto, largamente utilizado em empresas. Desenvolvido pela Martin 
Roesch, executa análise de protocolo, busca/associa padrões de conteúdo e pode ser usado para 
detectar uma variedade de ataques e probes (ferramentas de varredura da rede), tais como buffer 

overflows, stealth port scans, ataques CGI, SMB probes, OS fingerprinting, entre outros. Uma 
característica relevante é a capacidade de gerar alertas em tempo real. Sua utilização é indicada 
para empresas de pequeno porte. 
 
Arquitetura do snort 
 
A implementação do snort segue uma arquitetura modular, cujo objetivo é melhorar o 
desempenho na coleta e análise de pacotes. Seus principais subsistemas são: 
 

• Pré-processamento: Disposto entre o analisador de pacotes e o processamento do 
mecanismo de detecção, decodifica o pacote;  
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• Detecção: Ocorre durante o processamento do mecanismo de detecção;  

• Saída: é executado após o processamento do mecanismo de detecção, para registrar e 
alertar.  

 

Abaixo (Figura 17) segue a arquitetura do snort. 

.  

 Figura 17. Arquitetura do snort. 
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Capítulo 2 

Base de Dados  

Neste Capítulo, iremos descrever a base de dados utilizada para o treinamento das técnicas de 
aprendizagem de máquina a serem comparadas, bem como os ataques contidos nela. 

2.1  Descrição 
 

A base de dados utilizada neste trabalho é a KKD cup 1999 data [20]. Esta base foi concebida 
através da simulação de um ambiente de uma rede militar da força aérea dos Estados Unidos. O 
objetivo da sua concepção era inspecionar e avaliar o estudo de detecção de intrusão, através de 
pesquisas. A rede foi operada em um ambiente real, sendo alimentada por conexões TCP dump, 
mas foi sendo bombardeada por uma seqüência de múltiplos ataques. Para cada conexão foram 
extraídas 41 diferentes características, tanto qualitativas quanto quantitativas, formando um banco 
de dados com aproximadamente cinco milhões de conexões [2, 21, 22].   

A conexão é uma seqüência de pacotes TCP, começando e terminando em tempos bem 
definidos, com fluxos de dados entre um IP de origem e um IP de destino, funcionando em cima 
de um protocolo bem definido. Cada uma das conexões é rotulada como uma conexão normal ou 
como um tipo de ataque. Cada conexão gravada tem aproximadamente 100 bytes. Na Tabela 1, 
temos algumas características inerentes a esta base.  

 2.2  Tipos de Ataques 

 
A base de dados possui quatro tipos de ataques principais. A seguir vamos descrever cada um 
deles e mencionar quais são os ataques pertencentes a cada tipo [2, 20, 21]. 
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Tabela 1. Características da base kdd cup 1999 
Característica Descrição Tipo 
Duration Tamanho da conexão (em segundos) Contínuo 
Protocol_Type Tipo de protocolo discreto (tcp, udp, ...) 
Service Serviço de rede no destino discreto (http, telnet ...) 
Flag Status da conexão (normal ou erro) discreto (normal ou erro) 
Src_Bytes número de bytes dos dados da origem para o destino Contínuo 
Dst_Bytes número de bytes dos dados do destino para a origem Contínuo 
Land 1 se a conexão é do/para o mesmo host/porta; 0 caso contrário discreto (0,1) 
Wrong_Fragment número de fragmentos errados Contínuo 
Urgent número de pacotes urgentes Contínuo 
Hot números de indicadores chave "hot" Contínuo 
Num_Failed_Logins número de tentativas com login falhando Continuo 
Logged_In 1 se login com sucesso; 0 caso contrário discreto (0,1) 
Num_Compromised Números de condições "comprometidas" Continuo 
Root_Shell 1 se obtive root shell; 0 caso contrário  Contínuo 
Su_Attempted 1 se superusuário foi tentado; 0 caso contrário Contínuo 
Num_Root número de acessos como root Contínuo 
Num_File_Creations número de operações de criação de arquivos Contínuo 
Num_Shells número de prompts shell Contínuo 
Num_Access_Files número de operações de controle de acesso em arquivos  Contínuo 
Num_Outbound_Cmds Número limite de comandos em uma sessão ftp Continuo 
Is_Host_Login 1 se o login pertence a uma lista "hot"; 0 caso contrário discreto (0,1) 
Is_Guest_Login 1 se o login é um convidado; 0 caso contrário discreto (0,1) 

Count 
número de conexões para um mesmo host como a conexão 
corrente nos últimos 2 segundo Continuo 

Srv_Count 
número de conexões para um mesmo serviço como conexão 
correntes nos últimos 2 segundos para este serviõ Contínuo 

Serror_Rate 
% de conexões que possuem erros "SYN" (bit do cabeçalho 
TCP utilizado para estabelecer e derrubar uma conexão)  Continuo 

Srv_Serror_Rate % de conexões que possuem erros "SYN" para este serviço  Continuo 

Rerror_Rate 
% de conexões que possuem erros "REJ" (bit do cabeçalho TCP 
utilizado para informar que um pacote não chegou) Contínuo 

Srv_Rerror_Rate % de conexões que possuem erros "REJ" para este serviço Continuo 
Same_Srv_Rate % de conexões para o mesmo serviço Continuo 
Diff_Srv_Rate % de conexões para diferentes serviços Continuo 
Srv_Diff_Host_Rate % de conexões deste mesmo serviço para hosts diferentes. Contínuo 
 
 

• DoS (Denial of Service): Também chamado de ataque de negação-de-serviço, se 
caracteriza por deixar um serviço ou rede parada ou muito lento. Há diferentes 
formas de se lançar um ataque do tipo DoS: abusando de características inerentes 
aos computadores (por exemplo, respostas ao ping do ICMP), identificando falhas 
de implementações e explorando configurações erradas dos sistemas. Eles podem 
ser classificados de acordo com os serviços que eles deixam indisponíveis, a Tabela 
2 a seguir mostra alguns exemplos de ataques do tipo DoS. 
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Tabela 2. Ataques DoS 
Ataque Serviço Mecanismo Efeito do ataque 
Apache2 http Abuso Colisões http 

Back http 
Abuso/Falha de 
Implementação Resposta do servidor fica mais lenta 

Land http Falha de Implementação  Trava a máquina 

Mail Bomb N/A Abuso Aborrecimentos 

SYN flood TCP Abuso 
Negação de serviço para uma ou 
mais portas 

Ping of death Icmp Falha de Implementação Nenhum 

Process table TCP Abuso Negação de novos processos 

Smurf Icmp Abuso Rede lenta 

Syslog Syslog Falha de Implementação Para o Syslog 

Teardrop N/A Falha de Implementação Reinicia a máquina 

Udpstrom Echo/Chargen Abuso Rede lenta 

 
• Probing: Nessa classe, os ataques se caracterizam por varrer a rede 

automaticamente a procura de vulnerabilidades para serem exploradas. Esse tipo de 
ataque é bastante útil para um intruso que pretenda atacar futuramente, pois através 
dele é possível criar um mapa da rede contento máquinas e serviços. Geralmente, 
abusam de alguma característica inerente ao computador .Alguns tipos de Probing 
podem ser vistos na Tabela 3. 

 
Tabela 3. Ataques Probing 

Ataque Serviço Mecanismo Efeito do ataque 
Ipsweep Icmp Abuso de característica Identifica máquinas ativas 

Mscan Many Abuso de característica Procura por vulnerabilidades conhecidas 

Nmap Many Abuso de característica Identifica portas ativas na máquina 

Saint Many Abuso de característica Procura por vulnerabilidades conhecidas 

Satan Many Abuso de característica Procura por vulnerabilidades conhecidas 

 
• R2L (Remote to user attacks): Chamado de ataque de um usuário remoto (R2L), 

essa classe se caracteriza pelo envio de pacotes a uma máquina de uma rede, a partir 
daí são exploradas vulnerabilidades da máquina para ganhar acesso ilegal de 
usuário local. Alguns ataques R2L estão descritos na Tabela 4. 

 
Tabela 4. Ataques R2L 

Ataque Serviço Mecanismo Efeito do ataque 

Dictionary 
Telnet, rlogin, pop, 
ftp, imap 

Abuso de 
característica Ganha acesso de usuário 

Ftp-write Ftp Configuração errada Ganha acesso de usuário 

Guest Telnet, rlogin Configuração errada Ganha acesso de usuário 

Imap Imap 
Falha de 
implementação Ganha acesso de usuário 

Named Dns 
Falha de 
implementação Ganha acesso de usuário 

Phf http 
Falha de 
implementação 

Executa comandos como usuário de 
http 

Sendmail Smtp 
Falha de 
implementação 

Executa comandos como 
administrador 

Xlock Smtp Configuração errada Usa Spoof para obter a senha 

Xnsoop Smtp Configuração errada Monitora chaves remotamente 
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• U2Su (User to root attacks): Essa classe de ataques se caracteriza por iniciar o 
ataque como um usuário normal no sistema e explorar vulnerabilidades para ganhar 
acesso de usuário root do sistema. A maioria das explorações dessa classe se dá 
através de estouro de pilha (buffers overflows) que ocorre quando um programa 
copia muitos dados para um buffer estático, sem ter a certeza que os dados se 
ajustarão. A Tabela 5 mostra alguns tipos desse ataque:  

 
Tabela 5. Ataques U2Su 

Ataque Serviço Mecanismo Efeito do ataque 

Eject 
Sessão do 
usuário Estouro de pilha Ganha acesso de administrador 

Ffbconfig 
Sessão do 
usuário Estouro de pilha Ganha acesso de administrador 

Fdformat 
Sessão do 
usuário Estouro de pilha Ganha acesso de administrador 

Loadmodule 
Sessão do 
usuário 

Falha no carregamento de 
programas que limpam o 
ambiente Ganha acesso de administrador 

Perl 
Sessão do 
usuário 

Falha no carregamento de 
programas que limpam o 
ambiente Ganha acesso de administrador 

Os 
Sessão do 
usuário 

Falha no gerenciamento de 
arquivos temporários Ganha acesso de administrador 

Xterm 
Sessão do 
usuário Estouro de pilha Ganha acesso de administrador 

 
 O gráfico da Figura 18, mostra a quantidade de cada ataque na base de dados kdd cup 
1999. A maior parte desses ataques são da classe DOS. 

 
Figura 18. Quantidade de cada ataque na base kdd cup 1999 [2]. 
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 2.3  Formatação 
A base de dados original, como já foi mencionado, possuía 5 milhões de conexões. Existe no 
mesmo repositório da base original uma base que representa 10% de todas essas conexões e esta 
base possui 494.021 padrões, com essa quantidade o trabalho ficaria inviável, devido a grande 
necessidade de processamento e tempo para realizar os experimentos. Alguns trabalhos com essa 
base de dados [2,21] utilizaram bases de tamanho inferior ao da base 10% da original. Decidimos 
reduzir a base de dados para 15000 padrões, escolhidos aleatoriamente, e cada tipo de ataque teve 
sua quantidade baseada na proporcionalidade com essa base que representa 10% da original, 
excetuando os ataques do tipo U2Su no qual foram inseridos alguns padrões a mais. Ao final 
dessa divisão, cada classe da base ostentava a seguinte quantidade:  
 

• Normal: 2953 padrões; 
• DoS: 11874 padrões; 
• Probe: 124 padrões; 
• R2L: 38 padrões; 
• U2Su: 11 padrões. 

 
Também decidimos subdividir essa base em cinco outras de forma que sempre 

contivessem os padrões normais, essa separação foi realizada pelo fato de que no mundo real 
termos conexões normais e ataques fazendo parte do tráfego de entrada numa empresa. Por 
conseguinte, as bases criadas foram: 

 
• Normal + Ataques: essa base possui os 15000 padrões, porém só duas classes de 

saída que são a classe normal e a ataques (contém os quatro tipos de ataques); 
• Normal + DoS: essa base possui 14827 padrões; 
• Normal + Probe:  essa base possui 3077 padrões; 
• Normal + R2L: essa base possui 2991 padrões; 
• Normal + U2Su: essa base possui 2964 padrões; 
 

Após a separação das bases, foram feitas as normalizações necessárias para torná-las 
utilizáveis pelos respectivos simuladores (ver Capítulo 3). A normalização foi realizada seguindo 
os seguintes princípios: 

 
• Há na base atributos representados por nomes; para cada atributo desse, foi 

realizado uma normalização, da seguinte forma: para cada nome contido em um 
atributo foi criada uma nova entrada. Assim, a base passou a ter 109 entradas  e não 
mais as 41 originais; o valor 1 foi atribuído, se o nome de um determinado atributo 
existir para aquele padrão, e 0 caso contrário. Para exemplificar esse processo, 
tínhamos na base de dados um atributo que representava três protocolos (TCP, UDP 
e ICMP). Para cada protocolo foi criada uma nova entrada, e, se para um 
determinado padrão, o TCP fosse utilizado, a sua coluna teria o valor 1 e as demais, 
UDP e ICMP, seriam 0. A representação para o TCP seria então 1 0 0, já o UDP 
seria 0 1 0 e por sua vez o ICMP 0 0 1; 

• Para cada tipo de ataque foi criada uma coluna. Assim a base de dados passou a ter 
uma saída para cada ataque. As bases explicadas anteriormente passaram a possuir 
2 saídas cada; 
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• Os dados foram normalizados, antes da realização do treinamento, deixando seus 
valores entre 0 e 1 obedecendo à equação abaixo, lembrando que essa equação é 
para cada célula da tabela: 

 
Xnovo = (Xreal – Xmin) / (Xmax – Xmin) 

   
Onde, Xmax é o valor máximo de um determinado atributo e Xmin é o valor 
mínimo de um determinado atributo. 

• Para cada simulador foi inserido seu respectivo cabeçalho, bem como algumas 
modificações que foram necessárias; 

• Os arquivos foram salvos seguindo a extensão de cada simulador. 
 

Ao todo foram gerados 20 arquivos diferentes, sendo: 5 para MLP, 5 para RBF-DDA, 5 
para SVM e 5 para NN e kNN. 
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3 
 

Experimentos e Resultados 

A finalidade deste Capítulo é descrever como foram realizados os experimentos, bem como 
analisar os resultados obtidos e traçar um estudo comparativo entre as técnicas empregadas de 
aprendizagem de máquina empregadas, levando em consideração alguns fatores como: tempo de 
processamento, erro de validação cruzada e complexidade do classificador gerado. 

3.1 Ferramentas utilizadas 

3.1.1 SNNS (Stuttgart Neural Network Simulator) 
 
O SNNS, simulador utilizado no treinamento de vários tipos de redes neurais, foi desenvolvido 
em 1989 pelo Instituto Para Sistemas Paralelos e Distribuídos de Alta Desempenho (Institute For 

Parallel And Distributed High Performance Systems) (IPVR) da Universidade de Stuttgart na 
Alemanha [23]. O objetivo da sua criação era prover uma ambiente de simulação eficiente para 
pesquisa e aplicação de redes neurais artificiais. A versão do SNNS utilizada neste trabalho foi a 
4.2 para o Windows. 
 Basicamente o SNNS é dividido em quatro partes principais [25]: 
 

• Um simulador de kernel escrito em C: o kernel opera sobre uma representação 
interna das redes neurais e é responsável por todas as operações sobre as estruturas 
de dados que a compõe; 

• Uma interface gráfica para interação com o usuário: trabalha sobre kernel, 
fornecendo uma representação gráfica para as redes neurais e controlando o kernel 
durante a execução do programa; 

• Uma interface para execução em batch (batchman); 
• Um compilador de redes, o snns2c. 
 
 
 
 
 
 
 

Capítulo 
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A seguir, na Figura 19, temos a interface inicial do SNNS. 
 

 
 

Figura 19. Tela inicial do SNNS. 
 

 Utilizando o SNNS para criação de uma rede 
 
O SNNS foi utilizado neste trabalho para treinamento com redes neurais RBF, como já havia sido 
mencionado anteriormente. O primeiro passo para criação dessas redes no SNNS é ir ao painel 
inicial (ver Figura 19), pressionar o botão BIGNET e escolher a opção general. Neste local 
escolhemos o tipo da rede. Existem outros tipos, porém o utilizado  para redes RBF é o geral 
(general). Na Figura 20, visualizamos o formulário para criação da rede. Nele definiremos a 
quantidade de nodos em cada camada e como as camadas estarão conectadas. A definição do 
número de nodos é feita no local indicado na Figura 20 pela topologia da rede, para o nosso 
exemplo particular foram colocados 109 nodos na camada de entrada, nenhum nodo na camada 
intermediária e 2 nodos na camada de saída. A camada intermediária ficará vazia, pois o 
algoritmo de treinamento que utilizamos para RBF foi o DDA (ver seção 1.1.1.4) e nele a camada 
escondida é construída à medida que o treinamento ocorre. Esse algoritmo também define a 
forma com que os nodos vão se ligar aos nodos da camada seguinte, não sendo necessário fazer a 
opção por uma rede totalmente conectada (isso seria feito utilizando a opção full conection, na 
Figura). A seguir, após definir tudo isso pressionamos o botão create net para criar nossa rede.   

 



 

 

 

37 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

 
 

Figura 20. Definição da topologia da rede no SNNS. 
 
Com a rede criada e, conseqüentemente, a topologia definida o último passo a ser 

realizado é salvar a rede. Para salvar vamos ao painel principal do SNNS e escolhemos a opção 
FILE, a Figura 21 é a tela que será aberta. Como podemos visualizar, no lado direito da tela 
existem os tipos de arquivos que o SNNS trabalha, os principais são: 

 
• .NET: arquivo usado para definir a rede, contém todas as informações necessárias 

para a rede neural; 
• .PAT: essa extensão é utilizada para definir o arquivo que conterá os padrões, esses 

arquivos, para funcionarem corretamente no SNNS, requerem um cabeçalho; 
• .RES: extensão para os arquivos de resultados que são gerados após o treinamento e 

teste da rede neural, eles servem para fazer avaliação dos resultados obtidos. Esses 
arquivos são analizados um de cada vez. 

 



 

 

 

38 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

 
Figura 21. Tela salvar e carregar arquivos do SNNS. 

 
 Além de criar e treinar a rede, o SNNS também possui uma ferramenta para análise dos 
resultados, o analyze. Essa ferramenta atua sobre os arquivos de resultados gerados pelo 
treinamento, informando qual foi o percentual de acerto para o teste de determinada base, quantos 
padrões foram classificados corretamente, incorretamente e não conhecidos, dentre outros. A 
Figura 22 ilustra o uso do analyze. 
 

 
 

Figura 22. Tela da ferramenta analyze. 
 
 

3.1.2  LIBSVM  
 
LIBSVM [26, 2, 21] é um simulador para classificação, regressão e estimação de distribuição de 
máquinas de vetor de suporte (SVM). Ele possui uma interface com o usuário simples e de fácil 
manipulação. Ele contém alguns softwares auxiliares como, por exemplo, o svmscale, que 
normaliza base de dados. Na próxima Seção desse Capítulo veremos o conceito de validação 
cruzada, que foi utilizado no treinamento de todos os métodos presentes neste trabalho. Ao 
contrário do SNNS, que não implementa a validação cruzada como opção para treinamento, o 
LIBSVM o faz. Portanto é só inserir um comando e temos a validação cruzada para esse 
simulador. 
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 O LIBSVM disponibiliza um applet para visualizarmos exemplos de classificação e 
regressão, porém esse applet serve apenas para demonstração. A Figura 23 demonstra os 
resultados da sua execução. 
 

 
 

Figura 23. Applet do LIBSVM [13]. 
 
 Como podemos visualizar na Figura 23, temos 3 classes diferenciadas pela cor. Quando 
executamos o applet são traçadas regiões que representam as três classes de forma que a região 
deva possuir o maior número possível de padrões. 
 Para treinarmos SVMs em problemas reais, utilizamos o prompt de comando. O LIBSVM 
disponibiliza uma série de aplicativos para treinamento e teste de base de dados; um deles é o 
svmtrain utilizado para realizar treinamentos. A Figura 24 demonstra a utilização desse aplicativo 
para uma das bases de dados do trabalho.  
 

 
 

Figura 24. svmtrain[13]. 
 
 Como podemos visualizar existem alguns parâmetros que são usados para o treinamento. 
Os parâmetros utilizados neste trabalho foram: 
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• -s: tipo de SVM, a opção 0 indica que vamos realizar classificação com a base de 
dados; 

• -c : custo, define o parâmetro C do SVM; 
• -g : gama, define o parâmetro gama na função do kernel RBF. 

 
Neste trabalho, utilizamos um outro parâmetro, denominado número de folds de validação 

cruzada que vai ser explicado na próxima Seção. A Figura 25 apresenta a utilização do 
treinamento do LIBSVM com validação cruzada. Nela podemos visualizar a inserção de um 
parâmetro para o treinamento (-v), ele vai indicar que será utilizada a validação cruzada e o 
número seguinte a ele indica a quantidade de conjuntos que será utilizada. 

 

 
 

Figura 25. svmtrain com validação cruzada. 
 

 Um outro aplicativo importante é o svmpredict. Esse aplicativo é utilizado para 
classificação, porém com uso da validação cruzada, temos os resultados fornecidos pelo 
svmpredict sem precisar executá-lo . A Figura 26 mostra a execução desse aplicativo. 
 

 
 

Figura 26. Tela do svmpredict. 
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3.1.3  WEKA (Waikato Environment for Knowledge Analysis) 
 
Simulador desenvolvido na Universidade de Waikato na Nova Zelândia, implementado em Java, 
possui uma interface gráfica amigável, bem como um formato de arquivo peculiar (.arff) para as 
bases de dados. O WEKA possui implementações de várias técnicas de aprendizagem de 
máquina. No nosso trabalho, este simulador foi utilizado para os treinamentos com MLP, NN e 
kNN. A tela inicial do WEKA pode ser visualizada na Figura 27. A versão desse software 
utilizada no trabalho foi a 3.4.5 [27]. 
 

 
 

Figura 27. Tela inicial do WEKA [27]. 
 
 Como podemos observar na Figura 27, a interface gráfica nos oferece 4 opções: 
 

• Simple CLI – nesse modulo, utilizamos os comandos de linha (prompt) para 
realizarmos nossos experimentos; 

• Explorer – serve para pré-processar a base de dados e realizar os experimentos 
através de uma interface gráfica; 

• Experimenter – compara diferentes técnicas de aprendizagem de máquina tanto na 
classificação como na regressão; 

• KnowledgeFlow – uma nova interface gráfica para o WEKA. 
 

Dessas opções oferecidas, a única utilizada foi a Explorer. Primeiramente, tivemos que 
realizar um pré-processamento na base de dados para adequá-la ao padrão do WEKA. Um 
exemplo desse arquivo será mostrado em detalhes no apêndice A. A base de dados possui um 
cabeçalho peculiar e será gravada com a extensão .arff. A Figura 28 apresenta a página do 
WEKA onde carregamos a base de dados e temos a possibilidade de fazer as normalizações.  
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Figura 28. Abrir arquivo para treinamento no WEKA. 
  

A opção filter, como mostrado na Figura 28, é onde será realizada a escolha da forma 
como queremos normalizar a base, bem como realizar também outros ajustes. 

Para efeito de classificação temos que escolher a aba classify. Nela, podemos optar pela 
técnica que utilizaremos bem como inserir os parâmetros referentes a cada uma delas antes do 
treinamento.  

Para escolher o algoritmo de treinamento vamos até classifier, após pressionarmos o botão 
choose podemos visualizar na Figura 29, as opções de técnicas disponíveis no WEKA. Para 
inserir os parâmetros necessários para o treinamento, clicamos com o botão direito do mouse no 
nome da técnica de treinamento. Em test options escolhemos a técnica de validação cruzada, que 
vai ser explicada na próxima Seção. 
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Figura 29. Escolha da técnica de aprendizagem de máquina no WEKA. 
 

 Como podemos notar na Figura 30. A WEKA nos oferece uma variedade de técnicas de 
aprendizagem de máquina para utilizarmos. Neste trabalho, utilizamos as técnicas 
MultilayerPerceptron presentes nos conjunto de técnicas functions e IB1 (NN) e IBK (kNN) 
presentes no conjunto lazy. 

 
Figura 30. Visualização das técnicas de aprendizagem do WEKA. 
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3.2 Validação Cruzada 
Validação cruzada [40] é uma técnica que propicia estimar a capacidade de generalização de um 
classificador. Essa técnica consiste em dividir o conjunto de treinamento em K-partes 
aproximadamente iguais. Uma dessas partes será o subconjunto a ser utilizado para teste. A cada 
execução do experimento esse conjunto vai mudando. 
 Para poder exemplificar a técnica da validação cruzada utilizada em todas as técnicas de 
aprendizagem de máquina, imagine uma base de dados com 3.000 padrões;  vamos desenvolver o 
treinamento dessa base utilizando validação cruzada com 3 subconjuntos. Na primeira execução, 
foram divididos os conjuntos, ficando o primeiro com os padrões de 1 a 1000, o segundo com os 
padrões de 1001 a 2000 e o terceiro de 2001 a 3000. Também foi definido pela validação cruzada 
que o conjunto de 1 a 1000 seria utilizado para os testes na primeira execução e a concatenação 
dos outros dois seria utilizada para treinamento. Na segunda rodada, foi utilizado para teste o 
segundo conjunto e para treinamento a concatenação do primeiro e terceiro conjunto. Na terceira 
e última execução, foi utilizado para teste o terceiro conjunto e para treinamento a concatenação 
do primeiro e segundo conjunto. 
 Uma vantagem da utilização desse método é que ele utiliza a base de dados em sua 
totalidade, gerando um resultado mais confiável. 
 O erro médio da validação cruzada é calculado realizando a média aritmética dos erros 
fornecidos por cada conjunto de testes. 
 

3.3 Experimentos utilizando Redes Neurais Artificiais 
 

3.3.1  MultiLayer Perceptron (MLP) 
 
Para os treinamentos utilizando redes MLP, foram utilizadas redes com duas camadas escondidas. 
Essa decisão foi baseada em alguns trabalhos anteriores [2, 21] e na complexidade do problema. 
Essas camadas utilizaram, como função da ativação, a sigmóide logística. A conexão entre as 
camadas foi total, ou seja, um nodo da camada anterior se liga a todos da camada posterior. O 
treinamento ocorreu com uma taxa de aprendizagem fixa em 0,01. Foi estabelecido um limite de 
épocas para treinamento em 500 (esse valor foi pensado de acordo com outros trabalhos 
relacionados) e utilizando um conjunto de validação que equivale a 25% da base de dados. O 
número de neurônios nas camadas escondidas, no primeiro treinamento, foi de 20; para o segundo 
treinamento, foram utilizados 40 neurônios em cada camada. 
 A base de dados foi adequada ao padrão dos arquivos .arff, do WEKA. Para isso, foi 
criado um arquivo contendo todos os padrões de cada uma das cinco bases de dados. 
Inicialmente, havia 41 atributos de entrada, porém com a normalização efetuada pelo WEKA a 
base de dados passou a ter 109 entradas. Em cada base o número de saídas é igual a 2. 
 O treinamento transcorreu com a utilização do algoritmo backpropagation, a cada 
execução, a base foi treinada e testada 10 vezes, devido ao uso da validação cruzada. A Tabela 6 
apresenta um resumo do que foi utilizado para o treinamento com MLP. 
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Tabela 6. Parâmetros MLP. 
Camadas Escondidas 2 
Número de Neurônios Escondidos 
(em cada camada) 

20 (1ºexperimento) 
40 (2º experimento) 

Taxa de aprendizagem 0,01 
Conjunto de validação 25% 
Épocas máxima de Treinamento 500 
Algoritmo de treinamento Backpropagation 

 
 

3.3.2  Radial Basis Function (RBF) 
 
O treinamento com redes RBF foi realizado com o SNNS. Essas redes utilizam como função de 
ativação da camada intermediária a função de base radial Gaussiana. A base de dados foi dividida 
em três partes: treinamento (50%), validação (25%) e teste (25%).  
 No treinamento com RBF foram criadas redes que só possuíam nodos na camada de 
entrada e saída, para ser mais preciso, 109 nodos na entrada e 2 na saída para cada base. Isso se 
deve a utilização do algoritmo de treinamento DDA. Esse algoritmo é construtivo, ou seja, à 
medida que o treinamento ocorre, a camada intermediária vai sendo criada de acordo com a 
necessidade. O DDA possui dois parâmetros que são o limiar positivo θ+ e o limiar negativo θ-.  
 Neste trabalho, optamos por utilizar a técnica de seleção do limiar negativo θ-, pois ela 
tem apresentado bons resultados em vários tipos de problemas, tendo o erro de teste, sem o θ- 
padrão, diminuído para a maioria dos problemas [7, 8, 9]. Tanto o θ+ quanto o θ- possuem um 
valor padrão, 0,4 e 0,1, respectivamente. Através da técnica de seleção do θ-, podemos obter 
melhores resultados, variando o valor do θ-; isso foi realizado neste trabalho. Os valores 
utilizados foram: 0,2, 0,1, 1e-2, 1e-3,1e-4, 1e-5, 1e-6, 1e-7 e 1e-8, esses valores foram extraídos 
de outra pesquisas a respeito dessa técnica [7, 8, 9]. A diminuição do θ- acarreta um aumento da 
complexidade da rede, pois com a diminuição desse do valor, esse parâmetro faz com que mais 
protótipos (nodos) sejam necessários. A Tabela 7 descreve os parâmetros gerais para os 
treinamento das redes RBF-DDA. 
 

Tabela 7. Parâmetros RBF. 
Camadas Escondidas 1 

θ+  0.4 

θ-  0,2; 0,1; 1e-2; 1e-3; 1e-4; 1e-5; 1e-6; 1e-7 e 1e-8 
Conjunto de validação 25% 
Conjunto de teste 25% 
Conjunto de treinamento 50% 
Algoritmo de treinamento DDA 

 
 

3.3.3  Resultados obtidos pelas redes neurais 
 
Os resultados obtidos com MLP podem ser visualizados na Tabela 8. Nela podemos visualizar 
que o tempo de processamento com a validação cruzada, ou seja, o treinamento completo, para 
esse tipo de rede neural é alto, por exemplo, a base Normal + Ataques tem um tempo de 
processamento superior à sete horas. 
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Tabela 8. Resultados do treinamento com MLP. 
Treinamento com MLP utilizando validação cruzada (10-fold)   

Número de Neurônios na Camada 
Escondida 

  1ª Camada 2ª Camada 

Tempo de 
Processamento 

Erro de Validação 
Cruzada (%) 

Normal + 
Ataques 20 20 07:36:00 0,1667 

Padrões: 15000 40 40  25:25:00  0,1667 
Normal + 
Probe 20 20 01:51:00 0,1625 

Padrões: 3077 40 40 02:56:00 0,1625 
Normal + 
DOS 20 20 06:26:00 0,0067 

Padrões: 14827 40 40 14:04:00 0,0067 
Normal + 
U2Su 20 20 00:53:00 0,3711 

Padrões: 2964 40 40 01:30:00 0,3711 

Normal + R2L 20 20 01:39:00 1,2705 

Padrões: 2991 40 40 03:10:00 1,2705 

 
Além dos resultados na forma de tabela, com os dados colhidos durante o treinamento e 

teste dessas redes, como utilizamos o simulador WEKA para realização dessa execução, ele nos 
fornece um dado interessante que são as matrizes de confusão.  Através da matriz de confusão 
poderemos ter a idéia de quantos falsos negativos e quantos falsos positivos existem. Abaixo 
segue as matrizes de confusão para o treinamento com MLP. Tomando como exemplo a matriz 
da letra a), essa matriz está nos informando que 14 padrões normais foram classificados como 
ataque e 11 padrões de ataques foram classificados como normal.  

 
a)             a         b   <--    classificado como 

 2939     14     |    a = normal 
   11    12036  |    b = ataque 
 

b)     a          b   <--    classificado como 
  2953      0     |    a = normal 
     3       121   |    b = probe    

 
c)      a           b   <--   classificado como 

  2953       0    |     a = normal 
    1  11872 |     b = dos 

 
d)      a          b   <--    classificado como 

  2953       0    |    a = normal 
    11         0    |    b = u2su 
 

e)      a          b   <--    classificado como 
  2952       1    |    a = normal 
     38        0    |    b = r2l 
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Na Tabela 9, podemos acompanhar os resultados obtidos com o uso de RBF-DDA. Nela 
estão sendo mostrados apenas os resultados com o θ- padrão e com o melhor resultado obtido 
com a seleção desse parâmetro. Podemos visualizar que com a seleção do θ- temos um aumento 
do número de nodos na camada intermediária e, conseqüentemente, um aumento no tempo de 
processamento. Em contra partida, os melhores resultados são com o θ- diferente do padrão. A 
tabela completa, com todos os experimentos com RBF-DDA, pode ser vista no apêndice B. 

 
Tabela 9. Resultados do treinamento com RBF. 

Treinamento com 
RBF-DDA 
utilizando validação 
cruzada (10-fold) Theta- 

Nº Neurônios na 
Camada Escondida Tempo de Processamento 

Erro de 
Validação 
Cruzada Ciclos 

Normal + Ataques 0,1 113  00:16:03 1,57% 4 
Padrões: 15000 1,00E-05 287 01:03:22 0,05% 3 
            
Normal + Probe 0,1 39  00:00:34 0,75% 3 
Padrões: 3077 1,00E-06 87  00:01:26 0,16% 4 
            
Normal + DOS 0,1 76  00:04:20 1,56% 4 
Padrões: 14827 1,00E-06 245  00:51:03 0,03% 3 
            
Normal + U2Su 0,1 24  00:00:27 0,37% 4 
Padrões: 2964 1,00E-04 49  00:00:43 0,14% 4 
            
Normal + R2L 0,1 27  00:00:30 1,27% 3 
Padrões: 2991 1,00E-04 50 00:00:46 0,10% 3 

 
 
Após visualizarmos as tabelas contendo os melhores resultados de cada uma das técnicas 

de redes neurais, podemos destacar que os resultados obtidos pelas redes RBF-DDA, são 
superiores aos obtidos pela redes MLP. A Tabela 10 apresenta a comparação entre as duas 
técnicas, com suas respectivas redes, que obtiveram os melhores resultados. Nessa comparação, 
podemos notar que RBF-DDA apresenta os melhores resultados, visto que os tempos de 
processamento são equivalentes apenas para as rede de maior porte (Normal e DOS). Nos demais 
casos, RBF apresenta um tempo menor de processamento bem como um erro para a validação 
cruzada menor. Por exemplo, na base de dados Normal + Ataques, o erro de validação cruzada da 
rede RBF-DDA é de apenas 0,05% enquanto que o da MLP é de 0,1667%. Nas bases Normal + 
Probe, Normal + R2L e Normal + U2Su o tempo de processamento da MLP é superior ao da 
RBF-DDA, enquanto que na base Normal + R2L o tempo de processamento é igual a 1 hora e 39 
minutos para MLP, com RBF-DDA esse tempo é de apenas 46 segundos. 
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Tabela 10. Comparação dos treinamentos de RBF e MLP. 

 RBF-DDA X MLP Técnica Theta- 

Nº Neurônios 
na Camada 
Escodida 

Tempo de 
Processamento 

Erro de 
Validação 

Cruzada (%) Ciclos 
Normal + Ataques MLP - 20 07:36:00 0,1667 - 

Padrões: 15000 
RBF-
DDA 1,00E-05 287 01:03:22 0,05 3 

       
Normal + Probe MLP - 20 01:51:00 0,1625 - 

Padrões: 3077 
RBF-
DDA 1,00E-06 87 00:01:26 0,16 4 

       
Normal + DOS MLP - 20 06:26:00 0,0067 - 

Padrões: 14827 
RBF-
DDA 1,00E-06 245 00:51:03 0,03 3 

       
Normal + U2Su MLP - 20 00:53:00 0,3711 - 

Padrões: 2964 
RBF-
DDA 1,00E-04 49 00:00:43 0,14 4 

       
Normal + R2L MLP - 20 01:39:00 1,2705 - 

Padrões: 2991 
RBF-
DDA 1,00E-04 50 00:00:46 0,10 3 

3.4 Experimentos utilizando Máquinas de Vetor 
Suporte 
Os treinamentos utilizando SVM foram realizados de três formas distintas. Na primeira a base de 
dados foi treinada sem validação cruzada, na segunda a rede foi treinada com uma validação 
cruzada de 5 folds, a terceira utilizou a validação cruzada de 10 folds e para efeito deste trabalho 
só vamos considerar essa terceira forma, pois todas as outras técnicas se utilizaram da validação 
cruzada de 10 folds. Vamos demonstrar também os resultados alcançados pelas outras duas 
formas no apêndice C. O simulador utilizado para o treinamento foi o LIBSVM [26]. SVM utiliza 
alguns parâmetros para o seu treinamento. Neste trabalho, utilizamos os seguintes parâmetros: c, 
γ, s e v. Ficou decidido que esse valores seriam s = 0, c = 1000, γ = 0,5 e v = 10, seguindo 
trabalhos anteriores [21]. A seguir, a Tabela 11 mostra o resumo dos parâmetros utilizados para 
SVM.  
 

Tabela 11. Parâmetros SVM. 
s 0 

c 1000 

γ 0,5 
v 10 

 

3.4.1  Resultados obtidos por máquinas de vetor suporte 
 
A Tabela 12 demonstra os resultados obtidos com os treinamentos, utilizando SVM com 
validação cruzada de 10 folds. Para visualizar os outros treinamentos consulte o apêndice C. 
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Tabela 12. Resultados do treinamento com SVM 10-fold. 

 Treinamento com SVM Vetores Suporte Tempo de Processamento 
Erro de Validação 
Cruzada (%) Ciclos 

Normal + Ataques 166 00:00:30 0,02 8347 
Normal + Probe 71 00:00:03 0,0975 457 
Normal + DOS 123 00:00:30 0 7525 
Normal + U2Su 37 00:00:02 0,135 286 

Normal + R2L 46 00:00:02 0,1672 440 

              
Como podemos acompanhar, o tempo de processamento que SVM requer é baixo, bem 

como seu erro de validação cruzada também apresenta baixas taxas de erro, se comparadas com 
as outras técnicas. Apesar de tudo isso, o número de iterações que tem que ser realizadas aumenta 
um pouco, em relação ao das outras técnicas. Podemos conferir na tabela do apêndice C que se 
utilizarmos a validação cruzada, aumentaremos conseqüentemente o número de vetores de 
suporte da camada intermediária. 

No apêndice C, podemos conferir que a utilização da validação cruzada de 10-folds obtém 
melhores resultados que os outros dois métodos citados anteriormente. Isso se deve ao 
fracionamento dos padrões, podendo esses terem uma maior abrangência, pois teremos 10 
conjuntos de treinamento diferentes e 10 conjuntos para teste, fazendo um uso mais racional da 
base. 

3.5 Experimentos utilizando técnica dos vizinhos mais 
próximo (NN e kNN) 
 
O treinamento utilizando a técnica do vizinho mais próximo foi realizado através do simulador 
WEKA [27]. No treinamento utilizando NN, não existe nenhuma seleção de parâmetro. Para o 
treinamento do kNN foram realizados experimentos contendo o número de vizinhos igual a 1, 3 e 
5. A validação cruzada 10-fold também foi utilizada nesses experimentos. 
 

3.5.1  Resultados obtidos pelas técnicas do vizinho mais próximo 
 
Os resultados obtidos com o treinamento da técnica do vizinho mais próximo podem ser 
visualizados na Tabela 13, para o NN e na Tabela 14, para o kNN. Nela, podemos inferir que, 
para o kNN, sempre o melhor resultado foi com o K=1, com exceção da base R2L, onde K=1 e 
K=3 obtiveram o mesmo erro de validação cruzada, 0,0669. Porém com K=3 o tempo de 
processamento foi menor. O problema do treinamento com este tipo de rede é o fato de que no 
treinamento todos os padrões são armazenados, isso faz com que essa técnica consuma muitos 
recursos do computador, mais especificamente recursos de armazenamento. Porém, a sua 
vantagem são os resultados obtidos. Os erros de validação cruzada são baixos, entretando não tão 
baixos quanto os de RBF-DDA e SVM. Outra vantagem é o fato de possuir nenhum parâmetro, 
no caso do NN, e poucos parâmetros, no caso do kNN.  
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Tabela 13. Resultados do treinamento com NN 10-folds. 

Treinamento com NN Tempo de Processamento 
Erro de Validação 
Cruzada (%) Padrões Treinamento 

Normal + Ataques 00:28:52 0,0867 15000 
Normal + Probe 00:01:24 0,0975 3077 
Normal + DOS 00:26:22 0,0000 14827 
Normal + U2Su 00:01:15 0,0337 2964 

Normal + R2L 00:01:10 0,0669 2991 

           
 Na Tabela 14 podemos notar que o aumento do número de vizinhos, para estas bases, 
implica um erro de validação cruzada maior.    
 

Tabela 14. Resultados do treinamento com kNN 10-fold. 

Treinamento com kNN Tempo de Processamento 
Erro de Validação 
Cruzada (%) 

Normal + Ataques     
Padrões: 15000    
k=1 01:24:00 0,0867 
k=3 01:12:00 0,1067 
k=5 01:08:00 0,1533 
Normal + Probe     
Padrões: 3077    
k=1 00:01:28 0,0975 
k=3 00:01:26 0,2275 
k=5 00:01:22 0,1625 
Normal + DOS     
Padrões: 14827    
k=1 01:16:00 0,0000 
k=3 01:17:00 0,0135 
k=5 01:18:00 0,0135 
Normal + U2Su     
Padrões: 2964    
k=1 00:01:15 0,0337 
k=3 00:01:23 0,1350 
k=5 00:01:25 0,1687 
Normal + R2L     
Padrões: 2991    
k=1 00:01:26 0,0669 
k=3 00:01:21 0,0669 

k=5 00:01:23 0,1003 
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3.6 Comparação dos resultados RNAs x SVM x NN x 
kNN 
Na Tabela 15, podemos visualizar os melhores resultados para cada técnica de aprendizagem de 
máquina utilizada neste trabalho. Observando a tabela podemos tirar algumas conclusões. A 
técnica que necessita de menor tempo de processamento é SVM, além disso, máquinas de vetor 
suporte podem trabalhar, sem muitos problemas, com bases de maior tamanho enquanto que 
redes neurais demorariam muito no treinamento dessas bases [2]. NN e kNN por sua vez iriam 
exigir um espaço para armazenamento grande, além de precisar também de um tempo de 
processamento mais extenso. Em termos de armazenamento de unidades de processamento, MLP 
só preciou de 40 unidades (20 + 20) para realizar seus treinamentos, por exemplo, na base de 
dados Normal + Ataques. Para a mesma base, SVM precisou armazenar 166 unidades enquanto 
que NN e kNN precisam de todos os padrões de treinamento, 13500 unidades, RBF-DDA 
precisou de 287 unidades de processamento.  
 Máquinas de vetor de suporte obtiveram os melhores resultados quanto ao erro de 
validação cruzada, em uma das bases de dados, Normal + Ataques (0,02%). Já RBF-DDA obteve 
os melhores resultados para 3 base de dados que foram: Normal + Probe (0,0016%), Normal + 
U2Su (0,0014) e Normal + R2L (0,001). Esse fato pode ser explicado, pois essas três bases 
possuem muitos padrões normais e poucos padrões dos seus respectivos ataques. Redes RBF são 
muito boas em rejeitar padrões discrepantes, ou seja, ela possui, por exemplo, uma capacidade de 
classificação maior do que MLP para esses padrões, além dessa característica, o que também 
contribuiu foi a seleção do parâmetro θ-, pois todos esses bons resultados obtidos com RBF 
tiveram o θ- diferente do padrão (0,1). Outra vantagem de RBF-DDA foi o número de ciclos, 
épocas de treinamento, reduzido em média para 3 ou 4, enquanto que SVM chegou a ter 8347 
ciclos na base de dados Normal + Ataques. Analisamos 4 das 5 bases de dados; a única restante 
foi a Normal + DOS, onde os melhores resultados foram obtido através das técnicas SVM, NN e 
kNN (0%). DOS é a classe de ataques com o maior número, como foi descrito no Capítulo 2. 
Essas técnicas conseguiram não ter falsos positivos e falsos negativos para esse tipo de ataque. 
Mas isso não garante que, se os outros tipos de ataques tivessem uma quantidade grande de 
padrões, seus resultados também seriam da ordem de 0%, pois cada ataque tem caracteríscas 
diferentes, o que facilitaria ou não sua identificação utilizando essas técnicas. O que pesa contra 
NN e kNN e o fato de que para conseguir esses resultados todos os padrões tiveram que ser 
armazenados, aproximadamente 13500 padrões, enquanto que SVM precisou de apenas 123 
unidades de processamento para obter o mesmo resultado. 
 O maior tempo de processamento foi exigido pelas redes MLP, já SVM foi a técnica que 
obteve seus resultados com o menor tempo, porém não foram utilizados muitos parâmetros para o 
treinamento com SVM; isso faria com seus tempo aumenta-se. 
 Apesar da utilização de ferramentas de simulação distintas, os resultados obtidos por este 
trabalho podem ser garantidos, pois essese simuladores são ferramentas já consagradas no meio 
acadêmico. 
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Tabela 15. Comparação dos resultados  
Comparação dos melhores Resultados (RBF X MLP X SVM X 
NN X kNN)   

 Base de Dados 
Nº Unidades de 
processamento 

Tempo de 
Processamento 

Erro de Validação Cruzada 
(%) Ciclos 

Normal + Ataques         
Padrões: 15000      
RBF 287 01:03:22 0,05 (theta- = 1,00E-5) 3 
MLP - 01:03:00 0,1003 500 
SVM 166 00:00:01 0,0200 8347 

NN 
Todos os padrões 
do treinamento 00:28:52 0,0867 - 

KNN 
Todos os padrões 
do treinamento 01:24:00 0,0867 (K=1) - 

Normal + Probe         
Padrões: 3077      
RBF 87 00:01:26 0,0016 (theta- = 1,00E-6) 4 
MLP - 00:13:00 0,0975 500 
SVM 71 00:00:01 0,0975 457 

NN 
Todos os padrões 
do treinamento 00:26:22 0,0975 - 

KNN 
Todos os padrões 
do treinamento 00:01:28 0,0975 (K=1) - 

Normal + DOS         
Padrões: 14827      
RBF 245 00:51:03 0,03 (theta- = 1,00E-6) 3 
MLP - 00:50:00 0,4587 500 
SVM 123 00:00:01 0,0000 7525 

NN 
Todos os padrões 
do treinamento 00:26:22 0,0000 - 

KNN 
Todos os padrões 
do treinamento 01:16:00 0,0000 (k=1) - 

Normal + U2Su         
Padrões: 2964      
RBF 49 00:00:43 0,0014 4 
MLP - 00:11:00 0,3711 (theta- = 1,00E-4) 500 
SVM 37 00:00:01 0,1350 286 

NN 
Todos os padrões 
do treinamento 00:01:15 0,0337 - 

KNN 
Todos os padrões 
do treinamento 00:01:15 0,0337 (k=1) - 

Normal + R2L         
Padrões: 2991      
RBF 50 00:00:46 0,001 (theta- = 1,00E-4) 3 
MLP - 00:12:00 0,1003 500 
SVM 46 00:00:01 0,1672 440 

NN 
Todos os padrões 
do treinamento 00:01:10 0,0669 - 

KNN 
Todos os padrões 
do treinamento 00:01:21 0,0669 (k=3) - 
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Conclusões e Trabalhos Futuros 
 
 
Este trabalho teve como foco principal realizar um estudo comparativo entre algumas técnicas de 
aprendizagem de máquina para sistemas de detecção de Intrusão. As técnicas utilizadas neste 
estudo foram: RNAs do tipo MLP e RBF-DDA, SVM, NN e kNN. Para algumas técnicas foram 
variados seus parâmetros para obtenção de um melhor desempenho. 
 Três simuladores foram utilizados para a execução dos treinamentos. O LIBSVM foi 
utilizado para o treinamento com SVM, o SNNS para RBF-DDA e para as demais técnicas foi 
usado o simulador WEKA. Em todos foi utilizada uma técnica de comparação denominada 
validação cruzada, para garantir uma melhor eficiência dos treinamentos. 
 Ficou evidente, a partir dos treinamentos, que a opção por utilizar aprendizagem de 
máquina para sistemas de detecção de intrusão tem resultados eficientes, pois na maioria absoluta 
dos treinamentos houve uma taxa de acerto superior a 99% utilizando qualquer tipo de técnica. 
 A opção por fazer seleção do parâmetro θ- em redes RBF-DDA foi acertada. Com essa 
seleção conseguimos ter um desempenho até superior ao de SVM para esse problema, visto que 
das cinco bases de dados utilizadas, três obtiveram melhores resultados com a técnica RBF-DDA 
com a seleção do θ-. Essas bases obtiveram esses resultados, pois redes RBF são boas em 
reconhecer, e rejeitar, padrões discrepantes, ou seja, padrões que fogem das características da 
maioria dos padrões da base de dados, as bases que RBF obteve os melhores resultados foram 
com as base de dados onde tivemos poucos exemplos de ataques, já nas que haviam muitos 
exemplos de ataques, SVM obteve melhores resultados. Inclusive, em uma delas, NN e kNN 
tiveram o resultado idêntico ao de SVM. kNN também incluiu a seleção do número de vizinhos, 
os valores foram: 1, 3 e 5. Na maioria das redes, obtiveram-se os melhores resultados com o K=1. 
kNN e NN possuem maior complexidade computacional, pois necessitam armazenar todos os 
padrões utilizados para o treinamento. A menor complexidade computacional foi observada em 
MLP, pois precisou de apenas 40 unidades de processamento para obter seus resultados. Para 
redes do tipo MLP, foi utilizada 2 camadas escondidas, devido a complexidade do problema, e 
ainda 2 topologias diferentes. A primeira utilizava 20 neurônios em cada camada, já a segunda 
utilizava 40. O tempo de processamento também foi um fator analisado. SVM consegue realizar 
seus treinamentos em um curto espaço de tempo. Já Redes Neurais, RBF-DDA e MLP, obtiveram 
tempo de processamento alto para as bases de dados com uma quantidade maior de padrões, o 
mesmo aconteceu com as técnicas NN e kNN. SVM tem a vantagem de poder trabalhar, sem 
muitos problemas, com bases de dados grandes [2], o mesmo não acontece com Redes Neurais, 
pois elas demorariam muito no treinamento e as técnicas que utilizam o vizinho mais próximo 
precisariam além de um tempo grande para o treinamento, uma área de armazenamento grande. 
 Como trabalho futuro, propomos utilizar outras técnicas de aprendizagem de máquina, 
não para demonstrar que elas podem ser utilizadas em sistemas de detecção de intrusão, pois isso 
já foi demonstrado neste trabalho, e sim observar qual obtém os melhores resultados.  
 Outro trabalho que poderá ser proposto é a implementação de um sistema de detecção de 
intrusão, utilizando uma técnica de aprendizagem de máquina, visto que os resultados obtidos 
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neste trabalho comprovam a eficiência dessas técnicas. Hoje, um IDS com essas características 
não é comum. 
 A utilização de um maior número de padrões da base de dados original para treinamento 
poderá ser uma opção para trabalhos futuros. Isso pode melhorar ainda mais a confiabilidade nos 
resultados, visto que na realidade, o número de conexões é muito alto. 
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Base de dados do WEKA 

Apresentaremos um modelo de uma base de dados no formato aceito pelo simulador WEKA. 
 

@relation normal    #nome da base de dados 

 

@attribute duration numeric      #@attribute descreve os atributos da base de dados 

@attribute protocol_type {tcp,icmp,udp} 

@attribute service 
{auth,bgp,courier,csnet_ns,ctf,daytime,discard,domain,domain_u,eco_i,echo,ecr_i,efs,exec,finger
,ftp,ftp_data,gopher,hostnames,http,http_443,imap4,iso_tsap,klogin,kshell,ldap,link,login,mtp,na
me,netbios_dgm,netbios_ns,netbios_ssn,netstat,nnsp,nntp,ntp_u,other,pm_dump,pop_2,pop_3,pri
nter,private,remote_job,rje,shell,smtp,sql_net,ssh,sunrpc,supdup,systat,telnet,time,uucp,uucp_pat
h,vmnet,whois,Z39_50} 

@attribute flag {SF,S1,S2,S3,SH,S0,REJ,RSTO,RSTR} 

@attribute src_bytes numeric 

@attribute dst_bytes numeric 

@attribute land numeric 

@attribute wrong_fragment numeric 

@attribute urgent numeric 

@attribute hot numeric 

@attribute num_failed_logins numeric 

@attribute logged_in numeric 

@attribute num_compromised numeric 

@attribute root_shell numeric 

@attribute su_attempted numeric 

@attribute num_root numeric 

Apêndice A 
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@attribute num_file numeric 

@attribute num_shells numeric 

@attribute num_access_files numeric 

@attribute num_outbound_cmds numeric 

@attribute is_host_login numeric 

@attribute is_guest_login numeric 

@attribute count numeric 

@attribute srv_count numeric 

@attribute serror_rate numeric 

@attribute srv_serror_rate numeric 

@attribute rerror_rate numeric 

@attribute srv_rerror_rate numeric 

@attribute same_srv_rate numeric 

@attribute diff_srv_rate numeric 

@attribute srv_diff_host_rate numeric 

@attribute dst_host_count numeric 

@attribute dst_host_srv_count numeric 

@attribute dst_host_same_srv numeric 

@attribute dst_host_diff_srv_rate numeric 

@attribute dst_host_same_src_port_rate numeric 

@attribute dst_host_srv_diff_host_rate numeric 

@attribute dst_host_serror_rate numeric 

@attribute dst_host_srv_serror_rate numeric 

@attribute dst_host_rerror_rate numeric 

@attribute dst_host_srv_rerror_rate numeric 

@attribute ataques {normal,ataque} 

 

 

@data  #@data padrões de treinamento da base de dados 

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,8,1.00,1.00,0.00,0.00,0.04,0.07,0.00,255,8,
0.03,0.08,0.00,0.00,1.00,1.00,0.00,0.00,ataque 

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,218,5,1.00,1.00,0.00,0.00,0.02,0.06,0.00,255,5,
0.02,0.07,0.00,0.00,1.00,1.00,0.00,0.00,ataque 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,
255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,normal ... 
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Resultados do treinamento das redes 
RBF-DDA com seleção do parâmetro θ- 

 

Neste apêndice, são mostrado todos os resultados advindos do treinamento das redes RBF-DDA 
com seleção do parâmetro θ-. 

 
Treinamento 
com RBF      

Bases de Dados Theta- 
Nº Neurônios na 

CE 
Tempo de 

Processamento 

Erro de 
Validação 
Cruzada Ciclos 

Normal + 
Ataques 0,2 94 00:05:26 1,61% 4 

Padrões: 15000 0,1 113 00:16:03 1,57% 4 

  1,00E-02 214 00:46:46 0,63% 4 

  1,00E-03 245 01:01:40 0,17% 4 

  1,00E-04 273 01:02:37 0,09% 4 

  1,00E-05 287 01:03:22 0,05% 3 

  1,00E-06 300 00:59:00 0,07% 3 

  1,00E-07 318 01:04:27 0,09% 3 

  1,00E-08 332 01:09:00 0,12% 3 

            

Normal + Probe 0,2 30  00:00:32 2,76% 4 

Padrões: 3077 0,1 39  00:00:34 0,75% 3 

  1,00E-02 63  00:00:54 0,29% 4 

  1,00E-03 70  00:01:02 0,23% 4 

  1,00E-04 76  00:01:01 0,20% 3 

  1,00E-05 81  00:01:11 0,20% 3 

  1,00E-06 87  00:01:26 0,16% 4 

  1,00E-07 92  00:01:04 0,16% 4 

  1,00E-08 95  00:01:08 0,16% 4 

            

Normal + DOS 0,2 63  00:03:04 1,98% 3 

Padrões: 14827 0,1 76  00:04:20 1,56% 4 
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  1,00E-02 163  00:34:21 0,57% 6 

  1,00E-03 189  00:39:32 0,15% 4 

  1,00E-04 216  00:43:30 0,05% 3 

  1,00E-05 233  00:50:15 0,05% 4 

  1,00E-06 245  00:51:03 0,03% 3 

  1,00E-07 263  00:52:00 0,06% 3 

  1,00E-08 274  00:58:00 0,06% 3 

            

Normal + U2Su 0,2 21  00:00:25 0,37% 4 

Padrões: 2964 0,1 24  00:00:27 0,37% 4 

  1,00E-02 38  00:00:36 0,37% 4 

  1,00E-03 45  00:00:37 0,24% 3 

  1,00E-04 49  00:00:43 0,14% 4 

  1,00E-05 55  00:00:47 0,14% 4 

  1,00E-06 58  00:00:48 0,14% 4 

  1,00E-07 64  00:00:52 0,17% 4 

  1,00E-08 68  00:00:58 0,20% 4 

            

Normal + R2L 0,2 19 00:00:28 1,27% 4 

Padrões: 2991 0,1 27 00:00:30 1,27% 3 

  1,00E-02 40 00:00:37 0,43% 3 

  1,00E-03 46 00:00:41 0,13% 3 

  1,00E-04 50 00:00:46 0,10% 3 

  1,00E-05 54 00:00:47 0,10% 3 

  1,00E-06 59 00:00:54 0,10% 3 

  1,00E-07 67 00:00:58 0,10% 3 

  1,00E-08 73 00:01:03 0,13% 4 
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Resultados do treinamento de máquinas 
de vetor suporte (SVM) 

Neste apêndice, apresentamos os resultados dos treinamentos executados utilizando SVM. 
 
Treinamento com SVM     

Bases de Dados 
Vetores 
Suporte 

Tempo de 
Processamento 

Erro de Validação 
Cruzada (%) Ciclos 

Padrões totais: 15000      

Normal + Ataques      

S/ Validação Cruzada 137   00:00:02 0,0143 5513 

C/ Validação Cruzada (5) 126 00:00:08 0,0625 3531 

C/ Validação Cruzada 
(10) 166 00:00:30 0,02 8347 

          

Padrões totais: 3077      

Normal + Probe      

S/ Validação Cruzada 53  00:00:01 0,1354 335 

C/ Validação Cruzada (5) 49  00:00:01 0,3127 272 

C/ Validação Cruzada 
(10) 71 00:00:03 0,0975 457 

          

Padrões totais: 14827      

Normal + DOS      

S/ Validação Cruzada 60  00:00:01 0,0439 4421 

C/ Validação Cruzada (5) 92  00:00:04 0 2413 

C/ Validação Cruzada 
(10) 123 00:00:30 0 7525 

          

Padrões totais: 2964      

Normal + U2Su      

S/ Validação Cruzada 35   00:00:01 0,2049 242 

C/ Validação Cruzada (5) 29 00:00:01 0,2001 123 

C/ Validação Cruzada 
(10) 37 00:00:02 0,135 286 
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Padrões totais: 2991      

Normal + R2L      

S/ Validação Cruzada 38 00:00:01 0 478 

C/ Validação Cruzada (5) 34 00:00:01 0,3336 400 
C/ Validação Cruzada 
(10) 46 00:00:02 0,1672 440 

 

 


