e

Departamento de

PORr Sistemas
ESCOLA POLITECNICA - "
DE PERNAMBUCO Computacionais

Analise Automatica de Diagramas de
Classes UML

Trabalho de Conclusao de Curso

Engenharia da Computacao

Tassia de Sousa Lima
Orientador: Prof. MSc. Tiago Lima Massoni

Recife, junho de 2007
ddd

&

UKIVERSEDADE
I FERMAMI T



Departamento de

e

PORr Sistemas
ESCOLA POLITECNICA - "
DE PERNAMBUCO Computacionais

Analise Automatica de Diagramas de
Classes UML

Trabalho de Conclusao de Curso

Engenharia da Computacao

Este Projeto é apresentado como requisito parcial
para obtencdo do diploma de Bacharel em
Engenharia da Computagcdo pela Escola
Politécnica de Pernambuco - Universidade de
Pernambuco.

Tassia de Sousa Lima
Orientador: Prof. MSc. Tiago Lima Massoni

Recife, junho de 2007
ddd

&

UHIVERTEWDE
I FERMAMI T



Tassia de Sousa Lima

Analise Automatica de Diagramas de
Classes UML



-

ESCOLA POLITECNICA
DE PERNAMBUCO
I

Resumo

Realizar andlises ¢ de fundamental importancia para a validagdo de modelos de sofitware. UML ¢
a linguagem mais utilizada por engenheiros de software para modelagem e junto com a
linguagem OCL, que ¢ utilizada para adicionar restricdes aos diagramas, podem construir
diagramas de classe que possuam regras mais fiéis ao dominio modelado. No entanto, sua analise
vem sendo feita de maneira visual e algumas propriedades podem confundir o analista, como ¢ o
caso das multiplicidades dos diagramas de classes e as restricdes do OCL. Nesta presente
monografia, ¢ apresentado um protdtipo de ferramenta que realiza a andlise automatica de
diagramas de classes UML. O prototipo foi desenvolvimento através do mapeamento de
constru¢cdes UML/OCL para constru¢des da linguagem de modelagem Alloy, que ja possui uma
ferramenta de andlise bastante eficiente para encontrar erros de modelagem.



-

ESCOLA POLITECNICA
DE PERNAMBUCO
il

Abstract

Automatic analysis of software models is critical for verification and validation. UML is the most
widely adopted language for modeling software, and along with the OCL language, which adds
constraints to class diagrams, can be used to build models showing more precise domain rules.
Nevertheless, these diagrams are usually informally evaluated; issues are often seen in
multiplicities and OCL constraint specification. In this work, we present a tool prototype for
performing automatic analyses on UML class diagrams. The prototype was developed based on a
mapping from UML/OCL constructs to Alloy constructs, a modeling language created along with
an analysis tool, which has showed efficiency in finding modeling errors.



_nd

POLE

ESCOLA POLITECNICA
DE PERNAMBUCO

il

Sumario

Indice de Figuras \4
Indice de Tabelas vi
Tabela de Simbolos e Siglas vii
1 Introducio 9
1.1 Objetivos 10
1.2 Estrutura 10

2 Unified Modeling Language 11
2.1 Diagramas de UML 11
2.2 Diagramas de Classes 12
2.3 Classes 12
2.3.1 Nome 12
2.3.2 Atributos 12
233 Operacdes 13

2.4  Relacionamentos 13
2.4.1 Dependéncia 13
2.4.2 Generalizagao 13
2.43 Associagdo 14
2.4.4 Agregacdo e Composigao 15

2.5 Object Constraint Language 16
2.5.1 Contexto 16
252 Invariantes 17
2.5.3 Self 17
2.5.4 Colecdes de objetos 18
2.5.5 Sets, Bags, OrderedSets ¢ Sequences 19
2.5.6 Expressao /et 19

3  Alloy 20
3.1 Estrutura 21
3.1.1 Modulo 21
3.1.2 Assinaturas 22

3.1.3 Restrigoes 22
3.1.4 Afirmagdes 23
3.1.5 Comandos 24

3.2 Logica 24
3.2.1 Constantes 25
3.2.2 Quantificadores 25
323 Operadores 25
324 Expressao /et 26
325 Compreensdes 27

3.2.6 Multirelagdes 27



_nd

POLE

ESCOLA POLITECNICA
DE PERNAMBUCO

iv

3.2.7 Construtor de cardinalidade 27

4 UML/Alloy 28
4.1 Mapeamento 28
42 UML 30
43 Compilador 32
4.3.1 Pacote ast 33
432 Pacote compiler 36

44  Resultante Alloy 39

5 Analise Automatica 42
5.1 API do Alloy Analyzer 42
5.2 Integragdo 43
5.2.1 Pacote analyzer 43

53 Exemplos 45
5.3.1 Contra-exemplo 45
53.2 Instancia 46

6 Conclusao 48
6.1 Contribuicdes 48
49

6.2 Trabalhos Futuros



Indice de Figuras

Figura 2-1 Notacao de Classe

Figura 2-2 Exemplo de Dependéncia

Figura 2-3 Exemplo de Generalizacio

Figura 2-4 Exemplo de Associacio

Figura 2-5 Exemplo de Navegabilidade

Figura 2-6 Multiplicidades

Figura 2-7 Exemplo de Papéis

Figura 2-8 Exemplo de Agregacio

Figura 2-9 Exemplo de Composicio

Figura 3-1 Cédigo Alloy

Figura 4-1 Exemplo de Diagrama de Classes

Figura 4-2 Exemplo de Diagrama de Classes

Figura 4-3 Compilador

Figura 0-4 Exemplo de Diagrama de Classes do pacote ast
Figura 5-1 Integracio do Compilador com o Analisador
Figura 5-2 Diagrama de Classes para Geracio de Contra-Exemplo
Figura 5-3 Diagrama de Classes para Geracio de Instincia

-

ESCOLA POLITECNICA
DE PERNAMBUCO
v

12
13
14
14
14
15
15
15
16
21
29
31
33
33
42
45
46



Indice de Tabelas

Tabela 3-1 Quantificadores

Tabela 3-2 Operadores logicos

Tabela 3-3 Operadores de conjuntos

Tabela 3-4 Operadores relacionais

Tabela 3-5 Operadores de inteiros

Tabela 4-1 Mapeamento UML/OCL para Alloy

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vi

25
25
25
26
27
29



-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vil

Tabela de Simbolos e Siglas

AA — Alloy Analyzer

API - Application Programming Interface
AST — Arvore Sintatica Abstrata

DTD - Defini¢do de Tipos de Documentos
DOM - Document Object Model

GUI - Graphical User Interface

OCL - Object Constraint Language

UML - Unified Modeling Language

XML - EXtensive Markup Language



-

ESCOLA POLITECNICA
DE PERNAMBUCO
viii

Agradecimentos

Primeiramente a Deus que tem me sido fiel nos momentos em que mais precisei e que sem a sua
presencga seguramente eu nao teria chegado onde estou.

A minha mée Dacilda que ¢ a pessoa mais importante na minha vida, que sempre foi meu
porto seguro e fez tudo que podia para proporcionar o meu bem-estar geral.

Ao meu pai Reginaldo e aos meus seis irmaos, pessoas especiais na minha vida, que
apesar da distancia, sempre que nos encontramos temos momentos muito prazerosos.

Aos meus amigos do tempo de colégio, amigos que sempre estiveram presentes em todos
0s momentos e que espero levar para o resto da vida. Em especial a Mina, Cinthia, Priscila,
Paulinho ¢ Ana.

Aos amigos que a faculdade me proporcionou conhecer e que foram grandes
companheiros durante esses cinco anos. Amigos como Emanuel, Juliane, Robson e Fred e
também, Gabriel, Renata ¢ Fernando que além de companheiros ndo me deixaram desistir da
monografia.

A Gabi e Lucia, pessoas que conheci através de Gabriel e que como ele, sio muito
importantes pra mim.

Aos meus familiares, que sempre estiveram ao meu lado me dando apoio principalmente
no ultimo ano, quando eu mais precisei.

Finalizando, aos professores do departamento de computagdo, principalmente ao professor
Tiago Massoni que teve a paciéncia e disposi¢do para me orientar e que na reta final me deu total
apoio no momento em que passei por dificuldades pessoais.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

9

Capitulo 1

Introducao

O principal elemento de um sistema orientado a objetos ¢ a classe. Esta ¢ uma abstragdo de um
conjunto de objetos similares do mundo real que possuem as mesmas caracteristicas. Diagramas
de classes da linguagem Unified Modeling Language(UML) [1] sdo responsaveis por modelar a
estrutura do sistema. Todas as classes que o sistema necessita, bem como suas associa¢des sao
definidas nesses diagramas podendo ser abstratos, onde as classes definem o dominio do
problema, ou concretos, onde as classes definem uma implementagdo em uma linguagem
orientada a objetos [2].

Object Constraint Language(OCL) [3] ¢ uma linguagem de especificagdo formal que nao
contém qualquer efeito colateral, ou seja, ndo pode alterar o estado do presente sistema em
execucdo. Sendo assim, os diagramas de classes UML que possuem restricdes OCL ndo serdo
afetados, mas informagdes importantes serdo adicionadas a eles [3].

UML ¢ a linguagem mais utilizada para modelagem de dados no mercado. Algumas
propriedades dos modelos UML/OCL podem confundir um analista no momento dele realizar a
analise do mesmo. E o caso, por exemplo, das multiplicidades e restrigdes do OCL que caso
sejam analisadas visualmente, dificulta a busca por erros.

No entanto, apesar do aumento da riqueza de informagdes, esses modelos UML/OCL sdo
ainda mais dificeis de analisar sem ferramentas como a desenvolvida nessa monografia, pois o
esquecimento de restricdes ou ainda o uso delas de maneira incorreta podem passar
despercebidos se forem realizados de forma nao-automatica.

Uma outra linguagem também utilizada para criar modelos, conhecida como Alloy [4],
utiliza-se de coédigo para desenvolver seus modelos e possui uma ferramenta de andlise
automatica, o Alloy Analyzer(AA) [4]. Através do AA ¢é possivel gerar instdncias e contra-
exemplos. As instancias sdo geradas para os predicados, produzindo exemplos que podem ser
analisados para garantir a corretude do seu modelo, ja os contra-exemplos sdo gerados para
provar que o modelo possui algo de errado de acordo com as afirmacdes que estdo sendo
checadas [5].

Tendo em vista automatizar a analise de diagramas de classes UML/OCL utilizando as
funcionalidades do AA, neste trabalho foi desenvolvida uma estrutura para a correspondéncia
com a linguagem Alloy. Essa estrutura foi realizada na linguagem Java [6], utilizando a
plataforma eclipse [7] e tornando mais eficiente a procura por erros e¢ conseqiientemente a
validagdo do diagrama.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

10

1.1 Objetivos

Para conseguir realizar a correspondéncia entre um subconjunto dos diagramas de classes
UML/OCL e Alloy é necessario atingir alguns objetivos, dentre eles pode-se citar:
e Definicdo de uma forma representativa dos diagramas de classes UML e restrigdes do
OCL para servir de entrada para o compilador.
e FElaboracdo das regras de traducdo entre as linguagens, para assim poder mapear os
elementos de uma linguagem em elementos equivalentes da outra.
e Criacdo de uma estrutura Java equivalente ao modelo de entrada em formato hierarquico
que ¢ montada de acordo com a leitura dos dados de entrada e que representa a Arvore
Sintatica Abstrata (AST) [8] do compilador.
e Traducdo do modelo Java para o codigo A/loy de acordo com a entrada e as regras de
tradugdo.
e Construcdo do analisador do codigo Alloy fazendo uso das funcdes da Application
Programming Interface (AP]) do Alloy Analyzer [4].
e Integracdo do analisador construido com o compilador, a fim de realizar a andlise
automatica do codigo Alloy gerado pelo compilador.

1.2 Estrutura

Os capitulos da monografia estdo organizados da maneira como segue:

O Capitulo 2 define os conceitos basicos da linguagem UML, descreve rapidamente suas
principais caracteristicas e enfatiza os diagramas de classes e seus componentes por serem eles os
elementos mais importantes do presente trabalho. Definem-se também conceitos da linguagem
OCL, mostrando a sua estrutura e algumas fungoes.

O Capitulo 3 traz uma visdo geral da linguagem Alloy, definindo suas caracteristicas
principais que a diferenciam das demais linguagens e mostra ainda a estrutura de um codigo Alloy
e a logica do mesmo.

O Capitulo 4 inicialmente define 0 mapeamento entre as linguagens. Em seguida, mostra
o modelo representativo utilizado como entrada e os passos para o desenvolvimento do
compilador. Por fim, traz o modelo do codigo Alloy resultante do compilador.

O Capitulo 5 define a estrutura da API do Alloy Analyzer, seus pacotes e descricao das
funcionalidades de algumas de suas classes. Mostra os passos da construgdo do analisador e como
ele foi integrado ao compilador. E ainda, traz exemplos de diagramas de classes UML e geragdo
de contra-exemplos ou instancias.

O Capitulo 6 retoma os objetivos, mostra as conclusdes e contribuicdes deste trabalho e
ainda os trabalhos futuros que podem ser realizados a partir do protétipo desenvolvido nesta
monografia.

O Apéndice A mostra o XML gerado pelo contra-exemplo da se¢do 5.3.1 do Capitulo 5.

O Apéndice B mostra o XML gerado pela instancia da se¢do 5.3.2 do Capitulo 5.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

11

Capitulo 2

Unified Modeling Language

A Unified Modeling Language (UML) [9] é uma linguagem grafica universal para visualizagdo,
especificagdo, construcdo e documentacdo de artefatos de um sistema intensivo de software. A
existéncia de um modelo visual facilita a comunicacdo e faz com que os membros de um grupo
tenham a mesma idéia do sistema. J& a importancia da especificacdo se dd a necessidade de
constru¢do de modelos precisos, ndo ambiguos e completos.

UML ndo ¢ uma linguagem de programacao visual, mas ela pode estar ligada com uma
variedade de linguagens de programagao. Isto significa que se pode mapear um modelo em UML
para uma linguagem de programacdo como Java. Esse mapeamento permite a geracdo de codigo
de um modelo UML em uma linguagem de programacao ou reconstruir um modelo de uma
implementagdo, voltando para o UML [1].

Além dessas vantagens, UML pode ainda incluir artefatos como deliverables, que sdo
documentos como especificagdo de requisitos, especificacdes funcionais, planos de testes. E
também, materiais que sdo importantes para controlar, medir, e refletir sobre um sistema durante
o seu desenvolvimento e implantagao.

2.1 Diagramas de UML

Na versdao 2.0 do UML existem 13 tipos de diagramas que sdo responsaveis por uma parcial
representacao do sistema. Eles representam graficamente um conjunto de elementos com seus
respectivos relacionamentos usados para visualizar o sistema de perspectivas diferentes. Existem
dois tipos de diagramas: os diagramas estaticos e os diagramas dindmicos. Os estaticos sdo
utilizados para visualizar as partes estaticas do sistema e os dindmicos para modelar o seu
comportamento. No projeto em questao € utilizado apenas um tipo de diagrama estatico UML, o
diagrama de classes [10].



-

ESCOLA POLITECNICA
DE PERNAMBUCO

12
2.2 Diagramas de Classes

Diagramas de classes UML sdo os diagramas mais comuns na modelagem de sistemas orientados
a objetos. Eles possuem um conjunto de classes, interfaces, colaboracdes e relacdes. Sdo
responsaveis por modelar a visdo do design estatico do sistema e formam a base para os demais
diagramas. Além disso, eles podem ser abstratos, onde as classes definem o dominio do
problema, ou concretos, definindo uma implementagdo em uma linguagem orientada a objetos.

2.3 Classes

Uma classe ¢ uma abstragdo de um conjunto de objetos que possuem os mesmos atributos,
operacdes, relagdes e semantica. As classes tém uma funcdo muito importante na modelagem
orientada a objetos, pois elas dividem o problema, modularizam a aplicacdo e baixam o nivel de
acoplamento do software [1].

Representa-se uma classe por um retangulo geralmente dividido em trés partes compostas
por nome, atributos e operagdes, respectivamente. Na Figura 2-1 tem-se a ilustracdo da notacdo
de classe mais geral onde na primeira divisao esta presente o nome, na segunda os atributos e na
terceira as operagoes.

Nome

Atributos

Operagdes

Figura 2-1 Notagao de Classe

2.3.1 Nome

Toda classe deve ter um nome para distingui-la das outras. Este nome ¢ uma string textual que
pode aparecer sozinho ou acompanhado de um caminho representado pelo nome da classe
prefixada pelo nome do pacote em que a mesma esta contida.

2.3.2 Atributos

Um atributo representa alguma propriedade que ¢ compartilhada por todos os objetos de uma
classe e descreve os dados contidos nas suas instancias. Cada objeto terd valores particulares para
seus atributos, podendo estes, mudar com o tempo.

Sintaxe de Atributos
Em sua forma mais completa, a sintaxe de um atributo em UML ¢ representada por:

[visibilidade]nome[:tipo] [= valor inicial]



-

ESCOLA POLITECNICA
DE PERNAMBUCO

13
A visibilidade pode ser publica, protegida ou privada. Na publica, representa-se pelo
simbolo “+” e o atributo é acessivel a qualquer outro objeto ou classe. Ja& na protegida,
representa-se pelo simbolo “#” e o atributo ¢ acessivel apenas na classe e nas subclasses. Por fim,

na privada, representa-se pelo simbolo “-” e o atributo so ¢ acessivel dentro da classe em que foi
definido.

2.3.3 Operacoes

Uma operagdo é a implementa¢do de um servi¢o que pode ser requisitado por algum objeto de
uma classe para afetar seu comportamento. Em outras palavras, uma operacdo ¢ uma abstracao de
algo que se pode fazer para um objeto e que é compartilhado por todos os objetos desta classe.

Sintaxe para Operacoes
Em sua forma mais completa, a sintaxe de uma operagdo em UML ¢ representada por:

[visibilidade]nome[ (lista-de-parametros) ] [:tipo de retorno]

2.4 Relacionamentos

Um relacionamento ¢ uma conexdo entre classes. Em modelagem orientada a objetos, os trés
relacionamentos mais importantes sdo dependéncia, generalizagdo e associacdo. Graficamente,
um relacionamento € representado por um caminho, com diferentes tipos de linhas usadas para
distinguir os tipos de relagdes.

2.4.1 Dependéncia

Uma dependéncia ¢ um relacionamento onde uma mudanga em uma especificagdo de um
elemento pode afetar outro que o use, mas ndo necessariamente o reverso. Uma dependéncia ¢
representada por uma linha tracejada, direcionada para a classe sobre a qual se depende como
ilustra a Figura 2-2. Nesta figura tem-se uma dependéncia da classe Cliente em relacdo a classe
Fornecedor, em que caso esta seja alterada, pode-se ter mudangas também na classe Cliente.

Cliente I ‘ Fornecedor

Figura 2-2 Exemplo de Dependéncia

2.4.2 Generalizacao

Uma generaliza¢do ¢ um relacionamento entre uma classe geral e um tipo mais especifico desta
classe. Generalizagdo significa que objetos de uma subclasse podem ser usados em qualquer
classe mais abstrata, mas ndo o reverso. O seguinte exemplo da Figura 2-3 ilustra uma classe
mais geral de nome Pessoa ¢, duas classes mais especificas nomeadas por Mulher ¢ Homem
que sao tipos de Pessoa.



_nd

ESCOLA POLITECNICA
DE PERNAMBUCO
14
Pessoa
Mulher Homem

Figura 2-3 Exemplo de Generalizagao

2.4.3 Associacao

Uma associacdo ¢ um relacionamento estrutural que especifica que objetos de um elemento estdo
conectados a objetos de outro elemento. Dada uma associacdo conectando duas classes, pode-se
navegar de um objeto de uma classe para outro objeto de outra classe, e vice versa. Uma
associacdo que conecta exatamente duas classes ¢ chamada de associag@o binaria e ndo ¢ comum
ter associacdes que conectem mais do que essa quantidade, mas quando acontecem, elas sdo
chamadas de associac¢des n-aria.

Representa-se uma associagdo por uma linha solida conectando as classes relacionadas.
No caso da Figura 2-4, essa representacdo ¢ dada pela linha que une as classes Professor ¢
Universidade.

Professor Universidade

Figura 2-4 Exemplo de Associagdo

Navegabilidade

A navegabilidade entre as classes de uma associa¢do ¢ bi-direcional porém, pode-se limita-la a
apenas uma direcdo. Isso significa uma forma de mostrar acesso direto a objetos. No caso da
Figura 2-5, Estudante tem acesso direto a objetos de Disciplina.

Estudante Disciplina

Figura 2-5 Exemplo de Navegabilidade

Multiplicidade

A multiplicidade define quantos elementos participam do relacionamento, ou seja, o nimero de
instdncias de uma classe relacionada a uma instancia de outra. Ela é especificada em cada
extremidade da associagdo. Na Figura 2-6 estdo representados os principais tipos de
multiplicidade e o que cada um representa. Quando a multiplicidade possui “..” entre os valores,
significa que a quantidade de elementos que participardo do relacionamento estd dentro do
intervalo delimitado por esses nimeros. No caso do uso de “,” ou do uso de um unico valor, a

quantidade dos elementos devera ser exatamente um desses valores. Por fim, se a multiplicidade



-

ESCOLA POLITECNICA
DE PERNAMBUCO

15

possui o valor “0..*” ou “*” qualquer quantidade de elementos da classe podera participar da
relacdo e caso seja “1..*”, podera participar qualquer quantidade maior do que 1.

exatarmente trés ou sete um a guarenta

3.7 1.40
exatamente um exatamente cinco
1 g
TR OU Mais Lrm au mals

+* 1_*

ZEro au um Zero ou mais
0.1 n.=x

Figura 2-6 Multiplicidades
Papéis

Quando uma classe participa de uma associagao, ela tem um papel especifico no relacionamento.
Normalmente coloca-se explicitamente o nome do papel quando a associacdo relaciona dois
elementos da mesma classe, quando ha mais de uma associag@o entre as classes ou para facilitar o
entendimento geral. Na Figura 2-7 os papéis chefe e subordinado sdo utilizados para diferenciar
qual papel os elementos da classe Pessoa assumem. Ja o papel empregador, assumido pelos
elementos da classe Empresa, ¢ utilizado para facilitar o entendimento geral do diagrama.

- chefa
Pessoa - empregador| Empresa

- subordinado

Figura 2-7 Exemplo de Papéis

2.4.4 Agregacao e Composicao

As vezes é preciso modelar um relacionamento “todo/parte”, em que uma classe represente um
elemento maior e que consiste de elementos menores. Esse ¢ um tipo especial de associagdo
chamado de agregacio e ¢ especificado adornando-se uma associagdo plena com um diamante
aberto na extremidade do todo. A Figura 2-8 traz um exemplo de agregacdo em que o todo €
representado pela classe Curso e a parte pela classe Aluno.

Curso Aluno

Figura 2-8 Exemplo de Agregacao



-

ESCOLA POLITECNICA
DE PERNAMBUCO

16

A composicao ¢ uma variagdo da agregacdo simples onde uma vez criada a parte, ela ira
viver e morrer com o todo. Em uma agregacdo composta, um objeto s6 pode ser parte de uma
composicdo por vez. Isto ¢ um contraste com a agregacdo simples, em que uma parte pode ser
compartilhada por diversos todos. O todo € o responsavel pelo gerenciamento da criagdo e
destrui¢do das partes. Representa-se esse tipo especial de associacdo adornando a associagdo
plena com um diamante preenchido na extremidade do todo. A classe Banco da Figura 2-9
representa o todo da relacdo e sem ela, ndo existiria a parte, ou seja, a classe Conta.

Banco ‘ o Conta

Figura 2-9 Exemplo de Composi¢do

2.5 Object Constraint Language

A Object Constraint Language (OCL) [3] ¢ uma linguagem formal usada para descrever
expressdes em modelos UML. Expressdes escritas em OCL adicionam vitais informagdes que
ndo podem ser expressas em um diagrama para modelos OO [11], e outros artefatos de
modelagem de objetos. OCL ¢ uma linguagem universal em que as expressdes podem ser escritas
de maneira clara e ndo ambigua.

Expressdes escritas em uma precisa linguagem baseada na matematica como OCL ndo
podem ser interpretadas diferentemente por pessoas distintas, como um analista e um
programador. Por ndo serem ambiguas, fazem o modelo mais preciso e detalhado, além de
poderem ser verificadas por ferramentas automaticas para assegurar que estdo corretas e
consistentes com outros elementos do modelo. A geragdo de cddigo torna-se assim, muito mais
poderosa [12].

Entretanto, modelos escritos em linguagens que usem uma representacdo de expressao
sozinha ndo sdo facilmente compreendidos, ou seja, muitas pessoas preferem um modelo
diagramatico, pois facilita o entendimento do sistema. Para obter um modelo completo,
diagramas e expressdes OCL sdo necessarios. Sem expressdes OCL o modelo seria pouco
especificado; sem os diagramas de UML, as expressoes do OCL consultariam aos elementos do
modelo ndo-existentes, porque ndo hd nenhuma maneira de OCL especificar classes e
associagoes.

2.5.1 Contexto

A definigdo de contexto especifica uma quantificagdo universal da entidade do modelo para a
qual a expressdo do OCL ¢ definida. Geralmente, esta ¢ uma classe, uma relagdo, um tipo de dado
ou um componente. As vezes é uma opera¢io, e raramente é uma instancia. E sempre um
elemento especifico definido em um diagrama de UML.

As expressdoes do OCL podem ser incorporadas ao modelo diretamente nos diagramas,
mas podem também ser fornecidas em um arquivo de texto separado. Ambos 0s casos possuem
uma definicdo de contexto. No diagrama, a defini¢do do contexto ¢ mostrada por uma linha
pontilhada que ligue o elemento do modelo com a expressao do OCL. Quando a expressao do
OCL ¢ dada em um arquivo separado, a definigdo do contexto é dada em um formato textual. E
denotada pela palavra-chave context seguido pelo nome do tipo.

context Pessoa



-

ESCOLA POLITECNICA
DE PERNAMBUCO

17
2.5.2 Invariantes

Mais informagdes podem ser adicionadas ao modelo na forma de invariantes. Um invariante ¢
uma restrigdo que deva ser verdadeira para um objeto durante toda sua vida. Invariantes
representam freqiientemente as regras que devem vincular os objetos da vida real depois que os
objetos de software sdo modelados.

Invariantes sobre atributos

Invariantes em um ou em mais atributos de uma classe podem ser expressos de uma maneira
muito simples. Inicialmente tem-se a classe a que o invariante consulta que ¢ o contexto do
mesmo, seguida pela palavra-chave inv acompanhada opcionalmente por um nome, e por fim
uma expressdo booleana que indique seu invariante. Todos os atributos da classe do contexto
podem ser usados neste invariante. No exemplo seguinte, tem-se como contexto a classe
Cliente, maioridade como nome do invariante ¢ idade >=18 como a expressdao
booleana.

context Cliente
inv maioridade: idade >= 18

Invariantes sobre objetos associados

Invariantes podem também indicar regras para objetos associados. Isto ¢ feito usando os nomes
dos papéis da associa¢do que irdo consultar o objeto na outra extremidade. Se ndo possuir o nome
do papel, deve-se usar o nome da classe. Tendo-se agora o contexto ClienteCartao, ¢ o
nome do invariante maioridade, através do nome do papel proprietario consegue-se
consultar os objetos da classe a que ele corresponde e assim aplicar a expressdao booleana.

context ClienteCartao
inv maioridade: proprietario.idade >= 18

253  Self

As vezes ¢ necessério referenciar explicitamente a instincia contextual em uma expressio do
OCL. A palavra-chave self ¢ utilizada para esse propodsito. Se, por exemplo, pretende-se
especificar que em uma determinada instidncia do contexto Pessoa o atributo nome receberia o
valor Maria, a seguinte expressdo do OCL seria utilizada para essa defini¢ao:

context Pessoa
inv: self.nome = 'Maria'

Enumeracoes

Em um modelo de UML, os tipos da enumerag¢ao podem ser definidos. Os valores de um tipo da
enumeragao sao indicados em uma expressdo do OCL pelo nome do tipo da enumeracdo, seguido
por um duplo sinal de dois pontos e pelo valor. Por exemplo, pode-se querer distinguir associados
pelo nivel atual de cor que eles possuem onde a cor do atributo pode ter dois valores, prata ou



-

ESCOLA POLITECNICA
DE PERNAMBUCO

18

ouro. Os seguintes invariantes mostram que a cor dos cartdes deve combinar com o nivel de
servico dos associados.

context Associado
inv nivelCor:

nivelAtual.nome = 'Prata' implies cartao.cor = Cor::prata
and
nivelAtual.nome = 'Ouro' implies cartao.cor = Cor::ouro

2.5.4 Colecoes de objetos

Sempre que a navegacdo resulta em uma colecdo de objetos, pode-se usar uma das operagdes de
colecdo para manipula-las. Para indicar o uso de uma das operacdes predefinidas da colecdo,
coloca-se uma seta entre o nome do papel e a operacdo. Quando se usa uma operagdo definida no
modelo de UML, utiliza-se um ponto. Alguns dos operadores ¢ exemplos deles s@o indicados a

seguir.
Size

No contexto Pessoa, o invariante garante que a quantidade de empregadores serd menor do que
trés.

context Pessoa
inv : self.empregador->size()<3

Select ¢ reject

No contexto Pessoa, o primeiro invariante seleciona os empregados com idade maior que 50 e
analogamente o segundo rejeita-os.

context Pessoa
inv: self.empregado->select(idade>50)

context Pessoa
inv: self.empregado->reject (idade>50)

ForAll e exists

No contexto Companhia, o primeiro invariante avalia se a expressdo idade<=65 ¢ verdadeira
para todos os elementos do conjunto empregado ¢ o segundo se existe algum elemento que
satisfaca a mesma expressao booleana.

context Companhia
inv: empregado->forAll (idade<=65)

context Companhia
inv: empregado->exists(idade<=65)



-

ESCOLA POLITECNICA
DE PERNAMBUCO

19
Collect

No contexto Companhia, ambos invariantes irdo coletar os saldrios dos empregados, sendo a
segunda forma mais comum e tendo as duas o mesmo significado.

context Companhia
inv: self.empregado->collect(salario)

context Companhia
inv: self.empregado.salario

NotEmpty ¢ isEmpty

No contexto Pessoa, avalia-se se o conjunto de empregadores ndo ¢ vazio e¢ analogamente se o
mesmo € vazio.

context Pessoa
inv: self.empregador->notEmpty ()

context Pessoa
inv: self.empregador->isEmpty ()

2.5.5  Sets, Bags, OrderedSets e Sequences

Ao trabalhar com cole¢des de objetos, deve-se estar ciente da diferenga entre um Set, um Bag, um
OrderedSet, e uma Sequence. Em um Set, cada elemento pode ocorrer somente uma vez. Em um
Bag, os elementos podem aparecer mais de uma vez. Uma Sequence ¢ uma colecdo em que os
elementos sdo ordenados e pode haver repeticdo. Um OrderedSet ¢ um conjunto em que 0s
elementos sdo ordenados.

Set {1, 2, 3, 4, 5, 6}

Bag {1, 1, 2, 2, 4, 5, 6}
Sequence {2, 1, 2, 3, 5, 6, 4}
OrderedSet{12, 9, 6, 3}

2.5.6  Expressao let

As vezes escrevem-se expressdes grandes em que uma expressio secundaria ¢ usada mais de uma
vez. A expressao let permite definir uma varidvel que possa ser usada em vez da expressao
secundaria. No seguinte exemplo, cria-se a varidvel renda do tipo Integer, para armazenar a
soma dos salarios de uma pessoa. Essa variavel ¢ entdo utilizada duas vezes no decorrer do
invariante.

context Pessoa
inv: let renda : Integer = self.trabalho.salario->sum in
if self.ehDesempregado then renda < 100
else
renda >= 100
end if



-

ESCOLA POLITECNICA
DE PERNAMBUCO

20

Capitulo 3

Alloy

Alloy [5] é uma linguagem para modelagem de projeto de software relacionada com a linguagem
Z [13], que combina logica de predicados com algebra relacional. Ela possui algumas
caracteristicas unicas como signature ¢ a no¢do de escopo, bem como caracteristicas universais
das linguagens de programacdo. Além disso, faz uso da andlise inteiramente automatica, através
do Alloy Analyzer(AA) [4], que possui um visualizador para exibicdo das solugdes e contra-
exemplos gerados. Nessa monografia foi utilizado o 4//oy na versao 4.

Existem alguns pontos chaves que diferenciam A/loy das demais linguagens e técnicas de

modelagem. Dentre eles pode-se destacar [4]:

e Verificacdo de um espaco finito — uma vez que se vai analisar realmente o modelo,
deve-se especificar um escopo para ele. A analise € correta por nunca retornar falsos
positivos, mas incompleta por verificar até um certo espago especificado. Entretanto
essa andlise esta correta até esse espacgo, pois nunca falta um contra-exemplo que seja
menor que 0 mesmo.

e Modelo infinito — os modelos que se escrevem em Alloy nado refletem o fato que a
analise ¢ finita. Isto ¢, descrevem-se os componentes do sistema e como eles
interagem, mas nao se especifica quantos componentes devem ser (como ¢ feito no
tradicional “modelo de verificagao”).

e Declarativo — um modelo declarativo responde a pergunta “como eu reconheceria que
X aconteceu” ao contrario de um modelo “operacional” ou “imperativo”, modelo que
pergunta “como eu posso realizar X”.

e Analise automatica — ao contrario de outras linguagens declarativas de especificacao,
a Alloy pode ser analisada automaticamente. Podem-se gerar exemplos
automaticamente de seus sistemas e contra-exemplos as reivindicagdes feitas sobre
eles.

e Dados estruturados — A/loy suporta estruturas de dados complexas tais como arvores,
e ¢ assim uma maneira rica de descrever um estado.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

21

3.1 Estrutura

A Figura 3-1 ilustra um exemplo de codigo A/loy com o intuito de conferir se uma pessoa € o seu
proprio avo através de um predicado, gerando assim um exemplo, e checar se a pessoa nio € o
seu proprio pai gerando um contra-exemplo caso essa afirmativa seja falsa.

module avo

abstract sig Pessoa{
pai: lone Homem,
mde: lone Mulher

}

sig Homem extends Pessoa {esposa: lone Mulher}
sig Mulher extends Pessoa {marido: lone Homem}

fact Terminologia {esposa = ~marido}
fact ConvencaoSocial {

no esposaé& (mae+pai) .mae

no maridoé& (mde+pai) .pai

}
fun avos [p: Pessoa] : set Pessoa {
let pais = maet+pai+tpai.esposa+t+mae.marido|
p.pais.pais&Homem
}

pred proprioAvo [h: Homem] { h in avos[h]}
assert proprioPai {
all p: Pessoa| no p.pai =p

}

run proprioAvo for 4 Pessoa

check proprioPai for 5
Figura 3-1 Codigo Alloy

A estrutura de um modelo descrito em Alloy consiste de um mddulo principal, declaragdes
de assinaturas, paragrafos de restri¢des, afirmagdes ¢ comandos, que serdo descritos nesta
presente se¢ao.

3.1.1 Modulo

A primeira linha de um modelo ¢ a declaragdo do modulo constituida da palavra module
seguida pelo seu nome. Eles sdo nomeados como em Java: o nome completo do mesmo
corresponde ao caminho e nome do arquivo no sistema de arquivo.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

22
module avo

(13

Modulos Alloy tém a extensdo de arquivo “.als” por default, entdo esse modulo é
armazenado no arquivo “avo.als”, relativamente ao diretdrio de trabalho do AA.

3.1.2 Assinaturas

Uma assinatura representa um conjunto de atomos e pode também introduzir alguns campos, cada
um representando uma relacdo. A forma mais simples que se tem de declaragdo da assinatura ¢
feita através da palavra-chave sig seguida pelo nome da assinatura e por um par de chaves.

sig Pessoa {}

Dentro do par de chaves de cada declaragdo da assinatura tem-se o corpo da assinatura.
Nele pode-se definir uma série de relagdes para o qual o conjunto definido na declaracdo de
assinatura seja o dominio. Por exemplo, pode-se criar uma assinatura Homem que possua em seu
corpo uma relagdo esposa relacionando homens com mulheres. A palavra-chave lone indica
simplesmente que existe 0 ou 1 objetos esposa para cada Homem. J4 a palavra extends indica
que tanto Homem quanto Mulher sdo subtipos de Pessoa. Isso significa duas coisas: o
conjunto de todos os homens ¢ um subconjunto de todas as pessoas ¢ Homem ¢ disjunto de outro
subtipo de Pessoa (i.e. Homem ¢ disjunto de Mulher).

sig Homem extends Pessoa { esposa: lone Mulher }

sig Mulher extends Pessoa { marido: lone Homem }

Outra palavra-chave importante na declaracdo de assinaturas ¢ a palavra abstract.
Usando esta palavra na declaracdo de Pessoa garante-se que as assinaturas que as estendem
herdardo suas propriedades. Assim, ndo haverd nenhuma pessoa que ndo pertenca a suas
extensoes, se omite-se a declaragdo, podera ter uma pessoa que nem seja homem nem mulher.

abstract sig Pessoa {
pai: lone Homem,
mae: lone Mulher

3.1.3 Restricoes

Nio ¢ tdo simples definir as assinaturas como foi feito anteriormente. E necessario também
adicionar restricoes basicas para certificar que elas se comportem da maneira como se espera
intuitivamente. As restrigdes sdo representadas pelas palavras chaves fact, fun e pred, e sdo
responsaveis por varios tipos de restrigdes e expressoes.

Fato

Um fato registra uma restricdo que assume ser sempre possivel. Uma indicacdo fact em Alloy
coloca uma restri¢ao explicita (ou uma lista de restrigdes) sobre o modelo. Quando A/loy procura
por exemplos, ele descarta algum que viole o fact. Assim, se o fato for trivialmente falso, entdo
simplesmente ndo ird gerar exemplos, no entanto ndo sera dito que o modelo ¢ inconsistente. Um



-

ESCOLA POLITECNICA
DE PERNAMBUCO

23

exemplo de fato com uma tnica restricdo seria dizer que marido € o inverso de esposa, em
termos de valores de relagdo seria dizer que marido tem a imagem refletida de esposa.

fact Terminologia { esposa = ~marido }

Outro exemplo de fato, agora com mais de uma restricdo, seria dizer que esposa nao
pode estar no conjunto das mdes dos seus pais, ou seja, suas avos e, respectivamente, que
marido nao pode estar no conjunto de pais dos seus pais, ou seja, seus avos.

fact ConvencaoSocial {
no esposa & * (mae+pai) .mae
no marido & * (mae+pai) .pai

Funcoes e Predicados

Uma fungdo define uma expressdo reusavel e um predicado define uma restrigdo reusavel.
Fungdes e predicados podem servir como “fatos opcionais” permitindo que se tenham ocorréncias
como “se o construtor A acontece entdo o construtor B acontece”. Uma func¢ado avalia um valor.
Uma construgdo similar € um predicado onde, se todas as entradas satisfazem todos os
construtores listados no corpo, entdo o predicado ¢ avaliado como verdadeiro. Caso contrario ¢
avaliado como falso.

No exemplo seguinte, o desafio ¢ encontrar um homem que seja seu proprio avd. Para isso
¢ criada uma fung¢@o avos que recebe uma pessoa e retorna um conjunto de pessoas formado
pelos pais dos pais da mesma, e que sejam homens. Essa funcdo ¢ utilizada no predicado
proprioAvo que recebe um homem e avalia se 0 mesmo estd contido no conjunto resultante dos
avos dele.

fun avos [p: Pessoa]: set Pessoa {
let pais = mae + pai + pai.esposa + mae.marido |
p-pais.pais & Homem

pred proprioAvo [m: Homem] { m in avos[m] }

3.1.4 Afirmacoes

As afirmagdes registram as propriedades que se esperam atingir. Sdo representadas pela palavra
assert e, ao contrario do fato que forca algo a ser verdadeiro no modelo, elas reivindicam que
algo deve ser verdadeiro devido ao comportamento do modelo. Pode-se querer conferir, por
exemplo, se uma pessoa ndo € o seu proprio pai. Em palavras, afirma-se que “para todo p do tipo
pessoa, o pai de p ndo deve ser igual a p”.

assert proprioPai ({
all p:Pessoa| no p.pai = p



-

ESCOLA POLITECNICA
DE PERNAMBUCO

24
3.1.5 Comandos

Existem dois tipos de comandos em Alloy, representados pelas palavras-chaves run e check, e
que sao utilizados pelo AA para avaliar a performance do modelo, através da geragdo de solugdes
e contra-exemplos.

Run

O comando run instrui o AA a procurar uma solugdo para a restrigdo. Esse comando ¢
importante, pois ¢ através dele que se podem ver exemplos de que o modelo estd correto.
Também no caso de uma modelagem errada, modelos fora da normalidade serdo gerados,
ajudando numa melhor percep¢do de onde deve haver modificagdes em busca da corretude do
mesmo. No seguinte exemplo o comando run executara o predicado proprioAvo em busca de
possiveis solugdes em um universo de quatro pessoas.

run proprioAvo for 4 Pessoa

Check

O comando check chama o AA para procurar contra-exemplos, que ¢ uma instdncia que prove
que a afirmagfo ¢ falsa. Quando ele é executado tém-se dois possiveis resultados: no solution
found — ndo ha contra exemplos para a afirmac¢ao com o especificado escopo ou menor e, solution
found — o AA encontrou um contra-exemplo. O ideal é que ndo sejam encontrados contra-
exemplos mostrando que a afirmagdo esta correta no escopo especificado. O comando check que
segue, buscara contra-exemplos a afirmag@o proprioPai para um universo de tamanho cinco.

check proprioPai for 5

3.2 Ldgica

Na logica de Alloy, s6 objetos sdo atomos indivisiveis. Embora eles sejam imutdveis, pode-se
modelar mutagdes em que o valor de um objeto mude todo o tempo para separar o identificador
do objeto e seu valor em atomos diferentes, e relatar identificador, valores e tempos. Quando um
modelo concede s6 um simples objeto e o valor ¢ mudado, um conjunto de atomos pode ser usado
pelos objetos para representar seu valor em diferentes tempos.

Embora atomos sejam uninterpretados, ¢ possivel pegar algumas propriedades para
introduzir relagdes entre elas. Em A/loy ndo existe representagdo para relagdes contendo outras
relagcdes, mas pode-se trabalhar com atomos interpretando-os como inteiros. As relagdes nao
podem ter infinitos tamanhos e larguras o que ndo ¢ um grande problema, pois normalmente os
tamanhos sao finitos.

Uma relagao binaria que mapeia cada dtomo em no maximo um outro dtomo ¢ chamada
de funcional e a que mapeia no maximo um atomo em cada atomo ¢ injetiva. Também
multirelagdes sdo usadas na pratica, pois a execucdo dos modelos que necessitam de duas
relagdes ¢ muito comum e para sua modelagem utilizam-se relagdes ternarias.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

25
3.2.1  Constantes
Existem trés tipos de constantes em Alloy que sdo none, conjunto vazio, univ, conjunto universo
e iden, conjunto identidade. Se por exemplo, tém-se os conjuntos n = {(N0),(N1),(N2)} e a =

{(D0),(D1)}, e se quer os valores das trés constantes relacionadas a eles. O resultado seria none =
{}, univ = {(N0),(N1),(N2), (D0),(D1)}, iden = {(NO,N0),(N1,N1),(N2,N2),(D0,D0),(D1,D1)}.

3.2.2  Quantificadores

Um quantificador ¢ da forma Q x:e|F. A Tabela 3-1 mostra as possiveis formas de quantificacdo
em Alloy.

Tabela 3-1 Quantificadores

all x:elF F ¢ valido para todo x em e
some x:e|F F ¢ valido para algum x em e

no x:e|F F ndo ¢ valido paraxeme
lone x:e|F F ¢ valido para no maximo um x em e
one x:elF F ¢ valido para exatamente um x em e

3.2.3 Operadores

Nesta secdo estdo descritos os principais operadores presentes na linguagem Alloy.
Operadores logicos

Os operadores logicos que fazem parte de Alloy sdo utilizados na construcdo de expressoes
booleanas assim como na logica de programacdo. Seus simbolos e significados estdo presentes na
Tabela 3-2.

Tabela 3-2 Operadores l6gicos
!

not ! negacao
and && conjunc¢ao
or I disjuncao
implies => implicacdo
else , alternativo
if <=> bi-implicacao

Operadores de conjuntos

Os operadores de conjuntos utilizados em A/loy possuem mesma semantica dos utilizados pela
matematica e seus simbolos estdo representados na Tabela 3-3.

Tabela 3-3 Operadores de conjuntos

+ unido

& intersec¢ao
- diferenca
in subconjunto
= igual




-

ESCOLA POLITECNICA
DE PERNAMBUCO

26

Operadores relacionais

Os operadores relacionais sdo os responsaveis por relacionar os elementos de Alloy. Uma lista
desses operadores esta presente na Tabela 3-4. Quando se quer relacionar dois elementos p ¢ q,
sendo ambos conjuntos, a expressdo p->q constitui uma relagdo binaria. No caso de nessa mesma
expressdo, um dos elementos ter tamanho maior que dois, entdo essa expressdo serd uma
multirelagdo. Ainda para a mesma expressdo, se ambos os elementos forem tuplas entdo a relacao
entre eles sera também uma tupla e se eles forem escalares, p->q serd um par.

A operagdo p.q de relacdes p e q ¢ a relagdo onde se tem todas as combinagdes de uma
tupla em p e uma tupla em q e se pega sua jungdo, se ela existe. Se por exemplo t€ém-se as
relacoes {(NO,A0)} e {(A0,DO)}, sua juncdo com o operador “.” traria como resultado
{(NO,DO0)}.

O operador “[]” também usado para jungdo ¢ semanticamente equivalente ao “.”’, mas os
argumentos sdo dispostos em ordem diferente, e possuem diferentes precedéncias. A expressao
ej[ez] tem mesmo significado de e;.e;.

O operador “~” de uma relacdo bindria reflete a imagem da relagdo. Uma relag@o binaria r
¢ simétrica se contém a tupla a->b e b->a, portanto o fechamento simétrico de r € r + ~r. Se por
exemplo tem-se uma relacio r = {(NO,D0),(N1,D1),(N2,D2)} sua transposta sera ~r =
{(DO,N0),(D1,N1),(D2,N2)}.

O fechamento transitivo “*” de uma relacdo r, ¢ a relagdo que contém r e ¢é transitiva.
Intuitivamente, o fechamento transitivo de r é o que ocorre quando se mantém navegagdo através
de r até que ndo se possa ir mais adiante. Ja4 o fechamento transitivo reflexivo ¢ o mesmo do
fechamento transitivo, com o acréscimo das relacdes reflexivas, ou seja *r = *r + iden.

O operador de restri¢do ¢ utilizado para filtrar um dominio ou imagem. A expressao s<:r
formada por um conjunto s e uma relagao r, contém as tuplas de r que comegam com o elemento
em s. Similarmente, r:>s contém as tuplas de r que terminam com s.

Por fim, a operagdo p++q funciona como uma unido mais sem as tuplas que contém o
dominio de q como primeiro elemento, ou seja, p++q = p — (domain(q)<:p) +q.

Tabela 3-4 Operadores relacionais
-> produto
juncgéo
juncgéo
transposta
fechamento transitivo
fechamento transitivo reflexivo
restri¢ao de dominio
restricdo de imagem
override

Tlv|Al = > =

3.24  Expressao let

Uma expressao /et ¢ definida por let x = e | A. Isso significa que uma varidvel x estd sendo
definida com o valor da expressdo e, e sera utilizada dentro do contexto de A



-

ESCOLA POLITECNICA
DE PERNAMBUCO

27
3.2.5 Compreensoes

Compreensdes fazem relacdes de propriedades. A expressdo de compreensdo {Xj:ej, Xz:€z, X3:€3,
. » Xp:ey|F} faz uma relagdo com todas as tuplas do tipo X;->X,->X3-> ... > X, com 0 construtor F
ser possivel.

Uma declaragdo introduz um nome a relacdo. Um construtor da forma nome-da-
relacio:expressdo ¢ uma declaracdo. Uma mesma relagdo pode ser declarada de diferentes
formas, dependendo de quanto de informacao precisa se colocar na declaragao.

3.2.6  Multirelacoes

Supondo a declaracdo r: Am -> nB onde m e n sdo palavras-chave de multiplicidade e A e B sdo
conjuntos. Ento a relacdo r ¢ construida para mapear cada membro de A para n membros de B, e
para mapear m membros de A para cada membro de B.

3.2.7 Construtor de cardinalidade

O operador “#” aplicado a uma relagdo, pega a quantidade de tuplas que ela possui. O valor
resultante do uso desse operador ¢ um numero inteiro. A Tabela 3-5 traz os possiveis operadores
que podem ser usados para combinar € comparar inteiros.

Tabela 3-5 Operadores de inteiros

+ mais
menos

= igual

< menor que

> maior que

=< menor igual

>= maior igual




-

ESCOLA POLITECNICA
DE PERNAMBUCO

28

Capitulo 4

UML/Alloy

Com a finalidade de realizar a analise automatica dos diagramas de classes UML abstratos foi
desenvolvida uma relacdo entre subconjuntos destes diagramas, com suas restricdes em OCL, e
Alloy. Para isso, foi criado um modelo EXtensible Markup Language (XML) [14] representativo
desses diagramas, com as anotacdes em OCL e com algumas instru¢des de A//oy.

Também foi criado um compilador, responsavel por fazer a traducdo de XML para codigo
Java e de codigo Java para um codigo Alloy resultante. Sendo esse codigo Alloy resultante o
utilizado para realizar as analises. A transformacdo para uma estrutura Java tem a vantagem de
deixar o codigo mais modular e assim, poder ser transformado ndo apenar para codigo A/loy, mas
também para outras linguagens.

4.1 Mapeamento

Para poder construir o compilador entre os diagramas de classes UML com restrigdes em OCL e
a linguagem Alloy ¢ necessario definir regras de tradug@o entre elas para assim poder realizar o
mapeamento. Esse mapeamento se faz necessario para definir como cada elemento do UML sera
representado no Alloy.

Algumas construgdes foram deixadas de fora do mapeamento por ndo terem
correspondentes em Alloy ou por ndo possuirem grande importdncia em nivel de analise. E o
caso, por exemplo, do relacionamento de dependéncia que ndo tem correspondente em Alloy.

As classes dos diagramas de classes serdo mapeadas em assinaturas A/loy, ja os atributos
presentes nela serdo campos da assinatura. Se a classe for abstrata, a assinatura também sera, e
caso algum dos relacionamentos seja do tipo generalizagdo, a assinatura possuird a palavra
“extends” apds o nome.

Relacionamentos do tipo associacdo binaria, sio mapeados como relagoes diretas de
Alloy. A multiplicidade dessas relagdes pode ser mapeada por palavras reservadas de 4/loy como
lone, one ¢ Set ou, em caso de multiplicidades que ndo possuam palavras reservadas
correspondentes, como relagdes diretas e o valor delimitado em um fato.

Como as expressdes de OCL sdo definidas dentro de um contexto que define uma
quantificag@o universal, as mesmas estardo presentes no fato anexado da assinatura, que € um fato
que aparece acoplado a assinatura. De acordo com a fun¢do do OCL, uma regra foi criada para
corresponder no Alloy. E no caso das fungdes asSet, alllnstances e self, nada se altera na



-

ESCOLA POLITECNICA
DE PERNAMBUCO

29

estrutura do Alloy. A Tabela 4-1 mostra o mapeamento de alguns dos elementos principais das

linguagens em questao.

Tabela 4-1 Mapeamento UML/OCL para Alloy

UML/OCL Alloy
classe assinatura
associagao binaria relacdo direta
multiplicidade cardinalidade
generalizagdo extends
invariante OCL fato anexado
implies =>
< 1=
X->includes(b) bin X
X->isEmpty() no X
X->size() #X
X.allInstances X
X->select(exp logic) b: X| exp logic

A Figura 4-1 ilustra um exemplo simples de diagrama de classes composto pelas classes
Pessoa, Mulher ¢ Homem. A classe Pessoa ¢ abstrata ¢ mais geral ¢ as classes Homem ¢
Mulher sdo mais especificas. Pessoa tem “idade” como atributo e restrigdoes OCL para informar
que idade ndo pode ser nula. Homem e Mulher possuem uma associagdo binaria com

multiplicidade “0..1” em ambos os lados e papéis “marido

==ahstract==
Pessoa

- idade @int

L‘l}.

- marido - BSp0SA
Homem H

0.1 0.1

Mulher

2 (13

e “esposa”, respectivamente.

context Pessoa
inv: self.pessoa.idade-=notEmptyd

Figura 4-1 Exemplo de Diagrama de Classes

O correspondente codigo Alloy do diagrama de classes da Figura 4-1 ¢ mostrado a seguir:

abstract sig Pessoa(

idade: Int
H

some idade

}

sig Mulher extends Pessoa({

marido: lone Homem

}

sig Homem extends Pessoa({

esposa: lone Mulher

}



-

ESCOLA POLITECNICA
DE PERNAMBUCO

30

4.2 UML

Nessa secdo sera descrito o modelo XML criado para representar um diagrama de classes UML,
com suas restrigdes em OCL e algumas instrugdes de A/loy necessarias para a analise automatica
deste modelo, através da criagdo da Defini¢do de Tipos de Documentos (DTD) [15]. O DTD
define a estrutura de um documento, onde sdo especificados quais os elementos ¢ atributos sdo
permitidos no mesmo.

Inicialmente tem-se a fag <uml> que ¢ a fag raiz do XML. Dentro de sua estrutura podem
existir as tags <diagram>, <ocl>,<assert>,<pred>,<fun> e <command>. A freqii€ncia com que
essas fags ocorrem ¢ definida de acordo com a seguinte declaragdo do DTD:

<!ELEMENT uml (diagram?, ocl?, (assert|pred|fun|command) *) >

Como a fag <diagram> e a tag <ocl> possuem o sinal “?” apo6s seu nome, elas s6 poderdo
ocorrer 0 ou | vez. Ja as tags <assert>, <pred>, <fun> e <command> que possuem o sinal “*”,
poderdo ocorrer 0 ou mais vezes. A ordem que essas tags devem aparecer ¢ definida pelas “,” e
“|” utilizadas entre elas. Nesse caso seria <diagram>, seguida por <ocl>, seguida por <assert> ou
<pred> ou <fun> ou <command>.

Dentro da tag <diagram> s6 podera existir a fag <class>, com freqiiéncia “*”.
<!ELEMENT diagram (class*)>

Uma classe pode possuir 0 ou mais atributos e relacionamentos ¢ possui um Unico nome,
obrigatorio. Assim, a tag <class> terd tags <attribute> e <relation> internas a ela, e terd name
como atributo obrigatorio. Além deste, essa fag possuira também um outro atributo obrigatorio
abstract, para diferenciar se a classe ¢ abstrata ou nao.

<!ELEMENT class (attribute*, relation¥*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class abstract CDATA #REQUIRED>

Os atributos de uma classe possuem um nome ¢ um tipo que no XML serao representados
por atributos obrigatorios da fag <attribute>. Essa tag ndo possui fags internas assim como a fag
<relation> que tera como atributos obrigatérios o tipo e a classe da relagdao, e como atributos
opcionais a multiplicidade e o nome da relagao.

A tag <ocl> ¢ responsavel por guardar as informagdes relacionadas aos invariantes OCL.
Dentro desta fag, estdo presentes 0 ou mais fags <context>.

<!'ELEMENT ocl (context¥*)>

O contexto por sua vez possui internamente 0 ou 1 tag <invariant>, que representa o
invariante OCL. A tag <context> contém como atributos obrigatérios um id € um name que
guardam respectivamente um identificador para diferenciar dos demais contextos ¢ o nome da
classe a que o invariante esté relacionado.

Um invariante pode opcionalmente possuir um nome como atributo. Internamente ele
pode conter as tags <exp>, <self> e as tags correspondentes as fungdes do OCL que podem
aparecer 0 ou mais vezes em qualquer ordem, dependendo do invariante que se esta mapeando.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

31
<!'ELEMENT invariant (self| exp| asSet| includes| excludes|
select| reject| implies| union| intersection| collect|
forAll| isUnique| exists| one| 1let| in| if| then| else|
allInstances| size| isEmpty| notEmpty| and| or| =xor| less|
dif| not) *>
<'ATTLIST invariant name CDATA #IMPLIED>

A tag <self> ¢ utilizada quando uma ocorréncia de self aparece no invariante e a tag
<exp> para representar algo que nem seja uma fungdo e nem self. A tag <exp> tem como atributo
obrigatorio attribute que guarda o contetido de uma expressao.

<!'ELEMENT exp EMPTY>
<!ATTLIST exp attribute CDATA #REQUIRED>

Algumas das fun¢des do OCL ndo possuem argumentos € portanto, ndo possuem fags
internas, como por exemplo a tag <asSet> e a tag <isEmpty>. J& outras, como a tag <select>,
podem possuir internamente combinagdes dessas fun¢des similarmente ao invariante.

As afirmativas, predicados, fungdes e comandos de Alloy estdo também inseridos no
XML, pois é necessario passar instru¢des ao analisador para que ele gere as devidas solugdes.
Trata-se de afirmagdes que se pretende checar se sdo verdadeiras e, predicados e fungdes que
buscam solugdes para o modelo especificado até este ponto. As afirmativas sdo representadas
pela tag <assert> e possuem um nome como atributo interno e a afirmativa em si como contetudo
entre as tags.

<!'ELEMENT assert (#PCDATA)>
<!ATTLIST assert name CDATA #REQUIRED>

A tag <pred> e a tag <tun> sdo semelhantes por possuirem atributos internos name e
input relativos ao nome e a entrada do predicado ou fung@o. Além disso, possuem em seu
conteudo o predicado ou fung¢do em si. O que diferencia essas duas tags ¢ que a tag <fun> além
dos atributos citados anteriormente, possui ainda um atributo output relativo a saida da fungao.

Por fim, a tag <command> possui o atributo #ype que diferencia se o comando ¢ run ou
check e o atributo name que representa o nome do comando. Internamente as suas fags, ele pode
receber as instrugdes do comando, caso elas existam.

A Figura 4-2 ilustra um modelo UML/OCL de um sistema de arquivos composto por
objetos, que podem ser arquivos ou diretdrios, uma unica raiz, subtipo de diretorio, ¢ onde todos
os diretoérios possuem um conjunto de objetos €, com exce¢ao da raiz, um diretdrio pai.

*

Ohbjeto
F entradas
ﬁl‘_~l context Raiz
| inv: self.paiasSetd-=isEmpted
0.1 iy i _=gij =
Arquivo Diretorio inv: Raiz.alllnstances-=cize(j=1
- pai

Raiz

Figura 4-2 Exemplo de Diagrama de Classes



-

ESCOLA POLITECNICA
DE PERNAMBUCO

32

A representagdo do mesmo diagrama da Figura 4-2 no formato representativo XML
acrescida de uma afirmativa e um comando € representada a seguir:

<uml>
<diagram>
<class name="Objeto" abstract="yes"></class>
<class name="Arquivo" abstract="no">
<relation type='"generalization" class="Objeto"/>
</class>
<class name="Diretorio" abstract="no">
<relation type='"generalization" class="Objeto"/>
<relation name="entradas" type="association"
class="Objeto" multiplicity="*"/>
<relation name="pai" type="association"
class="Diretorio" multiplicity="0..1"/>
</class>
<class name="Raiz" abstract="no">
<relation type="generalization"
class="Diretorio"/>
</class>
</diagram>
<ocl>
<context id="cl" name="Raiz">
<invariant>
<exp attribute="Raiz"/>
<allInstances/>
<size/>
<exp attribute="=1"/>
</invariant>
</context>
<context id="c2" name="Raiz">
<invariant>
<self/>
<exp attribute="pai"/>
<asSet/>
<isEmpty/>
</invariant>
</context>
</ocl>
<assert name="Test">all b: Raiz| b =Diretorio</assert>
<command type="check" name="Test">for 4</command>
</uml>

4.3 Compilador

Buscando estabelecer uma relagdo entre os elementos das linguagens UML e Alloy, foi
desenvolvido um compilador entre elas na linguagem Java. Como mostra a Figura 4-3, esse
compilador tem como entrada o XML explicado na se¢ao anterior, ¢ a partir dele gera uma
estrutura Java correspondente e, por fim, monta um arquivo com o codigo Alloy resultante.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

33

Compilador

Estrutura Java
XML Codigo Alloy

T :> i | UML -> Java :> Java -> Alloy

Figura 4-3 Compilador

Dentro do projeto Java foram criados dois pacotes denominados ast ¢ compiler. Para cada
tag do XML uma classe foi criada no pacote ast, referente a Arvore Sintatica Abstrata (AST) [8]
e de acordo com seus atributos e campos no XML foram criadas varidveis correspondentes nas
classes Java. Ja no pacote compiler estdo presentes as classes responsaveis por ler o XML e
transformar em uma correspondente estrutura Java e por pegar esta estrutura e transforma-la em
codigo Alloy.

4.3.1 Pacote ast

As classes do pacote ast foram criadas com o intuito de armazenar o conteiido do XML em Java e
por isso, cada tag do XML possui uma classe correspondente a ela como é mostrado no exemplo
do diagrama de classes da Figura 4-4. Ela ilustra um exemplo de relacionamento entre algumas
classes presentes do pacote ast. Cada classe possui os métodos get e set para retornar e informar o
valor dos atributos respectivamente.

Uml
Diagram Ocl Assert Pred Fun Command
Class Context
Attribute Relation Invariant
; / \
Self Exp And Reject

Figura 4-4 Exemplo de Diagrama de Classes do pacote ast




-

ESCOLA POLITECNICA
DE PERNAMBUCO

34

A classe correspondente a fag <uml> ¢ a Uml.java e seu construtor ¢ formado por um
Diagram, um Ocl, um vetor de afirmagdes, um vetor de predicados € um vetor de comandos.

public Uml (Diagram diagram, Ocl ocl, vetor assertions,
vetor preds, vetor functions, vetor commands) {
this.diagram = diagram;
this.ocl = ocl;
this.assertions = assertions;
this.preds = preds;
this.functions = functions;
this.commands = commands;

}

A seguir estdo descritas as classes correspondentes as fags que podem estar presentes
dentro da tag <uml>, bem como as internas a elas.

Diagram
No arquivo XML, as possiveis tags presentes dentro de <diagram> sdo as fags <class>,
representando as classes do diagrama. Sendo assim, a classe Diagram.java possui um vetor

responsavel por armazenar os objetos da classe Class.java.

public Diagram(vetor classes){...}

A classe Class.java possui no seu construtor duas Strings que recebem o valor vindo dos
atributos name ¢ abstract do XML com o nome da mesma ¢ o valor do abstract respectivamente.

public Class(String name, String abs){...}

Essa classe possui ainda dois vetores para guardar os atributos e as relagdes, caso eles
existam, ¢ os métodos addAttribute ¢ addRelation para adiciona-los no vetor.

public void addAttribute (Attribute attribute) {
this.attributes.addElement (attribute) ;
}

public void addRelation(Relation relation) {
this.relations.addElement (relation) ;

}

A classe Attribute.java tem como parametros para seu construtor as Strings name ¢ type,
que recebem os valores dos atributos da tag <attribute>. Essa classe ndo possui métodos além dos
gets ¢ sets das variaveis.

public Attribute(String name,String type){...}

A classe Relation.java por sua vez possui trés construtores que podem ser de trés tipos
diferentes, de acordo com os atributos obrigatérios e opcionais. O primeiro deles possui como



-

ESCOLA POLITECNICA
DE PERNAMBUCO

35

parametros as Strings fype e classe, o segundo as Strings name, type e classe e o terceiro as
Strings name, type, multiplicity e classe.

public Relation(String name, String type, String
multiplicity, String classe) {...}

Ocl

No caso da tag <ocl>, as fags que aparecem no seu interior sdo fags <context>. Por poder possuir
mais de um contexto, a classe Ocl.java possui um vetor de contextos que ira guardar os objetos
da classe Context.java. O construtor da classe Ocl recebe apenas esse vetor de contextos e nao
possui outros métodos, além dos get e set do vetor.

public Ocl (vetor context) {...}

Por sua vez, a tag <context> possui os atributos id e name e tem no seu interior a tag
<invariant>. Assim, a classe correspondente Context.java tem em seu construtor uma String com
0 id, uma String com o name ¢ um objeto da classe Invariant.java.

public Context(String id, String name, Invariant inv) {...}

A tag <invariant> ¢ responsavel por guardar o invariante OCL e nela pode ter diversos
tipos diferentes de fungdes do OCL, cada uma representada por uma fag. Além disso, cada func¢do
pode ter contida nela outros tipos de fungdes. Sendo assim, o construtor da classe Invariant.java
possui uma String com o nome do invariante, caso ele possua, € um vetor que guarda os objetos
relacionados com as fags das fungdes ou expressodes vindas do XML.

public Invariant(String name, vetor constraint) {...}
Se tem-se o seguinte XML:

<context id="c2" name="Raiz'">
<invariant>
<exp attribute="pai"/>
<asSet/>
<isEmpty/>
</invariant>
</context>

O vetor formado por esse invariante tera um objeto da classe Exp.java, seguido por um
objeto da classe AsSet.java e por fim um objeto da classe ISEmpty.java. Se as tags de fungdes
OCL nao possuem fags internas, as classes possuem construtor vazio, caso contrario, elas irdo
possuir um vetor semelhante ao utilizado pela classe Invariant.java.

Assert, Pred, Fun e Command

A tag <assert> tem como atributo name ¢ uma afirmativa como conteudo. Dessa forma, o
construtor da classe Assert.java ¢ formado pelas Strings name e ass que terdo os valores
recebidos do XML.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

36
public Assert(String name, String ass) {...}

As tags <pred> e <fun> possuem como atributos em comum name € input. No caso de
<pred> além desses atributos ela possui ainda um predicado como o seu conteudo, ja a <fun>
possui o atributo oufput e uma fungdo como o seu contetido. Os construtores das classes
Pred.java e Fun.java sd3o formados por Strings que representam cada um desses atributos e os
seus conteudos.

public Pred(String name, String input, String pred) {...}

public Fun (String name, String input, String output, String
fun) {...}

Por fim, a fag <command> tem como atributos #ype e name e com isso, o construtor da
classe Command.java ¢ formado por Strings desses atributos e pelo conteudo da mesma, caso
exista instrucdes para os comandos como contetdo.

public Command(String type, String name, String cmd){...}

4.3.2 Pacote compiler

O pacote compiler possui duas classes com a finalidade de transformar do XML para Java e de
Java para codigo Alloy. Na classe UmlJava.java, através do uso do Document Object Model
(DOM) [16], ¢ feita a leitura do XML e o armazenamento no formato de arvore de nodos. A
partir dessa arvore, os métodos readDiagram, readOcl, readAssert, readPred,
readFun e readCommand percorrerdo a arvore em busca dos elementos correspondentes.

Com o uso do DOM ¢ possivel montar uma lista dos nodos da arvore e assim percorrer a
estrutura interna da mesma. No método readDigram, por exemplo, pretende-se buscar as
possiveis fags <diagram> e para isso, ¢ criada uma lista de nodos através da busca por zags com o
nome “diagram” em elem, que ¢ um elemento formado pelo documento XML.

Nodelist d = elem.getElementsByTagName ("diagram") ;

No XML de entrada desse compilador ¢ possivel a ocorréncia de no maximo um
diagrama. Assim, ¢ criado um Element que pegard a primeira ocorréncia da NodeList ¢ a
partir dela, criard uma nova NodeList formada pelas classes do diagrama.

Element tagDiagram =(Element)d.item(O0) ;
NodelList nl = tagDiagram.getElementsByTagName( "class" );

Tendo essa NodeList, um vetor de classes ¢ criado para armazenar os dados presentes
nas tags <class> e ap0s percorrer toda NodeList o vetor serd adicionado no objeto Diagram.
Para cada <class> do XML um objeto Class sera criado com seus atributos armazenados em
Strings e as tags <attribute> e <relation> em vetores.

String nameClass = tagClass.getAttribute( "name" ) ;
String abs = tagClass.getAttribute ("abstract");
Class classe = new Class (nameClass, abs) ;



-

ESCOLA POLITECNICA
DE PERNAMBUCO

37

tagClass.getElementsByTagName ("attribute") ;
tagClass.getElementsByTagName ("relation") ;

Nodelist n2
Nodelist n3

De maneira semelhante a como se adquire os atributos para <class>, ocorrerda para os
atributos de <attribute> e <relation>, e a cada novo atributo ou relacionamento um objeto
Attibute ou Relation ¢ criado e armazenado no vetor correspondente.

classe.addAttribute (new Attribute (nameAttr, type)) ;
classe.addRelation (new Relation(name, nameRel, multiplicity,
associationClass)) ;

Para 0 método readOcl as NodeLists para as tags <ocl>, <context> e <invariant> sao
criadas de maneira semelhante a da fag <diagram>. No entanto, a partir da tag <invariant>, ndo
se sabe ao certo quais fags estardo internas a ela, nem em que ordem estardo dispostas. Portanto, a
NodeList formada pelos elementos de <invariant> contera todos os elementos presentes
internamente as suas fags, independente de seus tipos e um vetor € criado para guardar os objetos
que serao criados de acordo com essas tags.

Nodelist list=tagInvariant.getElementsByTagName ("*") ;
vetor exps = new vetor();

No entanto, essa forma de adquirir os elementos ird pegar todas as fags internas a tag
<invariant>, independente de serem fags filhas ou internas a estas. Assim, ao percorrer essa
NodeList € necessario se certificar que o elemento que esta se trabalhando tem como pai a tag
<invariant> para poder montar a estrutura apenas com elementos filhos.

Element element = (Element)list.item(j)
if (element.getParentNode () ==tagInvariant )

A partir deste ponto, existem trés possiveis tipos de fags internas: as fags que nao
possuem argumentos, as tags de fungdes que possuem conteudo interno, € a tag <exp> que
guarda as expressoes que ndo sdo fungdes e nem self. Assim, para cada tag filha de <invariant>
sera analisado, através do método verifyTypes, se trata-se de uma tag <exp> ou de uma tag
que ndo possui argumentos. Caso seja uma fag <exp> o método isExp ird criar um objeto do
tipo ExXp e caso seja uma fag que ndo possui argumentos, o método isType chamard o método
responsavel por criar o objeto do tipo especificado, de acordo com a String com o nome da zag.

obj = verifyTypes (element, exps) ;

Se ob3j nao for nulo, o objeto retornado por verifyTypes sera inserido no vetor exps.
Em caso contrario, o objeto a ser criado ¢ do tipo fungdo com conteiido interno e com isso, o
método isOthers serd invocado a fim de descobrir a qual fungdo do OCL a tag em questdo
corresponde.

obj = verifyTypes (element, exps) ;
if (obj!=null) {
exps.addElement (obj) ;
}else



-

ESCOLA POLITECNICA
DE PERNAMBUCO

38
exps.addElement (isOthers (element)) ;

O método isOthers ira proceder da mesma forma como se a fag fosse <invariant>, pois
também ndo se sabe ao certo que conteudo estara presente. Assim, como internamente as fags de
fungdes pode haver os mesmos tipos de fags internas a <invariant>, 0 mesmo procedimento sera
adotado e isOthers sera invocado recursivamente. Ao fim desse método, o método
isTypeFull sera invocado passando o nome da tag e o vetor montado com as fags internas a
ela e de acordo com o nome da tag o método correspondente a ela criara o objeto a ser retornado.

ob = isTypeFull (name,elements) ;
return ob;

Ao fim da leitura de cada fag <invariant> um objeto da classe Invariant.java sera criado
e ird armazenar o vetor com o0s objetos que compdem esse invariante. Por sua vez, esse objeto ird
ser armazenado em um objeto Context e guardado no vetor de contextos. Terminada a leitura
de todos os contextos, um objeto Ocl sera criado e ird guardar o vetor de contextos.

Além da leitura do Diagram e do Ocl, ainda ¢ possivel a dos comandos, afirmativas,
predicados e fungdes. A leitura das fags correspondentes a eles ¢ feita semelhantemente a das
classes. Para cada atributo ou conteudo interno as fags, existe uma String correspondente em Java
que ira armazenar os valores adquiridos do XML. Ao fim da leitura de cada tag o objeto
correspondente a ela sera guardado no vetor que o representa, ou seja, se, por exemplo, se tem um
comando, um objeto da classe Command.java sera criado e armazenado no vetor commands.

Command cmd = new Command (type,name,command) ;
commands .addElement (cmd) ;

Para criar um objeto da classe Uml.java, é necessario a leitura de todos os componentes
do XML. O construtor dessa classe ¢ formado por um Diagram, um Ocl, um vetor de
afirmativas, um vetor de predicados, um vetor de fungdes ¢ um vetor de comandos. Assim, o
método compiler cria um objeto Uml formado pelos leitores dos componentes do XML.

public Uml compiler () throws Exception{
uml =new Uml (readDiagram() ,readOcl(), readAssert(),
readPred (), readFun(), readCommand())
return uml;

A classe JavaAlloy.java ¢ a responsavel por receber um objeto Uml e construir o arquivo
com o codigo Alloy resultante. Esse mapeamento entre as linguagens UML/OCL e Alloy foi
desenvolvido de acordo com as regras de tradug@o definidas entre elas. Inicialmente ¢ criado o
arquivo “test.als” onde serd escrito o codigo. O método readUml tem como argumento um
vetor de classes e percorre esse vetor montando o correspondente A/loy.

Para cada classe, além de percorrer as informagdes de se € abstrata, o nome da mesma e os
atributos e relacionamentos, também sera percorrido o vetor de contextos em busca de algum que
tenha mesmo nome que o nome da classe. Caso isso ocorra, esse contexto serd traduzido de
acordo com as regras para Alloy e serd guardado em um fato anexado.

O método test ¢ o responsavel pelas regras de traducdo das fungdes do OCL, bem como
de Exp e Self. Ele tem como pardmetros uma String que corresponde ao cdodigo resultante do



-

ESCOLA POLITECNICA
DE PERNAMBUCO

39
invariante OCL traduzido para Alloy até o momento, e o objeto a que se estd buscando a regra a
ser aplicada. Se as entradas para test forem, por exemplo, a String “pai” e o objeto IsEmpty,
o codigo resultante seria:

no pai

4.4 Resultante Alloy

O caddigo resultante do compilador ¢ montado na classe JavaAlloy.java e para se chegar a
ele ¢ necessario percorrer toda a estrutura do Uml e ir escrevendo no arquivo de acordo com as
regras de tradugdo. No método readUm1 inicialmente define-se o modulo que se chama test.

out.write("module test");

Uma classe do diagrama de classes ¢ mapeada como uma assinatura do A//oy. Para cada
classe do vetor de classes que entra como parametro do método readUml, a primeira coisa a ser
observada ¢ se ela ¢ abstrata para assim poder definir a assinatura.

if (abs.equals("yes")) {
out.write ("abstract sig "+ name) ;
}

else
out.write("sig "+ name ) ;

Em seguida ¢ necessario observar se a classe tem algum relacionamento do tipo
“generalization” e se ¢ a primeira vez que essa classe tem um relacionamento desse tipo, pois
caso isso seja verdadeiro a palavra “extends” aparecera ainda na defini¢do da assinatura, seguida
pela chave que indica o inicio do corpo da mesma.

if (rel.getType() .equals('"generalization") &&£f==0) {
f++;
out.write (" extends "+rel.getClasse())
out.write("{");

}

Caso ndo exista nenhuma relacdo de generalizacdo, ¢ aberta a chave simbolizando o inicio
do corpo da assinatura.

if (£==0) {
out.write("{");

}

O corpo da assinatura ¢ formado pelas relagdes de associagdes e pelos atributos das
classes vindos do XML. No caso das associagOes, escreve-se 0 nome da mesma ¢ caso a
multiplicidade possa ser mapeada como uma palavra reservada do A/loy, como ¢ o caso de “0..1”,
»¥» 1%, escreve-se uma definicdo de relagdo utilizando essa palavra.

if (rel.getType() .equals("association")) {



-

ESCOLA POLITECNICA
DE PERNAMBUCO
40
out.write(rel.getName()) ;
if (rel.getMultiplicity () .equals("0..1")) {
out.write(":lone "+rel.getClasse());

}

No caso de ndo haver palavra reservada que represente a quantidade desejada, escreve-se
apenas a relacdo entre as classes e a definicdo da quantidade possivel é definida em um fato
anexado.

else
out.write(":"+rel.getClasse())

Os atributos sdo escritos no arquivo simplesmente pegando o seu nome seguido por “:” e
o0 tipo do mesmo, de acordo com o tipo que vem do XML.

if (type.equals("int"))
out.write (attr.getName()+":Int") ;

Terminada a leitura dos atributos o corpo da assinatura ¢ fechado e ¢ iniciado o fato
anexado. Para cada assinatura um fato anexado sera criado com a finalidade de definir as
multiplicidades que ndo possuem palavra reservada e guardar o codigo A/loy correspondente aos
invariantes do OCL.

As multiplicidades serdo definidas de acordo com os valores € com o que os separam, se
ou “.”. Foram criados dois StringTokenizer com a finalidade de diferenciar esses
separadores e de acordo com eles ¢ criado um novo campo no fato anexado.

str = new StringTokenizer (rel.getMultiplicity(),"..");

strl= new StringTokenizer (rel.getMultiplicity(),","):

%
b

No caso dos valores serem separados por “..” significa que a multiplicidade estd entre
esses dois valores e entdo se escrevem duas regras para delimitar o valor.

if (str.countTokens ()==2) {
out.write ("#"+rel.getClasse()+">"+str.nextToken()) ;
out.write ("#"+rel.getClasse()+"<"+str.nextToken()) ;
}

Ja no caso de serem separados por “,” existird uma relacdo *“||” entre os possiveis valores,
se esse valor for diferente de 1.

else if(strl.countTokens () '=0) {
for(int e=0;e<strl.countTokens ()-1;e++) {
out.write ("#"+rel.getClasse()+"="
+strl.nextToken () +"||");
}

out.write("#"+rel.getClasse()+"="+ strl.nextToken()) ;



-

ESCOLA POLITECNICA
DE PERNAMBUCO

41

Terminadas as multiplicidades os seguintes campos a serem escritos sdo os do
mapeamento dos invariantes, de acordo com as regras de tradugdo. Para cada contexto ¢ criada
uma String que guardard o valor do invariante até o presente momento e sera percorrido o vetor
do invariante enviando para o método test a String e o objeto referente ao elemento do vetor.

String str="";

for (int j=0;j<context.getInv() .getConstraint().size(); j++){
Object obj = context.getInv () .getConstraint() .get(j)
str=test(str,obj);

}

Para cada objeto, uma regra de tradugdo diferente ¢ aplicada, de acordo com o
mapeamento entre as duas linguagens. Ao terminar de percorrer o vetor, o corpo do fato anexado
¢ fechado e serdo escritos as afirmativas, os predicados, as fungdes e os comandos a partir apenas
dos dados guardados na estrutura Uml e montando de acordo com as constru¢des da linguagem.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

42

Capitulo 5

Analise Automatica

A fim de se obter a analise automatica do codigo Alloy gerado pelo compilador, um estudo da
API do Alloy Analyzer foi necessario para assim poder integra-la ao projeto em questdo. A
integracao da API com o compilador ¢ feita utilizando o arquivo “.als” gerado pelo compilador.

A Figura 5-1 mostra a integragdo do analisador com o compilador explicado na se¢do
anterior. O codigo A/loy resultante do compilador € utilizado como entrada para o analisador que,
ao fim das analises, gera um XML para cada comando satisfatorio.

Compilador

Estrutura Java
XML

3 :> UML -> Java :> Java -> Alloy

XML

<5 <}: Analisador

Figura 5-1 Integracdo do Compilador com o Analisador

5.1 API do Alloy Analyzer

A nova versao do Alloy, a versao 4, foi reescrita e trouxe novidades que possibilitam a integragao
e expansdo dessa linguagem. A API do AA agora faz parte do alloy4.jar, € composta por
componentes individuais com minima dependéncia e seu acesso ¢ publico.

Como todas as partes da API podem ser acessadas independentemente, a maneira mais
simples de se trabalhar com os pacotes ¢ incluindo o alloy4.jar diretamente no projeto e importar
as classes necessarias a0 mesmo. Seis pacotes fazem parte da API do AA:



-

ESCOLA POLITECNICA
DE PERNAMBUCO

43

1) alloy4 — contém as estruturas de dados fundamentais e classes de ajuda

2) alloy4compiler.ast — contém a defini¢do dos nodos da AST

3) alloy4compiler.parser — contém o compilador

4) alloy4compiler.translator — contém o tradutor do Al/loy4 para CNF

5) alloy4viz — 1€ e mostra os exemplos do Alloy4.

6) alloydwhole — contém um cliente simples Graphical User Interface (GUI), e
alguns exemplos de como utilizar a API.

No pacote alloy4 é possivel criar novas mensagens para eventos ou alterar as que
aparecem quando se esta a procura de exemplos através da classe A4Reporter. Caso pretenda-
se alterar algo na estrutura da linguagem, o pacote alloy4compiler.ast deve ser alterado, pois nele
estdo as defini¢des das estruturas da linguagem.

A classe CompUtil de alloy4compiler.parser ¢ responsavel por pegar uma estrutura de
entrada e reconhecer os tokens que estdo corretos de acordo com a linguagem. J4 no pacote
alloy4compiler.translator existe a classe A4dSolution que representa a solucdo, que pode ser
satisfatoria ou ndo.

O pacote alloy4viz recebe as solugdes, faz a leitura e monta uma janela de visualizacdo
com os diferentes tipos possiveis de resultados, como por exemplo, o formato grafico, XML ou
em pastas. Por fim, no pacote alloy4whole, existem alguns exemplos do uso do compilador, da
API e também um exemplo na classe SimpleGUI, do uso geral do AA.

5.2 Integracao

Sem a integracdo do AA com o compilador, ndo seria possivel a analise automatica de um
diagrama de classes UML utilizando A/loy. Assim, um pacote analyzer foi criado para fazer a
integragdo entre o compilador e o0 AA e gerar um XML para cada solugdo encontrada para os
comandos de A/loy.

5.2.1  Pacote analyzer

O pacote analyzer ¢ formado apenas pela classe Analyzer.java que foi desenvolvida baseada na
classe ExampleUsingTheCompiler.java. Essa classe mostra um exemplo de como utilizar
algumas fungdes do compilador do AA. Inicialmente ela mostra como criar e imprimir
mensagens de diagnostico de acordo com os eventos que estdo ocorrendo no decorrer da
compilagdo. Em seguida, um exemplo de como criar um visualizador, responsavel por mostrar os
resultados nos diferentes tipos de visualizagdo, a partir do XML criado como solugao.

No proximo passo ele percorre as Strings que contém o caminho do arquivo “.als” e
chama o método da classe CompUtil que monta a AST do arquivo, checa os tipos e cria 0 XML
para cada solugdo satisfatoria para os comandos encontrados no arquivo. Caso se pretenda
observar os resultados no visualizador, ¢ chamado o método run do mesmo.

No caso da classe Analyzer.java o intuito principal é gerar o XML de solucdo para os
comandos encontrados no arquivo. Esse XML ¢é o resultado da analise automatica do modelo
UML que entra em formato de XML no compilador. Para isso, foi construido o método
analyzer que ird utilizar partes da API do AA e assim, realizard a andlise do cddigo Alloy.
Esse método ¢ o responsavel por produzir as solugdes resultantes da analise. Dentro dele esta,

13



-

ESCOLA POLITECNICA
DE PERNAMBUCO

44
inicialmente a criagdo de um objeto A4Reporter que ira criar as mensagens de diagnostico
seguido por uma String que contém o nome do arquivo gerado pelo compilador.

AdReporter rep = new A4dReporter () {
@Override public void warning(ErrorWarning msg) {
System.out.print ("Relevance
Warning:\n"+ (msg.toString () .trim())+"\n\n") ;
System.out.flush() ;
}
}i

String filename = "test.als";

Esse nome de arquivo serd genérico, pois para cada arquivo XML de entrada, o
compilador ird gerar o arquivo “test.als” que serd utilizado pelo analisador. Ap6s o nome, dentro
do método analyzer vira a criacdo de um objeto World que ¢ responsavel por armazenar os
elementos do Alloy como sig, fun e pred. Esse objeto serd criado utilizando o método
parseEverything fromFile da classe CompUtil que I¢ o arquivo € monta uma estrutura
de arvore, sendo World a raiz.

World world = CompUtil.parseEverything fromFile (null, null,
filename, rep):;

Ap0s essa criagdo os tipos serdo checados e se tem a possibilidade de criar algumas
opgoes para como se quer executar o comando, nesse caso serd escolhido que deve ser em Java,
através da op¢do A4Options.SatSolver.SAT4J.

AdOptions options = new AdOptions|() ;
options.setReporter (rep) ;
options.solver = A4Options.SatSolver.SAT4J;

Por fim, a lista de comandos sera percorrida e uma A4Solution sera criada para
armazenar o resultado de cada comando. Caso essa solucdo seja satisfatoria, um XML com nome
igual a0 nome do comando ¢ criado com o resultado da analise do mesmo.

A4Solution ans =
TranslateAlloyToKodkod.execute command(world, cmd,
options, null, null);

if (ans.satisfiable()) {
ans.writeXML (cmd.name+" .xml", false);

}

Nessa ferramenta os comandos sdo inseridos juntamente com as estruturas do diagrama de
classes no XML de entrada. No entanto, futuramente os comandos deverdo ser inseridos pelo
usuario a cada analise a ser realizada, tornado esta ferramenta mais interativa.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

45

5.3 Exemplos

Nesta secdo estdo descritos dois exemplos de andlises realizadas com a ferramenta desenvolvida.
Sendo o primeiro deles uma demonstragdo de um contra-exemplo para uma afirmacdo dada e o
segundo, uma instancia para um predicado. No resultado 4//oy gerado além da representacdo no
formato de conjunto dos atomos e relacionamentos, também ira aparecer o conjunto dos possiveis
numeros inteiros utilizados pela linguagem Alloy.

5.3.1 Contra-exemplo

No diagrama de classes apresentado na Figura 5-2 a classe Pessoa ¢ uma classe abstrata que
possui como atributo um inteiro nomeado por idade. Relacionadas a ela estdo as classes Aluno e
Professor, através de relacionamentos de generalizagdo. O diagrama possui ainda a classe
Disciplina com horasDiarias como atributo do tipo inteiro e se relacionando através de
associagdo com as classes Aluno ¢ Professor.

Um invariante OCL foi adicionado ao diagrama. Esse invariante indica apenas que as
horas diarias que uma disciplina pode possuir tem que ser maior do que 1.

==ghstract==
Pessoa
- idade :int
context Disciplina
imv: horasDiarias=1
Aluno Professor
- estuda - ministra
1..4\ 1
Disciplina

- horasDiarias :int

Figura 5-2 Diagrama de Classes para Geragao de Contra-Exemplo

Para poder encontrar um contra-exemplo € necessario que uma afirmativa ndo esteja
correta. Para o diagrama em questdo é ainda necessaria a criacdo dessa afirmativa que se deseja
checar e do comando correspondente a ela. Se afirma-se que existe alguma disciplina que as
horas diarias terdo que ser necessariamente iguais a 1, um contra exemplo sera gerado pois, a
unica restrigdo que foi imposta através do invariante OCL, ndo garante a veracidade dessa
afirmacgao.

assert horas{
some a: Disciplina| a.horasDiarias=1

check horas for 3



-

ESCOLA POLITECNICA
DE PERNAMBUCO

46

O contra-exemplo gerado pela ferramenta ¢ mostrada no Apéndice A e o resultado em
Alloy é representado a seguir:

integers={-8=-8, -7=-7, -6=-6, -5=-5, -4=-4, -3=-3, -2=-2, -1=-1,

0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7}

Aluno={Aluno[0], Aluno[l]}

Professor={Professor[0]}

Disciplina={Disciplina[0], Disciplina[l], Disciplina[2]}

Pessoa.idade={Professor[0]->-8, Aluno[0]->-7, Aluno[l]->-8}

Disciplina.ministra={Disciplina[0]->Professor[0],
Disciplina[l]->Professor[0], Disciplina[2]->Professor[0]}

Disciplina.estuda={Disciplina[0]->Aluno[1],
Disciplina[l]->Aluno[1l], Disciplina[2]->Aluno[0]}

Disciplina.horasDiarias={Disciplina[0]->2, Disciplina[l]->2,
Disciplina[2]->5}

Nesse contra-exemplo gerado, as disciplinas Disciplina[0] ¢ Disciplina[l] ¢
Disciplina[2] possuem valores maiores do que 1, como ¢ definido no invariante mas, como
nenhum deles possui valor igual a 1 como ¢ afirmado. Dessa forma, a afirmacdo feita torna-se
entdo incorreta.

5.3.2 Instancia

O diagrama da Figura 5-3 ilustra um relacionamento do tipo associacdo bindria entre as classes
Companhia e Empregado. O Empregado possui um identificador inteiro como atributo e s6
podera existir uma tnica Companhia com papel denominado empregador.

Um invariante OCL adicionou ainda uma restri¢do sobre o diagrama para certificar que o
identificador do Empregado nao sera nulo.

Empregado cantext Empregado

i - emMpregadaor
Companhia preg —— it selfid-=notEmptyn

1

Figura 5-3 Diagrama de Classes para Geragdo de Instancia

O predicado de Alloy que se faz necessario para poder existir a geracdo de uma instancia
para o diagrama, procura por algum exemplo que mostre que o identificador de Empregado ¢
unico. O comando run ira procurar para um conjunto de até no maximo 5 elementos de cada tipo
se ¢ possivel acontecer de ndo existirem identificadores repetidos.

pred idUnico{
all a, a':Empregado| a'=a' => a.id!= a'.id

}

run idUnico for 5

A instancia gerada pela ferramenta ¢ mostrada no Apéndice B e seu resultado em Alloy
esta representada a seguir:



-

ESCOLA POLITECNICA
DE PERNAMBUCO

integers={-8=-8, -7=-7, -6=-6, -5=-5, -4=-4, -3=-3, -2=-2, -
1=-1, 0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7}

Companhia={Companhia[0]}

Empregado={Empregado[0] , Empregado[l], Empregado[2],
Empregado[3], Empregado[4]}

Empregado . empregador={Empregado[0] ->Companhia[0],
Empregado[1l] ->Companhia[0], Empregado[2]->Companhia[O0],
Empregado[3] ->Companhia[0] , Empregado[4]->Companhia[0]}

Empregado.id={Empregado[0]->7, Empregado[l]->6,
Empregado[2]->5, Empregado[3]->3, Empregado[4]->1}

Nessa instdncia gerada, os identificadores dos empregados Empregado[O0],
Empregado[l], Empregado[2], Empregado[3], Empregado[4] foram 7,6, 5,3
e 1, respectivamente. Assim, por serem os identificadores distintos, o predicado se torna valido

para o universo de 5 empregados.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

48

Capitulo 6

Conclusao

A linguagem UML ¢, sem duavida, a mais utilizada na area de engenharia de software para
modelagem de dados devido a facilidade encontrada no seu manejo e também por utilizar-se de
representacao grafica.

Realizar a analise de diagramas de classes UML ¢ sem duvida tarefa importante. A busca
pela corretude para assim poder validar o diagrama feita de forma visual, sem ferramentas, pode
deixar passar erros de construcdo da linguagem como o esquecimento de elementos importantes e
até mesmo de restricdes necessarias e erros de inconsisténcia de projeto, como restrigoes
conflitantes.

Dessa forma, nesta monografia foi desenvolvida uma ferramenta responsavel por realizar
as analises dos diagramas de classes UML de maneira automatica. Essa ferramenta recebe um
modelo representativo do diagrama com restricdes em OCL e produz um XML resultante da
analise.

6.1 Contribuicoes

A fim de realizar essa andlise de forma automdtica, uma integragdo de componentes das
linguagens UML e OCL com a linguagem Alloy foi desenvolvida. Alloy faz uso de codigo para
realizar suas andlises e possui uma ferramenta, o Alloy Analyzer, que gera instancias e contra-
exemplos de acordo com o comando escolhido.

De inicio, foi criado um modelo representativo do diagrama de classes UML com
restricoes em OCL no formato XML visando as constru¢des importantes da linguagem para a
analise e que serve de entrada para a ferramenta. Nesse modelo foram também incluidos os
predicados, fungdes, afirmagdes ¢ comandos Alloy referentes ao diagrama, para assim poder
analisar o0 mesmo utilizando as funcionalidades dessa linguagem.

Em seguida, foram elaboradas as regras de tradugdo com a finalidade de realizar o
mapeamento entre os elementos das linguagens UML/OCL e a linguagem Alloy. Além disso, foi
realizado o desenvolvimento de uma estrutura Java equivalente ao modelo de entrada, montada
de acordo com a leitura dos dados do XML através do DOM, representando a AST do
compilador.

Foi realizada ainda a traducao desse modelo Java para um codigo Alloy fazendo uso das
regras de tradugdo entre os elementos das linguagens envolvidas. E ainda, a criacdo de uma



-

ESCOLA POLITECNICA
DE PERNAMBUCO

49

relacdo com o analisador de Alloy, responsavel por realizar as andlises do cddigo gerado de
acordo com os comandos recebidos no modelo representativo dado como entrada para o
compilador e produzindo um XML com o resultado da presente analise para cada comando.

Para a integragdo do analisador com o compilador foi necessaria a utilizacdo das
funcionalidades da API do Alloy Analyzer. Através do estudo da mesma foi possivel a utilizagdo
de fungdes responsaveis por ler o codigo Alloy de entrada, verificar a existéncia de possiveis
contra-exemplos ou instancias e gerar o XML para cada comando que possua uma solugdo
satisfatoria.

6.2 Trabalhos Futuros

Como dito anteriormente, a presente monografia demonstra o desenvolvimento de uma
ferramenta de analise automatica de diagramas de classes UML e restri¢des em OCL. No entanto
essa analise ¢ realizada para construgdes presentes no mapeamento desenvolvido entre os
elementos mais importantes dos diagramas e que possuam um possivel elemento que possa o
corresponder em A/loy. Um trabalho futuro seria a busca por novas construgdes que nao estejam
presentes ¢ que tenham a possibilidade de ser mapeadas, como o mapeamento da parte dindmica
dos diagramas.

Por ser o compilador desenvolvido de maneira modular, o acréscimo de alguma nova
construcao devera ser realizado de maneira fécil, sem muitas complicagdes, e a partir da geragao
do codigo Alloy, também a andlise podera ser realizada.

Existem outros trabalhos futuros que poderdo ser desenvolvidos em cima da ferramenta
construida nesta monografia com a finalidade de melhorar de alguma forma a utilizagdo da
mesma. O primeiro deles seria a criagdo de uma forma de se adquirir os dados do diagrama de
classes UML no seu formato grafico original e assim traduzir para o modelo XML representativo
dos diagramas.

Outro trabalho importante seria a criacdo de uma interface grafica responsavel por, apds a
geracdo do codigo Alloy resultante do compilador, solicitar ao usuario que informe os predicados,
fungdes e afirmativas, bem como os seus comandos relacionados. Isso retiraria essas construgoes
do XML representativo dado como entrada para o mesmo, dando mais sentido a ferramenta.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

50

Bibliografia

[10]

[11]
[12]

[13]
[14]

[15]
[16]

BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. The Unified Modeling
Language User Guide. First Edition. Massachusetts: Addison Wesley, 1998. 482 p.
PENDER, Tom. UML: A Biblia. Editora Campus, 2004, 700p.

WARMER, Jos; KLEPPE, Anneke. The Object Constraint Language: Getting Your
Models Ready for MDA. Second Edition. Massachusetts: Addison Wesley, 2003. 240 p.
Alloy Homepage. Disponivel em: <http://alloy.mit.edu/>. Acesso em: 26 de margo de
2007.

JACKSON, Daniel. Software Abstractions: Logic, Language, and Analysis. First Edition.
Massachusetts: Mit Press, 2006. 350p.

Java Technology. Disponivel em: <http://java.sun.com/>. Acesso em: 27 de marco de
2007.

Eclipse — An Open Development Platform. Disponivel em: < http://www.eclipse.org/>.
Acesso em: 20 de maio de 2007.

DUESTERWALD, Evelyn. Compiler Construction. In: Joint European Conferences on
Theory and Practice of Software, 2004, Barcelona, Spain.

RITTGEN, Peter. Enterprise Modeling and Computing with UML. 1GI Global, 2006,
314p.

BLAHA, Michael; RUMBAUGH, James. Modelagem e Projetos Baseados em Objetos
com UML. Editora Campus, 2006, 510p.

DEBONI, Jos¢ E. Z. Modelagem Orientada a Objetos com UML. 1 edition. Futura, 2003.
UML 2.0 OCL Specification. Disponivel em: <http://www.omg.org/docs/ptc/03-10-
14.pdf>. Acesso em: 26 de marco de 2007.

WOODCOCK, Jim; DAVIES, Jim. Using Z: Specification, Refinement, and Proof. Upper
Saddle River: Prentice Hall, 1996.

RAY, Erik T. Learning XML. 2nd Edition. O’Reilly, 2003.

DICK, Kevin. XML: A Manager’s Guide. Second Edition. Addison Wesley, 2002.
MARINI, Joe. Document Object Model: Processing Structured Documents. 1st edition.
California: McGraw-Hill/Osborne, 2002.



-

ESCOLA POLITECNICA
DE PERNAMBUCO

51

Apéndice A

XML resultante do contra-exemplo

Este apéndice traz o XML resultante do contra-exemplo da subse¢do 5.3.1 do capitulo 5.

<alloy builddate="2007/Apr/04 12:54 EDT">
<instance filename="" bitwidth="4" command="Check horas for 3">
<sig name="Pessoa'">
<atom name="Professor[0]"/>
<atom name="Aluno[0]"/>
<atom name="Aluno[l]"/>
</sig>
<field name="idade">
<type><sig name="Pessoa"/> <sig name="Int"/></type>
<tuple><atom name="Professor[0]"/><atom name="7"/></tuple>
<tuple><atom name="Aluno[0]"/><atom name="7"/></tuple>
<tuple><atom name="Aluno[l]"/><atom name="5"/></tuple>
</field>
<sig name="Aluno" extends="Pessoa">
<atom name="Aluno[0]"/>
<atom name="Aluno[1l]"/>
</sig>
<sig name="Professor" extends="Pessoa">
<atom name="Professor[0]"/>
</sig>
<sig name="Disciplina">
<atom name="Disciplinal[O0]"/>
<atom name="Disciplinal[l]"/>
</sig>
<field name="ministra">
<type><sig name="Disciplina"/><sig name="Professor"/></type>
<tuple><atom name="Disciplina[0]"/><atom
name="Professor[0]"/></tuple>
<tuple><atom name="Disciplina[l]"/><atom
name="Professor[0]"/></tuple>



-

ESCOLA POLITECNICA
DE PERNAMBUCO

52
</field>
<field name="estuda">
<type><sig name="Disciplina"/><sig name="Aluno"/></type>
<tuple><atom name="Disciplina[0]"/><atom
name="Aluno[1]"/></tuple>
<tuple><atom name="Disciplina[l]"/><atom name="Aluno[l]"/>
</tuple>
</field>
<field name="horasDiarias">
<type><sig name="Disciplina"/><sig name="Int"/></type>
<tuple><atom name="Disciplina[0]"/><atom name="4"/></tuple>
<tuple><atom name="Disciplina[l]"/><atom name="4"/></tuple>
</field>
<sig name="Int">

<atom name="-8"/>
<atom name="-7"/>
<atom name="-6"/>
<atom name="-5"/>
<atom name="-4"/>
<atom name="-3"/>
<atom name="-2"/>
<atom name="-1"/>

<atom name="0"/>
<atom name="1"/>
<atom name="2"/>
<atom name="3"/>
<atom name="4"/>
<atom name="5"/>
<atom name="6"/>
<atom name="7"/>
</sig>
<sig name="seq/Int" extends="Int">
<atom name="0"/>
<atom name="1"/>
<atom name="2"/>
</sig>
<set name="$a" type="Disciplina">
<atom name="Disciplinal[l]"/>
</set>
</instance>
</alloy>



-

ESCOLA POLITECNICA
DE PERNAMBUCO

53

Apéndice B

XML resultante da instancia

Este apéndice traz o XML resultante da instancia da subsecdo 5.3.2 do capitulo 5.

<alloy builddate="2007/Apr/04 12:54 EDT">
<instance filename="" bitwidth="4" command="Run idUnico for 5">
<sig name="Companhia">
<atom name="Companhial[0]"/>
</sig>
<sig name="Empregado">
<atom name="Empregado[0]"/>
<atom name="Empregado[l]"/>
<atom name="Empregado[2]"/>
<atom name="Empregado[3]"/>
<atom name="Empregado[4]"/>
</sig>
<field name="empregador">
<type><sig name="Empregado"/><sig name="Companhia"/></type>
<tuple><atom name="Empregado[0]"/><atom
name="Companhia[0]"/></tuple>
<tuple><atom name="Empregado[l]"/><atom
name="Companhia[0]"/></tuple>
<tuple> <atom name="Empregado[2]"/> <atom
name="Companhia[0]"/></tuple>
<tuple> <atom name="Empregado[3]"/> <atom
name="Companhia[0]"/></tuple>
<tuple> <atom name="Empregado[4]"/> <atom
name="Companhia[0]"/></tuple>
</field>
<field name="id">
<type><sig name="Empregado"/><sig name="Int"/></type>
<tuple><atom name="Empregado[0]"/><atom name="7"/></tuple>
<tuple><atom name="Empregado[l]"/><atom name="6"/></tuple>
<tuple><atom name="Empregado[2]"/><atom name="5"/></tuple>
<tuple><atom name="Empregado[3]"/><atom name="3"/></tuple>



-

ESCOLA POLITECNICA
DE PERNAMBUCO

54

<tuple><atom name="Empregado[4]"/><atom name="1"/></tuple>
</field>
<sig name="Int">

<atom name="-8"/>
<atom name="-7"/>
<atom name="-6"/>
<atom name="-5"/>
<atom name="-4"/>

<atom name="-3"/>
<atom name="-2"/>
<atom name="-1"/>
<atom name="0"/>
<atom name="1"/>
<atom name="2"/>
<atom name="3"/>
<atom name="4"/>
<atom name="5"/>
<atom name="6"/>
<atom name="7"/>

</sig>

<sig name="seq/Int" extends="Int">
<atom name="0"/>
<atom name="1"/>
<atom name="2"/>
<atom name="3"/>
<atom name="4"/>

</sig>

</instance>

</alloy>



