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Resumo

Detec¢ao de Intrusdo é um dos assuntos que ganha mais visibilidade dentro do atual cenério
global. Esse fato pode ser explicado pelo aumento significativo da Internet em todo mundo, e
com ele a exposi¢do das empresas a esse mundo de interacdo e beneficios. Essa exposicao nao é
sO benéfica, pois invasdes de pessoas ndo autorizadas estdo sendo cada vez mais constantes. Os
Sistemas de Deteccao de Intrusao (IDS) aparecem como uma forma de identificar e realizar
algum tipo de contramedida para tais invasdes. Diversos métodos para reconhecimento de um
ataque estao em uso ou sendo desenvolvidos. Um deles proposto envolve o uso de aprendizagem
de maquina para identificacdo desses ataques. Este trabalho apresenta um estudo comparativo
entre as técnicas Redes Neurais Artificiais (RNAs), do tipo MLP (Multilayer perceptron) e
RBFN (Radial Basis Functions Networks) utilizando o algoritmo de treinamento DDA (Dynamic
Decay Adjustment), Maquinas de Vetor Suporte (SVM) e técnicas que utilizam os vizinhos mais
proximos (NN e kNN) aplicadas ao problema de deteccdo de intrusdo. A ferramenta LIBSVM foi
empregada para executar os treinamentos com SVM. O simulador WEKA foi utilizado para
execugdo das técnicas NN, kNN e MLP, enquanto que e o SNNS foi utilizado para redes RBF-
DDA. Ainda foi testada uma selecdo de parametros com as redes RBF-DDA. Todos os
treinamentos foram comparados empregando o método da validacao cruzada. As técnicas foram
analisadas com relagdo ao seu desempenho no erro de classificacdo, complexidade e tempo de

processamento. As técnicas RBF-DDA e SVM obtiveram os melhores desempenhos.
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Abstract

Intrusion Detection is one of the subjects that wins more visibility inside of the current global
scene. This fact can be explained by the significant Internet increasement around the world,
added to the exposition of the companies to this interaction and benefits world. This exposition is
not only beneficial because there is very often invasion of non-authorized people. Intrusion
Detection Systems (IDS) appear as a way to identify and prevent any kind of attack. Some attack
recognition techniques are being used or being developed. One of them involves the use of
machine learning in the identification of those attacks. This work presents a comparative study
among the techniques: Artificial Neural Networks (ANN), MLP (Multilayer Perceptron) type and
RBFN (Radial Basis Functions Networks), using the training algorithm DDA (Dynamic Decay
Adjustment), Support Vector Machines (SVM) and other techniques that uses the neighbors (NN
and kNN) applied to the problem of intrusion’s detection. The tool LIBSVM was used to execute
the trainings with SVM. The simulator WEKA was used to apply the techniques NN, kNN and
MLP, while the SNNS was used for nets RBF-DDA. It was also verified a selection of parameters
with the RBF-DDA nets. All the trainings had been compared using the crossing validation
method. Those techniques were analyzed by its performance in the error classification,
complexity and processing time. The techniques RBF-DDA and SVM had gotten the best

performances.



Sumario

Indice de Figuras
Indice de Tabelas
Introducao

Capitulo 1 - Conceitos Basicos

1.1 Técnicas de aprendizagem de maquina
1.1.1  Redes Neurais Artificiais (RNAS)
1.1.1.1  Inspiracdo na biologia
1.1.1.2  Conceitos sobre redes neurais artificiais
1.1.1.3 Redes MLP (MultiLayer Perceptron)
1.1.1.4 Redes RBFN (Radial Basis Function Networks)
1.1.2  Maidquinas de vetor de suporte (SVM)
1.1.3  Técnicas baseadas nos vizinhos mais proximos (NN e kNN)
1.2 Sistemas de Detec¢do de Intrusdo (IDS)
1.2.1 O que éum IDS?
1.2.2  Conceitos e tipos de um IDS
1.2.3  IDS utilizando aprendizagem de maquina
1.2.4  Arquitetura de um IDS
1.2.5 Estudo de caso: SNORT

Capitulo 2 - Base de Dados

2.1 Descricao
2.2 Tipos de Ataques
2.3 Formatagao

Capitulo 3 - Experimentos e Resultados

3.1 Ferramentas utilizadas
3.1.1 SNNS (Stuttgart Neural Network Simulator)
3.1.2 LIBSVM
3.1.3  WEKA (Waikato Environment for Knowledge Analysis)
3.2 Validagdo Cruzada
3.3 Experimentos utilizando Redes Neurais Artificiais
3.3.1 MultiLayer Perceptron (MLP)
3.3.2  Radial Basis Function Networks (RBF)
3.3.3 Resultados obtidos pelas redes neurais
3.4 Experimentos utilizando Méquinas de Vetor Suporte
3.4.1 Resultados obtidos por mdquinas de vetor suporte

-

ESCOLA POLITECNICA
DE PERNAMBUCO

iii

vi

10

10
10
11
11
15
18
22
24
25
25
25
26
26
26

29

29
29
33

35

35
35
38
41
44
44
44
45
45
48
48



_aed

POLE

ESCOLA POLITECNICA

DE PERNAMBUCO
14"

3.5 Experimentos utilizando técnica dos vizinhos mais proximos (NN e kNN) 49
3.5.1 Resultados obtidos pelas técnica dos vizinhos mais préximos 49

3.6 Comparagdo dos resultados RNA"s x SVM x NN x kNN 51
Conclusoes e Trabalhos Futuros 53
Bibliografia 55
Apéndice A 58
Apéndice B 60

Apéndice C 62



_aed

POLE

ESCOLA POLITECNICA

DE PERNAMBUCO

1%

£ [ ] [ ]
Indice de Figuras

Figura 1. Partes de um neurdnio biolégico 11
Figura 2. Modelo de um neurénio MCP 12
Figura 3. Arquiteturas de RNAs 13
Figura 4. Treinamento supervisionado 14
Figura 5. Treinamento ndo-supervisionado 15
Figura 6. Funcao sigmoidal logistica 16
Figura 7. Regides definidas pelo processamento da segunda camada intermedidria 16
Figura 8. Regides definidas pelo processamento da camada de saida 16
Figura 9. Fases do algoritmo back-propagation 18
Figura 10. Arquitetura de uma rede RBF 19
Figura 11. Exemplo de conflito de padrdes 20
Figura 12. Exemplo da execuc¢do do algoritmo DDA 21
Figura 13. Exemplo em duas dimensdes da utilizacdo de SVM como classificador 22
Figura 14. Exemplo em duas dimensdes dos vetores de suporte 23
Figura 15. Exemplo de classificagdo do método NN 24
Figura 16. Componentes de um IDS segundo o IDWG 27
Figura 17. Arquitetura do snort 28
Figura 18. Quantidade de cada ataque na base kdd cup 1999 32
Figura 19. Tela inicial do SNNS 36
Figura 20. Definicdo da topologia da rede no SNNS 37
Figura 21. Tela salvar e carregar arquivos do SNNS 38
Figura 22. Analyze 38
Figura 23. Applet do LIBSVM 39
Figura 24. svmtrain 39
Figura 25. svmtrain com validacdo cruzada 40
Figura 26. svmpredict 40
Figura 27. Tela inicial do WEKA 41
Figura 28. Abrir arquivo para treinamento no WEKA 42
Figura 29. Escolha da técnica de aprendizagem de maquina no WEKA 43
Figura 30. Visualizacio das técnicas de aprendizamgem do WEKA 43



_aed

POLE

ESCOLA POLITECNICA

DE PERNAMB UCO.

14

£ [ ]
Indice de Tabelas

Tabela 1. Caracteristicas da base kdd cup 1999 30
Tabela 2. Ataques DoS 31
Tabela 3. Ataques Probing 31
Tabela 4. Ataques R2L 31
Tabela 5. Ataques U2Su 32
Tabela 6. Parimetros MLP 45
Tabela 7. Parimetros RBF 45
Tabela 8. Resultados do treinamento com MLP 46
Tabela 9. Resultados do treinamento com RBF 47
Tabela 10. Comparagdo dos treinamentos de RBF e MLP 48
Tabela 11. Parametros SVM 48
Tabela 12. Resultados do treinamento com SVM 10-fold 49
Tabela 13. Resultados do treinamento com NN 10-fold 50
Tabela 14. Resultados do treinamento com NN 10-fold 50

Tabela 15. Comparacdo dos resultados 52



-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vil

Agradecimentos

Primeiramente, gostaria de agradecer a todos que participaram da elaboracao desse trabalho:

A minha familia, em especial a meus pais, Valdomiro Vieira da Rocha e Edenira Barbosa
Vieira da Rocha, pelo apoio, pelo incentivo e pela confianca.

Outro agradecimento especial a minha namorada Adalgisa Maria Rodrigues da Silva, por
toda atenc¢do, pela ajuda e pela paciéncia.

A meus amigos que sempre estiveram do meu lado me incentivando e descontraindo o
ambiente.

Ao meu orientador, Adriano Lorena Indcio de Oliveira, pela ajuda, pela orientagdo sempre
pertinente e competente.

A todos os professores e colaboradores do curso de Engenharia da Computacao da POLI
pela minha formacao e pelo meu engrandecimento profissional e social.

Um agradecimento maior a Deus, por me proporcionar todos esses momentos.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

8

Introducao

O numero constante e crescente de ataques a redes coorporativas se deve a exposi¢do de
informacdes importantes para intrusos que a Internet proporciona [28], por isso Sistemas de
Deteccdo de Intrusdo (IDS — Intrusion Detection Systems) estdo tendo cada vez mais importancia
e visibilidade no mundo atual. Uma intrusdo, em geral, é definida como um conjunto de acdes
que comprometem a integridade, a confiabilidade ou a disponibilidade de recursos [29]. Sistemas
que detectam intrusdes, basicamente, sdo conjuntos de hardware e software que trabalham juntos
para identificar eventos inesperados, que podem indicar que um ataque ird acontecer, estd
acontecendo ou aconteceu [17]. Esses sistemas podem utilizar diversas técnicas para prever um
ataque, entre elas Redes Neurais Artificiais (RNAs), caracterizadas por serem uma forma de
computacdo ndo algoritmica e por lembrar, em algum nivel, a estrutura do cérebro humano [1].
Outras técnicas também podem ser empregadas como Méquinas de Vetor Suporte (SVM) ou
ainda técnicas que utilizam os vizinhos mais préximos, Nearest Neighbor (NN) e k-Nearest
Neighbor (KNN).

O propésito de um IDS € distinguir entre intrusos e usudrios normais. O sensor de um IDS
€ 0 mecanismo principal para fazer essa distin¢do, sua fun¢do € monitorar um Aost ou uma rede a
fim de identificar intrusdes, gerar logs localmente e gerar mensagens alertando a respeito da
ocorréncia de tais eventos. Dentro de um sensor existe uma parte nomeada analisador de eventos,
cuja responsabilidade é identificar se um dado evento é um ataque ou ndo. E nessa parte que as
técnicas de aprendizagem de mdaquina, através do seu poder de classificacdo, poderdo se inserir
em um IDS.

Um exemplo de IDS comercial € o snort que possui cédigo aberto e é muito utilizado. Ele
ndo utiliza técnicas de aprendizagem de madaquina para analisar ataques. Suas caracteristicas
principais sdo andlise de trafego em tempo real e de registro de pacotes IP, além de gerar alertas
em tempo real [36].

Neste trabalho, comparamos algumas técnicas de aprendizagem de mdaquina nesse
problema utilizando a base de dados KDD cup 1999 [20]. Essa base foi concebida através da
simulacdo de um ambiente de uma rede militar dos EUA, mais precisamente da forca aérea dos
Estados Unidos. Basicamente ela € composta de conexdes “ruins”’, denominadas ataques, e de
conexdes “boas” chamadas normais. Esse ambiente foi alimentado com conexdes TCP
(Transmission Control Protocol), cada uma dessas com um tamanho de 100 bytes, durante nove
semanas. Em meio a essas conexdes foram inseridos multiplos ataques. Essa base de dados
possui um total de 41 atributos de entrada, que incluem, por exemplo, duracdo da conexio,
servico de rede de destino, dados basicos sobre a conexdo TCP, dentre outros (explicitados no
Capitulo 2).

A utilizacdo de RNA nesse problema pode ser justificada pela ndo linearidade da mesma e
pela capacidade de adaptacdo que elas possuem. Isso € importante, pois como estdo sendo
identificados, os ataques atuais sdo uma combinacdo de ataques ja existentes, por isso O
analisador de eventos tem que se adaptar a cada uma dessas variantes. Outra vantagem € a
facilidade de colher eventos para servir de exemplos no treinamento das RNAs, isto é feito
simulando uma rede de computadores real e adicionando ataques a essa, armazenando os logs de
cada conexado realizada, seja ela um ataque ou ndo.
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A constru¢do de um IDS que utiliza redes neurais pode ser dividida em trés etapas:

1. Coleta dos dados para treinamento: nessa fase, ¢ onde se obtém os dados para o
treinamento, sejam eles fornecidos por uma rede real ou através de uma simulacdo de uma
rede;

2. O treinamento em si da rede: nessa etapa € onde vamos treinar as redes com a mesma base
de dados, submetendo essa a varias técnicas de redes neurais distintas;

3. A rede neural treinada: nessa fase, a rede neural estd pronta para distinguir ataques
verdadeiros de conexdes normais.

A utilizacdo de Maquinas de Vetor Suporte € justificada pelo fato desta técnica recente,
que utiliza apredizagem estatistica, ter obtido melhor desempenho de classificagdo que outra
técnicas, tais como RNAs em uma série de problemas importantes, como categorizagcdo de texto e
reconhecimento 6ptico de caracteres (OCR) [11,34,35]. Uma vantagem adicional de SVM ¢é que
a técnica normalmente produz classificadores com poucas unidades escondidas.

As técnicas baseadas no vizinho mais préoximo, NN e kNN, foram utilizadas, pois sao
simples e precisas. Além disso, essas técnicas possuem um parametro a ser modificado para o
treinamento.

O trabalho foi dividido em quatro Capitulos. No primeiro foram introduzidos alguns
conceitos inerentes ao tema, como as técnicas de aprendizagem de mdquina e conceitos dos
sistemas de detec¢do de intrusao.

O segundo Capitulo apresenta a base de dados, relatando como ela foi concebida, seus
atributos, tipos de ataque que fazem partes dessa base, além de informar ao leitor algumas
adequacdes que foram realizadas para formatar essa base para os simuladores utilizados nesse
trabalho.

O terceiro Capitulo mostra os resultados obtidos com a utilizacdo dessas quatro técnicas.
Apresentamos a descricdo de cada treinamento efetuado, bem como sua anélise levando-se em
consideragdo alguns fatores como: tempo de processamento, erro de validagdo cruzada e
complexidade da rede. Por fim, foi feito um comparativo entre as técnicas abordadas.

O quarto Capitulo se refere as conclusdes e trabalhos futuros.

Sistemas de Detec¢do de intrusdo sdo primordiais para uma empresa que possua
informacdes confidenciais e que esteja ligada a Internet, pois o risco de sofrer invasdes é muito
alto. Técnicas de aprendizagem de méquina surgem como um mecanismo interessante para
detectar, classificar e identificar esses ataques.
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Capitulo 1

Conceitos Basicos

Este Capitulo visa explicar conceitos bdsicos sobre o tema. Abordaremos as técnicas de
aprendizagem de maquina utilizadas e os sistemas de detec¢@o de intrusdo (IDS).

1.1 Técnicas de aprendizagem de maquina

As técnicas empregadas neste trabalho sdo: redes neurais artificiais, representada por funcdes de
bases radiais (Radial Basis Function - RBF) e perceptrons de multicamadas ( multilayer perceptron -
MLP), méquinas de vetor de suporte (SVM), técnica do vizinho mais préximo (NN) e técnica dos k-
vizinhos mais préximos (kNN).

1.1.1 Redes Neurais Artificiais (RNAS)

Redes Neurais artificiais (RNAs), também chamadas de conexionismo ou redes de sistemas
distribuidos [1], ressurgiram no final da década de 80, e hoje tém se tornando um amplo campo
de pesquisa. RNAs nos permitem projetar sistemas ndo-lineares, podendo esses possuir um
grande nimero de entradas, com o projeto baseado em relacionamentos do tipo entrada-saida [2].
Seus atrativos pricipais sdo a capacidade de aprender por exemplos e de generalizar as
informacao aprendidas. A generalizacdo estd associada a capacidade da rede de aprender através
de um conjunto reduzido de exemplos e posteriormente dar respostas coerentes para dados nao-
conhecidos [1].

Outra caracteristica importante € o fato das redes neurais artificiais ndo serem baseadas
em regras ou programas, se constituindo assim em uma alternativa para a computagao, visto que a
utilizacdo de algoritmos se restringe para algumas partes da execucao de um rede neural artificial.
Mas, o principal atrativo das RNAs €, sem divida, sua capacidade de aprender através de
exemplos e de generalizar a informagdo aprendida. RNAs sd3o inspiradas na biologia,
particularmente na pesquisa do cérebro humano.
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1.1.1.1 Inspiracao na biologia

As RNAs tentam reproduzir as fung¢des da rede neural bioldgica, buscando implementar seu
comportamento basico e sua dindmica. Como caracteristicas comuns entre os dois sistemas temos
que eles sdo baseados em unidades de computacdo paralela e distribuida que se comunicam por
meio de conexdes sindpticas, possuem detectores de caracteristicas, redundancia e modularizacao
das conexdes. A célula fundamental do cérebro € o neurdnio, cada um desses neurdnios se liga a
milhares de outros continuamente e em paralelo. Os neurénios sdo divididos em trés partes: corpo
da célula, dendritos e axdonios (Figura 1).

COTHo

L]

siniapse  —
o dendritos

E P\ arcta

axdrio

Figura 1. Partes de um neur6nio biolégico [31].

O corpo celular € a parte mais volumosa da célula; nela se localizam o nicleo e a maioria
das estruturas citoplasmaticas. Os dendritos sao prolongamentos finos e, geralmente, ramificados
que conduzem os estimulos captados do ambiente ou de outras células em dire¢do ao corpo
celular. O axd6nio é um prolongamento estreito, geralmente mais longo que os dendritos, cuja
funcdo € transmitir para outras células os impulsos nervosos provenientes do corpo celular.
Sinapse € uma regido de contato muito proximo entre a extremidade do axénio de um neurdnio e
a superficie de outra célula. O impulso € transmitido de uma célula a outra através dessas
sinapses.

1.1.1.2 Conceitos sobre redes neurais artificiais

Redes neurais artificiais possuem uma estrutura similar a um neurdnio bioldgico. Essa estrutura
foi desenvolvida por McCulloch e Pitts [1]. Eles modelaram uma estrutura com »n terminais de
entrada x;, x, ..., X, (no neurénio bioldgico, poderiamos dizer que essas entradas representam os
dendritos) e um terminal de saida (seria 0 axdnio) para emular as sinapses. Os terminais de
entrada t€m associados a ele pesos wj;, wy, ..., w,. Em um neurénio bioldgico, um disparo
acontece quando a soma dos impulsos que ele recebe ultrapassa seu limiar de excitagdo
(threshold), j4 em um neurdnio MCP (modelo de neurdnio artificial de McCulloch e Pitts), a
ativacdo de um neur6nio € obtida através da aplicacdo de uma fungdo de ativagdo, que ativa ou
ndo a saida, dependendo do valor ponderado das suas entradas.
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No modelo, a funcdo de ativagdo é dada por uma fun¢do linear, cuja saida pode assumir
os valores 0 ou 1. Por conseguinte, o nodo MCP ativa ou ndo sua saida, seguindo a equacao
abaixo:

Y xiw > 0 (1.1)
i=0

onde n é o nimero de entradas do neurdnio, w; € o peso associado a entrada x;, e 6 € o limiar
(threshold) do neur6nio. Uma simplificagc@o realizada por McCulloch e Pitts no seu modelo diz
respeito ao disparo de cada camada. Isso é feito sincronamente, ou seja, todos os neurdnios sao
avaliados ao mesmo tempo. J4 no sistema bioldgico sabe-se que ndo existe um mecanismo para
realizar esse sincronismo [1]. Esse modelo possui algumas limitacdes e dentre elas podemos
destacar as seguintes:

1. Esse modelo com uma camada s6 se adequava a problemas linearmente separdveis;
2. O modelo foi proposto com pesos fixos, ndo podendo estes ser ajustados.

A Figura 2 representa o modelo de McCulloch e Pitts:

ENTRADAS

Figura 2. Modelo de um neur6nio MCP.

Ap6s o modelo de McCulloch e Pitts, foram propostos vdrios outros modelos que
permitem a producdo de saidas que ndo sejam necessariamente O ou 1 e com diferentes fungdes
de ativacdo. A funcdo de ativacdo linear é mostrada na equagdo abaixo e serd exemplificada logo
em seguida, em conjunto com outro tipos de fungdes:

y = ax (12)

onde a é um ndmero real que define a saida linear para os valores de entrada, y € a saida e x a
entrada. Em seguida, temos alguns exemplos de funcdes de ativagdo para redes neurais artificiais:

1. Fungdo degrau: esssa fungao tem como valores de saida O ou 1 e é definida como:

1 se x=0
fx) = 0 (1.3)

se x<0
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2. Func¢do rampa: abaixo estd um exemplo desse tipo de func¢do:
1 se x=2—
2
f(x)=<x 1<x<1 (1.4)
) 2 '

0 se x<—

onde, 0 e 1 sdo os limites da fungdo e (-¥2 e ¥2) € o intervalo que define a saida linear.

3. Func¢ado sigmdide: fungdo cujos valores pertencem a intervalo continuo, por exemplo,

entre Oe 1.

1
f(x)—m (1.5)

onde, a determina a inclina¢ao da fungao.

Além da funcdo de ativagdo, as RNAs possuem uma arquitetura (topologia), cuja
configuracdo € importante, pois restringe o tipo de problema que pode ser tratado pela rede [1].
Por exemplo, as redes descritas anteriormente, MCP, possuem apenas uma camada e sé
conseguem resolver problemas linearmente separdveis. Na Figura 3, estdo ilustrados alguns
exemplos de arquitetura de RNAs.

x1i % KE ", —

O e

XY o’ e X7 x o Lt

14 & ‘._..\ﬂ 3 -— - — i \,r_;_'_'_'
X5e— e %4

Figura 3. Arquiteturas de RNAs [1].
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Essas arquiteturas referem-se a modelos:

Com tnica camada: s6 existe um né entre a entrada e a saida (Figura 3. a, e);
Muiltiplas camadas: existe mais de um neurdnio entre a entrada e a saida (Figura 3. b, c,
d).

N =

Quanto as conexdes entre os nodos podemos ter dois tipos:

1. Feedforward, ou aciclica: a saida de um neurdnio em um a camada nao pode ser utilizada
como entrada em nenhuma camada anterior a esta (Figura 3. a, b, ¢);

2. Feedback, ou ciclica: a saida de algum neurdnio de uma certa camada € utilizada como
entrada para uma camada anterior a esta (Figura 3. d, e).

Nos ja vimos até aqui como a rede neural artificial calcula suas saidas, como € sua
arquitetura, agora vamos falar um pouco sobre como acontece a aprendizagem de uma RNA,
visto que essas redes possuem a capacidade de aprender a partir de exemplos e fazer
interpolacdes e extrapolacdes do que aprendem [1]. A aprendizagem se da através de um
algoritmo de aprendizagem, a defini¢do de um algoritmo de aprendizagem pode ser: um conjunto
de procedimentos bem-definidos para adaptar os parametros de uma RNA para que ela possa
aprender uma determinada funcdo [1]. A utilizacdo de uma RNA se inicia por uma fase
denominada fase de aprendizagem, € nela que, através de um processo iterativo, a rede vai
ajustando os seus parametros que sao os pesos das conexdes entre as unidades de processamento.
Essas, por sua vez, armazenam o conhecimento que a rede adquiriu do ambiente em que estd
operando. Diversos métodos de aprendizado foram desenvolvidos sendo que os dois principais
sdo: aprendizado supervisionado e aprendizado ndo-supervisionado.

Aprendizado supervisionado é o método de aprendizado mais comum. Nesse método, a
entrada e saida desejadas para a rede sdo fornecidas por um supervisor (professor) externo.
Posteriormente, a saida dada € comparada com a saida obtida pela rede, tendo como objetivo
ajustar os parametros da rede de forma a encontrar uma representacdo interna a partir dos pares
de entrada e saida fornecidos. Nesse método, a soma dos erros quadraticos de todas as saidas €
normalmente utilizada como medida de desempenho da rede. Existe uma desvantagem da
utilizacdo desse método: na auséncia do professor a rede ndo conseguird aprender novas
estratégias para situagdes que nao pertencam ao escopo de exemplos conhecidos. A Figura 4
ilustra o aprendizado supervisionado:

Saida

Professor

RNA

Entrada

Erro

Figura 4. Treinamento supervisionado [1].

Aprendizado ndo-supervisionado: nesse método nao existe o professor ou supervisor para
acompanhar o processo de aprendizado, apenas padrdes de entrada sdo fornecidos para a rede, e
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através de regularidades estatisticas das entradas sdo estabelecidas algumas representacoes
internas. Desse modo, esse método de aprendizado € possivel apenas quando existe redundancia
nos dados de entrada. A Figura 5 demonstra esse tipo de aprendizado.

Estado do
meio extelno Resposta
Meio Externo [ * RNA .

Figura 5. Treinamento ndo-supervisionado [1].

Uma forma de utilizar redes neurais em sistemas de deteccdo de intrusdo, € criar um
sistema que aprenda a predizer um préximo comando baseado numa seqiiéncia prévia de
comandos pertencentes a um usudrio especifico [3]. Em uma empresa, determinados funcionarios
sao encarregados de realizar algumas tarefas, e essas exigem certas rotinas que envolvem
programas nos computadores, a execucdo desses programas exigem certos comandos nos
computadores e esses serdo aprendidos pela técnica de aprendizagem de maquina. A construgao
de uma rede neural para um IDS consiste em trés fases:

1. Coleta dos dados para treinamento, esses dados podem ser obtidos por logs de auditoria
para cada usudrio por um determinado periodo. Um vetor é formado para cada dia e cada
usudrio, assim ele pode mostrar quais comandos um usudrio frequentemente executa;

2. Treinar a rede neural para reconhecer um usudrio através dos vetores de distribui¢do de
comandos;

3. A rede neural identifica um usudrio baseado nos vetores de distribuicdo de comandos; se a
sugestdo da rede for diferente do usudrio real, uma anomalia serd sinalizada.

1.1.1.3 Redes MLP (MultiLayer Perceptron)

Para resolver problemas nao-linearmente separdveis foram criadas as redes MLP, pois esse tipo
de rede possui pelo menos duas camadas permitindo a aproximacdo de qualquer fun¢do continua.
As redes MLP derivam de um modelo denominado perceptron proposto por Frank Rosenblatt em
1958 [4]. Com esse modelo, apenas problemas linearmente separdveis poderiam ser solucionados.
A utilizacdo de uma camada escondida aumentou o poder computacional das MLP. A precisao a
ser obtida e a implementacdo da funcdo objetivo dependem do niimero de nodos utilizados nas
camadas intermedidrias.

Como ja vimos, um dos principais aspectos das redes neurais artificiais € a utilizacdo de
uma funcdo de ativacdo. Para redes MLP a mais empregada € a sigmoidal logistica. Essa fungdo é
representada no plano cartesiano mostrado na Figura 6.
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Figura 6. Funcao sigmoidal logistica.

Em uma rede multicamada, o processamento realizado por cada nodo € definido pela
combinacdo dos processamentos realizados pelos nodos da camada anterior, que estdo conectados
a ele. Para uma rede com duas camadas intermedidrias pode-se dizer que o seguinte
processamento ocorre em cada camada:

¢ Primeira camada intermedidria: cada nodo traga retas (essas retas sdo criadas de acordo
com a fun¢do de ativagdo da camada, sua orientagdo é dada pelo vetor de pesos) no
espaco de padrdes de treinamento;

e Segunda camada intermedidria: cada nodo combina as retas tracadas pelos nodos da
camada anterior (primeira camada intermedidria) conectados a ele, formando regides
convexas, onde o nimero de lados € definido pelo nimero de unidades conectadas a
ele. Abaixo, a Figura 7, mostra um exemplo de uma regido convexa:

W2

Figura 7. Regides definidas pelo processamento da segunda camada intermedidria.

e Camada de saida: cada nodo forma regides que sdo combinacdes das regides convexas
definida pelos nodos conectados a ele da camada anterior (segunda camada
intermedidria). Na Figura 8, demonstramos um exemplo das combinacgdes de regides
convexas.

Figura 8. Regides definidas pelo processamento da camada de saida.
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Pode-se dizer que as camadas intermediarias de uma MLP funcionam como detectores
de caracteristicas. Eles geram uma representacdo interna dos padrdes de entrada, que € utilizada
para defini¢do da saida da rede. A camada de saida de uma MLP emprega uma técnica
denominada winner-takes-all [4], com isso a classe fornecida pela rede correspondera a maior
saida da rede.

O numero de nodos contido em cada camada é definido empiricamente, esse nimero
depende muito da distribui¢do dos padrdes para treinamento e validagdo da rede. O nimero ideal
de neurdnios € influenciado por varios fatores, como:

¢ Numero de exemplos de treinamento;

¢ Quantidade de ruido presente nos exemplos;

¢ Complexidade da fun¢do a ser aprendida;

¢ Distribui¢do estédtica dos dados de treinamento.

A alocac@o de unidades intermedidrias (neur6nios) deve ser suficiente para solucionar o
sistema em questdo. E preciso ter cuidado para ndo utilizar unidades demais, pois pode levar a
rede a memorizar os padrdes de treinamento, ao invés de extrair as caracteristicas gerais que
permitirdo a generalizagdo ou o reconhecimento de padrOes que ndo fizeram parte do
treinamento. Esse problema é denominado overfitting. Por outro lado, se utilizarmos poucos
neur6nios na camada intermedidria, podemos fazer com que a rede gaste muito tempo para
encontrar uma representacdo 6tima.

Uma das formas empregadas para evitar o overfitting é estimar o erro de generalizacdo
durante o processo de treinamento. Para isso, a massa de dados € dividida em dois conjuntos: o de
treinamento e o de validacdo. O conjunto de treinamento continua sendo utilizado na atualiza¢do
dos pesos, enquanto que o conjunto de validacdo é empregado para estimar a capacidade de
generalizacdo da rede durante o processo de aprendizagem. O treinamento deve ser interrompido
quando o erro de validacdo chegar ao seu minimo global. Isto pode ser verificado através de
técnicas como o critério de parada GLS, onde o treinamento € interrompido quando o erro de
validacdo subir por cinco iteracdes consecutivas.

Neste trabalho, a forma utilizada para finalizar o treinamento foi o nimero de épocas
(quanitdade de vezes que a rede € treinada por inteiro, ou seja, apresentacao de todos os padrdes
de treinamento a rede), que ficou definido em 500, visto que em artigos anteriores [2,16], o
nimero méaximo de épocas de treinamento ndo chegou a esse nimero.

Algoritmo de treinamento: back-propagation

O algoritmo de treinamento escolhido para este trabalho foi o back-propagation [1,5]. Esse
algoritmo foi um dos principais responsaveis pelo ressurgimento do interesse em RNAs, visto que
desde a criagdo do perceptron as redes neurais haviam entrado numa fase de decadéncia, devido
essa técnica so ser capaz de resolver problemas linearmente separdveis. O back-propagation é um
algoritmo supervisionado que emprega pares (entrada, saida) e por meio de um mecanismo de
correcdo de erros, ajusta os pesos da rede. Ele é dividido em duas fases: forward e backward, a
primeira calcula a saida da rede para um dado padrdo de entrada, ja a segunda utiliza a saida
desejada e a saida fornecida pela rede para ajustar os pesos das conexdes. A Figura 9 demonstra
essas fases.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

18

My

Camada de Saida

4y )

Camada Escondida

tot)

Camada de Entrada

Fase Faorwerd Fase Bachweard

Figura 9. Fases do algoritmo back-propagation.

A fase forward se inicia com a apresentacdo do padrdo primeira camada (camada de
entrada), ap6s os nodos calcularem suas saidas, essas sdo passadas para a camada posterior
(camada escondida). Essa camada realiza o mesmo processo € as saidas produzidas pela ultima
camada (camada de saida) sao comparadas as saidas desejadas, tendo fim a fase forward.

A fase backward se inicia a partir dessa comparacdo feita no udltimo passo da fase
forward. Os pesos da camada atual s@o ajustados; os erros das camadas anteriores sdo calculados
utilizando os erros dos nodos das camadas seguintes conectados a ele, ponderados pelos pesos
das conexdes entre eles.

1.1.1.4 Redes RBF (Radial Basis Function)

RBF sao redes que empregam fungdes de base radiais. Esse nome se deve ao uso dessas funcoes
nas camadas intermedidrias dessas redes. RBF se diferencia da maioria das redes multicamadas
por utilizar como argumento da fun¢do de ativagdo a distincia entre seus vetores de entrada e de
pesos, enquanto que MLPs utilizam o produto escalar do vetor de entrada e do vetor de peso para
um nodo. Com a utilizagdo dessa fun¢do na camada intermedidria RBF € capaz de separar os
padroes de classes distintas através de hiperelipsides. As funcdes de bases radiais sao
representantes de uma classe de funcdes, cujo valor diminui ou aumenta em relagdo a um ponto

central [1]. As mais comuns para serem empregadas em redes RBF sao:
2

e Fungio Gaussiana: f () = exp(—-) (1.6)
O-i

e Funcio multiquadratica: f(u) =+ (v’ +07) (1.7)

e Funcio thin-plate-spline f(u) =v* log(v) (1.8)

>
Onde v =lI ?— i Il é, geralmente, dado pela distancia Euclidiana>x € o vetor de entrada, e u e o
representam respectivamente o centro e a largura da fungao radial.

A arquitetura de uma rede RBF costuma ter apenas uma camada intermedidria. Como
podemos conferir na Figura 10. A camada intermedidria utiliza func¢des de base radiais,
agrupando os dados de entrada em clusters. Com isso, essa camada transforma um conjunto de
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padrdes ndo-linearmente separdveis, ou seja, que ndo podem ser separados apenas tracando um
plano ou uma reta, em um conjunto de padrdes linearmente separdveis. A camada de saida
classifica os padrdes recebidos da classe anterior. Podem ser utilizadas redes do tipo perceptron
ou adaline nessa camada, uma vez que seus padrdes sao linearmente separaveis.

Camada de Saida

Camada

Intermediaria

Camada de Entrada

Figura 10. Arquitetura de uma rede RBF [32].

Quanto ao particionamento do espaco de entrada, as redes RBF, ao contrdrio das redes
MLP que empregam hiperplanos para fazer o particionamento, utilizam hiperelipsdides, onde
cada um desses agrupa padroes de mesma classe formando regides especificos para cada classe.
Esse particionamento realizado pela rede RBF implica que a rede s6 podera classificar novos
padrdes se esses forem das mesmas classes utilizadas para o seu treinamento. Ou seja, se um
determinado padrdo pertencente a outra classe, que ndo tenha sido utilizada durante o
treinamento, for apresentado a rede para ser classificado, a rede nao saberd como classificar esse
novo padrao [1].

Uma vantangem deste tipo de abordagem de RNA’s, € o fato de a rede nao classificar um
padrdo discrepante, classificando-o como desconhecido. A desvantagem desse tipo de técnica é o
fato dela ter um bom desempenho para problemas bem definidos [1].

Algoritmo de treinamento: DDA (Dynamic Decay Adjustment)

Existem varios métodos de treinamento para redes RBF. Neste trabalho, vamos utilizar o
algoritmo DDA (Dynamic Decay Adjustment) [6,7,8,9,30]. Esse algoritmo se baseia no algoritmo
contrutivo, utilizado para redes RBF, RCE (Restricted Coulomb Energy) [10]. Ele corrige um
problema do RCE que € o de se confundir em 4reas de conflito como o ilustrado na Figura 11.
Quando um padrao é apresentado a rede, essa cria uma unidade RBF para classifica-la. Se um
padrdo de uma outra classe for inserido no treinamento, ird também criar uma unidade RBF e isso
pode gerar uma regido comum as duas gaussianas, denominado drea de conflito. O algoritmo
RCE néo trata desse caso e, por conseguinte, pode ndo conseguir classificar corretamente esse
padrao, podendo este ser atribuido a classe errada.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

20

: - =
nowvo padrao de entrada ol
[clas=e B)

Figura 11. Exemplo de conflito de padrdes [6].

O algoritmo DDA tem algumas peculiaridades que o diferenciam tanto na arquitetura
usada por essas redes, como também no tempo utilizado para realiza¢do do treinamento. Quando
aplicado a uma rede RBF, os nés da camada escondida utilizam fung¢des gaussianas para
processarem os valores de entrada [1].

O algoritmo DDA € um algoritmo construtivo, pois, inicialmente, é criada uma camada
escondida sem neurdnios. Cada gaussiana, apresentada na Figura 11, representa uma unidade na
camada escondida de uma RBF, ou seja, um nodo. A partir do momento que o treinamento
ocorre, novas unidades vdo sendo adicionadas dentro dessa camada escondida. Se houver a
necessidade da inclusdo de um novo neurdnio, isso serda determinado dinamicamente durante o
treinamento.

O DDA utiliza dois parametros especificos para decidir se um novo neurdnio devera ser
introduzido na camada intermedidria da rede RBF [2]. O limiar positivo 0* ¢ utilizado para
verificar se, para um novo padrao usado para o treinamento da rede, existe algum protétipo (uma
gaussiana) da mesma classe com ativagdo acima do 0'. Caso exista tal protétipo, ndo serd
adicionado novo protétipo a rede; ao invés disso o peso de um protétipo ja existente serd
incrementado. O limiar negativo 0 € utilizado para ajudar a solucionar o problema de conflitos de
padrdes que podem vir a existir durante o treinamento [6, 8].

O algoritmo 1, mostra um pseudocddigo para o DDA durante uma época de treinamento.

Algoritmo 1. Algoritmo DDA para treinamento de RBFs (uma época de treinamento)

/linicializa pesos com 0,0:
FORALL protétipos p*; DO
A=0,0
ENDFOR
/ftreina para uma época completa
FOR ALL padrao de treinamento (x, c) DO
IF 3p°: R%(x) >= 8" THEN
Aci + = 1,0
ELSE
// introduz um novo prototipo
Adiciona um novo protétipo p°me . 1 cOM:

c
I’rgc+1=X c k -
Gcmc+1 = max k#cA1<=j<=mk{0:R mc+1( rj) <9}
A me+1=1.0
Mg+ =1

ENDIF

/lajusta prototipos conflitantes
FORALL k #c, 1 <=j<=m DO
0% = max{o : R(x) < 6}
ENDFOR
ENDFOR
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Podemos verificar no algoritmo 1 que, inicialmente, todos os pesos recebem valor 0 para
cada protétipo presente na rede. Depois da inicializagdo dos pesos, para cada padrio de
treinamento, verifica-se o valor de sua ativagio e esse valor é comparado com o parametro 0. Se
a ativacdo for maior ou igual ao 0, nio € adicionado um novo protétipo a rede e o peso serd
incrementado de 1. Caso a ativacdo seja menor que o valor do pardmetro 6, um novo protétipo
serd adicionado a rede com o valor do seu centro igual ao vetor de entrada, o peso do novo
protétipo serd igual a 1 e o ndmero de protétipos € incrementado de 1. O préximo passo € fazer os
ajustes nos protétipos conflitantes da forma como descreve o algoritmo 1.

Temos, a seguir, a Figura 12 que demonstra um exemplo de rede utilizando o algoritmo
DDA. Na Figura 12 (a), € inserido um padrdo de treinamento pertencente a classe A do problema
em questdo, criando uma gaussiana. A seguir na Figura 12 (b), um padrao da classe B ¢ inserido,
portanto uma nova gaussiana terd que ser criada, e a gaussiana do padrdo A terd que se ajustar
para passar na intersec¢do do centro de B com o valor 6-. No terceiro passo da Figura 12 (c), um
novo padrdo B € inserido, e como a intersec¢do do seu centro com a gaussiana do padrdo B
anterior € maior que o 6+, a gaussiana € incrementada, tendo seu peso passado para dois. Na
Figura 12 (d), um novo padrdo A & inserido e a intersecdo do centro desse novo padrdo com a
gaussiana A ja existente € menor que o 6+, sendo assim uma nova gaussiana A teve que ser
criada.

ple)
+1
A
E_
Fadmf: da Classe A x Padrio da Classe B
(&) (k)
+32 A +2 P[:}{:]
1 (s
+17 =
At gt ;?C -
B o ; S
Padrac da Classe B e Padrac da Classe A e
(c) (d)

Figura 12. Exemplo da execuc¢ao do algoritmo DDA [6].

Neste trabalho, também utilizamos uma técnica de selecdo do parametro 6- [7, 8, 9]. O
algoritmo DDA com selecdo do parametro 6~ propde a utilizacdo de valores menores que o
default para o pardmetro 0, porém utiliza um método para selecionar um valor 6timo para esse
parametro. O conjunto de dados contendo todos os padrdes que serdo utilizados pela rede neural
RBF-DDA ¢ dividido, inicialmente, em dois conjuntos: conjunto de treinamento e conjunto de
teste. Realizada essa divisdo inicial nos dados, o conjunto de treinamento é novamente dividido
em duas novas partes: uma parte € um novo conjunto de treinamento, e outra parte ¢ utilizada
como um conjunto de validagdo. Esses dois novos conjuntos de dados serdo usados para
treinamento e validacdo da rede respectivamente, com o intuito de alcancar um valor para o
parametro 0° que seja 6timo, ou seja, um valor que proporcione uma taxa de generalizacao ideal
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para a rede, e essa possa classificar novos valores sem a presenca de overfiting. O método para
selecao do parametro 0" usando o algoritmo DDA € mostrado no algoritmo 2.

Algoritmo 2. Algoritmo DDA com selegéo de 6.

B =0 =10"
Trepinar uma RBF-DDA com 6 usando o conjunto de treinamento reduzido e testa com o conjunto de
validacéo para obter ValError = MinValError
REPEAT
9 =6x10"

Treinar uma RBF-DDA com o0 6 usando o conjunto de treinamento reduzido e testar com o conjunto de
validacéo para obter o ValError

IF ValError < MinValError
MinValError = ValError
Oopt =6
ENDIF
UNTIL ValError > MinValError OR© = 10 '°

Treinar uma RBF-DDA com o 6 o usando o conjunto de treinamento completo
Testar o RBF-DDA otimizado com o conjunto de teste

1.1.2 Maquinas de vetor de suporte (SVM)

Miquinas de vetor de suporte (SVM) [11, 12, 13] tém obtido sucesso em um grande niimero de
aplicacdes, que variam desde identificacdo de particulas, identificacdo de face, categoriza¢do de
texto, bioinformdtica e em banco de dados de marketing [11]. O modo como a aproximagado €
realizada tem base na teoria estatistica [12]. SVM funciona construindo um hiperplano N-

dimencional que otimamente separa os dados em duas categorias de forma 6tima [13]. A Figura
13 demonstra um exemplo de como sdo separadas duas categorias.
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Figura 13. Exemplo em duas dimensdes da utilizacdo de SVM como classificador [13].

Na literatura de SVM, uma varidvel de predicdo € denominada atributo, € um atributo
transformado, que é empregado na defini¢do do hiperplano, é chamado caracteristica. A tarefa de
escolher a representa¢do mais satisfatoria € conhecida como selecio de caracteristica. O conjunto
de caracteristicas que descrevem um caso é chamado de vetor. Assim, o objetivo de SVM ¢

modelar um hiperplano 6timo que separa clusters do vetor. Os vetores perto do hiperplano sao os
vetores de suporte. A Figura 14 ilustra bem esses conceitos.
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Figura 14. Exemplo em duas dimensdes dos vetores de suporte [13].
Algumas das principais caracteristicas das SVMs sao:

¢ Boa capacidade de generalizacdo — os classificadores gerados por uma SVM em
geral alcancam bons resultados em termo de generalizacdo. Essa capacidade é
medida por sua eficiéncia na classificacdo de dados que ndo pertencam ao conjunto
utilizado em seu treinamento, portanto, € evitado o overfitting.

e Robustez em grandes dimensdes — as SVMs sdo robustas diante de grandes
quantidades de dados.

e Teoria bem definida — as SVMs possuem uma base tedrica bem estabelecida dentro
da Matematica e Estatistica.

O exemplo descrito nas Figuras 13 e 14 é simples, pois s6 possui duas dimensdes. Nesse
exemplo, assumimos que existem duas categorias, sendo uma categoria representada por
retangulos e a outro por circulos. Nesse caso idealizado, uma categoria se localiza no canto
inferior esquerdo e a outra categoria se localiza no canto superior direito. SVM tentar achar um
hiperplano com uma dimensdo que separe as duas categorias. Existe uma infinidade de
hiperplanos que podem separar essas categorias. Na Figura 14, temos dois exemplos. O
hiperplano do lado esquerdo da Figura 14 tem uma margem de separa¢do pequena, enquanto que
o hiperplano do lado direito da mesma figura tem uma margem de separacdo maior. As linhas
pontilhadas paralelas a linha diviséria marcam a distancia entre essa e 0s vetores mais proximos
da linha. A distancia entre as linhas pontilhadas € chamada de margem. O vetores mais préximos
as linha pontilhadas s@o chamados de vetores de suporte, como descrito no pardgrafo anterior e
ilustrados na Figura 14.

Uma SVM tenta achar um hiperplano de forma que o tamanho da margem seja maximo
para que haja um maior limite de decisao para padrdes nao-lineares dentro do espaco de entrada.
Outra decorréncia disso é que a rede tende a generalizar melhor. Com a margem méaxima hd uma
separacao melhor entre as classes que fazem parte do problema.

SVM se utiliza de fun¢des denominadas kernel. Essas fung¢des sdo capazes de mapear o
conjunto de dados em diferentes espacos, fazendo com que um hiperplano possa ser usado para
fazer a separagdo. Os principais tipos de fun¢des kernel sdo:

: T
® Linear: K(x;,x;)=x; x,



e Polinomial: K(xl.,xj) =(}4cij +r)d,7>0

* Sigmodide: K(x;,x;)= tanh(}xiij +r)

* Fungio de base radial (RBF): K(x;,x;) =exp(=yIlx; —x; 1*),7>0
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A fungao kernel que vamos utilizar serd a funcao de base radial. Esse tipo de kernel utiliza
alguns pardmetros para o treinamento, nos utilizamos dois deles que s@o o C e o V. O parametro
C € o parametro de penalidade do termo de erro (C>0) e V € a validacdo cruzada serd explicada

no Capitulo 3.

1.1.3 Técnica baseadas nos vizinhos mais préximos (NN e kNN)

O método do vizinho mais préximo para classificacdo € simples e preciso [14,15]. Nesse método,
um nodo padrdo é nomeado para a classe do seu vizinho mais préximo de um conjunto de
treinamento rotulado e armazenado. A Figura 15 demonstra como ¢é feita a classificacdo do
método NN. Nela o novo padrao, marcado com uma cruz, serd classificado como floco de neve

(asterisco), devido a esse ser o rétulo do seu vizinho mais préximo.
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Figura 15. Exemplo de classificacdo no método NN [33].

Todos os dados rotulados sdo armazenados e usados no processo, isso faz com que NN
precise de um tempo significativo para executar e também ocupe bastatnte memoria.

O método kNN utiliza também a influéncia dos vizinhos. Entretanto, classifica seus
padrées de acordo com uma matriz de votos dados por seus k vizinhos mais préximos. O

funcionamento desse método € explicado dessa forma [24,38]:

Calcula-se as distancias das amostras;
Agrupa-se as amostras por proximidade;

el

A classe que possuir mais votos fica com o padrao.

Os vizinhos mais proximos ddo seus votos para sua classe;

Uma das grandes vantagens do kNN é que ele ndo depende da distribuicdo dos dados,

sendo mais indicado para classificagdo de dados assimétricos.
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O ideal quando se escolhe o nimero k de vizinhos, € escolher um ndmero impar para
evitar que duas classes possuam o mesmo numero de votos na escolha da classe de um
determinado padrao.

1.2 Sistemas de Detecc¢ao de Intrusao (IDS)

1.2.1 O que é um IDS?

Ataques a computador lancados a partir da Internet, sdo capazes de causar danos enormes, devido
ao aumento da importancia dos servigos fornecidos pela rede. Esses ataques crescem cada dia, o
que pode ser comprovado a partir de dados estatisticos de 6rgdos como CERT e NBSO [19]. E
complicado prevenir ataques com politicas como firewalls, politicas de seguranga ou outros
mecanismos, pois os sistemas e aplicativos possuem fraquezas desconhecidas ou falhas (bugs).
Além disso, freqiientemente, os atacantes exploram vulnerabilidades desses sistemas e/ou
protocolos de rede. Sistemas de detec¢do de intrusdo sdo projetados para descobrir ataques que
inevitavelmente acontecem, mesmo com a aplicacdo das politicas de seguranca [16].

O processo de deteccdo de intrusdo se caracteriza por identificar e relatar atividade
maliciosa agindo em computadores e/ou recursos da rede [17]. Tendo em mente essa definicao de
deteccao, podemos definir, ainda, um sistema de detecc¢ao de intrusdo como sendo: um sistema de
hardware e software que trabalham unidos para identificar eventos inesperados que podem
indicar se um ataque ird acontecer, estd acontecendo ou aconteceu [17]. A fun¢do de um IDS
pode ser também, além de detectar e identificar um ataque, responder ao ataque ativando medidas
preventivas e alertando o administrador de rede. Um IDS coleta informagdes de uma variedade de
sistemas e recursos da rede e assim analisa essas informacdes para verificar se hd algum sinal fora
da normalidade. As principais fun¢des executadas por um IDS sao [18]:

¢ Andlise e monitoracdo do usudrio e do sistema;

¢ Avaliacdo da integridade critica do sistema e seus arquivo de dados;
e Reconhecimento de padrdes de atividades que indiquem um ataque;
¢ Informacgdo ao processo de deteccao.

1.2.2 Conceitos e tipos de um IDS

Alguns conceitos sdo inerentes a sistemas de detec¢ao de intrusd@o como [17]:

® Ataque: acdo inteligente que pde em risco o funcionamento de um sistema, explora
vulnerabilidades inerentes ao sistema ou inerentes ao protocolo de rede;

¢ Vulnerabilidade: ¢ uma falha que pode ter origem no sistema operacional, no
protocolo de rede ou em servicos de qualquer componente no sistema que permita
acesso ou intervengdo de pessoas ndo autorizadas.

e Sensor: principal parte de um IDS, cuja funcdo € monitorar um host ou rede a fim
de identificar intrusdes gravar logs localmente e gerar mensagens alertando tais
eventos;

e Estacdo de gerenciamento: é uma estacdo encarregada de gerenciar um ou mais
sensores;
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¢ Evento: ¢ uma ocorréncia, detectada pelo sensor, na base de dados;
e Respostas ou contramedidas: acdes que podem ser programadas na ocorréncia de
um determinado evento.

O propésito de um IDS € distinguir entre intrusos e usudrios. Devido a enorme
complexidade das redes atuais, essa distincdo se torna dificil. Isso pode acarretar perda de
desempenho dos IDS. Desse problema descrito, podemos apresentar dois conceitos inerentes, o
dos falsos positivos e falsos negativos. Os erros de falso positivo ocorrem quando o sensor do
IDS interpreta mal uma conexdo normal, classificando-a como um ataque. Esse erro pode
degradar a produtividade do sistema pela ativagdo desnecessdria de contramedidas. Os erros de
falso negativo sdo fatais, pois acontecem quando uma conexao de ataque € classificada como uma
conexao normal.

Virias classificacdes existem para definir o tipo de IDS. Uma delas € classifica-lo quanto
a tecnologia do analisador de eventos, que € a parte do sensor responsavel pela identificagao dos
ataques. O analisador de eventos pode ter como tecnologia [17]:

e Anilise de assinaturas: seu funcionamento é similar a de um antivirus. E o método
mais utilizado.

¢ Andlise estatistica: constréi modelos estatisticos do ambiente baseados em fatores
como: duragdo média de uma sessao de telnet [37], por exemplo. Qualquer desvio
comportamental do sistema pode ser classificado com suspeito.

e Sistemas adaptativos: inicia generalizando regras de aprendizado para o ambiente
em que estd inserido, e entdo determinar o comportamento dos usudrios com o
sistema. Passado esse periodo, o sistema estard apto para distinguir entre conexdes
normais e ataques.

1.2.3 IDS utilizando aprendizagem de maquina

O proposito deste trabalho, como ja foi descrito, € identificar qual técnica de aprendizagem de
madquina fornece melhores resultados, ou ainda, se adapta melhor para sistemas de detec¢do de
intrusdo. Para isso o tipo de IDS que trabalha com aprendizagem de mdquina sdo os sistemas
adaptativos descritos na Se¢ao 1.2.2.

As técnicas de aprendizagem de maquina se inserem em um IDS no analisador de eventos,
que por sua vez, em geral, parte do sensor, e € responsavel pela classificacdo das conexdes. Como
foi descrito na Secdo anterior, a implementacido desses sistemas obedece a duas fases distintas.
Na primeira fase, chamada de fase de treinamento, a técnica comeca a aprender o funcionamento
do sistema em questdo e como os usudrios interagem com o mesmo. Na segunda fase, o sistema
comega a fazer interpolagdes e extrapolagdes daquilo que ele aprendeu na fase de treinamento e,
desse modo, ele estard habilitado para realizar a distin¢cdo das conexdes, ou seja, classificd-las em
normais ou ataques.

1.2.4 Arquitetura de um IDS

Todo IDS possui alguns componentes em comum; cada um responsavel por uma parte importante
na deteccdo de alguma anormalidade danosa ao sistema. A seguir, temos um exemplo de
arquitetura proposto pela IDWG (Intrusion Detection Exchange Format Working Group) [39].
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Figura 16. Componentes de um IDS segundo o IDWG [39].

Na Figura 16, podemos visualizar o papel de alguns componentes descritos na se¢ao 1.1.2.
A origem dos dados geralmente € representada pela Internet e apresenta um grande volume de
informacdes. O sensor responsdvel pela obtencao dos eventos gerados fora do IDS, realizando um
pré-processamento nos dados para adequé-los ao analisador de eventos que, geralmente, faz parte
de um sensor, e sua funcdo é analisar os dados pré-processados do sensor e classificar em
conexdao normal ou ataque. Essa estrutura bdsica também contempla o gerente que vai ser
notificado sobre o ataque, o administrador da rede, responsdvel pelas politicas de seguranca e, por
sua vez, da configuragdo do IDS. A origem dos dados, na maioria dos casos, é a Internet. O
volume de dados advindos da Internet € grande. Também temos a figura do operador que vai
tomar as devidas providéncias para barrar o ataque eminente na rede.

A parte mais importante de um IDS € o analizador de eventos, pois é ele quem vai
classificar as conexdes contidas no trifego como normal ou anormal. Como ele necessita
processar um volume grande de informacdes em um curto espaco de tempo, poderia se pensar em
uma implementacdo em hardware, para 0 mesmo.

1.2.5 Estudo de caso: SNORT

O snort é um IDS de cdédigo aberto, largamente utilizado em empresas. Desenvolvido pela Martin
Roesch, executa andlise de protocolo, busca/associa padrdes de contetido e pode ser usado para
detectar uma variedade de ataques e probes (ferramentas de varredura da rede), tais como buffer
overflows, stealth port scans, ataques CGI, SMB probes, OS fingerprinting, entre outros. Uma
caracteristica relevante € a capacidade de gerar alertas em tempo real. Sua utiliza¢do € indicada
para empresas de pequeno porte.

Arquitetura do snort

A implementacdo do snort segue uma arquitetura modular, cujo objetivo € melhorar o
desempenho na coleta e andlise de pacotes. Seus principais subsistemas sao:

e Pré-processamento: Disposto entre o analisador de pacotes e o processamento do
mecanismo de deteccdo, decodifica o pacote;
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¢ Deteccao: Ocorre durante o processamento do mecanismo de deteccao;
e Saida: é executado apds o processamento do mecanismo de deteccdo, para registrar e

alertar.

Abaixo (Figura 17) segue a arquitetura do snort.
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Capitulo 2

Base de Dados

Neste Capitulo, iremos descrever a base de dados utilizada para o treinamento das técnicas de
aprendizagem de maquina a serem comparadas, bem como os ataques contidos nela.

2.1 Descricao

A base de dados utilizada neste trabalho é a KKD cup 1999 data [20]. Esta base foi concebida
através da simulagdo de um ambiente de uma rede militar da for¢a aérea dos Estados Unidos. O
objetivo da sua concepg¢do era inspecionar e avaliar o estudo de deteccao de intrusdo, através de
pesquisas. A rede foi operada em um ambiente real, sendo alimentada por conexdes TCP dump,
mas foi sendo bombardeada por uma seqii€éncia de multiplos ataques. Para cada conexao foram
extraidas 41 diferentes caracteristicas, tanto qualitativas quanto quantitativas, formando um banco
de dados com aproximadamente cinco milhdes de conexdes [2, 21, 22].

A conexdo € uma seqiiéncia de pacotes TCP, comecando e terminando em tempos bem
definidos, com fluxos de dados entre um IP de origem e um IP de destino, funcionando em cima
de um protocolo bem definido. Cada uma das conexdes € rotulada como uma conexao normal ou
como um tipo de ataque. Cada conexao gravada tem aproximadamente 100 bytes. Na Tabela 1,
temos algumas caracteristicas inerentes a esta base.

2.2 Tipos de Ataques

A base de dados possui quatro tipos de ataques principais. A seguir vamos descrever cada um
deles e mencionar quais sdo os ataques pertencentes a cada tipo [2, 20, 21].
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Tabela 1. Caracteristicas da base kdd cup 1999

Caracteristica Descricao Tipo
Duration Tamanho da conexdo (em segundos) Continuo
Protocol_Type Tipo de protocolo discreto (tcp, udp, ...)
Service Servigo de rede no destino discreto (http, telnet ...)
Flag Status da conexao (normal ou erro) discreto (normal ou erro)
Src_Bytes nimero de bytes dos dados da origem para o destino Continuo
Dst_Bytes nimero de bytes dos dados do destino para a origem Continuo
Land 1 se a conexdo é do/para o mesmo host/porta; 0 caso contrdrio | discreto (0,1)
Wrong_Fragment nimero de fragmentos errados Continuo
Urgent nimero de pacotes urgentes Continuo
Hot nimeros de indicadores chave "hot" Continuo
Num_Failed_Logins nimero de tentativas com login falhando Continuo
Logged_In 1 se login com sucesso; 0 caso contrario discreto (0,1)
Num_Compromised Numeros de condi¢des "comprometidas” Continuo
Root_Shell 1 se obtive root shell; O caso contrario Continuo
Su_Attempted 1 se superusudrio foi tentado; 0 caso contrdrio Continuo
Num_Root numero de acessos como root Continuo
Num_File_Creations nimero de operagdes de criagdo de arquivos Continuo
Num_Shells nimero de prompts shell Continuo
Num_Access_Files nimero de operagdes de controle de acesso em arquivos Continuo
Num_Outbound_Cmds | Nimero limite de comandos em uma sessio ftp Continuo

Is_Host_Login

1 se o login pertence a uma lista "hot"; 0 caso contrario

discreto (0,1)

Is_Guest_Login

1 se o login € um convidado; 0 caso contrario

discreto (0,1)

nimero de conexdes para um mesmo host como a conexdo

Count corrente nos ultimos 2 segundo Continuo
nimero de conexdes para um mesmo Servigo como conexao

Srv_Count correntes nos tltimos 2 segundos para este servid Continuo
% de conexdes que possuem erros "SYN" (bit do cabegalho

Serror_Rate TCP utilizado para estabelecer e derrubar uma conexao) Continuo

Srv_Serror_Rate % de conexdes que possuem erros "SYN" para este servico Continuo
% de conexdes que possuem erros "REJ" (bit do cabecalho TCP

Rerror_Rate utilizado para informar que um pacote nio chegou) Continuo

Srv_Rerror_Rate % de conexdes que possuem erros "REJ" para este servigo Continuo

Same_Srv_Rate % de conexdes para 0 mesmo servigo Continuo

Diff Srv_Rate % de conexdes para diferentes servicos Continuo

Srv_Diff Host_Rate % de conexdes deste mesmo servigo para hosts diferentes. Continuo

® DoS (Denial of Service): Também chamado de ataque de negacdo-de-servico, se
caracteriza por deixar um servi¢co ou rede parada ou muito lento. Ha diferentes
formas de se lancar um ataque do tipo DoS: abusando de caracteristicas inerentes
aos computadores (por exemplo, respostas ao ping do ICMP), identificando falhas
de implementagdes e explorando configuracdes erradas dos sistemas. Eles podem
ser classificados de acordo com os servigos que eles deixam indisponiveis, a Tabela

2 a seguir mostra alguns exemplos de ataques do tipo DoS.
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Ataque Servico Mecanismo Efeito do ataque
Apache2 http Abuso Colisdes http
Abuso/Falha de
Back http Implementacéo Resposta do servidor fica mais lenta
Land http Falha de Implementacdo | Trava a maquina
Mail Bomb N/A Abuso Aborrecimentos
Negacéo de servigo para uma ou
SYN flood TCP Abuso mais portas
Ping of death |lcmp Falha de Implementacdo | Nenhum
Process table | TCP Abuso Negacdo de novos processos
Smurf Icmp Abuso Rede lenta
Syslog Syslog Falha de Implementacdo |Para o Syslog
Teardrop N/A Falha de Implementacdo | Reinicia a maquina
Udpstrom Echo/Chargen | Abuso Rede lenta
® Probing: Nessa classe, o0s ataques se caracterizam por varrer a rede

automaticamente a procura de vulnerabilidades para serem exploradas. Esse tipo de
ataque € bastante util para um intruso que pretenda atacar futuramente, pois através
dele € possivel criar um mapa da rede contento médquinas e servicos. Geralmente,
abusam de alguma caracteristica inerente ao computador .Alguns tipos de Probing
podem ser vistos na Tabela 3.

Tabela 3. Ataques Probing

Ataque | Servico |Mecanismo Efeito do ataque

Ipsweep | lcmp Abuso de caracteristica | Identifica maquinas ativas

Mscan Many Abuso de caracteristica | Procura por vulnerabilidades conhecidas
Nmap Many Abuso de caracteristica | Identifica portas ativas na maquina

Saint Many Abuso de caracteristica | Procura por vulnerabilidades conhecidas
Satan Many Abuso de caracteristica | Procura por vulnerabilidades conhecidas

e R2L (Remote to user attacks): Chamado de ataque de um usudrio remoto (R2L),
essa classe se caracteriza pelo envio de pacotes a uma maquina de uma rede, a partir
dai sdo exploradas vulnerabilidades da mdaquina para ganhar acesso ilegal de
usudrio local. Alguns ataques R2L estdo descritos na Tabela 4.

Tabela 4. Ataques R2L

Ataque | Servico Mecanismo Efeito do ataque
Telnet, rlogin, pop, Abuso de

Dictionary | ftp, imap caracteristica Ganha acesso de usuario

Ftp-write | Ftp Configuragéo errada | Ganha acesso de usuario

Guest Telnet, rlogin Configuracéo errada | Ganha acesso de usuario
Falha de

Imap Imap implementacao Ganha acesso de usuario
Falha de

Named Dns implementacao Ganha acesso de usuario
Falha de Executa comandos como usuario de

Phf http implementacao http
Falha de Executa comandos como

Sendmail | Smtp implementagéo administrador

Xlock Smip Configuracao errada | Usa Spoof para obter a senha

Xnsoop | Smtp Configuragéo errada | Monitora chaves remotamente
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e U2Su (User to root attacks): Essa classe de ataques se caracteriza por iniciar o
ataque como um usudrio normal no sistema e explorar vulnerabilidades para ganhar
acesso de usudrio root do sistema. A maioria das exploragdes dessa classe se da
através de estouro de pilha (buffers overflows) que ocorre quando um programa
copia muitos dados para um buffer estitico, sem ter a certeza que os dados se
ajustardo. A Tabela 5 mostra alguns tipos desse ataque:

Tabela 5. Ataques U2Su

Ataque Servico Mecanismo Efeito do ataque
Sesséo do

Eject usuario Estouro de pilha Ganha acesso de administrador
Sesséo do

Ffbconfig usuario Estouro de pilha Ganha acesso de administrador
Sesséo do

Fdformat usuario Estouro de pilha Ganha acesso de administrador

Falha no carregamento de
Sesséo do programas que limpam o
Loadmodule | usuario ambiente Ganha acesso de administrador
Falha no carregamento de
Sesséo do programas que limpam o

Perl usuario ambiente Ganha acesso de administrador
Sesséo do Falha no gerenciamento de

Os usuario arquivos temporarios Ganha acesso de administrador
Sesséo do

Xterm usuario Estouro de pilha Ganha acesso de administrador

O gréfico da Figura 18, mostra a quantidade de cada ataque na base de dados kdd cup
1999. A maior parte desses ataques sdo da classe DOS.
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Figura 18. Quantidade de cada ataque na base kdd cup 1999 [2].
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2.3 Formatacao

A base de dados original, como j4 foi mencionado, possuia 5 milhdes de conexdes. Existe no
mesmo repositorio da base original uma base que representa 10% de todas essas conexdes e esta
base possui 494.021 padrdes, com essa quantidade o trabalho ficaria invidvel, devido a grande
necessidade de processamento e tempo para realizar os experimentos. Alguns trabalhos com essa
base de dados [2,21] utilizaram bases de tamanho inferior ao da base 10% da original. Decidimos
reduzir a base de dados para 15000 padrdes, escolhidos aleatoriamente, e cada tipo de ataque teve
sua quantidade baseada na proporcionalidade com essa base que representa 10% da original,
excetuando os ataques do tipo U2Su no qual foram inseridos alguns padrdes a mais. Ao final
dessa divisdo, cada classe da base ostentava a seguinte quantidade:

Normal: 2953 padroes;
DoS: 11874 padroes;
Probe: 124 padroes;
R2L: 38 padrdes;
U2Su: 11 padrdes.

Também decidimos subdividir essa base em cinco outras de forma que sempre
contivessem os padrdes normais, essa separacdo foi realizada pelo fato de que no mundo real
termos conexdes normais e ataques fazendo parte do trifego de entrada numa empresa. Por
conseguinte, as bases criadas foram:

e Normal + Ataques: essa base possui os 15000 padrdes, porém s6 duas classes de
saida que sao a classe normal e a ataques (contém os quatro tipos de ataques);
Normal + DoS: essa base possui 14827 padrdes;

Normal + Probe: essa base possui 3077 padrdes;

Normal + R2L: essa base possui 2991 padroes;

Normal + U2Su: essa base possui 2964 padrdes;

Apés a separagdo das bases, foram feitas as normalizacdes necessdrias para tornd-las
utilizaveis pelos respectivos simuladores (ver Capitulo 3). A normalizacdo foi realizada seguindo
0s seguintes principios:

e Hi na base atributos representados por nomes; para cada atributo desse, foi
realizado uma normalizacdo, da seguinte forma: para cada nome contido em um
atributo foi criada uma nova entrada. Assim, a base passou a ter 109 entradas e nao
mais as 41 originais; o valor 1 foi atribuido, se 0 nome de um determinado atributo
existir para aquele padrdao, e 0 caso contrdrio. Para exemplificar esse processo,
tinhamos na base de dados um atributo que representava trés protocolos (TCP, UDP
e ICMP). Para cada protocolo foi criada uma nova entrada, e, se para um
determinado padrao, o TCP fosse utilizado, a sua coluna teria o valor 1 e as demais,
UDP e ICMP, seriam 0. A representacdo para o TCP seria entdo 1 0 0, jd o UDP
seria0 1 0 e por suavez o ICMP 00 1;

e Para cada tipo de ataque foi criada uma coluna. Assim a base de dados passou a ter
uma saida para cada ataque. As bases explicadas anteriormente passaram a possuir
2 saidas cada;
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® Os dados foram normalizados, antes da realizacdo do treinamento, deixando seus
valores entre 0 e 1 obedecendo a equagdo abaixo, lembrando que essa equagdo é
para cada célula da tabela:

Xnovo = (Xreal — Xmin) / (Xmax — Xmin)

Onde, Xmax € o valor maximo de um determinado atributo e Xmin é o valor
minimo de um determinado atributo.

e Para cada simulador foi inserido seu respectivo cabecalho, bem como algumas
modificacOes que foram necessarias;

e Os arquivos foram salvos seguindo a extensao de cada simulador.

Ao todo foram gerados 20 arquivos diferentes, sendo: 5 para MLP, 5 para RBF-DDA, 5
para SVM e 5 para NN e kNN.
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Capitulo 3

Experimentos e Resultados

A finalidade deste Capitulo € descrever como foram realizados os experimentos, bem como
analisar os resultados obtidos e tracar um estudo comparativo entre as técnicas empregadas de
aprendizagem de maquina empregadas, levando em consideragdo alguns fatores como: tempo de
processamento, erro de validagdo cruzada e complexidade do classificador gerado.

3.1 Ferramentas utilizadas
3.1.1 SNNS (Stuttgart Neural Network Simulator)

O SNNS, simulador utilizado no treinamento de varios tipos de redes neurais, foi desenvolvido
em 1989 pelo Instituto Para Sistemas Paralelos e Distribuidos de Alta Desempenho (Institute For
Parallel And Distributed High Performance Systems) (IPVR) da Universidade de Stuttgart na
Alemanha [23]. O objetivo da sua criacdo era prover uma ambiente de simulacdo eficiente para
pesquisa e aplicacdo de redes neurais artificiais. A versao do SNNS utilizada neste trabalho foi a
4.2 para o Windows.

Basicamente o SNNS € dividido em quatro partes principais [25]:

e Um simulador de kernel escrito em C: o kernel opera sobre uma representacio
interna das redes neurais e é responsdvel por todas as operagdes sobre as estruturas
de dados que a compde;

e Uma interface grafica para interacdo com o usudrio: trabalha sobre kernel,
fornecendo uma representacao grafica para as redes neurais e controlando o kernel
durante a execu¢do do programa;

¢ Uma interface para execucdo em batch (batchman);

¢ Um compilador de redes, o snns2c.
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A seguir, na Figura 19, temos a interface inicial do SNNS.

[ FILE [ coWTroL |[__IWFo_ | [_DIsPLAY | [2DDIsPLAY| [ GRAPH | [_EBIGHET |

[_FRUNING | [ cAscADE | [ KOHOMEH | [ WEIGHTS | [PROJECTION| [ ANALYZER | [INUERSION|

[[FRINT _|[__HELF | [ cLASSES |
SHHS 4.2 (c) 1990-98 SHHS-Group at IPYR and HSI |
* o2

STUTTGART NEURAL METWOEK SIMULATOR

SNNS

V4.2

Andreas Zell, Gimter hamier, Michael Vogr
Miels MMache, Tilman S orarier, Ralf Hibner
Mfichael Bchmalzl, Tobias Soyez, Sven Diring, Dietrar Posselt
Kai-Uwe Herrroann, Artemis Hatzigeorgion

external contabutions by:

Iartin Riedrmiller, Heike Speckmann, harmin Beczko
Jarnie Deloster, Jochen Biedermarm, Joachim Dranz, Chedstan Wehrfntz
Randolf Wemer, MMichael Berthold

{c) 1990-95, IPVR, University of Stuttgart
(o) 1996-98, WS, University of Tibingen

Figura 19. Tela inicial do SNNS.
Utilizando o SNNS para criacao de uma rede

O SNNS foi utilizado neste trabalho para treinamento com redes neurais RBF, como j4 havia sido
mencionado anteriormente. O primeiro passo para criagdo dessas redes no SNNS € ir ao painel
inicial (ver Figura 19), pressionar o botdo BIGNET e escolher a opc¢do general. Neste local
escolhemos o tipo da rede. Existem outros tipos, porém o utilizado para redes RBF é o geral
(general). Na Figura 20, visualizamos o formuldrio para criacdo da rede. Nele definiremos a
quantidade de nodos em cada camada e como as camadas estardo conectadas. A defini¢cdo do
nimero de nodos € feita no local indicado na Figura 20 pela topologia da rede, para o nosso
exemplo particular foram colocados 109 nodos na camada de entrada, nenhum nodo na camada
intermedidria € 2 nodos na camada de saida. A camada intermedidria ficard vazia, pois o
algoritmo de treinamento que utilizamos para RBF foi o DDA (ver se¢ao 1.1.1.4) e nele a camada
escondida é construida a medida que o treinamento ocorre. Esse algoritmo também define a
forma com que os nodos vao se ligar aos nodos da camada seguinte, ndo sendo necessario fazer a
op¢do por uma rede totalmente conectada (isso seria feito utilizando a opg¢ao full conection, na
Figura). A seguir, ap6s definir tudo isso pressionamos o botdo create net para criar nossa rede.
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"% Topologia daTeds

Corecta todos os
riodos de maa
cattada para ;oTa

Figura 20. Definicdo da topologia da rede no SNNS.

Com a rede criada e, conseqiientemente, a topologia definida o dltimo passo a ser

realizado € salvar a rede. Para salvar vamos ao painel principal do SNNS e escolhemos a op¢ao
FILE, a Figura 21 € a tela que serd aberta. Como podemos visualizar, no lado direito da tela
existem os tipos de arquivos que o SNNS trabalha, os principais sdo:

e NET: arquivo usado para definir a rede, contém todas as informagdes necessarias

para a rede neural;

e PAT: essa extensdo ¢é utilizada para definir o arquivo que conterd os padroes, esses
arquivos, para funcionarem corretamente no SNNS, requerem um cabecalho;

e RES: extensdo para os arquivos de resultados que sdo gerados apds o treinamento e
teste da rede neural, eles servem para fazer avaliacao dos resultados obtidos. Esses
arquivos sao analizados um de cada vez.
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T8} SNNS file browser

D :%5HNSbin,

r—.

[Building]l

[Proj serie Tenpor
[Projeto de RBF e
[redes antigas]
[treinanento KDD cdl (eS| Result File
cancer
cancer2 CF Config
hahernan(l .
kedd T=T | Log File
kdd2
kdd03
kddae
kddcup
kddnlp

i
o

Hetwork

Patterns

-
jus)
(7] ey

Figura 21. Tela salvar e carregar arquivos do SNNS.

Além de criar e treinar a rede, o SNNS também possui uma ferramenta para anélise dos
resultados, o analyze. Essa ferramenta atua sobre os arquivos de resultados gerados pelo
treinamento, informando qual foi o percentual de acerto para o teste de determinada base, quantos
padrdes foram classificados corretamente, incorretamente e ndo conhecidos, dentre outros. A
Figura 22 ilustra o uso do analyze.

B C:\WINDOWS\system32\cmd.exe -3 ﬂ

D:~SMNS~bhin>analyze —e UYIA -5 —-i kddrbfMORMALtestel.res £j
STATISTICS ¢ 7808 patterns 2

urong : 1.53 » <« 187 patternds) >
right : 98.47 » ¢ 6893 patterndis)
unknown : ¢ @ patternis) 2

A.8a
28350264320 . AHBBAA
D:~SNNS~bhin>

-
4 Bl

Figura 22. Tela da ferramenta analyze.

error

3.1.2 LIBSVM

LIBSVM [26, 2, 21] € um simulador para classificag¢do, regressdo e estimagao de distribui¢ao de
maquinas de vetor de suporte (SVM). Ele possui uma interface com o usudrio simples e de facil
manipulacdo. Ele contém alguns softwares auxiliares como, por exemplo, o svmscale, que
normaliza base de dados. Na proxima Secdo desse Capitulo veremos o conceito de validagdao
cruzada, que foi utilizado no treinamento de todos os métodos presentes neste trabalho. Ao
contrdario do SNNS, que ndo implementa a validacdo cruzada como opg¢do para treinamento, o
LIBSVM o faz. Portanto € s6 inserir um comando e temos a validacdo cruzada para esse
simulador.
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O LIBSVM disponibiliza um applet para visualizarmos exemplos de classificacdo e
regressao, porém esse applet serve apenas para demonstracdo. A Figura 23 demonstra os
resultados da sua execugao.

B run | ciear| save | Loao [t2-c 100 B | ciear | save | Loaa [z -c 100

Figura 23. Applet do LIBSVM [13].

Como podemos visualizar na Figura 23, temos 3 classes diferenciadas pela cor. Quando
executamos o applet sdo tragadas regides que representam as trés classes de forma que a regiao
deva possuir o maior nimero possivel de padrdes.

Para treinarmos SVMs em problemas reais, utilizamos o prompt de comando. O LIBSVM
disponibiliza uma série de aplicativos para treinamento e teste de base de dados; um deles € o
svmtrain utilizado para realizar treinamentos. A Figura 24 demonstra a utilizagao desse aplicativo
para uma das bases de dados do trabalho.

BE¥ C:\WINDOWS\system32\cmd.exe L ]I:I|3J
D:~EUM~1ibsumswindows >sumtrain.exe —s B —c 1680 —g A.5 21 H
23

optimization finished, Hiter = 748
nu = B.00A8A7

o b j -1A.726883, rho = -A.267237
nsU 4%, nB5U = @

Total nSU = 49

D:sSUMNlibsumswindows >
< _*H

Figura 24. svmtrain[13].

Como podemos visualizar existem alguns parametros que sao usados para o treinamento.
Os parametros utilizados neste trabalho foram:
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e -s: tipo de SVM, a op¢do 0 indica que vamos realizar classificacdo com a base de

dados;

® -c: custo, define o parametro C do SVM;
e -g: gama, define o parametro gama na funcao do kernel RBF.

Neste trabalho, utilizamos um outro parametro, denominado nimero de folds de validacdo
cruzada que vai ser explicado na préxima Secdo. A Figura 25 apresenta a utilizacdo do
treinamento do LIBSVM com validacdo cruzada. Nela podemos visualizar a inser¢do de um
parametro para o treinamento (-v), ele vai indicar que serd utilizada a validacdo cruzada e o

nimero seguinte a ele indica a quantidade de conjuntos que serd utilizada.

B C:\WINDOWS\system32\cmd.exe

~[o]x

Cadl

optimization finished, H#iter
nu = A.AAAA11

ohj = -1A8.651258, rho = -A.2
nSU = 46, nBSU =@

Total nSU = 46

Cadl

optimization finished, H#iter
nu = B.AABAEAZ

ohj -8.238076,. rho -A.38
nSsU 42, nB5U = @

Total nSU = 42

a3

optimization finished, #iter
nu = B.AA6BAAY

ohj -6.998659, rho -A.55
nSsU 37. nB5U =@

Total nSU = 37

Cross Ualidation Accuracy =

D:rSUH\lihsum\winduws}
4

D:~SUM~1libsumswindows *sumtrain.exe s @ —c 1888 g A.5 v 3 »21

= 732
58544

= 686
2182

= 214
837

99.8328x

=
|

2

Figura 25. svmtrain com valida¢do cruzada.

z

Um outro aplicativo importante € o svmpredict. Esse aplicativo é utilizado para
classificacdo, porém com uso da validacdo cruzada, temos os resultados fornecidos pelo

svmpredict sem precisar executd-lo . A Figura 26 mostra a execucdo desse aplicativo.

B3 C:\WINDOWS\system32\cmd.exe

~[a]

D:~SUH~1ibsuvmswindows >

1

D:sSUM~1libsumwindows *sumpredict .exe RZLteste RZL.model R2Lout
Accuracy = 188x (149114913 {classification’

Mean squared error = B (regression’
Sgquared correlation coefficient = 1 {regressionr

Figura 26. Tela do svmpredict.

=

5
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3.1.3 WEKA (Waikato Environment for Knowledge Analysis)

Simulador desenvolvido na Universidade de Waikato na Nova Zelandia, implementado em Java,
possui uma interface grafica amigavel, bem como um formato de arquivo peculiar (.arff) para as
bases de dados. O WEKA possui implementacdes de vdrias técnicas de aprendizagem de
maquina. No nosso trabalho, este simulador foi utilizado para os treinamentos com MLP, NN e
kNN. A tela inicial do WEKA pode ser visualizada na Figura 27. A versao desse software
utilizada no trabalho foi a 3.4.5 [27].

"+ Weka GUI Choo... [Z][ﬁ]w

Waikato Environment For
Knowledge Analysis

Wersion 3.4.5

{c) 1999 - 2005
University of Waikato
Mew Zealand

Explorer

Experimerter KrioweledgeFlow

Figura 27. Tela inicial do WEKA [27].
Como podemos observar na Figura 27, a interface grafica nos oferece 4 opcoes:

e Simple CLI — nesse modulo, utilizamos os comandos de linha (prompt) para
realizarmos nossos experimentos;

e FExplorer — serve para pré-processar a base de dados e realizar os experimentos
através de uma interface gréfica;

e FExperimenter — compara diferentes técnicas de aprendizagem de mdaquina tanto na
classificacdo como na regressao;

® KnowledgeFlow — uma nova interface grafica para o WEKA.

Dessas opg¢des oferecidas, a unica utilizada foi a Explorer. Primeiramente, tivemos que
realizar um pré-processamento na base de dados para adequi-la ao padrio do WEKA. Um
exemplo desse arquivo serd mostrado em detalhes no apéndice A. A base de dados possui um
cabecalho peculiar e serd gravada com a extensdo .arff. A Figura 28 apresenta a pdgina do
WEKA onde carregamos a base de dados e temos a possibilidade de fazer as normalizagoes.
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0 Weka Explorer g@
Preprocess | Classify | Cluster | Assaciate | Select attributes | Visualizz |
l Cpen file. .. ] [ Qpen LURL... ] [ Cpen DE... Und Edit... ] [ Save.., ]
Filter |
Current relation Selected attribute |
Relation: uzr Mame: duration Type: Mumeric
Instances: 2964 Attributes: 42 Missing: 0(0%) Diskirck: 26 Unique: 17 (1%}
Attributes | statistic Yalue
!Minimum 0
all ] [ Maone ] [ Inverk ] [Masirum 703
= | [Mean 0.937
Mo, Marne | |StdDew 16,544
1 ]duration ()
2[Jprotocol_type :_..' I — =4
3 :service L || class: akaques {MNom) vc Visualize Al
4| Jflag = |
5| Jsrc_bytes
6 dst_betes
7 land
8| Jwrong_fragment
9| Jurgent =
10 Jhat el
Remaove
T T 1
i 354 708
Status
oK Log w x0

Figura 28. Abrir arquivo para treinamento no WEKA.

A opcao filter, como mostrado na Figura 28, ¢ onde serd realizada a escolha da forma
como queremos normalizar a base, bem como realizar também outros ajustes.

Para efeito de classificagdo temos que escolher a aba classify. Nela, podemos optar pela
técnica que utilizaremos bem como inserir os parametros referentes a cada uma delas antes do
treinamento.

Para escolher o algoritmo de treinamento vamos até classifier, apds pressionarmos o botao
choose podemos visualizar na Figura 29, as op¢des de técnicas disponiveis no WEKA. Para
inserir os parametros necessarios para o treinamento, clicamos com o botdo direito do mouse no
nome da técnica de treinamento. Em fest options escolhemos a técnica de validacdo cruzada, que
vai ser explicada na pr6xima Sec¢ao.
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& Weka Explorer Q |

| Preprocess| Classify | Cluster || Associate | Select attributes | Visualize |

Classifier

| i
[ Choose  [MultilayerPerceptron -L 0.3 M 0.2 M 500-¥ 0-50-E20-Ha |

Test options Classifier output

() Use training set

() Supplied test set Set..,
(%) Cross-validation  Folds 10
() Percentage split o | 66
[ More options. .. ]
|Click left mouse button while holding <alk> and <shift > to display a save dialog. |
(Mom) ataques lvl

Reesult list (right-click For options)

Skatus
- ot

Figura 29. Escolha da técnica de aprendizagem de mdquina no WEKA.

Como podemos notar na Figura 30. A WEKA nos oferece uma variedade de técnicas de
aprendizagem de madaquina para utilizarmos. Neste trabalho, utilizamos as técnicas
MultilayerPerceptron presentes nos conjunto de técnicas functions e IB1 (NN) e IBK (kNN)
presentes no conjunto lazy. .

25 Weka Explorer ﬁ
| Preprocess | Classify | Cluster || Assaciate || Select attributes || visualize |
Classifier

_Jweks |
=7 classifiers

igr outpuk

+- ] Functions

F- ] lazy

-] meta

F- ] trees

’:_?__l rules
= ConjunctiveRule

DrecisionTable

FRip

MSRules

MMge

ek,

F&RT

Prism

Ridar

Zoror

ssssssssns

[ Click left mouse button while holding <alt= and <shi

Stakus

ok Log W x 0

Figura 30. Visualizacdo das técnicas de aprendizagem do WEKA.
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3.2 Validacao Cruzada

Validagdo cruzada [40] é uma técnica que propicia estimar a capacidade de generalizacdo de um
classificador. Essa técnica consiste em dividir o conjunto de treinamento em K-partes
aproximadamente iguais. Uma dessas partes serd o subconjunto a ser utilizado para teste. A cada
execugao do experimento esse conjunto vai mudando.

Para poder exemplificar a técnica da validacdo cruzada utilizada em todas as técnicas de
aprendizagem de maquina, imagine uma base de dados com 3.000 padrdes; vamos desenvolver o
treinamento dessa base utilizando valida¢do cruzada com 3 subconjuntos. Na primeira execugao,
foram divididos os conjuntos, ficando o primeiro com os padrdes de 1 a 1000, o segundo com 0s
padrdes de 1001 a 2000 e o terceiro de 2001 a 3000. Também foi definido pela validagdo cruzada
que o conjunto de 1 a 1000 seria utilizado para os testes na primeira execucao e a concatenagao
dos outros dois seria utilizada para treinamento. Na segunda rodada, foi utilizado para teste o
segundo conjunto e para treinamento a concatena¢io do primeiro e terceiro conjunto. Na terceira
e ultima execucdo, foi utilizado para teste o terceiro conjunto e para treinamento a concatenagao
do primeiro e segundo conjunto.

Uma vantagem da utilizacdo desse método € que ele utiliza a base de dados em sua
totalidade, gerando um resultado mais confidvel.

O erro médio da validacdo cruzada € calculado realizando a média aritmética dos erros
fornecidos por cada conjunto de testes.

3.3 Experimentos utilizando Redes Neurais Artificiais

3.3.1 MultiLayer Perceptron (MLP)

Para os treinamentos utilizando redes MLP, foram utilizadas redes com duas camadas escondidas.
Essa decisdo foi baseada em alguns trabalhos anteriores [2, 21] e na complexidade do problema.
Essas camadas utilizaram, como funcdo da ativagdo, a sigmdéide logistica. A conexdo entre as
camadas foi total, ou seja, um nodo da camada anterior se liga a todos da camada posterior. O
treinamento ocorreu com uma taxa de aprendizagem fixa em 0,01. Foi estabelecido um limite de
épocas para treinamento em 500 (esse valor foi pensado de acordo com outros trabalhos
relacionados) e utilizando um conjunto de validacdo que equivale a 25% da base de dados. O
nimero de neur6nios nas camadas escondidas, no primeiro treinamento, foi de 20; para o segundo
treinamento, foram utilizados 40 neurdnios em cada camada.

A base de dados foi adequada ao padrdo dos arquivos .arff, do WEKA. Para isso, foi
criado um arquivo contendo todos os padrdes de cada uma das cinco bases de dados.
Inicialmente, havia 41 atributos de entrada, porém com a normalizagdo efetuada pelo WEKA a
base de dados passou a ter 109 entradas. Em cada base o nimero de saidas ¢ igual a 2.

O treinamento transcorreu com a utilizacdo do algoritmo backpropagation, a cada
execugao, a base foi treinada e testada 10 vezes, devido ao uso da validacdo cruzada. A Tabela 6
apresenta um resumo do que foi utilizado para o treinamento com MLP.
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Tabela 6. Parimetros MLP.

Camadas Escondidas 2
Nuimero de Neurdnios Escondidos 20 (1°experimento)
(em cada camada) 40 (2° experimento),
Taxa de aprendizagem 0,01
Conjunto de validacdo 25%
Epocas maxima de Treinamento 500
Algoritmo de treinamento Backpropagation

3.3.2 Radial Basis Function (RBF)

O treinamento com redes RBF foi realizado com o SNNS. Essas redes utilizam como funcao de
ativacdo da camada intermedidria a funcdo de base radial Gaussiana. A base de dados foi dividida
em trés partes: treinamento (50%), validagao (25%) e teste (25%).

No treinamento com RBF foram criadas redes que s6 possuiam nodos na camada de
entrada e saida, para ser mais preciso, 109 nodos na entrada e 2 na saida para cada base. Isso se
deve a utilizacdo do algoritmo de treinamento DDA. Esse algoritmo € construtivo, ou seja, a
medida que o treinamento ocorre, a camada intermedidria vai sendo criada de acordo com a
necessidade. O DDA possui dois pardmetros que sdo o limiar positivo 0+ e o limiar negativo 6-.

Neste trabalho, optamos por utilizar a técnica de selecdo do limiar negativo 6-, pois ela
tem apresentado bons resultados em vdrios tipos de problemas, tendo o erro de teste, sem o 6-
padrdo, diminuido para a maioria dos problemas [7, 8, 9]. Tanto o 8+ quanto o 6- possuem um
valor padrdo, 0,4 e 0,1, respectivamente. Através da técnica de selecdo do 0-, podemos obter
melhores resultados, variando o valor do 0-; isso foi realizado neste trabalho. Os valores
utilizados foram: 0,2, 0,1, le-2, le-3,1e-4, 1e-5, 1e-6, 1e-7 e 1e-8, esses valores foram extraidos
de outra pesquisas a respeito dessa técnica [7, 8, 9]. A diminuicao do 0- acarreta um aumento da
complexidade da rede, pois com a diminui¢do desse do valor, esse parametro faz com que mais
protétipos (nodos) sejam necessdrios. A Tabela 7 descreve os parametros gerais para os
treinamento das redes RBF-DDA.

Tabela 7. Parimetros RBF.

Camadas Escondidas 1
0+ 04
0- 0,2;0,1; 1e-2; 1e-3; 1le-4; 1e-5; 1e-6; le-7 e 1e-8
Conjunto de validacdo 25%
Conjunto de teste 25%
Conjunto de treinamento 50%
Algoritmo de treinamento DDA

3.3.3 Resultados obtidos pelas redes neurais

Os resultados obtidos com MLP podem ser visualizados na Tabela 8. Nela podemos visualizar
que o tempo de processamento com a validagdo cruzada, ou seja, o treinamento completo, para
esse tipo de rede neural é alto, por exemplo, a base Normal + Ataques tem um tempo de
processamento superior a sete horas.
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Tabela 8. Resultados do treinamento com MLP.
Treinamento com MLP utilizando validacao cruzada (10-fold)
Numero de Neurdnios na Camada
Escondida Tempo de Erro de Validagao
12 Camada 22 Camada Processamento Cruzada (%)
Normal +
Ataques 20 20 07:36:00 0,1667
Padroes: 15000 40 40 25:25:00 0,1667
Normal +
Probe 20 20 01:51:00 0,1625
Padrdes: 3077 40 40 02:56:00 0,1625
Normal +
DOS 20 20 06:26:00 0,0067
Padroes: 14827 40 40 14:04:00 0,0067
Normal +
U2Su 20 20 00:53:00 0,3711
Padrdes: 2964 40 40 01:30:00 0,3711
Normal + R2L 20 20 01:39:00 1,2705
Padroes: 2991 40 40 03:10:00 1,2705

Além dos resultados na forma de tabela, com os dados colhidos durante o treinamento e
teste dessas redes, como utilizamos o simulador WEKA para realizacdo dessa execugdo, ele nos
fornece um dado interessante que sdo as matrizes de confusdo. Através da matriz de confusdo
poderemos ter a idéia de quantos falsos negativos e quantos falsos positivos existem. Abaixo
segue as matrizes de confusdo para o treinamento com MLP. Tomando como exemplo a matriz
da letra a), essa matriz estd nos informando que 14 padrdes normais foram classificados como
ataque e 11 padrdes de ataques foram classificados como normal.

a) a
2939
11

b) a
2953
3

c) a
2953
1

d) a
2953
11

2952
38

b <-- classificado como
14 | a=normal
12036 | b = ataque
b <-- classificado como
0 | a=normal
121 | b =probe
b <-- classificado como
0 | a=normal
118721 b=dos
b <-- classificado como
0 | a=normal
0O | b=u2su
b <-- classificado como
1 | a=normal
0 I b=r21
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Na Tabela 9, podemos acompanhar os resultados obtidos com o uso de RBF-DDA. Nela
estdo sendo mostrados apenas os resultados com o 0- padrao e com o melhor resultado obtido
com a selecdo desse parametro. Podemos visualizar que com a sele¢do do 0- temos um aumento
do nimero de nodos na camada intermedidria e, conseqiientemente, um aumento no tempo de
processamento. Em contra partida, os melhores resultados sdo com o 0- diferente do padrdo. A
tabela completa, com todos os experimentos com RBF-DDA, pode ser vista no apéndice B.

Tabela 9. Resultados do treinamento com RBF.

47

Treinamento com

RBF-DDA Erro de
utilizando validagao N° Neur6nios na Validacdo

cruzada (10-fold) Theta- | Camada Escondida| Tempo de Processamento Cruzada Ciclos
Normal + Ataques 0,1 113 00:16:03 1,57% 4
Padrdes: 15000 1,00E-05 287 01:03:22 0,05% 3
Normal + Probe 0,1 39 00:00:34 0,75% 3
Padrdes: 3077 1,00E-06 87 00:01:26 0,16% 4
Normal + DOS 0,1 76 00:04:20 1,56% 4
Padroes: 14827 1,00E-06 245 00:51:03 0,03% 3
Normal + U2Su 0,1 24 00:00:27 0,37% 4
Padrdes: 2964 1,00E-04 49 00:00:43 0,14% 4
Normal + R2L 0,1 27 00:00:30 1,27% 3
Padroes: 2991 1,00E-04 50 00:00:46 0,10% 3

Ap6s visualizarmos as tabelas contendo os melhores resultados de cada uma das técnicas
de redes neurais, podemos destacar que os resultados obtidos pelas redes RBF-DDA, sao
superiores aos obtidos pela redes MLP. A Tabela 10 apresenta a comparacdo entre as duas
técnicas, com suas respectivas redes, que obtiveram os melhores resultados. Nessa comparacgao,
podemos notar que RBF-DDA apresenta os melhores resultados, visto que os tempos de
processamento sao equivalentes apenas para as rede de maior porte (Normal e DOS). Nos demais
casos, RBF apresenta um tempo menor de processamento bem como um erro para a validagao
cruzada menor. Por exemplo, na base de dados Normal + Ataques, o erro de validacdo cruzada da
rede RBF-DDA ¢ de apenas 0,05% enquanto que o da MLP € de 0,1667%. Nas bases Normal +
Probe, Normal + R2L e Normal + U2Su o tempo de processamento da MLP € superior ao da
RBF-DDA, enquanto que na base Normal + R2L o tempo de processamento € igual a 1 hora e 39
minutos para MLP, com RBF-DDA esse tempo € de apenas 46 segundos.
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Tabela 10. Comparacdo dos treinamentos de RBF e MLP.
N° Neurdnios Erro de
na Camada Tempo de Validacdo

RBF-DDA X MLP | Técnica | Theta- Escodida Processamento Cruzada (%) Ciclos
Normal + Ataques MLP - 20 07:36:00 0,1667 -

RBF-
Padrdes: 15000 DDA | 1,00E-05 287 01:03:22 0,05 3
Normal + Probe MLP - 20 01:51:00 0,1625 -

RBF-
Padroes: 3077 DDA | 1,00E-06 87 00:01:26 0,16 4
Normal + DOS MLP - 20 06:26:00 0,0067 -

RBF-
Padroes: 14827 DDA | 1,00E-06 245 00:51:03 0,03 3
Normal + U2Su MLP - 20 00:53:00 0,3711 -

RBF-
Padroes: 2964 DDA | 1,00E-04 49 00:00:43 0,14 4
Normal + R2L MLP - 20 01:39:00 1,2705 -

RBF-
Padroes: 2991 DDA | 1,00E-04 50 00:00:46 0,10 3

3.4 Experimentos utilizando Maquinas

Suporte

de Vetor

Os treinamentos utilizando SVM foram realizados de trés formas distintas. Na primeira a base de
dados foi treinada sem validacdo cruzada, na segunda a rede foi treinada com uma validagcao
cruzada de 5 folds, a terceira utilizou a validacdo cruzada de 10 folds e para efeito deste trabalho
s6 vamos considerar essa terceira forma, pois todas as outras técnicas se utilizaram da validacdo
cruzada de 10 folds. Vamos demonstrar também os resultados alcangados pelas outras duas
formas no apéndice C. O simulador utilizado para o treinamento foi o LIBSVM [26]. SVM utiliza
alguns parametros para o seu treinamento. Neste trabalho, utilizamos os seguintes parametros: c,
v, s e v. Ficou decidido que esse valores seriam s = 0, ¢ = 1000, y = 0,5 e v = 10, seguindo
trabalhos anteriores [21]. A seguir, a Tabela 11 mostra o resumo dos parametros utilizados para

SVM.

Tabela 11. Parametros SVM.

S

0

C

1000

Y

0,5

\4

10

3.4.1 Resultados obtidos por maquinas de vetor suporte

A Tabela 12 demonstra os resultados obtidos com os treinamentos, utilizando SVM com
validacdo cruzada de 10 folds. Para visualizar os outros treinamentos consulte o apéndice C.
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Tabela 12. Resultados do treinamento com SVM 10-fold.
Erro de Validacao
Treinamento com SVM Vetores Suporte | Tempo de Processamento Cruzada (%) Ciclos
Normal + Ataques 166 00:00:30 0,02 8347
Normal + Probe 71 00:00:03 0,0975 457
Normal + DOS 123 00:00:30 0 7525
Normal + U2Su 37 00:00:02 0,135 286
Normal + R2L 46 00:00:02 0,1672 440

Como podemos acompanhar, o tempo de processamento que SVM requer € baixo, bem
como seu erro de validagdo cruzada também apresenta baixas taxas de erro, se comparadas com
as outras técnicas. Apesar de tudo isso, o nimero de iteracdes que tem que ser realizadas aumenta
um pouco, em relagdo ao das outras técnicas. Podemos conferir na tabela do apéndice C que se
utilizarmos a validagdo cruzada, aumentaremos conseqiientemente o ndmero de vetores de
suporte da camada intermedidria.

No apéndice C, podemos conferir que a utilizacao da validacao cruzada de 10-folds obtém
melhores resultados que os outros dois métodos citados anteriormente. Isso se deve ao
fracionamento dos padrdes, podendo esses terem uma maior abrangéncia, pois teremos 10
conjuntos de treinamento diferentes e 10 conjuntos para teste, fazendo um uso mais racional da
base.

3.5 Experimentos utilizando técnica dos vizinhos mais
proximo (NN e kNN)

O treinamento utilizando a técnica do vizinho mais préximo foi realizado através do simulador
WEKA [27]. No treinamento utilizando NN, ndo existe nenhuma selecao de parametro. Para o
treinamento do kNN foram realizados experimentos contendo o nimero de vizinhos igual a 1,3 e
5. A validacdo cruzada 10-fold também foi utilizada nesses experimentos.

3.5.1 Resultados obtidos pelas técnicas do vizinho mais préximo

Os resultados obtidos com o treinamento da técnica do vizinho mais préximo podem ser
visualizados na Tabela 13, para o NN e na Tabela 14, para o kNN. Nela, podemos inferir que,
para o kNN, sempre o melhor resultado foi com o K=1, com excecdo da base R2L, onde K=1 e
K=3 obtiveram o mesmo erro de validacdo cruzada, 0,0669. Porém com K=3 o tempo de
processamento foi menor. O problema do treinamento com este tipo de rede € o fato de que no
treinamento todos os padrdes sdo armazenados, isso faz com que essa técnica consuma muitos
recursos do computador, mais especificamente recursos de armazenamento. Porém, a sua
vantagem sdo os resultados obtidos. Os erros de validacdo cruzada sao baixos, entretando nao tdo
baixos quanto os de RBF-DDA e SVM. Outra vantagem € o fato de possuir nenhum parametro,
no caso do NN, e poucos parametros, no caso do kNN.
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Tabela 13. Resultados do treinamento com NN 10-folds.
Erro de Validacao

Treinamento com NN Tempo de Processamento Cruzada (%) Padrées Treinamento
Normal + Ataques 00:28:52 0,0867 15000
Normal + Probe 00:01:24 0,0975 3077
Normal + DOS 00:26:22 0,0000 14827
Normal + U2Su 00:01:15 0,0337 2964
Normal + R2L 00:01:10 0,0669 2991

Na Tabela 14 podemos notar que o aumento do nimero de vizinhos, para estas bases,
implica um erro de validagao cruzada maior.

Tabela 14. Resultados do treinamento com kNN 10-fold.

Erro de Validacao
Treinamento com KNN | Tempo de Processamento Cruzada (%)
Normal + Ataques
Padroes: 15000
k=1 01:24:00 0,0867
k=3 01:12:00 0,1067
k=5 01:08:00 0,1533
Normal + Probe
Padrdes: 3077
k=1 00:01:28 0,0975
k=3 00:01:26 0,2275
k=5 00:01:22 0,1625
Normal + DOS
Padrdes: 14827
k=1 01:16:00 0,0000
k=3 01:17:00 0,0135
k=5 01:18:00 0,0135
Normal + U2Su
Padrdes: 2964
k=1 00:01:15 0,0337
k=3 00:01:23 0,1350
k=5 00:01:25 0,1687
Normal + R2L
Padrdes: 2991
k=1 00:01:26 0,0669
k=3 00:01:21 0,0669
k=5 00:01:23 0,1003
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3.6 Comparacao dos resultados RNAs x SVM x NN x
kNN

Na Tabela 15, podemos visualizar os melhores resultados para cada técnica de aprendizagem de
maquina utilizada neste trabalho. Observando a tabela podemos tirar algumas conclusdes. A
técnica que necessita de menor tempo de processamento ¢ SVM, além disso, maquinas de vetor
suporte podem trabalhar, sem muitos problemas, com bases de maior tamanho enquanto que
redes neurais demorariam muito no treinamento dessas bases [2]. NN e kNN por sua vez iriam
exigir um espaco para armazenamento grande, além de precisar também de um tempo de
processamento mais extenso. Em termos de armazenamento de unidades de processamento, MLP
s6 preciou de 40 unidades (20 + 20) para realizar seus treinamentos, por exemplo, na base de
dados Normal + Ataques. Para a mesma base, SVM precisou armazenar 166 unidades enquanto
que NN e kNN precisam de todos os padrdes de treinamento, 13500 unidades, RBF-DDA
precisou de 287 unidades de processamento.

Miquinas de vetor de suporte obtiveram os melhores resultados quanto ao erro de
validacdo cruzada, em uma das bases de dados, Normal + Ataques (0,02%). J4 RBF-DDA obteve
os melhores resultados para 3 base de dados que foram: Normal + Probe (0,0016%), Normal +
U2Su (0,0014) e Normal + R2L (0,001). Esse fato pode ser explicado, pois essas trés bases
possuem muitos padrdes normais e poucos padrdes dos seus respectivos ataques. Redes RBF sdo
muito boas em rejeitar padrdes discrepantes, ou seja, ela possui, por exemplo, uma capacidade de
classificacdo maior do que MLP para esses padrdes, além dessa caracteristica, o0 que também
contribuiu foi a selecdo do parametro 0-, pois todos esses bons resultados obtidos com RBF
tiveram o 0- diferente do padrdo (0,1). Outra vantagem de RBF-DDA foi o nimero de ciclos,
épocas de treinamento, reduzido em média para 3 ou 4, enquanto que SVM chegou a ter 8347
ciclos na base de dados Normal + Ataques. Analisamos 4 das 5 bases de dados; a tnica restante
foi a Normal + DOS, onde os melhores resultados foram obtido através das técnicas SVM, NN e
kNN (0%). DOS ¢ a classe de ataques com o maior nimero, como foi descrito no Capitulo 2.
Essas técnicas conseguiram nao ter falsos positivos e falsos negativos para esse tipo de ataque.
Mas isso ndo garante que, se os outros tipos de ataques tivessem uma quantidade grande de
padrdes, seus resultados também seriam da ordem de 0%, pois cada ataque tem caracteriscas
diferentes, o que facilitaria ou ndo sua identificacdo utilizando essas técnicas. O que pesa contra
NN e kNN e o fato de que para conseguir esses resultados todos os padrdes tiveram que ser
armazenados, aproximadamente 13500 padrdes, enquanto que SVM precisou de apenas 123
unidades de processamento para obter o mesmo resultado.

O maior tempo de processamento foi exigido pelas redes MLP, j4 SVM foi a técnica que
obteve seus resultados com o menor tempo, porém nao foram utilizados muitos parametros para o
treinamento com SVM; isso faria com seus tempo aumenta-se.

Apesar da utilizacdo de ferramentas de simulacdo distintas, os resultados obtidos por este
trabalho podem ser garantidos, pois essese simuladores sdo ferramentas ja consagradas no meio
académico.
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Tabela 15. Comparacio dos resultados
Comparacao dos melhores Resultados (RBF X MLP X SVM X
NN X kNN)
N° Unidades de Tempo de Erro de Validagdo Cruzada
Base de Dados processamento Processamento (%) Ciclos
Normal + Ataques
Padrdes: 15000
RBF 287 01:03:22 0,05 (theta- = 1,00E-5) 3
MLP - 01:03:00 0,1003 500
SVM 166 00:00:01 0,0200 8347
Todos os padrdes
NN do treinamento 00:28:52 0,0867 -
Todos os padrdes
KNN do treinamento 01:24:00 0,0867 (K=1) -
Normal + Probe
Padrées: 3077
RBF 87 00:01:26 0,0016 (theta- = 1,00E-6) 4
MLP - 00:13:00 0,0975 500
SVM 71 00:00:01 0,0975 457
Todos os padrdes
NN do treinamento 00:26:22 0,0975 -
Todos os padrdes
KNN do treinamento 00:01:28 0,0975 (K=1) -
Normal + DOS
Padroes: 14827
RBF 245 00:51:03 0,03 (theta- = 1,00E-6) 3
MLP - 00:50:00 0,4587 500
SVM 123 00:00:01 0,0000 7525
Todos os padrdes
NN do treinamento 00:26:22 0,0000 -
Todos os padrdes
KNN do treinamento 01:16:00 0,0000 (k=1) -
Normal + U2Su
Padrdes: 2964
RBF 49 00:00:43 0,0014 4
MLP - 00:11:00 0,3711 (theta- = 1,00E-4) 500
SVM 37 00:00:01 0,1350 286
Todos os padrdes
NN do treinamento 00:01:15 0,0337 -
Todos os padrdes
KNN do treinamento 00:01:15 0,0337 (k=1) -
Normal + R2L
Padrées: 2991
RBF 50 00:00:46 0,001 (theta- = 1,00E-4) 3
MLP - 00:12:00 0,1003 500
SVM 46 00:00:01 0,1672 440
Todos os padrdes
NN do treinamento 00:01:10 0,0669 -
Todos os padrdes
KNN do treinamento 00:01:21 0,0669 (k=3) -
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Conclusoes e Trabalhos Futuros

Este trabalho teve como foco principal realizar um estudo comparativo entre algumas técnicas de
aprendizagem de mdquina para sistemas de detec¢do de Intrusdo. As técnicas utilizadas neste
estudo foram: RNAs do tipo MLP e RBF-DDA, SVM, NN e kNN. Para algumas técnicas foram
variados seus parametros para obtencao de um melhor desempenho.

Trés simuladores foram utilizados para a execu¢do dos treinamentos. O LIBSVM foi
utilizado para o treinamento com SVM, o SNNS para RBF-DDA e para as demais técnicas foi
usado o simulador WEKA. Em todos foi utilizada uma técnica de comparagdo denominada
validacdo cruzada, para garantir uma melhor eficiéncia dos treinamentos.

Ficou evidente, a partir dos treinamentos, que a opg¢ao por utilizar aprendizagem de
maquina para sistemas de deteccdo de intrusdo tem resultados eficientes, pois na maioria absoluta
dos treinamentos houve uma taxa de acerto superior a 99% utilizando qualquer tipo de técnica.

A opc¢do por fazer selecdo do parametro 0- em redes RBF-DDA foi acertada. Com essa
selecdao conseguimos ter um desempenho até superior ao de SVM para esse problema, visto que
das cinco bases de dados utilizadas, trés obtiveram melhores resultados com a técnica RBF-DDA
com a selecio do 0-. Essas bases obtiveram esses resultados, pois redes RBF sdo boas em
reconhecer, e rejeitar, padrdes discrepantes, ou seja, padrdoes que fogem das caracteristicas da
maioria dos padrdes da base de dados, as bases que RBF obteve os melhores resultados foram
com as base de dados onde tivemos poucos exemplos de ataques, ji nas que haviam muitos
exemplos de ataques, SVM obteve melhores resultados. Inclusive, em uma delas, NN e kNN
tiveram o resultado idéntico ao de SVM. kNN também incluiu a selecdo do ndmero de vizinhos,
os valores foram: 1, 3 e 5. Na maioria das redes, obtiveram-se os melhores resultados com o K=1.
kNN e NN possuem maior complexidade computacional, pois necessitam armazenar todos os
padrdes utilizados para o treinamento. A menor complexidade computacional foi observada em
MLP, pois precisou de apenas 40 unidades de processamento para obter seus resultados. Para
redes do tipo MLP, foi utilizada 2 camadas escondidas, devido a complexidade do problema, e
ainda 2 topologias diferentes. A primeira utilizava 20 neur6énios em cada camada, j4 a segunda
utilizava 40. O tempo de processamento também foi um fator analisado. SVM consegue realizar
seus treinamentos em um curto espaco de tempo. J4 Redes Neurais, RBF-DDA e MLP, obtiveram
tempo de processamento alto para as bases de dados com uma quantidade maior de padrdes, o
mesmo aconteceu com as técnicas NN e kNN. SVM tem a vantagem de poder trabalhar, sem
muitos problemas, com bases de dados grandes [2], o mesmo ndo acontece com Redes Neurais,
pois elas demorariam muito no treinamento e as técnicas que utilizam o vizinho mais préximo
precisariam além de um tempo grande para o treinamento, uma area de armazenamento grande.

Como trabalho futuro, propomos utilizar outras técnicas de aprendizagem de maquina,
nao para demonstrar que elas podem ser utilizadas em sistemas de detecc@o de intrusdo, pois isso
jé foi demonstrado neste trabalho, e sim observar qual obtém os melhores resultados.

Outro trabalho que podera ser proposto € a implementacao de um sistema de detecc¢do de
intrusdo, utilizando uma técnica de aprendizagem de mdaquina, visto que os resultados obtidos
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neste trabalho comprovam a eficiéncia dessas técnicas. Hoje, um IDS com essas caracteristicas
nao é comum.

A utilizagdo de um maior nimero de padrdes da base de dados original para treinamento
podera ser uma opg¢ao para trabalhos futuros. Isso pode melhorar ainda mais a confiabilidade nos
resultados, visto que na realidade, o nimero de conexdes ¢ muito alto.
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Apéndice A

Base de dados do WEKA

Apresentaremos um modelo de uma base de dados no formato aceito pelo simulador WEKA.

@relation normal #nome da base de dados

@attribute duration numeric  #@attribute descreve os atributos da base de dados
@attribute protocol_type {tcp,icmp,udp}

@attribute service
{auth,bgp,courier,csnet_ns,ctf,daytime,discard,domain,domain_u,eco_i,echo,ecr_i,efs,exec,finger
ftp,ftp_data,gopher,hostnames,http,http_443,imap4,iso_tsap,klogin,kshell,ldap,link,login,mtp,na
me,netbios_dgm,netbios_ns,netbios_ssn,netstat,nnsp,nntp,ntp_u,other,pm_dump,pop_2,pop_3,pri
nter,private,remote_job,rje,shell,smtp,sql_net,ssh,sunrpc,supdup,systat,telnet,time,uucp,uucp_pat
h,vmnet,whois,Z39_50}

@attribute flag {SF,S1,52,S3,SH,SO,REJ,RSTO,RSTR}
@attribute src_bytes numeric
@attribute dst_bytes numeric
@attribute land numeric

@attribute wrong_fragment numeric
@attribute urgent numeric

@attribute hot numeric

@attribute num_failed_logins numeric
@attribute logged_in numeric
@attribute num_compromised numeric
@attribute root_shell numeric
@attribute su_attempted numeric

@attribute num_root numeric
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@attribute num_file numeric

@attribute num_shells numeric

@attribute num_access_files numeric
@attribute num_outbound_cmds numeric
@attribute is_host_login numeric

@attribute is_guest_login numeric
@attribute count numeric

@attribute srv_count numeric

@attribute serror_rate numeric

@attribute srv_serror_rate numeric
@attribute rerror_rate numeric

@attribute srv_rerror_rate numeric
@attribute same_srv_rate numeric
@attribute diff _srv_rate numeric

@attribute srv_diff_host_rate numeric
@attribute dst_host_count numeric
@attribute dst_host_srv_count numeric
@attribute dst_host_same_srv numeric
@attribute dst_host_diff_srv_rate numeric
@attribute dst_host_same_src_port_rate numeric
@attribute dst_host_srv_diff_host_rate numeric
@attribute dst_host_serror_rate numeric
@attribute dst_host_srv_serror_rate numeric
@attribute dst_host_rerror_rate numeric
@attribute dst_host_srv_rerror_rate numeric

@attribute ataques {normal,ataque}

@data #@data padroes de treinamento da base de dados
0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,8,1.00,1.00,0.00,0.00,0.04,0.07,0.00,255,8,
0.03,0.08,0.00,0.00,1.00,1.00,0.00,0.00,ataque
0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,218,5,1.00,1.00,0.00,0.00,0.02,0.06,0.00,255,5,
0.02,0.07,0.00,0.00,1.00,1.00,0.00,0.00,ataque
0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,
255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,normal ...
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do treinamento das redes

RBF-DDA com selecao do parametro 0-

Neste apéndice, sdo mostrado todos os resultados advindos do treinamento das redes RBF-DDA

com selecdo do parametro 0-.

Treinamento
com RBF
Erro de
N2 Neurénios na Tempo de Validacao
Bases de Dados | Theta- CE Processamento Cruzada | Ciclos
Normal +
Ataques 0,2 94 00:05:26 1,61% 4
Padrdes: 15000 0,1 113 00:16:03 1,57% 4
1,00E-02 214 00:46:46 0,63% 4
1,00E-03 245 01:01:40 0,17% 4
1,00E-04 273 01:02:37 0,09% 4
1,00E-05 287 01:03:22 0,05% 3
1,00E-06 300 00:59:00 0,07% 3
1,00E-07 318 01:04:27 0,09% 3
1,00E-08 332 01:09:00 0,12% 3
Normal + Probe 0,2 30 00:00:32 2,76% 4
Padrdes: 3077 0,1 39 00:00:34 0,75% 3
1,00E-02 63 00:00:54 0,29% 4
1,00E-03 70 00:01:02 0,23% 4
1,00E-04 76 00:01:01 0,20% 3
1,00E-05 81 00:01:11 0,20% 3
1,00E-06 87 00:01:26 0,16% 4
1,00E-07 92 00:01:04 0,16% 4
1,00E-08 95 00:01:08 0,16% 4
Normal + DOS 0,2 63 00:03:04 1,98% 3
Padroes: 14827 0,1 76 00:04:20 1,56% 4
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1,00E-02 163 00:34:21 0,57% 6
1,00E-03 189 00:39:32 0,15% 4
1,00E-04 216 00:43:30 0,05% 3
1,00E-05 233 00:50:15 0,05% 4
1,00E-06 245 00:51:03 0,03% 3
1,00E-07 263 00:52:00 0,06% 3
1,00E-08 274 00:58:00 0,06% 3
Normal + U2Su 0,2 21 00:00:25 0,37% 4
Padres: 2964 0,1 24 00:00:27 0,37% 4
1,00E-02 38 00:00:36 0,37% 4
1,00E-03 45 00:00:37 0,24% 3
1,00E-04 49 00:00:43 0,14% 4
1,00E-05 55 00:00:47 0,14% 4
1,00E-06 58 00:00:48 0,14% 4
1,00E-07 64 00:00:52 0,17% 4
1,00E-08 68 00:00:58 0,20% 4
Normal + R2L 0,2 19 00:00:28 1,27% 4
Padrdes: 2991 0,1 27 00:00:30 1,27% 3
1,00E-02 40 00:00:37 0,43% 3
1,00E-03 46 00:00:41 0,13% 3
1,00E-04 50 00:00:46 0,10% 3
1,00E-05 54 00:00:47 0,10% 3
1,00E-06 59 00:00:54 0,10% 3
1,00E-07 67 00:00:58 0,10% 3
1,00E-08 73 00:01:03 0,13% 4




Apéndice C

_aed

ESCOLA POLITECNICA
DE PERNAMBUCO

62

Resultados do treinamento de maquinas

de vetor suporte (SVM)

Neste apéndice, apresentamos os resultados dos treinamentos executados utilizando SVM.

Treinamento com SVM

Vetores Erro de Validacao
Bases de Dados Suporte Processamento Cruzada (%) Ciclos
Padrées totais: 15000
Normal + Ataques
S/ Validacdo Cruzada 137 00:00:02 0,0143| 5513
C/ Validacao Cruzada (5) 126 00:00:08 0,0625| 3531
C/ Validagao Cruzada
(10) 166 00:00:30 0,02| 8347
Padrées totais: 3077
Normal + Probe
S/ Validacao Cruzada 53 00:00:01 0,1354| 335
C/ Validacao Cruzada (5) 49 00:00:01 0,3127| 272
C/ Validagao Cruzada
(10) 71 00:00:03 0,0975| 457
Padrées totais: 14827
Normal + DOS
S/ Validacdo Cruzada 60 00:00:01 0,0439| 4421
C/ Validacao Cruzada (5) 92 00:00:04 0| 2413
C/ Validagao Cruzada
(10) 123 00:00:30 0| 7525
Padrées totais: 2964
Normal + U2Su
S/ Validacdo Cruzada 35 00:00:01 0,2049| 242
C/ Validacao Cruzada (5) 29 00:00:01 0,2001 123
C/ Validagao Cruzada
(10) 37 00:00:02 0,135| 286
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Padrdes totais: 2991
Normal + R2L
S/ Validacdo Cruzada 38 00:00:01 0| 478
C/ Validacao Cruzada (5) 34 00:00:01 0,3336| 400
C/ Validacao Cruzada
(10) 46 00:00:02 0,1672| 440




