

ESTUDO COMPARATIVO ENTRE
TÉCNICAS DE APRENDIZAGEM DE

MÁQUINA PARA SISTEMAS DE
DETECÇÃO DE INTRUSÃO (IDS)

Trabalho de Conclusão de Curso

Engenharia da Computação

Thyago Antonio Barbosa Vieira da Rocha
Orientador: Prof. Dr. Adriano Lorena Inácio de Oliveira

Recife, dezembro de 2005

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Este Projeto é apresentado como requisito parcial
para obtenção do diploma de Bacharel em
Engenharia da Computação pela Escola
Politécnica de Pernambuco – Universidade de
Pernambuco.

ESTUDO COMPARATIVO ENTRE
TÉCNICAS DE APRENDIZAGEM DE

MÁQUINA PARA SISTEMAS DE
DETECÇÃO DE INTRUSÃO (IDS)

Trabalho de Conclusão de Curso

Engenharia da Computação

Thyago Antonio Barbosa Vieira da Rocha
Orientador: Prof. Dr. Adriano Lorena Inácio de Oliveira

Recife, dezembro de 2005

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Thyago Antonio Barbosa Vieira da Rocha

ESTUDO COMPARATIVO ENTRE

TÉCNICAS DE APRENDIZAGEM DE
MÁQUINA PARA SISTEMAS DE
DETECÇÃO DE INTRUSÃO (IDS)

i

i

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Resumo

Detecção de Intrusão é um dos assuntos que ganha mais visibilidade dentro do atual cenário

global. Esse fato pode ser explicado pelo aumento significativo da Internet em todo mundo, e

com ele a exposição das empresas a esse mundo de interação e benefícios. Essa exposição não é

só benéfica, pois invasões de pessoas não autorizadas estão sendo cada vez mais constantes. Os

Sistemas de Detecção de Intrusão (IDS) aparecem como uma forma de identificar e realizar

algum tipo de contramedida para tais invasões. Diversos métodos para reconhecimento de um

ataque estão em uso ou sendo desenvolvidos. Um deles proposto envolve o uso de aprendizagem

de máquina para identificação desses ataques. Este trabalho apresenta um estudo comparativo

entre as técnicas Redes Neurais Artificiais (RNAs), do tipo MLP (Multilayer perceptron) e

RBFN (Radial Basis Functions Networks) utilizando o algoritmo de treinamento DDA (Dynamic

Decay Adjustment), Máquinas de Vetor Suporte (SVM) e técnicas que utilizam os vizinhos mais

próximos (NN e kNN) aplicadas ao problema de detecção de intrusão. A ferramenta LIBSVM foi

empregada para executar os treinamentos com SVM. O simulador WEKA foi utilizado para

execução das técnicas NN, kNN e MLP, enquanto que e o SNNS foi utilizado para redes RBF-

DDA. Ainda foi testada uma seleção de parâmetros com as redes RBF-DDA. Todos os

treinamentos foram comparados empregando o método da validação cruzada. As técnicas foram

analisadas com relação ao seu desempenho no erro de classificação, complexidade e tempo de

processamento. As técnicas RBF-DDA e SVM obtiveram os melhores desempenhos.

ii

ii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Abstract

Intrusion Detection is one of the subjects that wins more visibility inside of the current global

scene. This fact can be explained by the significant Internet increasement around the world,

added to the exposition of the companies to this interaction and benefits world. This exposition is

not only beneficial because there is very often invasion of non-authorized people. Intrusion

Detection Systems (IDS) appear as a way to identify and prevent any kind of attack. Some attack

recognition techniques are being used or being developed. One of them involves the use of

machine learning in the identification of those attacks. This work presents a comparative study

among the techniques: Artificial Neural Networks (ANN), MLP (Multilayer Perceptron) type and

RBFN (Radial Basis Functions Networks), using the training algorithm DDA (Dynamic Decay

Adjustment), Support Vector Machines (SVM) and other techniques that uses the neighbors (NN

and kNN) applied to the problem of intrusion’s detection. The tool LIBSVM was used to execute

the trainings with SVM. The simulator WEKA was used to apply the techniques NN, kNN and

MLP, while the SNNS was used for nets RBF-DDA. It was also verified a selection of parameters

with the RBF-DDA nets. All the trainings had been compared using the crossing validation

method. Those techniques were analyzed by its performance in the error classification,

complexity and processing time. The techniques RBF-DDA and SVM had gotten the best

performances.

iii

iii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Sumário

Índice de Figuras v

Índice de Tabelas vi

Introdução 8

Capítulo 1 - Conceitos Básicos 10

1.1 Técnicas de aprendizagem de máquina 10
1.1.1 Redes Neurais Artificiais (RNAs) 10
 1.1.1.1 Inspiração na biologia 11
 1.1.1.2 Conceitos sobre redes neurais artificiais 11
 1.1.1.3 Redes MLP (MultiLayer Perceptron) 15
 1.1.1.4 Redes RBFN (Radial Basis Function Networks) 18
1.1.2 Máquinas de vetor de suporte (SVM) 22
1.1.3 Técnicas baseadas nos vizinhos mais próximos (NN e kNN) 24

1.2 Sistemas de Detecção de Intrusão (IDS) 25
1.2.1 O que é um IDS? 25
1.2.2 Conceitos e tipos de um IDS 25
1.2.3 IDS utilizando aprendizagem de máquina 26
1.2.4 Arquitetura de um IDS 26
1.2.5 Estudo de caso: SNORT 26

Capítulo 2 - Base de Dados 29

2.1 Descrição 29
2.2 Tipos de Ataques 29
2.3 Formatação 33

Capítulo 3 - Experimentos e Resultados 35

3.1 Ferramentas utilizadas 35
 3.1.1 SNNS (Stuttgart Neural Network Simulator) 35
 3.1.2 LIBSVM 38
 3.1.3 WEKA (Waikato Environment for Knowledge Analysis) 41

3.2 Validação Cruzada 44
3.3 Experimentos utilizando Redes Neurais Artificiais 44
 3.3.1 MultiLayer Perceptron (MLP) 44

 3.3.2 Radial Basis Function Networks (RBF) 45
 3.3.3 Resultados obtidos pelas redes neurais 45

3.4 Experimentos utilizando Máquinas de Vetor Suporte 48
 3.4.1 Resultados obtidos por máquinas de vetor suporte 48

iv

iv

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.5 Experimentos utilizando técnica dos vizinhos mais próximos (NN e kNN) 49
 3.5.1 Resultados obtidos pelas técnica dos vizinhos mais próximos 49

3.6 Comparação dos resultados RNA´s x SVM x NN x kNN 51

Conclusões e Trabalhos Futuros 53

Bibliografia 55

Apêndice A 58

Apêndice B 60

Apêndice C 62

v

v

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Índice de Figuras

Figura 1. Partes de um neurônio biológico 11

Figura 2. Modelo de um neurônio MCP 12

Figura 3. Arquiteturas de RNAs 13

Figura 4. Treinamento supervisionado 14

Figura 5. Treinamento não-supervisionado 15

Figura 6. Função sigmoidal logística 16

Figura 7. Regiões definidas pelo processamento da segunda camada intermediária 16

Figura 8. Regiões definidas pelo processamento da camada de saída 16

Figura 9. Fases do algoritmo back-propagation 18

Figura 10. Arquitetura de uma rede RBF 19

Figura 11. Exemplo de conflito de padrões 20

Figura 12. Exemplo da execução do algoritmo DDA 21

Figura 13. Exemplo em duas dimensões da utilização de SVM como classificador 22

Figura 14. Exemplo em duas dimensões dos vetores de suporte 23

Figura 15. Exemplo de classificação do método NN 24

Figura 16. Componentes de um IDS segundo o IDWG 27

Figura 17. Arquitetura do snort 28

Figura 18. Quantidade de cada ataque na base kdd cup 1999 32

Figura 19. Tela inicial do SNNS 36

Figura 20. Definição da topologia da rede no SNNS 37

Figura 21. Tela salvar e carregar arquivos do SNNS 38

Figura 22. Analyze 38

Figura 23. Applet do LIBSVM 39

Figura 24. svmtrain 39

Figura 25. svmtrain com validação cruzada 40

Figura 26. svmpredict 40

Figura 27. Tela inicial do WEKA 41

Figura 28. Abrir arquivo para treinamento no WEKA 42

Figura 29. Escolha da técnica de aprendizagem de máquina no WEKA 43
Figura 30. Visualização das técnicas de aprendizamgem do WEKA 43

vi

vi

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Índice de Tabelas

Tabela 1. Características da base kdd cup 1999 30

Tabela 2. Ataques DoS 31

Tabela 3. Ataques Probing 31

Tabela 4. Ataques R2L 31

Tabela 5. Ataques U2Su 32

Tabela 6. Parâmetros MLP 45

Tabela 7. Parâmetros RBF 45

Tabela 8. Resultados do treinamento com MLP 46

Tabela 9. Resultados do treinamento com RBF 47

Tabela 10. Comparação dos treinamentos de RBF e MLP 48

Tabela 11. Parâmetros SVM 48

Tabela 12. Resultados do treinamento com SVM 10-fold 49

Tabela 13. Resultados do treinamento com NN 10-fold 50

Tabela 14. Resultados do treinamento com NN 10-fold 50

Tabela 15. Comparação dos resultados 52

vii

vii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Agradecimentos

Primeiramente, gostaria de agradecer a todos que participaram da elaboração desse trabalho:
A minha família, em especial a meus pais, Valdomiro Vieira da Rocha e Edenira Barbosa

Vieira da Rocha, pelo apoio, pelo incentivo e pela confiança.
Outro agradecimento especial a minha namorada Adalgisa Maria Rodrigues da Silva, por

toda atenção, pela ajuda e pela paciência.
A meus amigos que sempre estiveram do meu lado me incentivando e descontraindo o

ambiente.
Ao meu orientador, Adriano Lorena Inácio de Oliveira, pela ajuda, pela orientação sempre

pertinente e competente.
A todos os professores e colaboradores do curso de Engenharia da Computação da POLI

pela minha formação e pelo meu engrandecimento profissional e social.
Um agradecimento maior a Deus, por me proporcionar todos esses momentos.

8

8

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Introdução

O número constante e crescente de ataques a redes coorporativas se deve à exposição de
informações importantes para intrusos que a Internet proporciona [28], por isso Sistemas de
Detecção de Intrusão (IDS – Intrusion Detection Systems) estão tendo cada vez mais importância
e visibilidade no mundo atual. Uma intrusão, em geral, é definida como um conjunto de ações
que comprometem a integridade, a confiabilidade ou a disponibilidade de recursos [29]. Sistemas
que detectam intrusões, basicamente, são conjuntos de hardware e software que trabalham juntos
para identificar eventos inesperados, que podem indicar que um ataque irá acontecer, está
acontecendo ou aconteceu [17]. Esses sistemas podem utilizar diversas técnicas para prever um
ataque, entre elas Redes Neurais Artificiais (RNAs), caracterizadas por serem uma forma de
computação não algorítmica e por lembrar, em algum nível, a estrutura do cérebro humano [1].
Outras técnicas também podem ser empregadas como Máquinas de Vetor Suporte (SVM) ou
ainda técnicas que utilizam os vizinhos mais próximos, Nearest Neighbor (NN) e k-Nearest

Neighbor (kNN).
 O propósito de um IDS é distinguir entre intrusos e usuários normais. O sensor de um IDS
é o mecanismo principal para fazer essa distinção, sua função é monitorar um host ou uma rede a
fim de identificar intrusões, gerar logs localmente e gerar mensagens alertando a respeito da
ocorrência de tais eventos. Dentro de um sensor existe uma parte nomeada analisador de eventos,
cuja responsabilidade é identificar se um dado evento é um ataque ou não. É nessa parte que as
técnicas de aprendizagem de máquina, através do seu poder de classificação, poderão se inserir
em um IDS.
 Um exemplo de IDS comercial é o snort que possui código aberto e é muito utilizado. Ele
não utiliza técnicas de aprendizagem de máquina para analisar ataques. Suas características
principais são análise de tráfego em tempo real e de registro de pacotes IP, além de gerar alertas
em tempo real [36].
 Neste trabalho, comparamos algumas técnicas de aprendizagem de máquina nesse
problema utilizando a base de dados KDD cup 1999 [20]. Essa base foi concebida através da
simulação de um ambiente de uma rede militar dos EUA, mais precisamente da força aérea dos
Estados Unidos. Basicamente ela é composta de conexões “ruins”, denominadas ataques, e de
conexões “boas” chamadas normais. Esse ambiente foi alimentado com conexões TCP
(Transmission Control Protocol), cada uma dessas com um tamanho de 100 bytes, durante nove
semanas. Em meio a essas conexões foram inseridos múltiplos ataques. Essa base de dados
possui um total de 41 atributos de entrada, que incluem, por exemplo, duração da conexão,
serviço de rede de destino, dados básicos sobre a conexão TCP, dentre outros (explicitados no
Capítulo 2).
 A utilização de RNA nesse problema pode ser justificada pela não linearidade da mesma e
pela capacidade de adaptação que elas possuem. Isso é importante, pois como estão sendo
identificados, os ataques atuais são uma combinação de ataques já existentes, por isso o
analisador de eventos tem que se adaptar a cada uma dessas variantes. Outra vantagem é a
facilidade de colher eventos para servir de exemplos no treinamento das RNAs, isto é feito
simulando uma rede de computadores real e adicionando ataques a essa, armazenando os logs de
cada conexão realizada, seja ela um ataque ou não.

9

9

ESCOLA POLITÉCNICA
DE PERNAMBUCO

 A construção de um IDS que utiliza redes neurais pode ser dividida em três etapas:
1. Coleta dos dados para treinamento: nessa fase, é onde se obtêm os dados para o

treinamento, sejam eles fornecidos por uma rede real ou através de uma simulação de uma
rede;

2. O treinamento em si da rede: nessa etapa é onde vamos treinar as redes com a mesma base
de dados, submetendo essa a várias técnicas de redes neurais distintas;

3. A rede neural treinada: nessa fase, a rede neural está pronta para distinguir ataques
verdadeiros de conexões normais.
A utilização de Máquinas de Vetor Suporte é justificada pelo fato desta técnica recente,

que utiliza apredizagem estatística, ter obtido melhor desempenho de classificação que outra
técnicas, tais como RNAs em uma série de problemas importantes, como categorização de texto e
reconhecimento óptico de caracteres (OCR) [11,34,35]. Uma vantagem adicional de SVM é que
a técnica normalmente produz classificadores com poucas unidades escondidas.

As técnicas baseadas no vizinho mais próximo, NN e kNN, foram utilizadas, pois são
simples e precisas. Além disso, essas técnicas possuem um parâmetro a ser modificado para o
treinamento.

O trabalho foi dividido em quatro Capítulos. No primeiro foram introduzidos alguns
conceitos inerentes ao tema, como as técnicas de aprendizagem de máquina e conceitos dos
sistemas de detecção de intrusão.

O segundo Capítulo apresenta a base de dados, relatando como ela foi concebida, seus
atributos, tipos de ataque que fazem partes dessa base, além de informar ao leitor algumas
adequações que foram realizadas para formatar essa base para os simuladores utilizados nesse
trabalho.

O terceiro Capítulo mostra os resultados obtidos com a utilização dessas quatro técnicas.
Apresentamos a descrição de cada treinamento efetuado, bem como sua análise levando-se em
consideração alguns fatores como: tempo de processamento, erro de validação cruzada e
complexidade da rede. Por fim, foi feito um comparativo entre as técnicas abordadas.

O quarto Capítulo se refere às conclusões e trabalhos futuros.
Sistemas de Detecção de intrusão são primordiais para uma empresa que possua

informações confidenciais e que esteja ligada à Internet, pois o risco de sofrer invasões é muito
alto. Técnicas de aprendizagem de máquina surgem como um mecanismo interessante para
detectar, classificar e identificar esses ataques.

10

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1

Conceitos Básicos

Este Capítulo visa explicar conceitos básicos sobre o tema. Abordaremos as técnicas de
aprendizagem de máquina utilizadas e os sistemas de detecção de intrusão (IDS).

1.1 Técnicas de aprendizagem de máquina

As técnicas empregadas neste trabalho são: redes neurais artificiais, representada por funções de
bases radiais (Radial Basis Function - RBF) e perceptrons de multicamadas (multilayer perceptron -
MLP), máquinas de vetor de suporte (SVM), técnica do vizinho mais próximo (NN) e técnica dos k-
vizinhos mais próximos (kNN).

1.1.1 Redes Neurais Artificiais (RNAs)

Redes Neurais artificiais (RNAs), também chamadas de conexionismo ou redes de sistemas
distribuídos [1], ressurgiram no final da década de 80, e hoje têm se tornando um amplo campo
de pesquisa. RNAs nos permitem projetar sistemas não-lineares, podendo esses possuir um
grande número de entradas, com o projeto baseado em relacionamentos do tipo entrada-saída [2].
Seus atrativos pricipais são a capacidade de aprender por exemplos e de generalizar as
informação aprendidas. A generalização está associada à capacidade da rede de aprender através
de um conjunto reduzido de exemplos e posteriormente dar respostas coerentes para dados não-
conhecidos [1].

Outra característica importante é o fato das redes neurais artificiais não serem baseadas
em regras ou programas, se constituindo assim em uma alternativa para a computação, visto que a
utilização de algoritmos se restringe para algumas partes da execução de um rede neural artificial.
Mas, o principal atrativo das RNAs é, sem dúvida, sua capacidade de aprender através de
exemplos e de generalizar a informação aprendida. RNAs são inspiradas na biologia,
particularmente na pesquisa do cérebro humano.

Capítulo

11

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1.1.1.1 Inspiração na biologia

As RNAs tentam reproduzir as funções da rede neural biológica, buscando implementar seu
comportamento básico e sua dinâmica. Como características comuns entre os dois sistemas temos
que eles são baseados em unidades de computação paralela e distribuída que se comunicam por
meio de conexões sinápticas, possuem detectores de características, redundância e modularização
das conexões. A célula fundamental do cérebro é o neurônio, cada um desses neurônios se liga a
milhares de outros continuamente e em paralelo. Os neurônios são divididos em três partes: corpo
da célula, dendritos e axônios (Figura 1).

Figura 1. Partes de um neurônio biológico [31].

O corpo celular é a parte mais volumosa da célula; nela se localizam o núcleo e a maioria
das estruturas citoplasmáticas. Os dendritos são prolongamentos finos e, geralmente, ramificados
que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo
celular. O axônio é um prolongamento estreito, geralmente mais longo que os dendritos, cuja
função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.
Sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e
a superfície de outra célula. O impulso é transmitido de uma célula a outra através dessas
sinapses.

1.1.1.2 Conceitos sobre redes neurais artificiais

Redes neurais artificiais possuem uma estrutura similar a um neurônio biológico. Essa estrutura
foi desenvolvida por McCulloch e Pitts [1]. Eles modelaram uma estrutura com n terminais de
entrada x1, x2, ..., xn (no neurônio biológico, poderíamos dizer que essas entradas representam os
dendritos) e um terminal de saída (seria o axônio) para emular as sinapses. Os terminais de
entrada têm associados a ele pesos w1, w2, ..., wn. Em um neurônio biológico, um disparo
acontece quando a soma dos impulsos que ele recebe ultrapassa seu limiar de excitação
(threshold), já em um neurônio MCP (modelo de neurônio artificial de McCulloch e Pitts), a
ativação de um neurônio é obtida através da aplicação de uma função de ativação, que ativa ou
não a saída, dependendo do valor ponderado das suas entradas.

12

ESCOLA POLITÉCNICA
DE PERNAMBUCO

No modelo, a função de ativação é dada por uma função linear, cuja saída pode assumir
os valores 0 ou 1. Por conseguinte, o nodo MCP ativa ou não sua saída, seguindo a equação
abaixo:

 n

 ∑ xi wi ≥ θ (1.1)
 i=0

onde n é o número de entradas do neurônio, wi é o peso associado à entrada xi , e θ é o limiar
(threshold) do neurônio. Uma simplificação realizada por McCulloch e Pitts no seu modelo diz
respeito ao disparo de cada camada. Isso é feito sincronamente, ou seja, todos os neurônios são
avaliados ao mesmo tempo. Já no sistema biológico sabe-se que não existe um mecanismo para
realizar esse sincronismo [1]. Esse modelo possui algumas limitações e dentre elas podemos
destacar as seguintes:

1. Esse modelo com uma camada só se adequava a problemas linearmente separáveis;
2. O modelo foi proposto com pesos fixos, não podendo estes ser ajustados.

A Figura 2 representa o modelo de McCulloch e Pitts:

Figura 2. Modelo de um neurônio MCP.

Após o modelo de McCulloch e Pitts, foram propostos vários outros modelos que

permitem a produção de saídas que não sejam necessariamente 0 ou 1 e com diferentes funções
de ativação. A função de ativação linear é mostrada na equação abaixo e será exemplificada logo
em seguida, em conjunto com outro tipos de funções:

 y = ax (1.2)

onde a é um número real que define a saída linear para os valores de entrada, y é a saída e x a
entrada. Em seguida, temos alguns exemplos de funções de ativação para redes neurais artificiais:

1. Função degrau: esssa função tem como valores de saída 0 ou 1 e é definida como:





<

≥
=

0 0

0 1
)(

xse

xse
xf (1.3)

13

ESCOLA POLITÉCNICA
DE PERNAMBUCO

2. Função rampa: abaixo está um exemplo desse tipo de função:















<

<<−

≥

=

2

1
 0

2

1

2

1
 ,

2

1
 1

)(

xse

xx

xse

xf (1.4)

onde, 0 e 1 são os limites da função e (-½ e ½) é o intervalo que define a saída linear.

3. Função sigmóide: função cujos valores pertencem a intervalo contínuo, por exemplo,
entre 0 e 1.

)exp(1

1
)(

x
xf

α−+
= (1.5)

onde, α determina a inclinação da função.

Além da função de ativação, as RNAs possuem uma arquitetura (topologia), cuja

configuração é importante, pois restringe o tipo de problema que pode ser tratado pela rede [1].
Por exemplo, as redes descritas anteriormente, MCP, possuem apenas uma camada e só
conseguem resolver problemas linearmente separáveis. Na Figura 3, estão ilustrados alguns
exemplos de arquitetura de RNAs.

Figura 3. Arquiteturas de RNAs [1].

14

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Essas arquiteturas referem-se a modelos:

1. Com única camada: só existe um nó entre a entrada e a saída (Figura 3. a, e);
2. Múltiplas camadas: existe mais de um neurônio entre a entrada e a saída (Figura 3. b, c,

d).

Quanto às conexões entre os nodos podemos ter dois tipos:

1. Feedforward, ou acíclica: a saída de um neurônio em um a camada não pode ser utilizada
como entrada em nenhuma camada anterior a esta (Figura 3. a, b, c);

2. Feedback, ou cíclica: a saída de algum neurônio de uma certa camada é utilizada como
entrada para uma camada anterior a esta (Figura 3. d, e).

Nós já vimos até aqui como a rede neural artificial calcula suas saídas, como é sua

arquitetura, agora vamos falar um pouco sobre como acontece a aprendizagem de uma RNA,
visto que essas redes possuem a capacidade de aprender a partir de exemplos e fazer
interpolações e extrapolações do que aprendem [1]. A aprendizagem se dá através de um
algoritmo de aprendizagem, a definição de um algoritmo de aprendizagem pode ser: um conjunto
de procedimentos bem-definidos para adaptar os parâmetros de uma RNA para que ela possa
aprender uma determinada função [1]. A utilização de uma RNA se inicia por uma fase
denominada fase de aprendizagem, é nela que, através de um processo iterativo, a rede vai
ajustando os seus parâmetros que são os pesos das conexões entre as unidades de processamento.
Essas, por sua vez, armazenam o conhecimento que a rede adquiriu do ambiente em que está
operando. Diversos métodos de aprendizado foram desenvolvidos sendo que os dois principais
são: aprendizado supervisionado e aprendizado não-supervisionado.

Aprendizado supervisionado é o método de aprendizado mais comum. Nesse método, a
entrada e saída desejadas para a rede são fornecidas por um supervisor (professor) externo.
Posteriormente, a saída dada é comparada com a saída obtida pela rede, tendo como objetivo
ajustar os parâmetros da rede de forma a encontrar uma representação interna a partir dos pares
de entrada e saída fornecidos. Nesse método, a soma dos erros quadráticos de todas as saídas é
normalmente utilizada como medida de desempenho da rede. Existe uma desvantagem da
utilização desse método: na ausência do professor a rede não conseguirá aprender novas
estratégias para situações que não pertençam ao escopo de exemplos conhecidos. A Figura 4
ilustra o aprendizado supervisionado:

Figura 4. Treinamento supervisionado [1].

Aprendizado não-supervisionado: nesse método não existe o professor ou supervisor para
acompanhar o processo de aprendizado, apenas padrões de entrada são fornecidos para a rede, e

15

ESCOLA POLITÉCNICA
DE PERNAMBUCO

através de regularidades estatísticas das entradas são estabelecidas algumas representações
internas. Desse modo, esse método de aprendizado é possível apenas quando existe redundância
nos dados de entrada. A Figura 5 demonstra esse tipo de aprendizado.

Figura 5. Treinamento não-supervisionado [1].

 Uma forma de utilizar redes neurais em sistemas de detecção de intrusão, é criar um
sistema que aprenda a predizer um próximo comando baseado numa seqüência prévia de
comandos pertencentes a um usuário específico [3]. Em uma empresa, determinados funcionários
são encarregados de realizar algumas tarefas, e essas exigem certas rotinas que envolvem
programas nos computadores, a execução desses programas exigem certos comandos nos
computadores e esses serão aprendidos pela técnica de aprendizagem de máquina. A construção
de uma rede neural para um IDS consiste em três fases:

1. Coleta dos dados para treinamento, esses dados podem ser obtidos por logs de auditoria
para cada usuário por um determinado período. Um vetor é formado para cada dia e cada
usuário, assim ele pode mostrar quais comandos um usuário frequentemente executa;

2. Treinar a rede neural para reconhecer um usuário através dos vetores de distribuição de
comandos;

3. A rede neural identifica um usuário baseado nos vetores de distribuição de comandos; se a
sugestão da rede for diferente do usuário real, uma anomalia será sinalizada.

1.1.1.3 Redes MLP (MultiLayer Perceptron)

Para resolver problemas não-linearmente separáveis foram criadas as redes MLP, pois esse tipo
de rede possui pelo menos duas camadas permitindo a aproximação de qualquer função contínua.
As redes MLP derivam de um modelo denominado perceptron proposto por Frank Rosenblatt em
1958 [4]. Com esse modelo, apenas problemas linearmente separáveis poderiam ser solucionados.
A utilização de uma camada escondida aumentou o poder computacional das MLP. A precisão a
ser obtida e a implementação da função objetivo dependem do número de nodos utilizados nas
camadas intermediárias.
 Como já vimos, um dos principais aspectos das redes neurais artificiais é a utilização de
uma função de ativação. Para redes MLP a mais empregada é a sigmoidal logística. Essa função é
representada no plano cartesiano mostrado na Figura 6.

16

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 6. Função sigmoidal logística.

 Em uma rede multicamada, o processamento realizado por cada nodo é definido pela
combinação dos processamentos realizados pelos nodos da camada anterior, que estão conectados
a ele. Para uma rede com duas camadas intermediárias pode-se dizer que o seguinte
processamento ocorre em cada camada:

• Primeira camada intermediária: cada nodo traça retas (essas retas são criadas de acordo
com a função de ativação da camada, sua orientação é dada pelo vetor de pesos) no
espaço de padrões de treinamento;

• Segunda camada intermediária: cada nodo combina as retas traçadas pelos nodos da
camada anterior (primeira camada intermediária) conectados a ele, formando regiões
convexas, onde o número de lados é definido pelo número de unidades conectadas a
ele. Abaixo, a Figura 7, mostra um exemplo de uma região convexa:

Figura 7. Regiões definidas pelo processamento da segunda camada intermediária.

• Camada de saída: cada nodo forma regiões que são combinações das regiões convexas

definida pelos nodos conectados a ele da camada anterior (segunda camada
intermediária). Na Figura 8, demonstramos um exemplo das combinações de regiões
convexas.

Figura 8. Regiões definidas pelo processamento da camada de saída.

17

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Pode-se dizer que as camadas intermediárias de uma MLP funcionam como detectores

de características. Eles geram uma representação interna dos padrões de entrada, que é utilizada
para definição da saída da rede. A camada de saída de uma MLP emprega uma técnica
denominada winner-takes-all [4], com isso a classe fornecida pela rede corresponderá à maior
saída da rede.

O número de nodos contido em cada camada é definido empiricamente, esse número
depende muito da distribuição dos padrões para treinamento e validação da rede. O número ideal
de neurônios é influenciado por vários fatores, como:

• Número de exemplos de treinamento;
• Quantidade de ruído presente nos exemplos;
• Complexidade da função a ser aprendida;
• Distribuição estática dos dados de treinamento.

A alocação de unidades intermediárias (neurônios) deve ser suficiente para solucionar o
sistema em questão. É preciso ter cuidado para não utilizar unidades demais, pois pode levar a
rede a memorizar os padrões de treinamento, ao invés de extrair as características gerais que
permitirão a generalização ou o reconhecimento de padrões que não fizeram parte do
treinamento. Esse problema é denominado overfitting. Por outro lado, se utilizarmos poucos
neurônios na camada intermediária, podemos fazer com que a rede gaste muito tempo para
encontrar uma representação ótima.

Uma das formas empregadas para evitar o overfitting é estimar o erro de generalização
durante o processo de treinamento. Para isso, a massa de dados é dividida em dois conjuntos: o de
treinamento e o de validação. O conjunto de treinamento continua sendo utilizado na atualização
dos pesos, enquanto que o conjunto de validação é empregado para estimar a capacidade de
generalização da rede durante o processo de aprendizagem. O treinamento deve ser interrompido
quando o erro de validação chegar ao seu mínimo global. Isto pode ser verificado através de
técnicas como o critério de parada GL5, onde o treinamento é interrompido quando o erro de
validação subir por cinco iterações consecutivas.

Neste trabalho, a forma utilizada para finalizar o treinamento foi o número de épocas
(quanitdade de vezes que a rede é treinada por inteiro, ou seja, apresentação de todos os padrões
de treinamento a rede), que ficou definido em 500, visto que em artigos anteriores [2,16], o
número máximo de épocas de treinamento não chegou a esse número.

Algoritmo de treinamento: back-propagation

O algoritmo de treinamento escolhido para este trabalho foi o back-propagation [1,5]. Esse
algoritmo foi um dos principais responsáveis pelo ressurgimento do interesse em RNAs, visto que
desde a criação do perceptron as redes neurais haviam entrado numa fase de decadência, devido
essa técnica só ser capaz de resolver problemas linearmente separáveis. O back-propagation é um
algoritmo supervisionado que emprega pares (entrada, saída) e por meio de um mecanismo de
correção de erros, ajusta os pesos da rede. Ele é dividido em duas fases: forward e backward, a
primeira calcula a saída da rede para um dado padrão de entrada, já a segunda utiliza a saída
desejada e a saída fornecida pela rede para ajustar os pesos das conexões. A Figura 9 demonstra
essas fases.

18

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 9. Fases do algoritmo back-propagation.

 A fase forward se inicia com a apresentação do padrão primeira camada (camada de
entrada), após os nodos calcularem suas saídas, essas são passadas para a camada posterior
(camada escondida). Essa camada realiza o mesmo processo e as saídas produzidas pela última
camada (camada de saída) são comparadas às saídas desejadas, tendo fim a fase forward.
 A fase backward se inicia a partir dessa comparação feita no último passo da fase
forward. Os pesos da camada atual são ajustados; os erros das camadas anteriores são calculados
utilizando os erros dos nodos das camadas seguintes conectados a ele, ponderados pelos pesos
das conexões entre eles.

1.1.1.4 Redes RBF (Radial Basis Function)

RBF são redes que empregam funções de base radiais. Esse nome se deve ao uso dessas funções
nas camadas intermediárias dessas redes. RBF se diferencia da maioria das redes multicamadas
por utilizar como argumento da função de ativação a distância entre seus vetores de entrada e de
pesos, enquanto que MLPs utilizam o produto escalar do vetor de entrada e do vetor de peso para
um nodo. Com a utilização dessa função na camada intermediária RBF é capaz de separar os
padrões de classes distintas através de hiperelipsóides. As funções de bases radiais são
representantes de uma classe de funções, cujo valor diminui ou aumenta em relação a um ponto
central [1]. As mais comuns para serem empregadas em redes RBF são:

• Função Gaussiana:)exp()(
2

2

i

v
uf

σ

−
= (1.6)

• Função multiquadrática:)()(22
σ+= vuf (1.7)

• Função thin-plate-spline)log()(2 vvuf = (1.8)

Onde |||| µ−= xv é, geralmente, dado pela distância Euclidiana x é o vetor de entrada, e µ e σ
representam respectivamente o centro e a largura da função radial.
 A arquitetura de uma rede RBF costuma ter apenas uma camada intermediária. Como
podemos conferir na Figura 10. A camada intermediária utiliza funções de base radiais,
agrupando os dados de entrada em clusters. Com isso, essa camada transforma um conjunto de

19

ESCOLA POLITÉCNICA
DE PERNAMBUCO

padrões não-linearmente separáveis, ou seja, que não podem ser separados apenas traçando um
plano ou uma reta, em um conjunto de padrões linearmente separáveis. A camada de saída
classifica os padrões recebidos da classe anterior. Podem ser utilizadas redes do tipo perceptron
ou adaline nessa camada, uma vez que seus padrões são linearmente separáveis.

Figura 10. Arquitetura de uma rede RBF [32].
Quanto ao particionamento do espaço de entrada, as redes RBF, ao contrário das redes

MLP que empregam hiperplanos para fazer o particionamento, utilizam hiperelipsóides, onde
cada um desses agrupa padrões de mesma classe formando regiões específicos para cada classe.
Esse particionamento realizado pela rede RBF implica que a rede só poderá classificar novos
padrões se esses forem das mesmas classes utilizadas para o seu treinamento. Ou seja, se um
determinado padrão pertencente à outra classe, que não tenha sido utilizada durante o
treinamento, for apresentado à rede para ser classificado, a rede não saberá como classificar esse
novo padrão [1].

Uma vantangem deste tipo de abordagem de RNA´s, é o fato de a rede não classificar um
padrão discrepante, classificando-o como desconhecido. A desvantagem desse tipo de técnica é o
fato dela ter um bom desempenho para problemas bem definidos [1].

Algoritmo de treinamento: DDA (Dynamic Decay Adjustment)

Existem vários métodos de treinamento para redes RBF. Neste trabalho, vamos utilizar o
algoritmo DDA (Dynamic Decay Adjustment) [6,7,8,9,30]. Esse algoritmo se baseia no algoritmo
contrutivo, utilizado para redes RBF, RCE (Restricted Coulomb Energy) [10]. Ele corrige um
problema do RCE que é o de se confundir em áreas de conflito como o ilustrado na Figura 11.
Quando um padrão é apresentado à rede, essa cria uma unidade RBF para classificá-la. Se um
padrão de uma outra classe for inserido no treinamento, irá também criar uma unidade RBF e isso
pode gerar uma região comum às duas gaussianas, denominado área de conflito. O algoritmo
RCE não trata desse caso e, por conseguinte, pode não conseguir classificar corretamente esse
padrão, podendo este ser atribuído a classe errada.

20

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 11. Exemplo de conflito de padrões [6].

 O algoritmo DDA tem algumas peculiaridades que o diferenciam tanto na arquitetura
usada por essas redes, como também no tempo utilizado para realização do treinamento. Quando
aplicado a uma rede RBF, os nós da camada escondida utilizam funções gaussianas para
processarem os valores de entrada [1].

O algoritmo DDA é um algoritmo construtivo, pois, inicialmente, é criada uma camada
escondida sem neurônios. Cada gaussiana, apresentada na Figura 11, representa uma unidade na
camada escondida de uma RBF, ou seja, um nodo. A partir do momento que o treinamento
ocorre, novas unidades vão sendo adicionadas dentro dessa camada escondida. Se houver a
necessidade da inclusão de um novo neurônio, isso será determinado dinamicamente durante o
treinamento.

O DDA utiliza dois parâmetros específicos para decidir se um novo neurônio deverá ser
introduzido na camada intermediária da rede RBF [2]. O limiar positivo θ+ é utilizado para
verificar se, para um novo padrão usado para o treinamento da rede, existe algum protótipo (uma
gaussiana) da mesma classe com ativação acima do θ+. Caso exista tal protótipo, não será
adicionado novo protótipo à rede; ao invés disso o peso de um protótipo já existente será
incrementado. O limiar negativo θ- é utilizado para ajudar a solucionar o problema de conflitos de
padrões que podem vir a existir durante o treinamento [6, 8].

O algoritmo 1, mostra um pseudocódigo para o DDA durante uma época de treinamento.

Algoritmo 1. Algoritmo DDA para treinamento de RBFs (uma época de treinamento)

//inicializa pesos com 0,0:
FORALL protótipos p

k
i DO

 A
k
i = 0,0

ENDFOR
//treina para uma época completa
FOR ALL padrão de treinamento (x, c) DO
 IF Эp

c
i: R

c
i(x) >= θ

+
 THEN

 A
c
i

+ = 1,0

 ELSE
 // introduz um novo protótipo
 Adiciona um novo protótipo p

c
mc + 1 com:

 rc
mc + 1 = x

 σ c
mc + 1 = max k ≠ c /\ 1 <= j <= mk {σ:R

c
mc + 1(r

k
j) < θ

-
}

 A
c
mc + 1 = 1.0

 mc + = 1
 ENDIF
 //ajusta protótipos conflitantes

 FORALL k ≠ c, 1 <= j <= mk DO
 σk

j = max{σ : Rj
k
(x) < θ

-
}

 ENDFOR
ENDFOR

21

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Podemos verificar no algoritmo 1 que, inicialmente, todos os pesos recebem valor 0 para

cada protótipo presente na rede. Depois da inicialização dos pesos, para cada padrão de
treinamento, verifica-se o valor de sua ativação e esse valor é comparado com o parâmetro θ+. Se
a ativação for maior ou igual ao θ+, não é adicionado um novo protótipo à rede e o peso será
incrementado de 1. Caso a ativação seja menor que o valor do parâmetro θ+, um novo protótipo
será adicionado à rede com o valor do seu centro igual ao vetor de entrada, o peso do novo
protótipo será igual a 1 e o número de protótipos é incrementado de 1. O próximo passo é fazer os
ajustes nos protótipos conflitantes da forma como descreve o algoritmo 1.
 Temos, a seguir, a Figura 12 que demonstra um exemplo de rede utilizando o algoritmo
DDA. Na Figura 12 (a), é inserido um padrão de treinamento pertencente à classe A do problema
em questão, criando uma gaussiana. A seguir na Figura 12 (b), um padrão da classe B é inserido,
portanto uma nova gaussiana terá que ser criada, e a gaussiana do padrão A terá que se ajustar
para passar na intersecção do centro de B com o valor θ-. No terceiro passo da Figura 12 (c), um
novo padrão B é inserido, e como a intersecção do seu centro com a gaussiana do padrão B
anterior é maior que o θ+, a gaussiana é incrementada, tendo seu peso passado para dois. Na
Figura 12 (d), um novo padrão A á inserido e a interseção do centro desse novo padrão com a
gaussiana A já existente é menor que o θ+, sendo assim uma nova gaussiana A teve que ser
criada.

Figura 12. Exemplo da execução do algoritmo DDA [6].

Neste trabalho, também utilizamos uma técnica de seleção do parâmetro θ- [7, 8, 9]. O
algoritmo DDA com seleção do parâmetro θ-, propõe a utilização de valores menores que o
default para o parâmetro θ-, porém utiliza um método para selecionar um valor ótimo para esse
parâmetro. O conjunto de dados contendo todos os padrões que serão utilizados pela rede neural
RBF-DDA é dividido, inicialmente, em dois conjuntos: conjunto de treinamento e conjunto de
teste. Realizada essa divisão inicial nos dados, o conjunto de treinamento é novamente dividido
em duas novas partes: uma parte é um novo conjunto de treinamento, e outra parte é utilizada
como um conjunto de validação. Esses dois novos conjuntos de dados serão usados para
treinamento e validação da rede respectivamente, com o intuito de alcançar um valor para o
parâmetro θ- que seja ótimo, ou seja, um valor que proporcione uma taxa de generalização ideal

22

ESCOLA POLITÉCNICA
DE PERNAMBUCO

para a rede, e essa possa classificar novos valores sem a presença de overfiting. O método para
seleção do parâmetro θ- usando o algoritmo DDA é mostrado no algoritmo 2.

Algoritmo 2. Algoritmo DDA com seleção de θ

-.

θ

-
opt = θ

-
 = 10

-1

Treinar uma RBF-DDA com θ
-
 usando o conjunto de treinamento reduzido e testa com o conjunto de

validação para obter ValError = MinValError
REPEAT
 θ-

= θ
-
 x 10

-1

 Treinar uma RBF-DDA com o θ
-
 usando o conjunto de treinamento reduzido e testar com o conjunto de

validação para obter o ValError
 IF ValError < MinValError
 MinValError = ValError
 θ

-
opt = θ

-

 ENDIF

UNTIL ValError > MinValError OR θ-
 = 10

-10

Treinar uma RBF-DDA com o θ
-
opt usando o conjunto de treinamento completo

Testar o RBF-DDA otimizado com o conjunto de teste

1.1.2 Máquinas de vetor de suporte (SVM)

Máquinas de vetor de suporte (SVM) [11, 12, 13] têm obtido sucesso em um grande número de
aplicações, que variam desde identificação de partículas, identificação de face, categorização de
texto, bioinformática e em banco de dados de marketing [11]. O modo como a aproximação é
realizada tem base na teoria estatística [12]. SVM funciona construindo um hiperplano N-
dimencional que otimamente separa os dados em duas categorias de forma ótima [13]. A Figura
13 demonstra um exemplo de como são separadas duas categorias.

Figura 13. Exemplo em duas dimensões da utilização de SVM como classificador [13].

Na literatura de SVM, uma variável de predição é denominada atributo, e um atributo

transformado, que é empregado na definição do hiperplano, é chamado característica. A tarefa de
escolher a representação mais satisfatória é conhecida como seleção de característica. O conjunto
de características que descrevem um caso é chamado de vetor. Assim, o objetivo de SVM é
modelar um hiperplano ótimo que separa clusters do vetor. Os vetores perto do hiperplano são os
vetores de suporte. A Figura 14 ilustra bem esses conceitos.

23

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 14. Exemplo em duas dimensões dos vetores de suporte [13].

Algumas das principais características das SVMs são:

• Boa capacidade de generalização – os classificadores gerados por uma SVM em
geral alcançam bons resultados em termo de generalização. Essa capacidade é
medida por sua eficiência na classificação de dados que não pertençam ao conjunto
utilizado em seu treinamento, portanto, é evitado o overfitting.

• Robustez em grandes dimensões – as SVMs são robustas diante de grandes
quantidades de dados.

• Teoria bem definida – as SVMs possuem uma base teórica bem estabelecida dentro
da Matemática e Estatística.

 O exemplo descrito nas Figuras 13 e 14 é simples, pois só possui duas dimensões. Nesse
exemplo, assumimos que existem duas categorias, sendo uma categoria representada por
retângulos e a outro por círculos. Nesse caso idealizado, uma categoria se localiza no canto
inferior esquerdo e a outra categoria se localiza no canto superior direito. SVM tentar achar um
hiperplano com uma dimensão que separe as duas categorias. Existe uma infinidade de
hiperplanos que podem separar essas categorias. Na Figura 14, temos dois exemplos. O
hiperplano do lado esquerdo da Figura 14 tem uma margem de separação pequena, enquanto que
o hiperplano do lado direito da mesma figura tem uma margem de separação maior. As linhas
pontilhadas paralelas à linha divisória marcam a distância entre essa e os vetores mais próximos
da linha. A distância entre as linhas pontilhadas é chamada de margem. O vetores mais próximos
as linha pontilhadas são chamados de vetores de suporte, como descrito no parágrafo anterior e
ilustrados na Figura 14.
 Uma SVM tenta achar um hiperplano de forma que o tamanho da margem seja máximo
para que haja um maior limite de decisão para padrões não-lineares dentro do espaço de entrada.
Outra decorrência disso é que a rede tende a generalizar melhor. Com a margem máxima há uma
separação melhor entre as classes que fazem parte do problema.
 SVM se utiliza de funções denominadas kernel. Essas funções são capazes de mapear o
conjunto de dados em diferentes espaços, fazendo com que um hiperplano possa ser usado para
fazer a separação. Os principais tipos de funções kernel são:

• Linear: j

T

iji xxxxK =),(

24

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Polinomial: 0,)(),(>+= γγ
d

j

T

iji rxxxxK

• Sigmóide:)tanh(),(rxxxxK j

T

iji += γ

• Função de base radial (RBF): 0),||||exp(),(2
>−−= γγ jiji xxxxK

A função kernel que vamos utilizar será a função de base radial. Esse tipo de kernel utiliza

alguns parâmetros para o treinamento, nós utilizamos dois deles que são o C e o V. O parâmetro
C é o parâmetro de penalidade do termo de erro (C>0) e V é a validação cruzada será explicada
no Capítulo 3.

1.1.3 Técnica baseadas nos vizinhos mais próximos (NN e kNN)
O método do vizinho mais próximo para classificação é simples e preciso [14,15]. Nesse método,
um nodo padrão é nomeado para a classe do seu vizinho mais próximo de um conjunto de
treinamento rotulado e armazenado. A Figura 15 demonstra como é feita a classificação do
método NN. Nela o novo padrão, marcado com uma cruz, será classificado como floco de neve
(asterisco), devido a esse ser o rótulo do seu vizinho mais próximo.

Figura 15. Exemplo de classificação no método NN [33].

 Todos os dados rotulados são armazenados e usados no processo, isso faz com que NN
precise de um tempo significativo para executar e também ocupe bastatnte memória.
 O método kNN utiliza também a influência dos vizinhos. Entretanto, classifica seus
padrões de acordo com uma matriz de votos dados por seus k vizinhos mais próximos. O
funcionamento desse método é explicado dessa forma [24,38]:

1. Calcula-se as distâncias das amostras;
2. Agrupa-se as amostras por proximidade;
3. Os vizinhos mais próximos dão seus votos para sua classe;
4. A classe que possuir mais votos fica com o padrão.

Uma das grandes vantagens do kNN é que ele não depende da distribuição dos dados,
sendo mais indicado para classificação de dados assimétricos.

25

ESCOLA POLITÉCNICA
DE PERNAMBUCO

O ideal quando se escolhe o número k de vizinhos, é escolher um número ímpar para
evitar que duas classes possuam o mesmo número de votos na escolha da classe de um
determinado padrão.

1.2 Sistemas de Detecção de Intrusão (IDS)

1.2.1 O que é um IDS?

Ataques a computador lançados a partir da Internet, são capazes de causar danos enormes, devido
ao aumento da importância dos serviços fornecidos pela rede. Esses ataques crescem cada dia, o
que pode ser comprovado a partir de dados estatísticos de órgãos como CERT e NBSO [19]. É
complicado prevenir ataques com políticas como firewalls, políticas de segurança ou outros
mecanismos, pois os sistemas e aplicativos possuem fraquezas desconhecidas ou falhas (bugs).
Além disso, freqüentemente, os atacantes exploram vulnerabilidades desses sistemas e/ou
protocolos de rede. Sistemas de detecção de intrusão são projetados para descobrir ataques que
inevitavelmente acontecem, mesmo com a aplicação das políticas de segurança [16].
 O processo de detecção de intrusão se caracteriza por identificar e relatar atividade
maliciosa agindo em computadores e/ou recursos da rede [17]. Tendo em mente essa definição de
detecção, podemos definir, ainda, um sistema de detecção de intrusão como sendo: um sistema de
hardware e software que trabalham unidos para identificar eventos inesperados que podem
indicar se um ataque irá acontecer, está acontecendo ou aconteceu [17]. A função de um IDS
pode ser também, além de detectar e identificar um ataque, responder ao ataque ativando medidas
preventivas e alertando o administrador de rede. Um IDS coleta informações de uma variedade de
sistemas e recursos da rede e assim analisa essas informações para verificar se há algum sinal fora
da normalidade. As principais funções executadas por um IDS são [18]:

• Análise e monitoração do usuário e do sistema;
• Avaliação da integridade crítica do sistema e seus arquivo de dados;
• Reconhecimento de padrões de atividades que indiquem um ataque;
• Informação ao processo de detecção.

1.2.2 Conceitos e tipos de um IDS

Alguns conceitos são inerentes a sistemas de detecção de intrusão como [17]:

• Ataque: ação inteligente que põe em risco o funcionamento de um sistema, explora
vulnerabilidades inerentes ao sistema ou inerentes ao protocolo de rede;

• Vulnerabilidade: é uma falha que pode ter origem no sistema operacional, no
protocolo de rede ou em serviços de qualquer componente no sistema que permita
acesso ou intervenção de pessoas não autorizadas.

• Sensor: principal parte de um IDS, cuja função é monitorar um host ou rede a fim
de identificar intrusões gravar logs localmente e gerar mensagens alertando tais
eventos;

• Estação de gerenciamento: é uma estação encarregada de gerenciar um ou mais
sensores;

26

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Evento: é uma ocorrência, detectada pelo sensor, na base de dados;
• Respostas ou contramedidas: ações que podem ser programadas na ocorrência de

um determinado evento.

O propósito de um IDS é distinguir entre intrusos e usuários. Devido à enorme
complexidade das redes atuais, essa distinção se torna difícil. Isso pode acarretar perda de
desempenho dos IDS. Desse problema descrito, podemos apresentar dois conceitos inerentes, o
dos falsos positivos e falsos negativos. Os erros de falso positivo ocorrem quando o sensor do
IDS interpreta mal uma conexão normal, classificando-a como um ataque. Esse erro pode
degradar a produtividade do sistema pela ativação desnecessária de contramedidas. Os erros de
falso negativo são fatais, pois acontecem quando uma conexão de ataque é classificada como uma
conexão normal.

Várias classificações existem para definir o tipo de IDS. Uma delas é classificá-lo quanto
à tecnologia do analisador de eventos, que é a parte do sensor responsável pela identificação dos
ataques. O analisador de eventos pode ter como tecnologia [17]:

• Análise de assinaturas: seu funcionamento é similar a de um antivírus. É o método

mais utilizado.
• Análise estatística: constrói modelos estatísticos do ambiente baseados em fatores

como: duração média de uma sessão de telnet [37], por exemplo. Qualquer desvio
comportamental do sistema pode ser classificado com suspeito.

• Sistemas adaptativos: inicia generalizando regras de aprendizado para o ambiente
em que está inserido, e então determinar o comportamento dos usuários com o
sistema. Passado esse período, o sistema estará apto para distinguir entre conexões
normais e ataques.

1.2.3 IDS utilizando aprendizagem de máquina

O propósito deste trabalho, como já foi descrito, é identificar qual técnica de aprendizagem de
máquina fornece melhores resultados, ou ainda, se adapta melhor para sistemas de detecção de
intrusão. Para isso o tipo de IDS que trabalha com aprendizagem de máquina são os sistemas
adaptativos descritos na Seção 1.2.2.

 As técnicas de aprendizagem de máquina se inserem em um IDS no analisador de eventos,
que por sua vez, em geral, parte do sensor, e é responsável pela classificação das conexões. Como
foi descrito na Seção anterior, a implementação desses sistemas obedece a duas fases distintas.
Na primeira fase, chamada de fase de treinamento, a técnica começa a aprender o funcionamento
do sistema em questão e como os usuários interagem com o mesmo. Na segunda fase, o sistema
começa a fazer interpolações e extrapolações daquilo que ele aprendeu na fase de treinamento e,
desse modo, ele estará habilitado para realizar a distinção das conexões, ou seja, classificá-las em
normais ou ataques.

1.2.4 Arquitetura de um IDS
Todo IDS possui alguns componentes em comum; cada um responsável por uma parte importante
na detecção de alguma anormalidade danosa ao sistema. A seguir, temos um exemplo de
arquitetura proposto pela IDWG (Intrusion Detection Exchange Format Working Group) [39].

27

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 16. Componentes de um IDS segundo o IDWG [39].

 Na Figura 16, podemos visualizar o papel de alguns componentes descritos na seção 1.1.2.
A origem dos dados geralmente é representada pela Internet e apresenta um grande volume de
informações. O sensor responsável pela obtenção dos eventos gerados fora do IDS, realizando um
pré-processamento nos dados para adequá-los ao analisador de eventos que, geralmente, faz parte
de um sensor, e sua função é analisar os dados pré-processados do sensor e classificar em
conexão normal ou ataque. Essa estrutura básica também contempla o gerente que vai ser
notificado sobre o ataque, o administrador da rede, responsável pelas políticas de segurança e, por
sua vez, da configuração do IDS. A origem dos dados, na maioria dos casos, é a Internet. O
volume de dados advindos da Internet é grande. Também temos a figura do operador que vai
tomar as devidas providências para barrar o ataque eminente na rede.
 A parte mais importante de um IDS é o analizador de eventos, pois é ele quem vai
classificar as conexões contidas no tráfego como normal ou anormal. Como ele necessita
processar um volume grande de informações em um curto espaço de tempo, poderia se pensar em
uma implementação em hardware, para o mesmo.

1.2.5 Estudo de caso: SNORT

O snort é um IDS de código aberto, largamente utilizado em empresas. Desenvolvido pela Martin
Roesch, executa análise de protocolo, busca/associa padrões de conteúdo e pode ser usado para
detectar uma variedade de ataques e probes (ferramentas de varredura da rede), tais como buffer

overflows, stealth port scans, ataques CGI, SMB probes, OS fingerprinting, entre outros. Uma
característica relevante é a capacidade de gerar alertas em tempo real. Sua utilização é indicada
para empresas de pequeno porte.

Arquitetura do snort

A implementação do snort segue uma arquitetura modular, cujo objetivo é melhorar o
desempenho na coleta e análise de pacotes. Seus principais subsistemas são:

• Pré-processamento: Disposto entre o analisador de pacotes e o processamento do
mecanismo de detecção, decodifica o pacote;

28

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Detecção: Ocorre durante o processamento do mecanismo de detecção;

• Saída: é executado após o processamento do mecanismo de detecção, para registrar e
alertar.

Abaixo (Figura 17) segue a arquitetura do snort.

.

 Figura 17. Arquitetura do snort.

29

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Capítulo 2

Base de Dados

Neste Capítulo, iremos descrever a base de dados utilizada para o treinamento das técnicas de
aprendizagem de máquina a serem comparadas, bem como os ataques contidos nela.

2.1 Descrição

A base de dados utilizada neste trabalho é a KKD cup 1999 data [20]. Esta base foi concebida
através da simulação de um ambiente de uma rede militar da força aérea dos Estados Unidos. O
objetivo da sua concepção era inspecionar e avaliar o estudo de detecção de intrusão, através de
pesquisas. A rede foi operada em um ambiente real, sendo alimentada por conexões TCP dump,
mas foi sendo bombardeada por uma seqüência de múltiplos ataques. Para cada conexão foram
extraídas 41 diferentes características, tanto qualitativas quanto quantitativas, formando um banco
de dados com aproximadamente cinco milhões de conexões [2, 21, 22].

A conexão é uma seqüência de pacotes TCP, começando e terminando em tempos bem
definidos, com fluxos de dados entre um IP de origem e um IP de destino, funcionando em cima
de um protocolo bem definido. Cada uma das conexões é rotulada como uma conexão normal ou
como um tipo de ataque. Cada conexão gravada tem aproximadamente 100 bytes. Na Tabela 1,
temos algumas características inerentes a esta base.

 2.2 Tipos de Ataques

A base de dados possui quatro tipos de ataques principais. A seguir vamos descrever cada um
deles e mencionar quais são os ataques pertencentes a cada tipo [2, 20, 21].

30

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 1. Características da base kdd cup 1999
Característica Descrição Tipo
Duration Tamanho da conexão (em segundos) Contínuo
Protocol_Type Tipo de protocolo discreto (tcp, udp, ...)
Service Serviço de rede no destino discreto (http, telnet ...)
Flag Status da conexão (normal ou erro) discreto (normal ou erro)
Src_Bytes número de bytes dos dados da origem para o destino Contínuo
Dst_Bytes número de bytes dos dados do destino para a origem Contínuo
Land 1 se a conexão é do/para o mesmo host/porta; 0 caso contrário discreto (0,1)
Wrong_Fragment número de fragmentos errados Contínuo
Urgent número de pacotes urgentes Contínuo
Hot números de indicadores chave "hot" Contínuo
Num_Failed_Logins número de tentativas com login falhando Continuo
Logged_In 1 se login com sucesso; 0 caso contrário discreto (0,1)
Num_Compromised Números de condições "comprometidas" Continuo
Root_Shell 1 se obtive root shell; 0 caso contrário Contínuo
Su_Attempted 1 se superusuário foi tentado; 0 caso contrário Contínuo
Num_Root número de acessos como root Contínuo
Num_File_Creations número de operações de criação de arquivos Contínuo
Num_Shells número de prompts shell Contínuo
Num_Access_Files número de operações de controle de acesso em arquivos Contínuo
Num_Outbound_Cmds Número limite de comandos em uma sessão ftp Continuo
Is_Host_Login 1 se o login pertence a uma lista "hot"; 0 caso contrário discreto (0,1)
Is_Guest_Login 1 se o login é um convidado; 0 caso contrário discreto (0,1)

Count
número de conexões para um mesmo host como a conexão
corrente nos últimos 2 segundo Continuo

Srv_Count
número de conexões para um mesmo serviço como conexão
correntes nos últimos 2 segundos para este serviõ Contínuo

Serror_Rate
% de conexões que possuem erros "SYN" (bit do cabeçalho
TCP utilizado para estabelecer e derrubar uma conexão) Continuo

Srv_Serror_Rate % de conexões que possuem erros "SYN" para este serviço Continuo

Rerror_Rate
% de conexões que possuem erros "REJ" (bit do cabeçalho TCP
utilizado para informar que um pacote não chegou) Contínuo

Srv_Rerror_Rate % de conexões que possuem erros "REJ" para este serviço Continuo
Same_Srv_Rate % de conexões para o mesmo serviço Continuo
Diff_Srv_Rate % de conexões para diferentes serviços Continuo
Srv_Diff_Host_Rate % de conexões deste mesmo serviço para hosts diferentes. Contínuo

• DoS (Denial of Service): Também chamado de ataque de negação-de-serviço, se
caracteriza por deixar um serviço ou rede parada ou muito lento. Há diferentes
formas de se lançar um ataque do tipo DoS: abusando de características inerentes
aos computadores (por exemplo, respostas ao ping do ICMP), identificando falhas
de implementações e explorando configurações erradas dos sistemas. Eles podem
ser classificados de acordo com os serviços que eles deixam indisponíveis, a Tabela
2 a seguir mostra alguns exemplos de ataques do tipo DoS.

31

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 2. Ataques DoS
Ataque Serviço Mecanismo Efeito do ataque
Apache2 http Abuso Colisões http

Back http
Abuso/Falha de
Implementação Resposta do servidor fica mais lenta

Land http Falha de Implementação Trava a máquina

Mail Bomb N/A Abuso Aborrecimentos

SYN flood TCP Abuso
Negação de serviço para uma ou
mais portas

Ping of death Icmp Falha de Implementação Nenhum

Process table TCP Abuso Negação de novos processos

Smurf Icmp Abuso Rede lenta

Syslog Syslog Falha de Implementação Para o Syslog

Teardrop N/A Falha de Implementação Reinicia a máquina

Udpstrom Echo/Chargen Abuso Rede lenta

• Probing: Nessa classe, os ataques se caracterizam por varrer a rede

automaticamente a procura de vulnerabilidades para serem exploradas. Esse tipo de
ataque é bastante útil para um intruso que pretenda atacar futuramente, pois através
dele é possível criar um mapa da rede contento máquinas e serviços. Geralmente,
abusam de alguma característica inerente ao computador .Alguns tipos de Probing
podem ser vistos na Tabela 3.

Tabela 3. Ataques Probing

Ataque Serviço Mecanismo Efeito do ataque
Ipsweep Icmp Abuso de característica Identifica máquinas ativas

Mscan Many Abuso de característica Procura por vulnerabilidades conhecidas

Nmap Many Abuso de característica Identifica portas ativas na máquina

Saint Many Abuso de característica Procura por vulnerabilidades conhecidas

Satan Many Abuso de característica Procura por vulnerabilidades conhecidas

• R2L (Remote to user attacks): Chamado de ataque de um usuário remoto (R2L),

essa classe se caracteriza pelo envio de pacotes a uma máquina de uma rede, a partir
daí são exploradas vulnerabilidades da máquina para ganhar acesso ilegal de
usuário local. Alguns ataques R2L estão descritos na Tabela 4.

Tabela 4. Ataques R2L

Ataque Serviço Mecanismo Efeito do ataque

Dictionary
Telnet, rlogin, pop,
ftp, imap

Abuso de
característica Ganha acesso de usuário

Ftp-write Ftp Configuração errada Ganha acesso de usuário

Guest Telnet, rlogin Configuração errada Ganha acesso de usuário

Imap Imap
Falha de
implementação Ganha acesso de usuário

Named Dns
Falha de
implementação Ganha acesso de usuário

Phf http
Falha de
implementação

Executa comandos como usuário de
http

Sendmail Smtp
Falha de
implementação

Executa comandos como
administrador

Xlock Smtp Configuração errada Usa Spoof para obter a senha

Xnsoop Smtp Configuração errada Monitora chaves remotamente

32

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• U2Su (User to root attacks): Essa classe de ataques se caracteriza por iniciar o
ataque como um usuário normal no sistema e explorar vulnerabilidades para ganhar
acesso de usuário root do sistema. A maioria das explorações dessa classe se dá
através de estouro de pilha (buffers overflows) que ocorre quando um programa
copia muitos dados para um buffer estático, sem ter a certeza que os dados se
ajustarão. A Tabela 5 mostra alguns tipos desse ataque:

Tabela 5. Ataques U2Su

Ataque Serviço Mecanismo Efeito do ataque

Eject
Sessão do
usuário Estouro de pilha Ganha acesso de administrador

Ffbconfig
Sessão do
usuário Estouro de pilha Ganha acesso de administrador

Fdformat
Sessão do
usuário Estouro de pilha Ganha acesso de administrador

Loadmodule
Sessão do
usuário

Falha no carregamento de
programas que limpam o
ambiente Ganha acesso de administrador

Perl
Sessão do
usuário

Falha no carregamento de
programas que limpam o
ambiente Ganha acesso de administrador

Os
Sessão do
usuário

Falha no gerenciamento de
arquivos temporários Ganha acesso de administrador

Xterm
Sessão do
usuário Estouro de pilha Ganha acesso de administrador

 O gráfico da Figura 18, mostra a quantidade de cada ataque na base de dados kdd cup
1999. A maior parte desses ataques são da classe DOS.

Figura 18. Quantidade de cada ataque na base kdd cup 1999 [2].

33

ESCOLA POLITÉCNICA
DE PERNAMBUCO

 2.3 Formatação
A base de dados original, como já foi mencionado, possuía 5 milhões de conexões. Existe no
mesmo repositório da base original uma base que representa 10% de todas essas conexões e esta
base possui 494.021 padrões, com essa quantidade o trabalho ficaria inviável, devido a grande
necessidade de processamento e tempo para realizar os experimentos. Alguns trabalhos com essa
base de dados [2,21] utilizaram bases de tamanho inferior ao da base 10% da original. Decidimos
reduzir a base de dados para 15000 padrões, escolhidos aleatoriamente, e cada tipo de ataque teve
sua quantidade baseada na proporcionalidade com essa base que representa 10% da original,
excetuando os ataques do tipo U2Su no qual foram inseridos alguns padrões a mais. Ao final
dessa divisão, cada classe da base ostentava a seguinte quantidade:

• Normal: 2953 padrões;
• DoS: 11874 padrões;
• Probe: 124 padrões;
• R2L: 38 padrões;
• U2Su: 11 padrões.

Também decidimos subdividir essa base em cinco outras de forma que sempre

contivessem os padrões normais, essa separação foi realizada pelo fato de que no mundo real
termos conexões normais e ataques fazendo parte do tráfego de entrada numa empresa. Por
conseguinte, as bases criadas foram:

• Normal + Ataques: essa base possui os 15000 padrões, porém só duas classes de

saída que são a classe normal e a ataques (contém os quatro tipos de ataques);
• Normal + DoS: essa base possui 14827 padrões;
• Normal + Probe: essa base possui 3077 padrões;
• Normal + R2L: essa base possui 2991 padrões;
• Normal + U2Su: essa base possui 2964 padrões;

Após a separação das bases, foram feitas as normalizações necessárias para torná-las
utilizáveis pelos respectivos simuladores (ver Capítulo 3). A normalização foi realizada seguindo
os seguintes princípios:

• Há na base atributos representados por nomes; para cada atributo desse, foi

realizado uma normalização, da seguinte forma: para cada nome contido em um
atributo foi criada uma nova entrada. Assim, a base passou a ter 109 entradas e não
mais as 41 originais; o valor 1 foi atribuído, se o nome de um determinado atributo
existir para aquele padrão, e 0 caso contrário. Para exemplificar esse processo,
tínhamos na base de dados um atributo que representava três protocolos (TCP, UDP
e ICMP). Para cada protocolo foi criada uma nova entrada, e, se para um
determinado padrão, o TCP fosse utilizado, a sua coluna teria o valor 1 e as demais,
UDP e ICMP, seriam 0. A representação para o TCP seria então 1 0 0, já o UDP
seria 0 1 0 e por sua vez o ICMP 0 0 1;

• Para cada tipo de ataque foi criada uma coluna. Assim a base de dados passou a ter
uma saída para cada ataque. As bases explicadas anteriormente passaram a possuir
2 saídas cada;

34

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Os dados foram normalizados, antes da realização do treinamento, deixando seus
valores entre 0 e 1 obedecendo à equação abaixo, lembrando que essa equação é
para cada célula da tabela:

Xnovo = (Xreal – Xmin) / (Xmax – Xmin)

Onde, Xmax é o valor máximo de um determinado atributo e Xmin é o valor
mínimo de um determinado atributo.

• Para cada simulador foi inserido seu respectivo cabeçalho, bem como algumas
modificações que foram necessárias;

• Os arquivos foram salvos seguindo a extensão de cada simulador.

Ao todo foram gerados 20 arquivos diferentes, sendo: 5 para MLP, 5 para RBF-DDA, 5
para SVM e 5 para NN e kNN.

35

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3

Experimentos e Resultados

A finalidade deste Capítulo é descrever como foram realizados os experimentos, bem como
analisar os resultados obtidos e traçar um estudo comparativo entre as técnicas empregadas de
aprendizagem de máquina empregadas, levando em consideração alguns fatores como: tempo de
processamento, erro de validação cruzada e complexidade do classificador gerado.

3.1 Ferramentas utilizadas

3.1.1 SNNS (Stuttgart Neural Network Simulator)

O SNNS, simulador utilizado no treinamento de vários tipos de redes neurais, foi desenvolvido
em 1989 pelo Instituto Para Sistemas Paralelos e Distribuídos de Alta Desempenho (Institute For

Parallel And Distributed High Performance Systems) (IPVR) da Universidade de Stuttgart na
Alemanha [23]. O objetivo da sua criação era prover uma ambiente de simulação eficiente para
pesquisa e aplicação de redes neurais artificiais. A versão do SNNS utilizada neste trabalho foi a
4.2 para o Windows.
 Basicamente o SNNS é dividido em quatro partes principais [25]:

• Um simulador de kernel escrito em C: o kernel opera sobre uma representação
interna das redes neurais e é responsável por todas as operações sobre as estruturas
de dados que a compõe;

• Uma interface gráfica para interação com o usuário: trabalha sobre kernel,
fornecendo uma representação gráfica para as redes neurais e controlando o kernel
durante a execução do programa;

• Uma interface para execução em batch (batchman);
• Um compilador de redes, o snns2c.

Capítulo

36

ESCOLA POLITÉCNICA
DE PERNAMBUCO

A seguir, na Figura 19, temos a interface inicial do SNNS.

Figura 19. Tela inicial do SNNS.

 Utilizando o SNNS para criação de uma rede

O SNNS foi utilizado neste trabalho para treinamento com redes neurais RBF, como já havia sido
mencionado anteriormente. O primeiro passo para criação dessas redes no SNNS é ir ao painel
inicial (ver Figura 19), pressionar o botão BIGNET e escolher a opção general. Neste local
escolhemos o tipo da rede. Existem outros tipos, porém o utilizado para redes RBF é o geral
(general). Na Figura 20, visualizamos o formulário para criação da rede. Nele definiremos a
quantidade de nodos em cada camada e como as camadas estarão conectadas. A definição do
número de nodos é feita no local indicado na Figura 20 pela topologia da rede, para o nosso
exemplo particular foram colocados 109 nodos na camada de entrada, nenhum nodo na camada
intermediária e 2 nodos na camada de saída. A camada intermediária ficará vazia, pois o
algoritmo de treinamento que utilizamos para RBF foi o DDA (ver seção 1.1.1.4) e nele a camada
escondida é construída à medida que o treinamento ocorre. Esse algoritmo também define a
forma com que os nodos vão se ligar aos nodos da camada seguinte, não sendo necessário fazer a
opção por uma rede totalmente conectada (isso seria feito utilizando a opção full conection, na
Figura). A seguir, após definir tudo isso pressionamos o botão create net para criar nossa rede.

37

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 20. Definição da topologia da rede no SNNS.

Com a rede criada e, conseqüentemente, a topologia definida o último passo a ser

realizado é salvar a rede. Para salvar vamos ao painel principal do SNNS e escolhemos a opção
FILE, a Figura 21 é a tela que será aberta. Como podemos visualizar, no lado direito da tela
existem os tipos de arquivos que o SNNS trabalha, os principais são:

• .NET: arquivo usado para definir a rede, contém todas as informações necessárias

para a rede neural;
• .PAT: essa extensão é utilizada para definir o arquivo que conterá os padrões, esses

arquivos, para funcionarem corretamente no SNNS, requerem um cabeçalho;
• .RES: extensão para os arquivos de resultados que são gerados após o treinamento e

teste da rede neural, eles servem para fazer avaliação dos resultados obtidos. Esses
arquivos são analizados um de cada vez.

38

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 21. Tela salvar e carregar arquivos do SNNS.

 Além de criar e treinar a rede, o SNNS também possui uma ferramenta para análise dos
resultados, o analyze. Essa ferramenta atua sobre os arquivos de resultados gerados pelo
treinamento, informando qual foi o percentual de acerto para o teste de determinada base, quantos
padrões foram classificados corretamente, incorretamente e não conhecidos, dentre outros. A
Figura 22 ilustra o uso do analyze.

Figura 22. Tela da ferramenta analyze.

3.1.2 LIBSVM

LIBSVM [26, 2, 21] é um simulador para classificação, regressão e estimação de distribuição de
máquinas de vetor de suporte (SVM). Ele possui uma interface com o usuário simples e de fácil
manipulação. Ele contém alguns softwares auxiliares como, por exemplo, o svmscale, que
normaliza base de dados. Na próxima Seção desse Capítulo veremos o conceito de validação
cruzada, que foi utilizado no treinamento de todos os métodos presentes neste trabalho. Ao
contrário do SNNS, que não implementa a validação cruzada como opção para treinamento, o
LIBSVM o faz. Portanto é só inserir um comando e temos a validação cruzada para esse
simulador.

39

ESCOLA POLITÉCNICA
DE PERNAMBUCO

 O LIBSVM disponibiliza um applet para visualizarmos exemplos de classificação e
regressão, porém esse applet serve apenas para demonstração. A Figura 23 demonstra os
resultados da sua execução.

Figura 23. Applet do LIBSVM [13].

 Como podemos visualizar na Figura 23, temos 3 classes diferenciadas pela cor. Quando
executamos o applet são traçadas regiões que representam as três classes de forma que a região
deva possuir o maior número possível de padrões.
 Para treinarmos SVMs em problemas reais, utilizamos o prompt de comando. O LIBSVM
disponibiliza uma série de aplicativos para treinamento e teste de base de dados; um deles é o
svmtrain utilizado para realizar treinamentos. A Figura 24 demonstra a utilização desse aplicativo
para uma das bases de dados do trabalho.

Figura 24. svmtrain[13].

 Como podemos visualizar existem alguns parâmetros que são usados para o treinamento.
Os parâmetros utilizados neste trabalho foram:

40

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• -s: tipo de SVM, a opção 0 indica que vamos realizar classificação com a base de
dados;

• -c : custo, define o parâmetro C do SVM;
• -g : gama, define o parâmetro gama na função do kernel RBF.

Neste trabalho, utilizamos um outro parâmetro, denominado número de folds de validação

cruzada que vai ser explicado na próxima Seção. A Figura 25 apresenta a utilização do
treinamento do LIBSVM com validação cruzada. Nela podemos visualizar a inserção de um
parâmetro para o treinamento (-v), ele vai indicar que será utilizada a validação cruzada e o
número seguinte a ele indica a quantidade de conjuntos que será utilizada.

Figura 25. svmtrain com validação cruzada.

 Um outro aplicativo importante é o svmpredict. Esse aplicativo é utilizado para
classificação, porém com uso da validação cruzada, temos os resultados fornecidos pelo
svmpredict sem precisar executá-lo . A Figura 26 mostra a execução desse aplicativo.

Figura 26. Tela do svmpredict.

41

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.1.3 WEKA (Waikato Environment for Knowledge Analysis)

Simulador desenvolvido na Universidade de Waikato na Nova Zelândia, implementado em Java,
possui uma interface gráfica amigável, bem como um formato de arquivo peculiar (.arff) para as
bases de dados. O WEKA possui implementações de várias técnicas de aprendizagem de
máquina. No nosso trabalho, este simulador foi utilizado para os treinamentos com MLP, NN e
kNN. A tela inicial do WEKA pode ser visualizada na Figura 27. A versão desse software
utilizada no trabalho foi a 3.4.5 [27].

Figura 27. Tela inicial do WEKA [27].

 Como podemos observar na Figura 27, a interface gráfica nos oferece 4 opções:

• Simple CLI – nesse modulo, utilizamos os comandos de linha (prompt) para
realizarmos nossos experimentos;

• Explorer – serve para pré-processar a base de dados e realizar os experimentos
através de uma interface gráfica;

• Experimenter – compara diferentes técnicas de aprendizagem de máquina tanto na
classificação como na regressão;

• KnowledgeFlow – uma nova interface gráfica para o WEKA.

Dessas opções oferecidas, a única utilizada foi a Explorer. Primeiramente, tivemos que
realizar um pré-processamento na base de dados para adequá-la ao padrão do WEKA. Um
exemplo desse arquivo será mostrado em detalhes no apêndice A. A base de dados possui um
cabeçalho peculiar e será gravada com a extensão .arff. A Figura 28 apresenta a página do
WEKA onde carregamos a base de dados e temos a possibilidade de fazer as normalizações.

42

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 28. Abrir arquivo para treinamento no WEKA.

A opção filter, como mostrado na Figura 28, é onde será realizada a escolha da forma
como queremos normalizar a base, bem como realizar também outros ajustes.

Para efeito de classificação temos que escolher a aba classify. Nela, podemos optar pela
técnica que utilizaremos bem como inserir os parâmetros referentes a cada uma delas antes do
treinamento.

Para escolher o algoritmo de treinamento vamos até classifier, após pressionarmos o botão
choose podemos visualizar na Figura 29, as opções de técnicas disponíveis no WEKA. Para
inserir os parâmetros necessários para o treinamento, clicamos com o botão direito do mouse no
nome da técnica de treinamento. Em test options escolhemos a técnica de validação cruzada, que
vai ser explicada na próxima Seção.

43

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 29. Escolha da técnica de aprendizagem de máquina no WEKA.

 Como podemos notar na Figura 30. A WEKA nos oferece uma variedade de técnicas de
aprendizagem de máquina para utilizarmos. Neste trabalho, utilizamos as técnicas
MultilayerPerceptron presentes nos conjunto de técnicas functions e IB1 (NN) e IBK (kNN)
presentes no conjunto lazy.

Figura 30. Visualização das técnicas de aprendizagem do WEKA.

44

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.2 Validação Cruzada
Validação cruzada [40] é uma técnica que propicia estimar a capacidade de generalização de um
classificador. Essa técnica consiste em dividir o conjunto de treinamento em K-partes
aproximadamente iguais. Uma dessas partes será o subconjunto a ser utilizado para teste. A cada
execução do experimento esse conjunto vai mudando.
 Para poder exemplificar a técnica da validação cruzada utilizada em todas as técnicas de
aprendizagem de máquina, imagine uma base de dados com 3.000 padrões; vamos desenvolver o
treinamento dessa base utilizando validação cruzada com 3 subconjuntos. Na primeira execução,
foram divididos os conjuntos, ficando o primeiro com os padrões de 1 a 1000, o segundo com os
padrões de 1001 a 2000 e o terceiro de 2001 a 3000. Também foi definido pela validação cruzada
que o conjunto de 1 a 1000 seria utilizado para os testes na primeira execução e a concatenação
dos outros dois seria utilizada para treinamento. Na segunda rodada, foi utilizado para teste o
segundo conjunto e para treinamento a concatenação do primeiro e terceiro conjunto. Na terceira
e última execução, foi utilizado para teste o terceiro conjunto e para treinamento a concatenação
do primeiro e segundo conjunto.
 Uma vantagem da utilização desse método é que ele utiliza a base de dados em sua
totalidade, gerando um resultado mais confiável.
 O erro médio da validação cruzada é calculado realizando a média aritmética dos erros
fornecidos por cada conjunto de testes.

3.3 Experimentos utilizando Redes Neurais Artificiais

3.3.1 MultiLayer Perceptron (MLP)

Para os treinamentos utilizando redes MLP, foram utilizadas redes com duas camadas escondidas.
Essa decisão foi baseada em alguns trabalhos anteriores [2, 21] e na complexidade do problema.
Essas camadas utilizaram, como função da ativação, a sigmóide logística. A conexão entre as
camadas foi total, ou seja, um nodo da camada anterior se liga a todos da camada posterior. O
treinamento ocorreu com uma taxa de aprendizagem fixa em 0,01. Foi estabelecido um limite de
épocas para treinamento em 500 (esse valor foi pensado de acordo com outros trabalhos
relacionados) e utilizando um conjunto de validação que equivale a 25% da base de dados. O
número de neurônios nas camadas escondidas, no primeiro treinamento, foi de 20; para o segundo
treinamento, foram utilizados 40 neurônios em cada camada.
 A base de dados foi adequada ao padrão dos arquivos .arff, do WEKA. Para isso, foi
criado um arquivo contendo todos os padrões de cada uma das cinco bases de dados.
Inicialmente, havia 41 atributos de entrada, porém com a normalização efetuada pelo WEKA a
base de dados passou a ter 109 entradas. Em cada base o número de saídas é igual a 2.
 O treinamento transcorreu com a utilização do algoritmo backpropagation, a cada
execução, a base foi treinada e testada 10 vezes, devido ao uso da validação cruzada. A Tabela 6
apresenta um resumo do que foi utilizado para o treinamento com MLP.

45

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 6. Parâmetros MLP.
Camadas Escondidas 2
Número de Neurônios Escondidos
(em cada camada)

20 (1ºexperimento)
40 (2º experimento)

Taxa de aprendizagem 0,01
Conjunto de validação 25%
Épocas máxima de Treinamento 500
Algoritmo de treinamento Backpropagation

3.3.2 Radial Basis Function (RBF)

O treinamento com redes RBF foi realizado com o SNNS. Essas redes utilizam como função de
ativação da camada intermediária a função de base radial Gaussiana. A base de dados foi dividida
em três partes: treinamento (50%), validação (25%) e teste (25%).
 No treinamento com RBF foram criadas redes que só possuíam nodos na camada de
entrada e saída, para ser mais preciso, 109 nodos na entrada e 2 na saída para cada base. Isso se
deve a utilização do algoritmo de treinamento DDA. Esse algoritmo é construtivo, ou seja, à
medida que o treinamento ocorre, a camada intermediária vai sendo criada de acordo com a
necessidade. O DDA possui dois parâmetros que são o limiar positivo θ+ e o limiar negativo θ-.
 Neste trabalho, optamos por utilizar a técnica de seleção do limiar negativo θ-, pois ela
tem apresentado bons resultados em vários tipos de problemas, tendo o erro de teste, sem o θ-
padrão, diminuído para a maioria dos problemas [7, 8, 9]. Tanto o θ+ quanto o θ- possuem um
valor padrão, 0,4 e 0,1, respectivamente. Através da técnica de seleção do θ-, podemos obter
melhores resultados, variando o valor do θ-; isso foi realizado neste trabalho. Os valores
utilizados foram: 0,2, 0,1, 1e-2, 1e-3,1e-4, 1e-5, 1e-6, 1e-7 e 1e-8, esses valores foram extraídos
de outra pesquisas a respeito dessa técnica [7, 8, 9]. A diminuição do θ- acarreta um aumento da
complexidade da rede, pois com a diminuição desse do valor, esse parâmetro faz com que mais
protótipos (nodos) sejam necessários. A Tabela 7 descreve os parâmetros gerais para os
treinamento das redes RBF-DDA.

Tabela 7. Parâmetros RBF.
Camadas Escondidas 1

θ+ 0.4

θ- 0,2; 0,1; 1e-2; 1e-3; 1e-4; 1e-5; 1e-6; 1e-7 e 1e-8
Conjunto de validação 25%
Conjunto de teste 25%
Conjunto de treinamento 50%
Algoritmo de treinamento DDA

3.3.3 Resultados obtidos pelas redes neurais

Os resultados obtidos com MLP podem ser visualizados na Tabela 8. Nela podemos visualizar
que o tempo de processamento com a validação cruzada, ou seja, o treinamento completo, para
esse tipo de rede neural é alto, por exemplo, a base Normal + Ataques tem um tempo de
processamento superior à sete horas.

46

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 8. Resultados do treinamento com MLP.
Treinamento com MLP utilizando validação cruzada (10-fold)

Número de Neurônios na Camada
Escondida

 1ª Camada 2ª Camada

Tempo de
Processamento

Erro de Validação
Cruzada (%)

Normal +
Ataques 20 20 07:36:00 0,1667

Padrões: 15000 40 40 25:25:00 0,1667
Normal +
Probe 20 20 01:51:00 0,1625

Padrões: 3077 40 40 02:56:00 0,1625
Normal +
DOS 20 20 06:26:00 0,0067

Padrões: 14827 40 40 14:04:00 0,0067
Normal +
U2Su 20 20 00:53:00 0,3711

Padrões: 2964 40 40 01:30:00 0,3711

Normal + R2L 20 20 01:39:00 1,2705

Padrões: 2991 40 40 03:10:00 1,2705

Além dos resultados na forma de tabela, com os dados colhidos durante o treinamento e

teste dessas redes, como utilizamos o simulador WEKA para realização dessa execução, ele nos
fornece um dado interessante que são as matrizes de confusão. Através da matriz de confusão
poderemos ter a idéia de quantos falsos negativos e quantos falsos positivos existem. Abaixo
segue as matrizes de confusão para o treinamento com MLP. Tomando como exemplo a matriz
da letra a), essa matriz está nos informando que 14 padrões normais foram classificados como
ataque e 11 padrões de ataques foram classificados como normal.

a) a b <-- classificado como

 2939 14 | a = normal
 11 12036 | b = ataque

b) a b <-- classificado como
 2953 0 | a = normal
 3 121 | b = probe

c) a b <-- classificado como

 2953 0 | a = normal
 1 11872 | b = dos

d) a b <-- classificado como

 2953 0 | a = normal
 11 0 | b = u2su

e) a b <-- classificado como
 2952 1 | a = normal
 38 0 | b = r2l

47

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Na Tabela 9, podemos acompanhar os resultados obtidos com o uso de RBF-DDA. Nela
estão sendo mostrados apenas os resultados com o θ- padrão e com o melhor resultado obtido
com a seleção desse parâmetro. Podemos visualizar que com a seleção do θ- temos um aumento
do número de nodos na camada intermediária e, conseqüentemente, um aumento no tempo de
processamento. Em contra partida, os melhores resultados são com o θ- diferente do padrão. A
tabela completa, com todos os experimentos com RBF-DDA, pode ser vista no apêndice B.

Tabela 9. Resultados do treinamento com RBF.

Treinamento com
RBF-DDA
utilizando validação
cruzada (10-fold) Theta-

Nº Neurônios na
Camada Escondida Tempo de Processamento

Erro de
Validação
Cruzada Ciclos

Normal + Ataques 0,1 113 00:16:03 1,57% 4
Padrões: 15000 1,00E-05 287 01:03:22 0,05% 3

Normal + Probe 0,1 39 00:00:34 0,75% 3
Padrões: 3077 1,00E-06 87 00:01:26 0,16% 4

Normal + DOS 0,1 76 00:04:20 1,56% 4
Padrões: 14827 1,00E-06 245 00:51:03 0,03% 3

Normal + U2Su 0,1 24 00:00:27 0,37% 4
Padrões: 2964 1,00E-04 49 00:00:43 0,14% 4

Normal + R2L 0,1 27 00:00:30 1,27% 3
Padrões: 2991 1,00E-04 50 00:00:46 0,10% 3

Após visualizarmos as tabelas contendo os melhores resultados de cada uma das técnicas

de redes neurais, podemos destacar que os resultados obtidos pelas redes RBF-DDA, são
superiores aos obtidos pela redes MLP. A Tabela 10 apresenta a comparação entre as duas
técnicas, com suas respectivas redes, que obtiveram os melhores resultados. Nessa comparação,
podemos notar que RBF-DDA apresenta os melhores resultados, visto que os tempos de
processamento são equivalentes apenas para as rede de maior porte (Normal e DOS). Nos demais
casos, RBF apresenta um tempo menor de processamento bem como um erro para a validação
cruzada menor. Por exemplo, na base de dados Normal + Ataques, o erro de validação cruzada da
rede RBF-DDA é de apenas 0,05% enquanto que o da MLP é de 0,1667%. Nas bases Normal +
Probe, Normal + R2L e Normal + U2Su o tempo de processamento da MLP é superior ao da
RBF-DDA, enquanto que na base Normal + R2L o tempo de processamento é igual a 1 hora e 39
minutos para MLP, com RBF-DDA esse tempo é de apenas 46 segundos.

48

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 10. Comparação dos treinamentos de RBF e MLP.

 RBF-DDA X MLP Técnica Theta-

Nº Neurônios
na Camada
Escodida

Tempo de
Processamento

Erro de
Validação

Cruzada (%) Ciclos
Normal + Ataques MLP - 20 07:36:00 0,1667 -

Padrões: 15000
RBF-
DDA 1,00E-05 287 01:03:22 0,05 3

Normal + Probe MLP - 20 01:51:00 0,1625 -

Padrões: 3077
RBF-
DDA 1,00E-06 87 00:01:26 0,16 4

Normal + DOS MLP - 20 06:26:00 0,0067 -

Padrões: 14827
RBF-
DDA 1,00E-06 245 00:51:03 0,03 3

Normal + U2Su MLP - 20 00:53:00 0,3711 -

Padrões: 2964
RBF-
DDA 1,00E-04 49 00:00:43 0,14 4

Normal + R2L MLP - 20 01:39:00 1,2705 -

Padrões: 2991
RBF-
DDA 1,00E-04 50 00:00:46 0,10 3

3.4 Experimentos utilizando Máquinas de Vetor
Suporte
Os treinamentos utilizando SVM foram realizados de três formas distintas. Na primeira a base de
dados foi treinada sem validação cruzada, na segunda a rede foi treinada com uma validação
cruzada de 5 folds, a terceira utilizou a validação cruzada de 10 folds e para efeito deste trabalho
só vamos considerar essa terceira forma, pois todas as outras técnicas se utilizaram da validação
cruzada de 10 folds. Vamos demonstrar também os resultados alcançados pelas outras duas
formas no apêndice C. O simulador utilizado para o treinamento foi o LIBSVM [26]. SVM utiliza
alguns parâmetros para o seu treinamento. Neste trabalho, utilizamos os seguintes parâmetros: c,
γ, s e v. Ficou decidido que esse valores seriam s = 0, c = 1000, γ = 0,5 e v = 10, seguindo
trabalhos anteriores [21]. A seguir, a Tabela 11 mostra o resumo dos parâmetros utilizados para
SVM.

Tabela 11. Parâmetros SVM.
s 0

c 1000

γ 0,5
v 10

3.4.1 Resultados obtidos por máquinas de vetor suporte

A Tabela 12 demonstra os resultados obtidos com os treinamentos, utilizando SVM com
validação cruzada de 10 folds. Para visualizar os outros treinamentos consulte o apêndice C.

49

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 12. Resultados do treinamento com SVM 10-fold.

 Treinamento com SVM Vetores Suporte Tempo de Processamento
Erro de Validação
Cruzada (%) Ciclos

Normal + Ataques 166 00:00:30 0,02 8347
Normal + Probe 71 00:00:03 0,0975 457
Normal + DOS 123 00:00:30 0 7525
Normal + U2Su 37 00:00:02 0,135 286

Normal + R2L 46 00:00:02 0,1672 440

Como podemos acompanhar, o tempo de processamento que SVM requer é baixo, bem

como seu erro de validação cruzada também apresenta baixas taxas de erro, se comparadas com
as outras técnicas. Apesar de tudo isso, o número de iterações que tem que ser realizadas aumenta
um pouco, em relação ao das outras técnicas. Podemos conferir na tabela do apêndice C que se
utilizarmos a validação cruzada, aumentaremos conseqüentemente o número de vetores de
suporte da camada intermediária.

No apêndice C, podemos conferir que a utilização da validação cruzada de 10-folds obtém
melhores resultados que os outros dois métodos citados anteriormente. Isso se deve ao
fracionamento dos padrões, podendo esses terem uma maior abrangência, pois teremos 10
conjuntos de treinamento diferentes e 10 conjuntos para teste, fazendo um uso mais racional da
base.

3.5 Experimentos utilizando técnica dos vizinhos mais
próximo (NN e kNN)

O treinamento utilizando a técnica do vizinho mais próximo foi realizado através do simulador
WEKA [27]. No treinamento utilizando NN, não existe nenhuma seleção de parâmetro. Para o
treinamento do kNN foram realizados experimentos contendo o número de vizinhos igual a 1, 3 e
5. A validação cruzada 10-fold também foi utilizada nesses experimentos.

3.5.1 Resultados obtidos pelas técnicas do vizinho mais próximo

Os resultados obtidos com o treinamento da técnica do vizinho mais próximo podem ser
visualizados na Tabela 13, para o NN e na Tabela 14, para o kNN. Nela, podemos inferir que,
para o kNN, sempre o melhor resultado foi com o K=1, com exceção da base R2L, onde K=1 e
K=3 obtiveram o mesmo erro de validação cruzada, 0,0669. Porém com K=3 o tempo de
processamento foi menor. O problema do treinamento com este tipo de rede é o fato de que no
treinamento todos os padrões são armazenados, isso faz com que essa técnica consuma muitos
recursos do computador, mais especificamente recursos de armazenamento. Porém, a sua
vantagem são os resultados obtidos. Os erros de validação cruzada são baixos, entretando não tão
baixos quanto os de RBF-DDA e SVM. Outra vantagem é o fato de possuir nenhum parâmetro,
no caso do NN, e poucos parâmetros, no caso do kNN.

50

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 13. Resultados do treinamento com NN 10-folds.

Treinamento com NN Tempo de Processamento
Erro de Validação
Cruzada (%) Padrões Treinamento

Normal + Ataques 00:28:52 0,0867 15000
Normal + Probe 00:01:24 0,0975 3077
Normal + DOS 00:26:22 0,0000 14827
Normal + U2Su 00:01:15 0,0337 2964

Normal + R2L 00:01:10 0,0669 2991

 Na Tabela 14 podemos notar que o aumento do número de vizinhos, para estas bases,
implica um erro de validação cruzada maior.

Tabela 14. Resultados do treinamento com kNN 10-fold.

Treinamento com kNN Tempo de Processamento
Erro de Validação
Cruzada (%)

Normal + Ataques
Padrões: 15000
k=1 01:24:00 0,0867
k=3 01:12:00 0,1067
k=5 01:08:00 0,1533
Normal + Probe
Padrões: 3077
k=1 00:01:28 0,0975
k=3 00:01:26 0,2275
k=5 00:01:22 0,1625
Normal + DOS
Padrões: 14827
k=1 01:16:00 0,0000
k=3 01:17:00 0,0135
k=5 01:18:00 0,0135
Normal + U2Su
Padrões: 2964
k=1 00:01:15 0,0337
k=3 00:01:23 0,1350
k=5 00:01:25 0,1687
Normal + R2L
Padrões: 2991
k=1 00:01:26 0,0669
k=3 00:01:21 0,0669

k=5 00:01:23 0,1003

51

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.6 Comparação dos resultados RNAs x SVM x NN x
kNN
Na Tabela 15, podemos visualizar os melhores resultados para cada técnica de aprendizagem de
máquina utilizada neste trabalho. Observando a tabela podemos tirar algumas conclusões. A
técnica que necessita de menor tempo de processamento é SVM, além disso, máquinas de vetor
suporte podem trabalhar, sem muitos problemas, com bases de maior tamanho enquanto que
redes neurais demorariam muito no treinamento dessas bases [2]. NN e kNN por sua vez iriam
exigir um espaço para armazenamento grande, além de precisar também de um tempo de
processamento mais extenso. Em termos de armazenamento de unidades de processamento, MLP
só preciou de 40 unidades (20 + 20) para realizar seus treinamentos, por exemplo, na base de
dados Normal + Ataques. Para a mesma base, SVM precisou armazenar 166 unidades enquanto
que NN e kNN precisam de todos os padrões de treinamento, 13500 unidades, RBF-DDA
precisou de 287 unidades de processamento.
 Máquinas de vetor de suporte obtiveram os melhores resultados quanto ao erro de
validação cruzada, em uma das bases de dados, Normal + Ataques (0,02%). Já RBF-DDA obteve
os melhores resultados para 3 base de dados que foram: Normal + Probe (0,0016%), Normal +
U2Su (0,0014) e Normal + R2L (0,001). Esse fato pode ser explicado, pois essas três bases
possuem muitos padrões normais e poucos padrões dos seus respectivos ataques. Redes RBF são
muito boas em rejeitar padrões discrepantes, ou seja, ela possui, por exemplo, uma capacidade de
classificação maior do que MLP para esses padrões, além dessa característica, o que também
contribuiu foi a seleção do parâmetro θ-, pois todos esses bons resultados obtidos com RBF
tiveram o θ- diferente do padrão (0,1). Outra vantagem de RBF-DDA foi o número de ciclos,
épocas de treinamento, reduzido em média para 3 ou 4, enquanto que SVM chegou a ter 8347
ciclos na base de dados Normal + Ataques. Analisamos 4 das 5 bases de dados; a única restante
foi a Normal + DOS, onde os melhores resultados foram obtido através das técnicas SVM, NN e
kNN (0%). DOS é a classe de ataques com o maior número, como foi descrito no Capítulo 2.
Essas técnicas conseguiram não ter falsos positivos e falsos negativos para esse tipo de ataque.
Mas isso não garante que, se os outros tipos de ataques tivessem uma quantidade grande de
padrões, seus resultados também seriam da ordem de 0%, pois cada ataque tem caracteríscas
diferentes, o que facilitaria ou não sua identificação utilizando essas técnicas. O que pesa contra
NN e kNN e o fato de que para conseguir esses resultados todos os padrões tiveram que ser
armazenados, aproximadamente 13500 padrões, enquanto que SVM precisou de apenas 123
unidades de processamento para obter o mesmo resultado.
 O maior tempo de processamento foi exigido pelas redes MLP, já SVM foi a técnica que
obteve seus resultados com o menor tempo, porém não foram utilizados muitos parâmetros para o
treinamento com SVM; isso faria com seus tempo aumenta-se.
 Apesar da utilização de ferramentas de simulação distintas, os resultados obtidos por este
trabalho podem ser garantidos, pois essese simuladores são ferramentas já consagradas no meio
acadêmico.

52

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 15. Comparação dos resultados
Comparação dos melhores Resultados (RBF X MLP X SVM X
NN X kNN)

 Base de Dados
Nº Unidades de
processamento

Tempo de
Processamento

Erro de Validação Cruzada
(%) Ciclos

Normal + Ataques
Padrões: 15000
RBF 287 01:03:22 0,05 (theta- = 1,00E-5) 3
MLP - 01:03:00 0,1003 500
SVM 166 00:00:01 0,0200 8347

NN
Todos os padrões
do treinamento 00:28:52 0,0867 -

KNN
Todos os padrões
do treinamento 01:24:00 0,0867 (K=1) -

Normal + Probe
Padrões: 3077
RBF 87 00:01:26 0,0016 (theta- = 1,00E-6) 4
MLP - 00:13:00 0,0975 500
SVM 71 00:00:01 0,0975 457

NN
Todos os padrões
do treinamento 00:26:22 0,0975 -

KNN
Todos os padrões
do treinamento 00:01:28 0,0975 (K=1) -

Normal + DOS
Padrões: 14827
RBF 245 00:51:03 0,03 (theta- = 1,00E-6) 3
MLP - 00:50:00 0,4587 500
SVM 123 00:00:01 0,0000 7525

NN
Todos os padrões
do treinamento 00:26:22 0,0000 -

KNN
Todos os padrões
do treinamento 01:16:00 0,0000 (k=1) -

Normal + U2Su
Padrões: 2964
RBF 49 00:00:43 0,0014 4
MLP - 00:11:00 0,3711 (theta- = 1,00E-4) 500
SVM 37 00:00:01 0,1350 286

NN
Todos os padrões
do treinamento 00:01:15 0,0337 -

KNN
Todos os padrões
do treinamento 00:01:15 0,0337 (k=1) -

Normal + R2L
Padrões: 2991
RBF 50 00:00:46 0,001 (theta- = 1,00E-4) 3
MLP - 00:12:00 0,1003 500
SVM 46 00:00:01 0,1672 440

NN
Todos os padrões
do treinamento 00:01:10 0,0669 -

KNN
Todos os padrões
do treinamento 00:01:21 0,0669 (k=3) -

53

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Conclusões e Trabalhos Futuros

Este trabalho teve como foco principal realizar um estudo comparativo entre algumas técnicas de
aprendizagem de máquina para sistemas de detecção de Intrusão. As técnicas utilizadas neste
estudo foram: RNAs do tipo MLP e RBF-DDA, SVM, NN e kNN. Para algumas técnicas foram
variados seus parâmetros para obtenção de um melhor desempenho.
 Três simuladores foram utilizados para a execução dos treinamentos. O LIBSVM foi
utilizado para o treinamento com SVM, o SNNS para RBF-DDA e para as demais técnicas foi
usado o simulador WEKA. Em todos foi utilizada uma técnica de comparação denominada
validação cruzada, para garantir uma melhor eficiência dos treinamentos.
 Ficou evidente, a partir dos treinamentos, que a opção por utilizar aprendizagem de
máquina para sistemas de detecção de intrusão tem resultados eficientes, pois na maioria absoluta
dos treinamentos houve uma taxa de acerto superior a 99% utilizando qualquer tipo de técnica.
 A opção por fazer seleção do parâmetro θ- em redes RBF-DDA foi acertada. Com essa
seleção conseguimos ter um desempenho até superior ao de SVM para esse problema, visto que
das cinco bases de dados utilizadas, três obtiveram melhores resultados com a técnica RBF-DDA
com a seleção do θ-. Essas bases obtiveram esses resultados, pois redes RBF são boas em
reconhecer, e rejeitar, padrões discrepantes, ou seja, padrões que fogem das características da
maioria dos padrões da base de dados, as bases que RBF obteve os melhores resultados foram
com as base de dados onde tivemos poucos exemplos de ataques, já nas que haviam muitos
exemplos de ataques, SVM obteve melhores resultados. Inclusive, em uma delas, NN e kNN
tiveram o resultado idêntico ao de SVM. kNN também incluiu a seleção do número de vizinhos,
os valores foram: 1, 3 e 5. Na maioria das redes, obtiveram-se os melhores resultados com o K=1.
kNN e NN possuem maior complexidade computacional, pois necessitam armazenar todos os
padrões utilizados para o treinamento. A menor complexidade computacional foi observada em
MLP, pois precisou de apenas 40 unidades de processamento para obter seus resultados. Para
redes do tipo MLP, foi utilizada 2 camadas escondidas, devido a complexidade do problema, e
ainda 2 topologias diferentes. A primeira utilizava 20 neurônios em cada camada, já a segunda
utilizava 40. O tempo de processamento também foi um fator analisado. SVM consegue realizar
seus treinamentos em um curto espaço de tempo. Já Redes Neurais, RBF-DDA e MLP, obtiveram
tempo de processamento alto para as bases de dados com uma quantidade maior de padrões, o
mesmo aconteceu com as técnicas NN e kNN. SVM tem a vantagem de poder trabalhar, sem
muitos problemas, com bases de dados grandes [2], o mesmo não acontece com Redes Neurais,
pois elas demorariam muito no treinamento e as técnicas que utilizam o vizinho mais próximo
precisariam além de um tempo grande para o treinamento, uma área de armazenamento grande.
 Como trabalho futuro, propomos utilizar outras técnicas de aprendizagem de máquina,
não para demonstrar que elas podem ser utilizadas em sistemas de detecção de intrusão, pois isso
já foi demonstrado neste trabalho, e sim observar qual obtém os melhores resultados.
 Outro trabalho que poderá ser proposto é a implementação de um sistema de detecção de
intrusão, utilizando uma técnica de aprendizagem de máquina, visto que os resultados obtidos

54

ESCOLA POLITÉCNICA
DE PERNAMBUCO

neste trabalho comprovam a eficiência dessas técnicas. Hoje, um IDS com essas características
não é comum.
 A utilização de um maior número de padrões da base de dados original para treinamento
poderá ser uma opção para trabalhos futuros. Isso pode melhorar ainda mais a confiabilidade nos
resultados, visto que na realidade, o número de conexões é muito alto.

55

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Bibliografia

[1] BRAGA, A. P.; CARVALHO, A. P. L. F.; LUDERMIR, T. B. Redes Neurais Artificiais
Teoria e Aplicações. Livros Técnicos e Científicos Editora, Rio de Janeiro, 2000.

[2] MUKKAMALA, S.; SUNG, A. H.; ABRAHAM, A. Intrusion detection using an ensemble of

intelligent paradigms. Journal of Network and Computer Applications, volume 28, p. 167-182,
2005.

[3] BIERMAN, E.; CLOETE, E.; VENTER, L.M. A comparison of Intrusion Detection Systems.
Computers & Security, volume 20, p. 676-683, 2001.

[4] HAYKIN, S. Redes Neurais, Princípios e Prática. 2.edição. Porto Alegre: Bookman, 2001.
[5] WANG, X. G., TANG, Z., TAMURA, H., ISHII, M., e SUN, W. D.. An improved

backpropagation algorithm to avoid the local minima problem. Neurocomputing, 56:455–460,
2004.

[6] BERTHOLD, M. R.; DIAMOND , J. Boosting the performance of RBF networks with dynamic

decay adjustment. Advances in Neural Information Processing, volume 7. p. 512-528, 1995.
[7] OLIVEIRA, A. L. I.; MELO, B. J. M.; MEIRA, S. R. L. Integrated method for constructive

training of radial basis function networks. Electronics Letters, volume 41, p. 429-430, 2005.
[8] OLIVEIRA, A. L. I.; NETO, F. B. L.; MEIRA, S. R. L. Improving RBF-DDA Performance on

Optical Character Recognition through Parameter Selection. Proceedings of the 17th
International Conference on volume 4, p. 625–628, 2004.

[9] OLIVEIRA A. L. I.; A. MEDEIROS E. A.; ROCHA, T. A. B. V.; BEZERRA, M. E. R.;
VERAS R. C. A Study on the Infuence of Parameter θ- on Performance of RBF Neural

Networks Trained with the Dynamic Decay Adjustment Algorithm. Fifth International
Conference on Hybrid Intelligent Systems, 2005.

[10] HUDAK, M. J. RCE classifiers: Theory and practice. Cybernetics and Systems, 23:483–515,
1992.

[11] CAMPBEL, C. Kernel methods:a survey of current techniques. Neurocomputing, volume 48,
p. 63-84, 2002

[12] VAPNIK, V., Statistical Learning Theory, Wiley, New York, 1998.
[13] SVM - Support Vector Machines. Disponível em: <http://www.dtreg.com/svm.htm>, acessado

em 05/10/2005.
[14] KUNCHEVA, L. I. Reducing the computational demand of the nearest neighbor. School of

Informatics Symposium on Computing 2001. p.61-64, Aberystwyth, 2001.
[15] MELLISH, C.; BRINGHTON, H. Advances in Instance Selection for Instance-Based Learning

Algorithms. Data Mining and Knowledge Discovery, volume 6, p. 153–172, 2002.
[16] LIPPMAN, R. P.; CUNNINGHAM, R. K. Improving intrusion detection performance using

keyword selection and neural networks. Computer Networks, volume 34, p. 597-603, 2000.
[17] BARBOSA, A. S.; MORAIS, L. F. M. Sistemas de Detecção de Intrusão. Seminários Ravel -

CPS760, UFRJ.

56

ESCOLA POLITÉCNICA
DE PERNAMBUCO

[18] JOO, D.; HONG, T.; HAN I. The neural network models for IDS based on the asymmetric

costs of false negative errors and false positive errors. Expert Systems with Applications,
volume 25, p. 69–75, 2003.

[19] BOMBONATO, F.; COELHO, F. E S. Beholder - Utilizando Redes Neurais MPL na

Detecção de Intrusos.
[20] KDD Cup 1999 Data.Disponível em:

<http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html>, visitado em 01/09/2005.
[21] MUKKAMALA, S.; JANOSKI, G.; SUNG, A. Intrusion detection using neural networks and

support vector machines. IEEE International Joint Conference on Neural Networks, p. 1702-
1707, 2002.

[22] MUKKAMALA, S.; SUNG, A. Identifying Important Features for Intrusion Detection

Using Support Vector Machines and Neural Networks. Symposium on Applications and the
Internet, p. 209-216, 2003.

[23] ZELL, A.;et al. Stuttgart neural network simulator. Software disponível em <http://www-
ra.informatik.uni-tuebingen.de/SNNS>, visitado em 20/09/2005.

[24] WEBB, A. Statistical Pattern Recognition. Wiley, second edition. 2002.
[25] SERRA, S. A. T. G. Uma aplicação de Redes Neurais Artificiais. Trabalho disponível em:

<http://www.inf.ufrgs.br/procpar/disc/cmp135/trabs/sergio/trab2/geo.html>, visitado em
8/10/2005.

[26] HSU, C. W.; CHANG, C. C.; LIN, C. J. A Practical Guide to Support Vector Classification.
Disponível em: <http://www.csie.ntu.edu.tw/~cjlin/libsvm>. 2004, visitado em 02/10/2005.

[27] WEKA. Software dispinível em <http://www.cs.waikato.ac.nz/ml/weka/>, visitado em
25/10/2005.

[28] ZHANG, C.; JIANG, J.; KAMEL, M. Intrusion detection using hierarchical neural networks,
Pattern Recognition Letters, volume 26, p. 779-791, 2005.

[29] LIU, Y.; CHEN, K.; LIAO, X.; ZHANG, W.; A genetic clustering method for intrusion

detection, Pattern Recognition, volume 37, p. 927-942, 2004.
[30] OLIVEIRA, A. L. I.; MELO, B. J. M.; MEIRA, S. R. L. Improving constructive training of

RBFnetworks through selective pruning and model selection. Neurocomputing, p. 537-541,
2005.

[31] MUELLER A. Uma aplicação de redes neurais artificiais na previsão do mercado acionário.
Dissertação de Pós-graduação. Universidade Federal de Santa Catarina. Julho, 2005.

[32] Figura diponível em: <http://www.cogs.susx.ac.uk/users/jonh/>, visitado em 01/11/2005.
[33] KUNCHEVA L. I. Reducing the computational demand of the nearest neighbor classifier.

Mathematics Publications List. Universidade de Wales. 2001.
[34] KOTROPOULOS, C.; PITAS, I. Segmentation of ultrasonic images using Support Vector

Machines. Pattern Recognition Letters, vol. 24, p. 715-727, 2003.
[35] SHIMA, K.; TODORIKI, M.; SUZUKI, A. SVM-based feature selection of latent semantic

features. Pattern Recognition Letters, vol. 25, p. 1051-1057, 2004.
[36] VOSSEN, J. P. Snort Technical Guide. Disponível em:

<http://searchsecurity.techtarget.com/general/0,295582,sid14_gci1083823,00.html>, visitado
em 05/11/2005.

[37] KUROSE, J. F.; ROSS, K. W. Redes de Computadores e a Internet, uma nova abordagem.
Addison Wesley, p. São Paulo, 2003.

[38] BRIGHTON, H.; MELLISH C. Advances in Instance Selection for Instance-Based Learning

Algorithms. Data Mining and Knowledge Discovery, vol. 6, p. 153-172, 2002.
[39] CAMPELLO, R. S.; WEBER, R. F. Sistemas de Detecção de Intrusão. Workshop em

Segurança de Sistemas Computacionais, Florianópolis-SC, 2001.

57

ESCOLA POLITÉCNICA
DE PERNAMBUCO

[40] PEÑA, J. M.; BJÖRKEGREN J.; TEGNÉR, J. Learning dynamic Bayesian network models via

cross-validation. Pattern Recognition Letters, vol. 26, p. 2295-2308, 2005.

58

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Base de dados do WEKA

Apresentaremos um modelo de uma base de dados no formato aceito pelo simulador WEKA.

@relation normal #nome da base de dados

@attribute duration numeric #@attribute descreve os atributos da base de dados

@attribute protocol_type {tcp,icmp,udp}

@attribute service
{auth,bgp,courier,csnet_ns,ctf,daytime,discard,domain,domain_u,eco_i,echo,ecr_i,efs,exec,finger
,ftp,ftp_data,gopher,hostnames,http,http_443,imap4,iso_tsap,klogin,kshell,ldap,link,login,mtp,na
me,netbios_dgm,netbios_ns,netbios_ssn,netstat,nnsp,nntp,ntp_u,other,pm_dump,pop_2,pop_3,pri
nter,private,remote_job,rje,shell,smtp,sql_net,ssh,sunrpc,supdup,systat,telnet,time,uucp,uucp_pat
h,vmnet,whois,Z39_50}

@attribute flag {SF,S1,S2,S3,SH,S0,REJ,RSTO,RSTR}

@attribute src_bytes numeric

@attribute dst_bytes numeric

@attribute land numeric

@attribute wrong_fragment numeric

@attribute urgent numeric

@attribute hot numeric

@attribute num_failed_logins numeric

@attribute logged_in numeric

@attribute num_compromised numeric

@attribute root_shell numeric

@attribute su_attempted numeric

@attribute num_root numeric

Apêndice A

59

ESCOLA POLITÉCNICA
DE PERNAMBUCO

@attribute num_file numeric

@attribute num_shells numeric

@attribute num_access_files numeric

@attribute num_outbound_cmds numeric

@attribute is_host_login numeric

@attribute is_guest_login numeric

@attribute count numeric

@attribute srv_count numeric

@attribute serror_rate numeric

@attribute srv_serror_rate numeric

@attribute rerror_rate numeric

@attribute srv_rerror_rate numeric

@attribute same_srv_rate numeric

@attribute diff_srv_rate numeric

@attribute srv_diff_host_rate numeric

@attribute dst_host_count numeric

@attribute dst_host_srv_count numeric

@attribute dst_host_same_srv numeric

@attribute dst_host_diff_srv_rate numeric

@attribute dst_host_same_src_port_rate numeric

@attribute dst_host_srv_diff_host_rate numeric

@attribute dst_host_serror_rate numeric

@attribute dst_host_srv_serror_rate numeric

@attribute dst_host_rerror_rate numeric

@attribute dst_host_srv_rerror_rate numeric

@attribute ataques {normal,ataque}

@data #@data padrões de treinamento da base de dados

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,215,8,1.00,1.00,0.00,0.00,0.04,0.07,0.00,255,8,
0.03,0.08,0.00,0.00,1.00,1.00,0.00,0.00,ataque

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,218,5,1.00,1.00,0.00,0.00,0.02,0.06,0.00,255,5,
0.02,0.07,0.00,0.00,1.00,1.00,0.00,0.00,ataque

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,
255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,normal ...

60

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Resultados do treinamento das redes
RBF-DDA com seleção do parâmetro θ-

Neste apêndice, são mostrado todos os resultados advindos do treinamento das redes RBF-DDA
com seleção do parâmetro θ-.

Treinamento
com RBF

Bases de Dados Theta-
Nº Neurônios na

CE
Tempo de

Processamento

Erro de
Validação
Cruzada Ciclos

Normal +
Ataques 0,2 94 00:05:26 1,61% 4

Padrões: 15000 0,1 113 00:16:03 1,57% 4

 1,00E-02 214 00:46:46 0,63% 4

 1,00E-03 245 01:01:40 0,17% 4

 1,00E-04 273 01:02:37 0,09% 4

 1,00E-05 287 01:03:22 0,05% 3

 1,00E-06 300 00:59:00 0,07% 3

 1,00E-07 318 01:04:27 0,09% 3

 1,00E-08 332 01:09:00 0,12% 3

Normal + Probe 0,2 30 00:00:32 2,76% 4

Padrões: 3077 0,1 39 00:00:34 0,75% 3

 1,00E-02 63 00:00:54 0,29% 4

 1,00E-03 70 00:01:02 0,23% 4

 1,00E-04 76 00:01:01 0,20% 3

 1,00E-05 81 00:01:11 0,20% 3

 1,00E-06 87 00:01:26 0,16% 4

 1,00E-07 92 00:01:04 0,16% 4

 1,00E-08 95 00:01:08 0,16% 4

Normal + DOS 0,2 63 00:03:04 1,98% 3

Padrões: 14827 0,1 76 00:04:20 1,56% 4

Apêndice B

61

ESCOLA POLITÉCNICA
DE PERNAMBUCO

 1,00E-02 163 00:34:21 0,57% 6

 1,00E-03 189 00:39:32 0,15% 4

 1,00E-04 216 00:43:30 0,05% 3

 1,00E-05 233 00:50:15 0,05% 4

 1,00E-06 245 00:51:03 0,03% 3

 1,00E-07 263 00:52:00 0,06% 3

 1,00E-08 274 00:58:00 0,06% 3

Normal + U2Su 0,2 21 00:00:25 0,37% 4

Padrões: 2964 0,1 24 00:00:27 0,37% 4

 1,00E-02 38 00:00:36 0,37% 4

 1,00E-03 45 00:00:37 0,24% 3

 1,00E-04 49 00:00:43 0,14% 4

 1,00E-05 55 00:00:47 0,14% 4

 1,00E-06 58 00:00:48 0,14% 4

 1,00E-07 64 00:00:52 0,17% 4

 1,00E-08 68 00:00:58 0,20% 4

Normal + R2L 0,2 19 00:00:28 1,27% 4

Padrões: 2991 0,1 27 00:00:30 1,27% 3

 1,00E-02 40 00:00:37 0,43% 3

 1,00E-03 46 00:00:41 0,13% 3

 1,00E-04 50 00:00:46 0,10% 3

 1,00E-05 54 00:00:47 0,10% 3

 1,00E-06 59 00:00:54 0,10% 3

 1,00E-07 67 00:00:58 0,10% 3

 1,00E-08 73 00:01:03 0,13% 4

62

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Resultados do treinamento de máquinas
de vetor suporte (SVM)

Neste apêndice, apresentamos os resultados dos treinamentos executados utilizando SVM.

Treinamento com SVM

Bases de Dados
Vetores
Suporte

Tempo de
Processamento

Erro de Validação
Cruzada (%) Ciclos

Padrões totais: 15000

Normal + Ataques

S/ Validação Cruzada 137 00:00:02 0,0143 5513

C/ Validação Cruzada (5) 126 00:00:08 0,0625 3531

C/ Validação Cruzada
(10) 166 00:00:30 0,02 8347

Padrões totais: 3077

Normal + Probe

S/ Validação Cruzada 53 00:00:01 0,1354 335

C/ Validação Cruzada (5) 49 00:00:01 0,3127 272

C/ Validação Cruzada
(10) 71 00:00:03 0,0975 457

Padrões totais: 14827

Normal + DOS

S/ Validação Cruzada 60 00:00:01 0,0439 4421

C/ Validação Cruzada (5) 92 00:00:04 0 2413

C/ Validação Cruzada
(10) 123 00:00:30 0 7525

Padrões totais: 2964

Normal + U2Su

S/ Validação Cruzada 35 00:00:01 0,2049 242

C/ Validação Cruzada (5) 29 00:00:01 0,2001 123

C/ Validação Cruzada
(10) 37 00:00:02 0,135 286

Apêndice C

63

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Padrões totais: 2991

Normal + R2L

S/ Validação Cruzada 38 00:00:01 0 478

C/ Validação Cruzada (5) 34 00:00:01 0,3336 400
C/ Validação Cruzada
(10) 46 00:00:02 0,1672 440

