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Resumo 

Realizar análises é de fundamental importância para a validação de modelos de software. UML é 

a linguagem mais utilizada por engenheiros de software para modelagem e junto com a 

linguagem OCL, que é utilizada para adicionar restrições aos diagramas, podem construir 

diagramas de classe que possuam regras mais fiéis ao domínio modelado. No entanto, sua análise 

vem sendo feita de maneira visual e algumas propriedades podem confundir o analista, como é o 

caso das multiplicidades dos diagramas de classes e as restrições do OCL. Nesta presente 

monografia, é apresentado um protótipo de ferramenta que realiza a análise automática de 

diagramas de classes UML. O protótipo foi desenvolvimento através do mapeamento de 

construções UML/OCL para construções da linguagem de modelagem Alloy, que já possui uma 

ferramenta de análise bastante eficiente para encontrar erros de modelagem. 
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Abstract 

Automatic analysis of software models is critical for verification and validation. UML is the most 

widely adopted language for modeling software, and along with the OCL language, which adds 

constraints to class diagrams, can be used to build models showing more precise domain rules. 

Nevertheless, these diagrams are usually informally evaluated; issues are often seen in 

multiplicities and OCL constraint specification. In this work, we present a tool prototype for 

performing automatic analyses on UML class diagrams. The prototype was developed based on a 

mapping from UML/OCL constructs to Alloy constructs, a modeling language created along with 

an analysis tool, which has showed efficiency in finding modeling errors. 

  



 

 

iii 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Sumário 

Índice de Figuras v 

Índice de Tabelas vi 

Tabela de Símbolos e Siglas vii 

1 Introdução 9 
1.1 Objetivos 10 
1.2 Estrutura 10 

2 Unified Modeling Language 11 
2.1 Diagramas de UML 11 
2.2 Diagramas de Classes 12 
2.3 Classes 12 
2.3.1 Nome 12 
2.3.2 Atributos 12 
2.3.3 Operações 13 

2.4 Relacionamentos 13 
2.4.1 Dependência 13 
2.4.2 Generalização 13 
2.4.3 Associação 14 
2.4.4 Agregação e Composição 15 

2.5 Object Constraint Language 16 
2.5.1 Contexto 16 
2.5.2 Invariantes 17 
2.5.3 Self 17 
2.5.4 Coleções de objetos 18 
2.5.5 Sets, Bags, OrderedSets e Sequences 19 
2.5.6 Expressão let 19 

3 Alloy 20 
3.1 Estrutura 21 
3.1.1 Módulo 21 
3.1.2 Assinaturas 22 
3.1.3 Restrições 22 
3.1.4 Afirmações 23 
3.1.5 Comandos 24 

3.2 Lógica 24 
3.2.1 Constantes 25 
3.2.2 Quantificadores 25 
3.2.3 Operadores 25 
3.2.4 Expressão let 26 
3.2.5 Compreensões 27 
3.2.6 Multirelações 27 



 

 

iv 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 
3.2.7 Construtor de cardinalidade 27 

4 UML/Alloy 28 
4.1 Mapeamento 28 
4.2 UML 30 
4.3 Compilador 32 
4.3.1 Pacote ast 33 
4.3.2 Pacote compiler 36 

4.4 Resultante Alloy 39 

5 Análise Automática 42 
5.1 API do Alloy Analyzer 42 
5.2 Integração 43 
5.2.1 Pacote analyzer 43 

5.3 Exemplos 45 
5.3.1 Contra-exemplo 45 
5.3.2 Instância 46 

6 Conclusão 48 
6.1 Contribuições 48 
6.2 Trabalhos Futuros 49 

 



 

 

v 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Índice de Figuras 

Figura 2-1 Notação de Classe 12 
Figura 2-2 Exemplo de Dependência 13 
Figura 2-3 Exemplo de Generalização 14 
Figura 2-4 Exemplo de Associação 14 
Figura 2-5 Exemplo de Navegabilidade 14 
Figura 2-6 Multiplicidades 15 
Figura 2-7 Exemplo de Papéis 15 
Figura 2-8 Exemplo de Agregação 15 
Figura 2-9 Exemplo de Composição 16 
Figura 3-1 Código Alloy 21 
Figura 4-1 Exemplo de Diagrama de Classes 29 
Figura 4-2 Exemplo de Diagrama de Classes 31 
Figura 4-3 Compilador 33 
Figura 0-4 Exemplo de Diagrama de Classes do pacote ast               33 
Figura 5-1 Integração do Compilador com o Analisador 42 
Figura 5-2 Diagrama de Classes para Geração de Contra-Exemplo 45 
Figura 5-3 Diagrama de Classes para Geração de Instância 46 



 

 

vi 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Índice de Tabelas 

 
 
Tabela 3-1 Quantificadores 25 
Tabela 3-2 Operadores lógicos 25 
Tabela 3-3 Operadores de conjuntos 25 
Tabela 3-4 Operadores relacionais 26 
Tabela 3-5 Operadores de inteiros 27 
Tabela 4-1 Mapeamento UML/OCL para Alloy 29 

 



 

 

vii 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Tabela de Símbolos e Siglas 

AA – Alloy Analyzer 
API - Application Programming Interface 
AST – Árvore Sintática Abstrata 
DTD - Definição de Tipos de Documentos 
DOM - Document Object Model 
GUI - Graphical User Interface 
OCL - Object Constraint Language 
UML - Unified Modeling Language 
XML - EXtensive Markup Language 
 



 

 

viii 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Agradecimentos 

Primeiramente a Deus que tem me sido fiel nos momentos em que mais precisei e que sem a sua 
presença seguramente eu não teria chegado onde estou. 

A minha mãe Dacilda que é a pessoa mais importante na minha vida, que sempre foi meu 
porto seguro e fez tudo que podia para proporcionar o meu bem-estar geral. 

Ao meu pai Reginaldo e aos meus seis irmãos, pessoas especiais na minha vida, que 
apesar da distância, sempre que nos encontramos temos momentos muito prazerosos.    
 Aos meus amigos do tempo de colégio, amigos que sempre estiveram presentes em todos 
os momentos e que espero levar para o resto da vida. Em especial a Mina, Cinthia, Priscila, 
Paulinho e Ana. 
 Aos amigos que a faculdade me proporcionou conhecer e que foram grandes 
companheiros durante esses cinco anos. Amigos como Emanuel, Juliane, Robson e Fred e 
também, Gabriel, Renata e Fernando que além de companheiros não me deixaram desistir da 
monografia. 
 A Gabi e Lúcia, pessoas que conheci através de Gabriel e que como ele, são muito 
importantes pra mim. 
 Aos meus familiares, que sempre estiveram ao meu lado me dando apoio principalmente 
no último ano, quando eu mais precisei. 
 Finalizando, aos professores do departamento de computação, principalmente ao professor 
Tiago Massoni que teve a paciência e disposição para me orientar e que na reta final me deu total 
apoio no momento em que passei por dificuldades pessoais. 



 

 

 

9 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

 

1  
 

Introdução 

 
O principal elemento de um sistema orientado a objetos é a classe. Esta é uma abstração de um 
conjunto de objetos similares do mundo real que possuem as mesmas características. Diagramas 
de classes da linguagem Unified Modeling Language(UML) [1] são responsáveis por modelar a 
estrutura do sistema. Todas as classes que o sistema necessita, bem como suas associações são 
definidas nesses diagramas podendo ser abstratos, onde as classes definem o domínio do 
problema, ou concretos, onde as classes definem uma implementação em uma linguagem 
orientada a objetos [2]. 

Object Constraint Language(OCL) [3] é uma linguagem de especificação formal que não 
contém qualquer efeito colateral, ou seja, não pode alterar o estado do presente sistema em 
execução. Sendo assim, os diagramas de classes UML que possuem restrições OCL não serão 
afetados, mas informações importantes serão adicionadas a eles [3]. 

UML é a linguagem mais utilizada para modelagem de dados no mercado. Algumas 
propriedades dos modelos UML/OCL podem confundir um analista no momento dele realizar a 
análise do mesmo. É o caso, por exemplo, das multiplicidades e restrições do OCL que caso 
sejam analisadas visualmente, dificulta a busca por erros. 

No entanto, apesar do aumento da riqueza de informações, esses modelos UML/OCL são 
ainda mais difíceis de analisar sem ferramentas como a desenvolvida nessa monografia, pois o 
esquecimento de restrições ou ainda o uso delas de maneira incorreta podem passar 
despercebidos se forem realizados de forma não-automática. 

Uma outra linguagem também utilizada para criar modelos, conhecida como Alloy [4], 
utiliza-se de código para desenvolver seus modelos e possui uma ferramenta de análise 
automática, o Alloy Analyzer(AA) [4]. Através do AA é possível gerar instâncias e contra-
exemplos. As instâncias são geradas para os predicados, produzindo exemplos que podem ser 
analisados para garantir a corretude do seu modelo, já os contra-exemplos são gerados para 
provar que o modelo possui algo de errado de acordo com as afirmações que estão sendo 
checadas [5]. 

Tendo em vista automatizar a análise de diagramas de classes UML/OCL utilizando as 
funcionalidades do AA, neste trabalho foi desenvolvida uma estrutura para a correspondência 
com a linguagem Alloy. Essa estrutura foi realizada na linguagem Java [6], utilizando a 
plataforma eclipse [7] e tornando mais eficiente a procura por erros e conseqüentemente a 
validação do diagrama.  

 

Capítulo 
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1.1 Objetivos 
Para conseguir realizar a correspondência entre um subconjunto dos diagramas de classes 
UML/OCL e Alloy é necessário atingir alguns objetivos, dentre eles pode-se citar: 

• Definição de uma forma representativa dos diagramas de classes UML e restrições do 
OCL para servir de entrada para o compilador. 
• Elaboração das regras de tradução entre as linguagens, para assim poder mapear os 
elementos de uma linguagem em elementos equivalentes da outra.  
• Criação de uma estrutura Java equivalente ao modelo de entrada em formato hierárquico 
que é montada de acordo com a leitura dos dados de entrada e que representa a Árvore 
Sintática Abstrata (AST) [8] do compilador. 
• Tradução do modelo Java para o código Alloy de acordo com a entrada e as regras de 
tradução. 
• Construção do analisador do código Alloy fazendo uso das funções da Application 
Programming Interface (API) do Alloy Analyzer [4]. 
• Integração do analisador construído com o compilador, a fim de  realizar a análise 
automática do código Alloy gerado pelo compilador. 

1.2 Estrutura  
Os capítulos da monografia estão organizados da maneira como segue: 
 

O Capítulo 2 define os conceitos básicos da linguagem UML, descreve rapidamente suas 
principais características e enfatiza os diagramas de classes e seus componentes por serem eles os 
elementos mais importantes do presente trabalho. Definem-se também conceitos da linguagem 
OCL, mostrando a sua estrutura e algumas funções.  
  O Capítulo 3 traz uma visão geral da linguagem Alloy, definindo suas características 
principais que a diferenciam das demais linguagens e mostra ainda a estrutura de um código Alloy 
e a lógica do mesmo. 

O Capítulo 4 inicialmente define o mapeamento entre as linguagens. Em seguida, mostra 
o modelo representativo utilizado como entrada e os passos para o desenvolvimento do 
compilador. Por fim, traz o modelo do código Alloy resultante do compilador. 

O Capítulo 5 define a estrutura da API do Alloy Analyzer, seus pacotes e descrição das 
funcionalidades de algumas de suas classes. Mostra os passos da construção do analisador e como 
ele foi integrado ao compilador. E ainda, traz exemplos de diagramas de classes UML e geração 
de contra-exemplos ou instâncias.  

O Capítulo 6 retoma os objetivos, mostra as conclusões e contribuições deste trabalho e 
ainda os trabalhos futuros que podem ser realizados a partir do protótipo desenvolvido nesta 
monografia. 

O Apêndice A mostra o XML gerado pelo contra-exemplo da seção 5.3.1 do Capítulo 5. 
O Apêndice B mostra o XML gerado pela instância da seção 5.3.2 do Capítulo 5. 
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2  
 

Unified Modeling Language 

A Unified Modeling Language (UML) [9] é uma linguagem gráfica universal para visualização, 
especificação, construção e documentação de artefatos de um sistema intensivo de software. A 
existência de um modelo visual facilita a comunicação e faz com que os membros de um grupo 
tenham a mesma idéia do sistema. Já a importância da especificação se dá à necessidade de 
construção de modelos precisos, não ambíguos e completos. 
 UML não é uma linguagem de programação visual, mas ela pode estar ligada com uma 
variedade de linguagens de programação. Isto significa que se pode mapear um modelo em UML 
para uma linguagem de programação como Java. Esse mapeamento permite a geração de código 
de um modelo UML em uma linguagem de programação ou reconstruir um modelo de uma 
implementação, voltando para o UML [1]. 
 Além dessas vantagens, UML pode ainda incluir artefatos como deliverables, que são 
documentos como especificação de requisitos, especificações funcionais, planos de testes. E 
também, materiais que são importantes para controlar, medir, e refletir sobre um sistema durante 
o seu desenvolvimento e implantação. 

2.1 Diagramas de UML 
Na versão 2.0 do UML existem 13 tipos de diagramas que são responsáveis por uma parcial 
representação do sistema. Eles representam graficamente um conjunto de elementos com seus 
respectivos relacionamentos usados para visualizar o sistema de perspectivas diferentes. Existem 
dois tipos de diagramas: os diagramas estáticos e os diagramas dinâmicos. Os estáticos são 
utilizados para visualizar as partes estáticas do sistema e os dinâmicos para modelar o seu 
comportamento. No projeto em questão é utilizado apenas um tipo de diagrama estático UML, o 
diagrama de classes [10]. 

Capítulo 
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2.2 Diagramas de Classes 
Diagramas de classes UML são os diagramas mais comuns na modelagem de sistemas orientados 
a objetos. Eles possuem um conjunto de classes, interfaces, colaborações e relações. São 
responsáveis por modelar a visão do design estático do sistema e formam a base para os demais 
diagramas. Além disso, eles podem ser abstratos, onde as classes definem o domínio do 
problema, ou concretos, definindo uma implementação em uma linguagem orientada a objetos.  

2.3 Classes 
Uma classe é uma abstração de um conjunto de objetos que possuem os mesmos atributos, 
operações, relações e semântica. As classes têm uma função muito importante na modelagem 
orientada a objetos, pois elas dividem o problema, modularizam a aplicação e baixam o nível de 
acoplamento do software [1].  

Representa-se uma classe por um retângulo geralmente dividido em três partes compostas 
por nome, atributos e operações, respectivamente. Na Figura 2-1 tem-se a ilustração da notação 
de classe mais geral onde na primeira divisão está presente o nome, na segunda os atributos e na 
terceira as operações. 

 

 
Figura 2-1 Notação de Classe 

2.3.1 Nome 

Toda classe deve ter um nome para distingui-la das outras. Este nome é uma string textual que 
pode aparecer sozinho ou acompanhado de um caminho representado pelo nome da classe 
prefixada pelo nome do pacote em que a mesma está contida.  

2.3.2 Atributos 

Um atributo representa alguma propriedade que é compartilhada por todos os objetos de uma 
classe e descreve os dados contidos nas suas instâncias. Cada objeto terá valores particulares para 
seus atributos, podendo estes, mudar com o tempo. 
 
Sintaxe de Atributos 
 
Em sua forma mais completa, a sintaxe de um atributo em UML é representada por: 
 

[visibilidade]nome[:tipo][= valor inicial] 
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 A visibilidade pode ser pública, protegida ou privada. Na pública, representa-se pelo 
símbolo “+” e o atributo é acessível a qualquer outro objeto ou classe. Já na protegida, 
representa-se pelo símbolo “#” e o atributo é acessível apenas na classe e nas subclasses. Por fim, 
na privada, representa-se pelo símbolo “-” e o atributo só é acessível dentro da classe em que foi 
definido. 

2.3.3 Operações 

Uma operação é a implementação de um serviço que pode ser requisitado por algum objeto de 
uma classe para afetar seu comportamento. Em outras palavras, uma operação é uma abstração de 
algo que se pode fazer para um objeto e que é compartilhado por todos os objetos desta classe. 
 
Sintaxe para Operações 
 
Em sua forma mais completa, a sintaxe de uma operação em UML é representada por: 
 

[visibilidade]nome[(lista-de-parâmetros)][:tipo de retorno] 
 

2.4 Relacionamentos 
Um relacionamento é uma conexão entre classes. Em modelagem orientada a objetos, os três 
relacionamentos mais importantes são dependência, generalização e associação. Graficamente, 
um relacionamento é representado por um caminho, com diferentes tipos de linhas usadas para 
distinguir os tipos de relações. 

2.4.1 Dependência 

Uma dependência é um relacionamento onde uma mudança em uma especificação de um 
elemento pode afetar outro que o use, mas não necessariamente o reverso. Uma dependência é 
representada por uma linha tracejada, direcionada para a classe sobre a qual se depende como 
ilustra a Figura 2-2. Nesta figura tem-se uma dependência da classe Cliente em relação à classe 
Fornecedor, em que caso esta seja alterada, pode-se ter mudanças também na classe Cliente. 

 
Figura 2-2 Exemplo de Dependência 

2.4.2 Generalização 

Uma generalização é um relacionamento entre uma classe geral e um tipo mais específico desta 
classe. Generalização significa que objetos de uma subclasse podem ser usados em qualquer 
classe mais abstrata, mas não o reverso. O seguinte exemplo da Figura 2-3 ilustra uma classe 
mais geral de nome Pessoa e,  duas classes mais específicas  nomeadas por Mulher e Homem 
que são tipos de Pessoa. 
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Figura 2-3 Exemplo de Generalização 

2.4.3 Associação 

Uma associação é um relacionamento estrutural que especifica que objetos de um elemento estão 
conectados a objetos de outro elemento. Dada uma associação conectando duas classes, pode-se 
navegar de um objeto de uma classe para outro objeto de outra classe, e vice versa. Uma 
associação que conecta exatamente duas classes é chamada de associação binária e não é comum 
ter associações que conectem mais do que essa quantidade, mas quando acontecem, elas são 
chamadas de associações n-ária. 

Representa-se uma associação por uma linha sólida conectando as classes relacionadas. 
No caso da Figura 2-4, essa representação é dada pela linha que une as classes Professor  e 
Universidade. 

 
Figura 2-4 Exemplo de Associação 

 
Navegabilidade 
 
A navegabilidade entre as classes de uma associação é bi-direcional porém, pode-se limitá-la a 
apenas uma direção. Isso significa uma forma de mostrar acesso direto a objetos. No caso da 
Figura 2-5, Estudante tem acesso direto a objetos de Disciplina. 

 
Figura 2-5 Exemplo de Navegabilidade 

 
Multiplicidade 
 
A multiplicidade define quantos elementos participam do relacionamento, ou seja, o número de 
instâncias de uma classe relacionada a uma instância de outra. Ela é especificada em cada 
extremidade da associação. Na Figura 2-6 estão representados os principais tipos de 
multiplicidade e o que cada um representa. Quando a multiplicidade possui “..” entre os valores, 
significa que a quantidade de elementos que participarão do relacionamento está dentro do 
intervalo delimitado por esses números. No caso do uso de “,” ou do uso de um único valor, a 
quantidade dos elementos deverá ser exatamente um desses valores. Por fim, se a multiplicidade 
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possui o valor “0..*” ou “*”, qualquer quantidade de elementos da classe poderá participar da 
relação e caso seja “1..*”, poderá participar qualquer quantidade maior do que 1.  

 
Figura 2-6 Multiplicidades 

 
Papéis 
 
Quando uma classe participa de uma associação, ela tem um papel específico no relacionamento. 
Normalmente coloca-se explicitamente o nome do papel quando a associação relaciona dois 
elementos da mesma classe, quando há mais de uma associação entre as classes ou para facilitar o 
entendimento geral. Na Figura 2-7 os papéis chefe e subordinado são utilizados para diferenciar 
qual papel os elementos da classe Pessoa assumem. Já o papel empregador, assumido pelos 
elementos da classe Empresa, é utilizado para facilitar o entendimento geral do diagrama. 
 

 
Figura 2-7 Exemplo de Papéis 

2.4.4 Agregação e Composição 

Às vezes é preciso modelar um relacionamento “todo/parte”, em que uma classe represente um 
elemento maior e que consiste de elementos menores. Esse é um tipo especial de associação 
chamado de agregação e é especificado adornando-se uma associação plena com um diamante 
aberto na extremidade do todo. A Figura 2-8 traz um exemplo de agregação em que o todo é 
representado pela classe Curso e a parte pela classe Aluno.  

 
Figura 2-8 Exemplo de Agregação 
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A composição é uma variação da agregação simples onde uma vez criada a parte, ela irá 
viver e morrer com o todo. Em uma agregação composta, um objeto só pode ser parte de uma 
composição por vez. Isto é um contraste com a agregação simples, em que uma parte pode ser 
compartilhada por diversos todos. O todo é o responsável pelo gerenciamento da criação e 
destruição das partes. Representa-se esse tipo especial de associação adornando a associação 
plena com um diamante preenchido na extremidade do todo. A classe Banco da Figura 2-9 
representa o todo da relação e sem ela, não existiria a parte, ou seja, a classe Conta. 

 
Figura 2-9 Exemplo de Composição 

2.5 Object Constraint Language  
A Object Constraint Language (OCL) [3] é uma linguagem formal usada para descrever 
expressões em modelos UML. Expressões escritas em OCL adicionam vitais informações que 
não podem ser expressas em um diagrama para modelos OO [11], e outros artefatos de 
modelagem de objetos. OCL é uma linguagem universal em que as expressões podem ser escritas 
de maneira clara e não ambígua. 

Expressões escritas em uma precisa linguagem baseada na matemática como OCL não 
podem ser interpretadas diferentemente por pessoas distintas, como um analista e um 
programador. Por não serem ambíguas, fazem o modelo mais preciso e detalhado, além de 
poderem ser verificadas por ferramentas automáticas para assegurar que estão corretas e 
consistentes com  outros elementos do modelo. A geração de código torna-se assim, muito mais 
poderosa [12]. 
 Entretanto, modelos escritos em linguagens que usem uma representação de expressão 
sozinha não são facilmente compreendidos, ou seja, muitas pessoas preferem um modelo 
diagramático, pois facilita o entendimento do sistema. Para obter um modelo completo, 
diagramas e expressões OCL são necessários. Sem expressões OCL o modelo seria pouco 
especificado; sem os diagramas de UML, as expressões do OCL consultariam aos elementos do 
modelo não-existentes, porque não há nenhuma maneira de OCL especificar classes e 
associações.  

2.5.1 Contexto 

A definição de contexto especifica uma quantificação universal da entidade do modelo para a 
qual a expressão do OCL é definida. Geralmente, esta é uma classe, uma relação, um tipo de dado 
ou um componente. Às vezes é uma operação, e raramente é uma instância. É sempre um 
elemento específico definido em um diagrama de UML. 
 As expressões do OCL podem ser  incorporadas ao modelo diretamente nos diagramas, 
mas podem também ser fornecidas em um arquivo de texto separado. Ambos os casos possuem 
uma definição de contexto. No diagrama, a definição do contexto é mostrada por uma linha 
pontilhada que ligue o elemento do modelo com a expressão do OCL. Quando a expressão do 
OCL é dada em um arquivo separado, a definição do contexto é dada em um formato textual. É 
denotada pela palavra-chave context seguido pelo nome do tipo. 
 
 context Pessoa 
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2.5.2 Invariantes 

Mais informações podem ser adicionadas ao modelo na forma de invariantes. Um invariante é 
uma restrição que deva ser verdadeira para um objeto durante toda sua vida. Invariantes 
representam freqüentemente as regras que devem vincular os objetos da vida real depois que os 
objetos de software são modelados.  
 
Invariantes sobre atributos 
 
Invariantes em um ou em mais atributos de uma classe podem ser expressos de uma maneira 
muito simples. Inicialmente tem-se a classe a que o invariante consulta que é o contexto do 
mesmo, seguida pela palavra-chave inv acompanhada opcionalmente por um nome, e por fim  
uma expressão booleana que indique seu invariante. Todos os atributos da classe do contexto 
podem ser usados neste invariante. No exemplo seguinte, tem-se como contexto a classe 
Cliente, maioridade como nome do invariante e idade >=18 como a expressão 
booleana. 
 

context Cliente 
inv maioridade: idade >= 18 

 
Invariantes sobre objetos associados 
 
Invariantes podem também indicar regras para objetos associados. Isto é feito usando os nomes 
dos papéis da associação que irão consultar o objeto na outra extremidade. Se não possuir o nome 
do papel, deve-se usar o nome da classe. Tendo-se agora o contexto ClienteCartao, e o 
nome do invariante maioridade, através do nome do papel proprietário consegue-se 
consultar os objetos da classe a que ele corresponde e assim aplicar a expressão booleana. 
 

context ClienteCartao 
inv maioridade: proprietario.idade >= 18 

2.5.3 Self 

Às vezes é necessário referenciar explicitamente a instância contextual em uma expressão do 
OCL. A palavra-chave self é utilizada para esse propósito. Se, por exemplo, pretende-se 
especificar que em uma determinada instância do contexto Pessoa o atributo nome receberia o 
valor Maria, a seguinte expressão do OCL seria utilizada para essa definição: 
  
 context Pessoa 
 inv: self.nome = 'Maria' 
 
Enumerações 
 
Em um modelo de UML, os tipos da enumeração podem ser definidos. Os valores de um tipo da 
enumeração são indicados em uma expressão do OCL pelo nome do tipo da enumeração, seguido 
por um duplo sinal de dois pontos e pelo valor. Por exemplo, pode-se querer distinguir associados 
pelo nível atual de cor que eles possuem onde a cor do atributo pode ter dois valores, prata ou 
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ouro. Os seguintes invariantes mostram que a cor dos cartões deve combinar com o nível de 
serviço dos associados. 
 

context Associado 
inv nivelCor: 

       nivelAtual.nome = 'Prata' implies cartao.cor = Cor::prata 
       and 
       nivelAtual.nome = 'Ouro' implies cartao.cor = Cor::ouro 

2.5.4 Coleções de objetos 

Sempre que a navegação resulta em uma coleção de objetos, pode-se usar uma das operações de 
coleção para manipulá-las. Para indicar o uso de uma das operações predefinidas da coleção, 
coloca-se uma seta entre o nome do papel e a operação. Quando se usa uma operação definida no 
modelo de UML, utiliza-se um ponto. Alguns dos operadores e exemplos deles são indicados a 
seguir. 
 
Size 
 
No contexto Pessoa, o invariante garante que a quantidade de empregadores será menor do que 
três.  
 

context Pessoa 
inv : self.empregador->size()<3 

 
Select e reject 
 
No contexto Pessoa, o primeiro invariante seleciona os empregados com idade maior que 50 e 
analogamente o segundo rejeita-os. 
 
 context Pessoa 
 inv: self.empregado->select(idade>50)  
 
 context Pessoa 
 inv: self.empregado->reject(idade>50)  
 
ForAll e exists  
 
No contexto Companhia, o primeiro invariante avalia se a expressão idade<=65 é verdadeira 
para todos os elementos do conjunto empregado  e o segundo se existe algum elemento que 
satisfaça a mesma expressão booleana. 
 

context Companhia 
 inv:  empregado->forAll(idade<=65) 
 

context Companhia 
 inv:  empregado->exists(idade<=65) 
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Collect 
 
No contexto Companhia, ambos invariantes irão coletar os salários dos empregados, sendo a 
segunda forma mais comum e tendo as duas o mesmo significado.  
 
 context Companhia 
 inv: self.empregado->collect(salario) 
 

context Companhia 
 inv: self.empregado.salario 
 
NotEmpty  e isEmpty 
 
No contexto Pessoa, avalia-se se o conjunto de empregadores não é vazio e analogamente se o 
mesmo é vazio. 
 
 context Pessoa 

inv: self.empregador->notEmpty() 
 

 context Pessoa 
inv: self.empregador->isEmpty() 

2.5.5 Sets, Bags, OrderedSets e Sequences 

Ao trabalhar com coleções de objetos, deve-se estar ciente da diferença entre um Set, um Bag, um 
OrderedSet, e uma Sequence. Em um Set, cada elemento pode ocorrer somente uma vez. Em um 
Bag, os elementos podem aparecer mais de uma vez. Uma Sequence é uma coleção em que os 
elementos são ordenados e pode haver repetição. Um OrderedSet é um conjunto em que os 
elementos são ordenados. 
 

Set {1, 2, 3, 4, 5, 6} 
Bag {1, 1, 2, 2, 4, 5, 6} 
Sequence {2, 1, 2, 3, 5, 6, 4} 
OrderedSet{12, 9, 6, 3} 

2.5.6 Expressão let  

Às vezes escrevem-se expressões grandes em que uma expressão secundária é usada mais de uma 
vez. A expressão let permite definir uma variável que possa ser usada em vez da expressão 
secundária. No seguinte exemplo, cria-se a variável renda do tipo Integer, para armazenar a 
soma dos salários de uma pessoa. Essa variável é então utilizada duas vezes no decorrer do 
invariante. 
 
 context Pessoa  

inv: let renda : Integer = self.trabalho.salario->sum in 
if self.ehDesempregado then renda < 100 
else 

renda >= 100 
end if  
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Alloy 

Alloy [5] é uma linguagem para modelagem de projeto de software relacionada com a linguagem 
Z [13], que combina lógica de predicados com álgebra relacional. Ela possui algumas 
características únicas como signature e a noção de escopo, bem como características universais 
das linguagens de programação. Além disso, faz uso da análise inteiramente automática, através 
do Alloy Analyzer(AA) [4], que possui um visualizador para exibição das soluções e contra-
exemplos gerados. Nessa monografia foi utilizado o Alloy na versão 4. 

Existem alguns pontos chaves que diferenciam Alloy das demais linguagens e técnicas de 
modelagem. Dentre eles pode-se destacar [4]: 

• Verificação de um espaço finito – uma vez que se vai analisar realmente o modelo, 
deve-se especificar um escopo para ele. A análise é correta por nunca retornar falsos 
positivos, mas incompleta por verificar até um certo espaço especificado. Entretanto 
essa análise está correta até esse espaço, pois nunca falta um contra-exemplo que seja 
menor que o mesmo.  

• Modelo infinito – os modelos que se escrevem em Alloy não refletem o fato que a 
análise é finita. Isto é, descrevem-se os componentes do sistema e como eles 
interagem, mas não se especifica quantos componentes devem ser (como é feito no 
tradicional “modelo de verificação”). 

• Declarativo – um modelo declarativo responde à pergunta “como eu reconheceria que 
X aconteceu” ao contrário de um modelo “operacional” ou “imperativo”, modelo que 
pergunta “como eu posso realizar X”. 

• Análise automática – ao contrário de outras linguagens declarativas de especificação, 
a Alloy pode ser analisada automaticamente. Podem-se gerar exemplos 
automaticamente de seus sistemas e contra-exemplos as reivindicações feitas sobre 
eles. 

• Dados estruturados – Alloy suporta estruturas de dados complexas tais como árvores, 
e é assim uma maneira rica de descrever um estado. 

 
 
 
 
 
 
 
 

Capítulo 
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3.1 Estrutura 
A Figura 3-1 ilustra um exemplo de código Alloy com o intuito de conferir se uma pessoa é o seu 
próprio avô através de um predicado, gerando assim um exemplo, e checar se a pessoa não é o 
seu próprio pai gerando um contra-exemplo caso essa afirmativa seja falsa. 
 

 
Figura 3-1 Código Alloy 

 
A estrutura de um modelo descrito em Alloy consiste de um módulo principal, declarações 

de assinaturas, parágrafos de restrições, afirmações e comandos, que serão descritos nesta 
presente seção. 

3.1.1 Módulo 

A primeira linha de um modelo é a declaração do módulo constituída da palavra module 
seguida pelo seu nome. Eles são nomeados como em Java: o nome completo do mesmo 
corresponde ao caminho e nome do arquivo no sistema de arquivo. 
 

module avo 
 
abstract sig Pessoa{ 
 pai: lone Homem, 
 mãe: lone Mulher 
} 
 
sig Homem extends Pessoa {esposa: lone Mulher} 
sig Mulher extends Pessoa {marido: lone Homem} 
 
fact Terminologia {esposa = ~marido} 
fact ConvencaoSocial { 
 no esposa&(mae+pai).mae 
 no marido&(mãe+pai).pai 
} 
 
fun avos [p: Pessoa] : set Pessoa { 
 let pais = mãe+pai+pai.esposa+mãe.marido| 
  p.pais.pais&Homem 
} 
 
pred proprioAvo [h: Homem] { h in avos[h]} 
 
assert proprioPai{ 
 all p: Pessoa| no p.pai = p 
} 
 
run proprioAvo for 4 Pessoa 
 
check proprioPai for 5 
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 module avo 
 

Módulos Alloy têm a extensão de arquivo “.als” por default, então esse módulo é 
armazenado no arquivo “avo.als”, relativamente ao diretório de trabalho do AA. 

3.1.2 Assinaturas 

Uma assinatura representa um conjunto de átomos e pode também introduzir alguns campos, cada 
um representando uma relação. A forma mais simples que se tem de declaração da assinatura é 
feita através da palavra-chave sig seguida pelo nome da assinatura e por um par de chaves. 
 
 sig Pessoa {} 
 

Dentro do par de chaves de cada declaração da assinatura tem-se o corpo da assinatura. 
Nele pode-se definir uma série de relações para o qual o conjunto definido na declaração de 
assinatura seja o domínio. Por exemplo, pode-se criar uma assinatura Homem que possua em seu 
corpo uma relação esposa relacionando homens com mulheres. A palavra-chave lone indica 
simplesmente que existe 0 ou 1 objetos esposa para cada Homem. Já a palavra extends indica 
que tanto Homem quanto Mulher são subtipos de Pessoa. Isso significa duas coisas: o 
conjunto de todos os homens é um subconjunto de todas as pessoas e Homem é disjunto de outro 
subtipo de Pessoa (i.e. Homem é disjunto de Mulher). 
 
 sig Homem extends Pessoa { esposa: lone Mulher } 

sig Mulher extends Pessoa { marido: lone Homem } 
 

Outra palavra-chave importante na declaração de assinaturas é a palavra abstract. 
Usando esta palavra na declaração de Pessoa garante-se que as assinaturas que as estendem 
herdarão suas propriedades. Assim, não haverá nenhuma pessoa que não pertença a suas 
extensões, se omite-se a declaração, poderá ter uma pessoa que nem seja homem nem mulher. 

 
abstract sig Pessoa { 

  pai: lone Homem, 
      mae: lone Mulher 

} 

3.1.3 Restrições 

Não é tão simples definir as assinaturas como foi feito anteriormente. É necessário também 
adicionar restrições básicas para certificar que elas se comportem da maneira como se espera 
intuitivamente. As restrições são representadas pelas palavras chaves fact, fun e pred, e são 
responsáveis por vários tipos de restrições e expressões.  
 
Fato 
 
Um fato registra uma restrição que assume ser sempre possível. Uma indicação fact em Alloy 
coloca uma restrição explicita (ou uma lista de restrições) sobre o modelo. Quando Alloy procura 
por exemplos, ele descarta algum que viole o fact. Assim, se o fato for trivialmente falso, então 
simplesmente não irá gerar exemplos, no entanto não será dito que o modelo é inconsistente. Um 
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exemplo de fato com uma única restrição seria dizer que marido é o inverso de esposa, em 
termos de valores de relação seria dizer que marido tem a imagem refletida de esposa. 
 

fact Terminologia { esposa = ~marido } 
 

Outro exemplo de fato, agora com mais de uma restrição, seria dizer que esposa não 
pode estar no conjunto das mães dos seus pais, ou seja, suas avós e, respectivamente, que 
marido não pode estar no conjunto de pais dos seus pais, ou seja, seus avôs. 
 

fact ConvencaoSocial { 
      no esposa & *(mae+pai).mae 
      no marido & *(mae+pai).pai 
     } 
 
Funções e Predicados 
 
Uma função define uma expressão reusável e um predicado define uma restrição reusável. 
Funções e predicados podem servir como “fatos opcionais” permitindo que se tenham ocorrências 
como “se o construtor A acontece então o construtor B acontece”. Uma função avalia um valor. 
Uma construção similar é um predicado onde, se todas as entradas satisfazem todos os 
construtores listados no corpo, então o predicado é avaliado como verdadeiro. Caso contrário é 
avaliado como falso.  

No exemplo seguinte, o desafio é encontrar um homem que seja seu próprio avô. Para isso 
é criada uma função avos que recebe uma pessoa e retorna um conjunto de pessoas formado 
pelos pais dos pais da mesma, e que sejam homens. Essa função é utilizada no predicado 
proprioAvo que recebe um homem e avalia se o mesmo está contido no conjunto resultante dos 
avôs dele. 
 

fun avos [p: Pessoa]: set Pessoa { 
      let pais = mae + pai + pai.esposa + mae.marido | 
          p.pais.pais & Homem 
     } 
 

pred proprioAvo [m: Homem] { m in avos[m]  } 

3.1.4 Afirmações 

As afirmações registram as propriedades que se esperam atingir. São representadas pela palavra 
assert e, ao contrário do fato que força algo a ser verdadeiro no modelo, elas reivindicam que 
algo deve ser verdadeiro devido ao comportamento do modelo. Pode-se querer conferir, por 
exemplo, se uma pessoa não é o seu próprio pai. Em palavras, afirma-se que “para todo p do tipo 
pessoa, o pai de p não deve ser igual a p”. 
 

assert proprioPai { 
  all p:Pessoa| no p.pai = p 

}  
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3.1.5 Comandos 

Existem dois tipos de comandos em Alloy, representados pelas palavras-chaves run e check, e 
que são utilizados pelo AA para avaliar a performance do modelo, através da geração de soluções 
e contra-exemplos.  
 
Run 
 
O comando run instrui o AA a procurar uma solução para a restrição. Esse comando é 
importante, pois é através dele que se podem ver exemplos de que o modelo está correto. 
Também no caso de uma modelagem errada, modelos fora da normalidade serão gerados, 
ajudando numa melhor percepção de onde deve haver modificações em busca da corretude do 
mesmo. No seguinte exemplo o comando run executará o predicado proprioAvo em busca de 
possíveis soluções em um universo de quatro pessoas. 
 
 run proprioAvo for 4 Pessoa 
 
Check 
 
O comando check chama o AA para procurar contra-exemplos, que é uma instância que prove 
que a afirmação é falsa. Quando ele é executado têm-se dois possíveis resultados: no solution 
found – não há contra exemplos para a afirmação com o especificado escopo ou menor e, solution 
found – o AA encontrou um contra-exemplo. O ideal é que não sejam encontrados contra-
exemplos mostrando que a afirmação está correta no escopo especificado. O comando check que 
segue, buscará contra-exemplos a afirmação proprioPai para um universo de tamanho cinco.  
 

check proprioPai for 5 

3.2 Lógica 
Na lógica de Alloy, só objetos são átomos indivisíveis. Embora eles sejam imutáveis, pode-se 
modelar mutações em que o valor de um objeto mude todo o tempo para separar o identificador 
do objeto e seu valor em átomos diferentes, e relatar identificador, valores e tempos. Quando um 
modelo concede só um simples objeto e o valor é mudado, um conjunto de átomos pode ser usado 
pelos objetos para representar seu valor em diferentes tempos. 

Embora átomos sejam uninterpretados, é possível pegar algumas propriedades para 
introduzir relações entre elas. Em Alloy não existe representação para relações contendo outras 
relações, mas pode-se trabalhar com átomos interpretando-os como inteiros. As relações não 
podem ter infinitos tamanhos e larguras o que não é um grande problema, pois normalmente os 
tamanhos são finitos. 

Uma relação binária que mapeia cada átomo em no máximo um outro átomo é chamada 
de funcional e a que mapeia no máximo um átomo em cada átomo é injetiva. Também 
multirelações são usadas na prática, pois a execução dos modelos que necessitam de duas 
relações é muito comum e para sua modelagem utilizam-se relações ternárias.  
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3.2.1 Constantes 

Existem três tipos de constantes em Alloy que são none, conjunto vazio, univ, conjunto universo 
e iden, conjunto identidade. Se por exemplo, têm-se os conjuntos n = {(N0),(N1),(N2)} e a = 
{(D0),(D1)}, e se quer os valores das três constantes relacionadas a eles. O resultado seria none = 
{}, univ = {(N0),(N1),(N2), (D0),(D1)}, iden =  {(N0,N0),(N1,N1),(N2,N2),(D0,D0),(D1,D1)}. 

3.2.2 Quantificadores 

Um quantificador é da forma Q x:e|F. A Tabela 3-1 mostra as possíveis formas de quantificação 
em Alloy. 
 

Tabela 3-1 Quantificadores 
all x:e|F F é válido para todo x em e 
some x:e|F F é válido para algum x em e 
no x:e|F F não é válido para x em e 
lone x:e|F F é válido para no máximo um x em e 
one x:e|F F é válido para exatamente um x em e 

 

3.2.3 Operadores 

Nesta seção estão descritos os principais operadores presentes na linguagem Alloy. 
 
Operadores lógicos  
 
Os operadores lógicos que fazem parte de Alloy são utilizados na construção de expressões 
booleanas assim como na lógica de programação. Seus símbolos e significados estão presentes na 
Tabela 3-2.  
 

Tabela 3-2 Operadores lógicos 
not ! negação 
and && conjunção 
or || disjunção 

implies => implicação 
else , alternativo 
if <=> bi-implicação 

 
Operadores de conjuntos 
 
Os operadores de conjuntos utilizados em Alloy possuem mesma semântica dos utilizados pela 
matemática e seus símbolos estão representados na Tabela 3-3. 
 

Tabela 3-3 Operadores de conjuntos 
+ união 
& intersecção 
- diferença 
in subconjunto 
= igual 
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Operadores relacionais 
 
Os operadores relacionais são os responsáveis por relacionar os elementos de Alloy. Uma lista 
desses operadores está presente na Tabela 3-4. Quando se quer relacionar dois elementos p e q, 
sendo ambos conjuntos, a expressão p->q constitui uma relação binária. No caso de nessa mesma 
expressão, um dos elementos ter tamanho maior que dois, então essa expressão será uma 
multirelação. Ainda para a mesma expressão, se ambos os elementos forem tuplas então a relação 
entre eles será também uma tupla e se eles forem escalares, p->q será um par. 
 A operação p.q de relações p e q é a relação onde se  tem todas as combinações de uma 
tupla em p e uma tupla em q e se pega sua junção, se ela existe. Se por exemplo têm-se as 
relações {(N0,A0)} e {(A0,DO)}, sua junção com o operador “.” traria como resultado 
{(N0,D0)}. 
 O operador “[]” também usado para junção é semanticamente equivalente ao “.”, mas os 
argumentos são dispostos em ordem diferente, e possuem diferentes precedências. A expressão 
e1[e2] tem mesmo significado de e2.e1. 
 O operador “~” de uma relação binária reflete a imagem da relação. Uma relação binária r 
é simétrica  se contém a tupla a->b e b->a, portanto o fechamento simétrico de r é r + ~r. Se por 
exemplo tem-se uma relação r = {(N0,D0),(N1,D1),(N2,D2)} sua transposta será ~r = 
{(D0,N0),(D1,N1),(D2,N2)}. 
 O fechamento transitivo “^” de uma relação r, é a relação que contém r e é transitiva. 
Intuitivamente, o fechamento transitivo de r é o que ocorre quando se mantém navegação através 
de r até que não se possa ir mais adiante. Já o fechamento transitivo reflexivo é o mesmo do 
fechamento transitivo, com o acréscimo das relações reflexivas, ou seja *r = ^r + iden.  
 O operador de restrição é utilizado para filtrar um domínio ou imagem. A expressão s<:r 
formada por um conjunto s e uma relação r, contém as tuplas de r que começam com o elemento 
em s. Similarmente, r:>s contém as tuplas de r que terminam com s. 
 Por fim, a operação p++q funciona como uma união mais sem as tuplas que contém o 
domínio de q como primeiro elemento, ou seja,  p++q = p – (domain(q)<:p) +q. 
 

Tabela 3-4 Operadores relacionais 
-> produto 
. junção 
[] junção 
~ transposta 
^ fechamento transitivo 
* fechamento transitivo reflexivo 
<: restrição de domínio 
:> restrição de imagem 
++ override 

 

3.2.4 Expressão let 

Uma expressão let é definida por let x = e | A. Isso significa que uma variável x está sendo 
definida com o valor da expressão e, e será utilizada dentro do contexto de A 
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3.2.5 Compreensões 

Compreensões fazem relações de propriedades. A expressão de compreensão {x1:e1, x2:e2, x3:e3, 
... , xn:en|F} faz uma relação com todas as tuplas do tipo x1->x2->x3-> ... -> xn com o construtor F 
ser possível.  

Uma declaração introduz um nome a relação. Um construtor da forma nome-da-
relação:expressão é uma declaração. Uma mesma relação pode ser declarada de diferentes 
formas, dependendo de quanto de informação precisa se colocar na declaração. 

3.2.6 Multirelações 

Supondo a declaração r: Am -> nB onde m e n são palavras-chave de multiplicidade e A e B são 
conjuntos. Então a relação r é construída para mapear cada membro de A para n membros de B, e 
para mapear m membros de A para cada membro de B. 

3.2.7 Construtor de cardinalidade 

O operador “#” aplicado a uma relação, pega a quantidade de tuplas que ela possui. O valor 
resultante do uso desse operador é um número inteiro. A Tabela 3-5 traz os possíveis operadores 
que podem ser usados para combinar e comparar inteiros. 
 

Tabela 3-5 Operadores de inteiros 
+ mais 
- menos 
= igual 
< menor que 
> maior que 
=< menor igual 
>= maior igual 
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UML/Alloy 

Com a finalidade de realizar a análise automática dos diagramas de classes UML abstratos foi 
desenvolvida uma relação entre subconjuntos destes diagramas, com suas restrições em OCL, e 
Alloy. Para isso, foi criado um modelo EXtensible Markup Language (XML) [14] representativo 
desses diagramas, com as anotações em OCL e com algumas instruções de Alloy. 
 Também foi criado um compilador, responsável por fazer a tradução de XML para código 
Java e de código Java para um código Alloy resultante. Sendo esse código Alloy resultante o 
utilizado para realizar as análises. A transformação para uma estrutura Java tem a vantagem de 
deixar o código mais modular e assim, poder ser transformado não apenar para código Alloy, mas 
também para outras linguagens.  

4.1 Mapeamento 
Para poder construir o compilador entre os diagramas de classes UML com restrições em OCL e 
a linguagem Alloy é necessário definir regras de tradução entre elas para assim poder realizar o 
mapeamento. Esse mapeamento se faz necessário para definir como cada elemento do UML será 
representado no Alloy. 
 Algumas construções foram deixadas de fora do mapeamento por não terem 
correspondentes em Alloy ou por não possuírem grande importância em nível de análise. É o 
caso, por exemplo,  do relacionamento de dependência que não tem correspondente em Alloy.
 As classes dos diagramas de classes serão mapeadas em assinaturas Alloy, já os atributos 
presentes nela serão campos da assinatura. Se a classe for abstrata, a assinatura também será, e 
caso algum dos relacionamentos seja do tipo generalização, a assinatura possuirá a palavra 
“extends” após o nome. 
 Relacionamentos do tipo associação binária, são mapeados como relações diretas de 
Alloy. A multiplicidade dessas relações pode ser mapeada por palavras reservadas de Alloy como 
lone, one e Set ou, em caso de multiplicidades que não possuam palavras reservadas 
correspondentes, como relações diretas e o valor delimitado em um fato. 
 Como as expressões de OCL são definidas dentro de um contexto que define uma 
quantificação universal, as mesmas estarão presentes no fato anexado da assinatura, que é um fato 
que aparece acoplado a assinatura. De acordo com a função do OCL, uma regra foi criada para 
corresponder no Alloy. E no caso das funções asSet, allInstances e self, nada se altera na 
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estrutura do Alloy.  A Tabela 4-1 mostra  o mapeamento de alguns dos elementos principais das 
linguagens em questão. 

Tabela 4-1 Mapeamento UML/OCL para Alloy 
UML/OCL Alloy 
classe assinatura 

associação binária relação direta 
multiplicidade cardinalidade 
generalização extends 
invariante OCL fato anexado 

implies => 
<> != 

X->includes(b) b in X 
X->isEmpty() no X 
X->size() #X 

X.allInstances X 
X->select(exp_logic) b: X| exp_logic 

 
A Figura 4-1 ilustra um exemplo simples de diagrama de classes composto pelas classes 

Pessoa, Mulher e Homem. A classe Pessoa é abstrata e mais geral e as classes Homem e 
Mulher são mais específicas. Pessoa tem “idade” como atributo e restrições OCL para informar 
que idade não pode ser nula. Homem e Mulher possuem uma associação binária com 
multiplicidade “0..1” em ambos os lados e papéis “marido”e “esposa”, respectivamente. 

 
Figura 4-1 Exemplo de Diagrama de Classes 

 
O correspondente código Alloy do diagrama de classes da Figura 4-1 é mostrado a seguir: 
 
abstract sig Pessoa{ 
 idade: Int 
}{ 
 some idade 
 } 
 
sig Mulher extends Pessoa{ 
 marido: lone Homem 
} 
sig Homem extends Pessoa{ 
 esposa: lone Mulher 
} 
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4.2 UML 
Nessa seção será descrito o modelo XML criado para representar um diagrama de classes UML, 
com suas restrições em OCL e algumas instruções de Alloy necessárias para a análise automática 
deste modelo, através da criação da Definição de Tipos de Documentos (DTD) [15]. O DTD 
define a estrutura de um documento, onde são especificados quais os elementos e atributos são 
permitidos no mesmo.  
 Inicialmente tem-se a tag <uml> que é a tag raiz do XML. Dentro de sua estrutura podem 
existir as tags <diagram>, <ocl>,<assert>,<pred>,<fun> e <command>. A freqüência com que 
essas tags ocorrem é definida de acordo com a seguinte declaração do DTD: 
 
 <!ELEMENT uml (diagram?, ocl?,(assert|pred|fun|command)*)> 
  
 Como a tag <diagram> e a tag <ocl> possuem o sinal “?” após seu nome, elas só poderão 
ocorrer 0 ou 1 vez. Já as tags <assert>, <pred>, <fun> e <command> que possuem o sinal “*”, 
poderão ocorrer 0 ou mais vezes. A ordem que essas tags devem aparecer é definida pelas “,” e 
“|” utilizadas entre elas. Nesse caso seria <diagram>, seguida por <ocl>, seguida por <assert> ou 
<pred> ou <fun> ou <command>.  
 Dentro da tag <diagram> só poderá existir a tag <class>, com freqüência “*”.  
 
 <!ELEMENT diagram (class*)> 
  
 Uma classe pode possuir 0 ou mais atributos e relacionamentos e possui um único nome, 
obrigatório. Assim, a tag <class> terá tags <attribute> e <relation> internas a ela, e terá name 
como atributo obrigatório. Além deste, essa tag possuirá também um outro atributo obrigatório 
abstract, para diferenciar se a classe é abstrata ou não. 
 
 <!ELEMENT class (attribute*, relation*)> 
 <!ATTLIST class name CDATA #REQUIRED> 

<!ATTLIST class abstract CDATA #REQUIRED> 
 
Os atributos de uma classe possuem um nome e um tipo que no XML serão representados 

por atributos obrigatórios da tag <attribute>. Essa tag não possui tags internas assim como a tag 
<relation> que terá como atributos obrigatórios o tipo e a classe da relação, e como atributos 
opcionais a multiplicidade e o nome da relação.  

A tag <ocl> é responsável por guardar as informações relacionadas aos invariantes OCL. 
Dentro desta tag, estão presentes 0 ou mais tags <context>. 
  
 <!ELEMENT ocl (context*)> 
 
 O contexto por sua vez possui internamente 0 ou 1 tag <invariant>, que representa o 
invariante OCL. A tag <context> contém como atributos obrigatórios um id e um name que 
guardam respectivamente um identificador para diferenciar dos demais contextos e o nome da 
classe a que o invariante está relacionado. 

Um invariante pode opcionalmente possuir um nome como atributo. Internamente ele 
pode conter as tags <exp>, <self> e as tags correspondentes as funções do OCL que podem 
aparecer 0 ou mais vezes em qualquer ordem, dependendo do invariante que se está mapeando. 
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<!ELEMENT invariant (self| exp| asSet| includes| excludes| 
select| reject| implies| union| intersection| collect| 
forAll| isUnique| exists| one| let| in| if| then| else| 
allInstances| size| isEmpty| notEmpty| and| or| xor| less| 
dif| not)*> 
<!ATTLIST invariant name CDATA #IMPLIED> 
 
A tag <self> é utilizada quando uma ocorrência de self aparece no invariante e a tag 

<exp> para representar algo que nem seja uma função e nem self. A tag <exp> tem como atributo 
obrigatório attribute que guarda o conteúdo de uma expressão. 

 
<!ELEMENT exp EMPTY> 
<!ATTLIST exp attribute CDATA #REQUIRED> 
 
Algumas das funções do OCL não possuem argumentos e portanto, não possuem tags 

internas, como por exemplo a tag <asSet> e  a tag <isEmpty>. Já outras, como a tag <select>, 
podem possuir internamente combinações dessas funções similarmente ao invariante. 

As afirmativas, predicados, funções e comandos de Alloy estão também inseridos no 
XML, pois é necessário passar instruções ao analisador para que ele gere as devidas soluções. 
Trata-se de afirmações que se pretende checar se são verdadeiras e, predicados e funções que 
buscam soluções para o modelo especificado até este ponto. As afirmativas são representadas 
pela tag <assert> e possuem um nome como atributo interno e a afirmativa em si como conteúdo 
entre as tags. 

 
<!ELEMENT assert (#PCDATA)> 
<!ATTLIST assert name CDATA #REQUIRED> 
 
A tag <pred> e a tag <fun> são semelhantes por possuírem atributos internos name e 

input relativos ao nome e a entrada do predicado ou função. Além disso, possuem em seu 
conteúdo o predicado ou função em si. O que diferencia essas duas tags é que a tag <fun> além 
dos atributos citados anteriormente, possui ainda  um atributo output relativo à saída da função. 

Por fim, a tag <command> possui o atributo type que diferencia se o comando é run ou 
check e o atributo name que representa o nome do comando. Internamente as suas tags, ele pode 
receber as instruções do comando, caso elas existam. 

A Figura 4-2 ilustra um modelo UML/OCL de um sistema de arquivos composto por 
objetos, que podem ser arquivos ou diretórios, uma única raiz, subtipo de diretório, e onde todos 
os diretórios possuem um conjunto de objetos e, com exceção da raiz, um diretório pai. 

  
Figura 4-2 Exemplo de Diagrama de Classes 
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A representação do mesmo diagrama da Figura 4-2 no formato representativo XML 
acrescida de uma afirmativa e um comando é representada a seguir: 
 
<uml> 
 <diagram> 
  <class name="Objeto" abstract="yes"></class> 
  <class name="Arquivo" abstract="no"> 
   <relation type="generalization" class="Objeto"/> 
  </class> 
  <class name="Diretorio" abstract="no"> 
   <relation type="generalization" class="Objeto"/> 

<relation name="entradas" type="association" 
class="Objeto" multiplicity="*"/> 

<relation name="pai" type="association" 
class="Diretorio" multiplicity="0..1"/>   

  </class> 
  <class name="Raiz" abstract="no"> 

<relation type="generalization" 
class="Diretorio"/> 

  </class> 
 </diagram> 
 <ocl> 
  <context id="c1" name="Raiz"> 
   <invariant> 
    <exp attribute="Raiz"/> 
    <allInstances/> 
    <size/> 
    <exp attribute="=1"/> 
   </invariant> 
  </context> 
  <context id="c2" name="Raiz"> 
   <invariant> 
    <self/> 
    <exp attribute="pai"/> 
    <asSet/> 
    <isEmpty/> 
   </invariant> 
  </context> 
 </ocl> 
 <assert name="Test">all b: Raiz| b =Diretorio</assert> 
 <command type="check" name="Test">for 4</command>  
</uml> 

4.3 Compilador 
Buscando estabelecer uma relação entre os elementos das linguagens UML e Alloy, foi 
desenvolvido um compilador entre elas na linguagem Java. Como mostra a Figura 4-3, esse 
compilador tem como entrada o XML explicado na seção anterior, e a partir dele gera uma 
estrutura Java correspondente e, por fim, monta um arquivo com o código Alloy resultante. 
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Figura 4-3 Compilador 

  
Dentro do projeto Java foram criados dois pacotes denominados ast e compiler. Para cada 

tag do XML uma classe foi criada no pacote ast, referente a Árvore Sintática Abstrata (AST) [8] 
e de acordo com seus atributos e campos no XML foram criadas variáveis correspondentes nas 
classes Java. Já no pacote compiler estão presentes as classes responsáveis por ler o XML e 
transformar em uma correspondente estrutura Java e por pegar esta estrutura e transformá-la em 
código Alloy. 

4.3.1 Pacote ast  

As classes do pacote ast foram criadas com o intuito de armazenar o conteúdo do XML em Java e 
por isso, cada tag do XML possui uma classe correspondente a ela como é mostrado no exemplo 
do diagrama de classes da Figura 4-4. Ela ilustra um exemplo de relacionamento entre algumas 
classes presentes do pacote ast. Cada classe possui os métodos get e set para retornar e informar o 
valor dos atributos respectivamente. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4-4 Exemplo de Diagrama de Classes do pacote ast 
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 A classe correspondente a tag <uml> é a Uml.java e seu construtor é formado por um 
Diagram, um Ocl, um vetor de afirmações, um vetor de predicados e um vetor de comandos.  
 

public Uml(Diagram diagram, Ocl ocl, vetor assertions,      
vetor preds, vetor functions, vetor commands){ 

   this.diagram = diagram; 
   this.ocl = ocl; 
   this.assertions = assertions; 
   this.preds = preds; 
   this.functions = functions; 
   this.commands = commands; 
 } 
  
 A seguir estão descritas as classes correspondentes as tags que podem estar presentes 
dentro da tag <uml>, bem como as internas a elas.  
  

Diagram 
 
No arquivo XML, as possíveis tags presentes dentro de <diagram> são as tags <class>, 
representando as classes do diagrama. Sendo assim, a classe Diagram.java possui um vetor 
responsável por armazenar os objetos da classe Class.java. 
 
 public Diagram(vetor classes){...} 
  
 A classe Class.java possui no seu construtor duas Strings que recebem o valor vindo dos 
atributos name e abstract do XML com o nome da mesma e o valor do abstract respectivamente. 
 
 public Class(String name, String abs){...} 
    
 Essa classe possui ainda dois vetores para guardar os atributos e as relações, caso eles 
existam, e os métodos addAttribute e addRelation para adicioná-los no vetor. 
  
 public void addAttribute(Attribute attribute){ 
  this.attributes.addElement(attribute); 
 } 
  
 public void addRelation(Relation relation){ 
  this.relations.addElement(relation); 
 } 
  
 A classe Attribute.java tem como parâmetros para seu construtor as Strings name e type, 
que recebem os valores dos atributos da tag <attribute>. Essa classe não possui métodos além dos 
gets e sets das variáveis. 
  
 public Attribute(String name,String type){...} 
   

A classe Relation.java por sua vez possui três construtores que podem ser de três tipos 
diferentes, de acordo com os atributos obrigatórios e opcionais. O primeiro deles possui como 
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parâmetros as Strings type e classe, o segundo as Strings name, type e classe e o terceiro as 
Strings name, type, multiplicity e classe. 

  
public Relation(String name, String type, String 

multiplicity, String classe) {...} 
   

Ocl 
 
No caso da tag <ocl>, as tags que aparecem no seu interior são tags <context>. Por poder possuir 
mais de um contexto, a classe Ocl.java possui um vetor de contextos que irá guardar os objetos 
da classe Context.java. O construtor da classe Ocl recebe apenas esse vetor de contextos e não 
possui outros métodos, além dos get e set do vetor. 
 
 public Ocl(vetor context) {...} 
  
 Por sua vez, a tag <context> possui os atributos id e name e tem no seu interior a tag 
<invariant>. Assim, a classe correspondente Context.java tem em seu construtor uma String com 
o id, uma String com o name e um objeto da classe Invariant.java.   
  
 public Context(String id, String name, Invariant inv) {...} 
   
 A tag <invariant> é responsável por guardar o invariante OCL e nela pode ter diversos 
tipos diferentes de funções do OCL, cada uma representada por uma tag. Além disso, cada função 
pode ter contida nela outros tipos de funções. Sendo assim, o construtor da classe Invariant.java 
possui uma String com o nome do invariante, caso ele possua, e um vetor que guarda os objetos 
relacionados com as tags das funções ou expressões vindas do XML. 
  
 public Invariant(String name, vetor constraint) {...} 
   
 Se tem-se o seguinte XML: 
 
 <context id="c2" name="Raiz"> 
  <invariant> 
   <exp attribute="pai"/> 
   <asSet/> 
   <isEmpty/> 
  </invariant> 
 </context> 
 
 O vetor formado por esse invariante terá um objeto da classe Exp.java, seguido por um 
objeto da classe AsSet.java e por fim um objeto da classe IsEmpty.java. Se as tags de funções 
OCL não possuem tags internas, as classes possuem construtor vazio, caso contrário, elas irão 
possuir um vetor semelhante ao utilizado pela classe Invariant.java. 
 
Assert, Pred, Fun e Command 
 
A tag <assert> tem como atributo name e uma afirmativa como conteúdo. Dessa forma, o 
construtor da classe Assert.java é formado pelas Strings name e ass que terão os valores 
recebidos do XML. 
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public Assert(String name, String ass) {...} 

 
As tags <pred> e <fun> possuem como atributos em comum name e input. No caso de 

<pred> além desses atributos ela possui ainda um predicado como o seu conteúdo, já a <fun> 
possui o atributo output e uma função como o seu conteúdo. Os construtores das classes 
Pred.java e Fun.java são formados por Strings que representam cada um desses atributos e os 
seus conteúdos. 

 
public Pred(String name, String input, String pred) {...} 

   

public Fun(String name, String input, String output, String 
fun){...} 

   
 Por fim, a tag <command> tem como atributos type e name e com isso, o construtor da 
classe Command.java é formado por Strings desses atributos e pelo conteúdo da mesma, caso 
exista instruções para os comandos como conteúdo. 
 
 public Command(String type, String name, String cmd){...} 

4.3.2 Pacote compiler 

O pacote compiler possui duas classes com a finalidade de transformar do XML para Java e de 
Java para código Alloy. Na classe UmlJava.java, através do uso do Document Object Model 
(DOM) [16], é feita a leitura do XML e o armazenamento no formato de árvore de nodos. À 
partir dessa árvore, os métodos readDiagram, readOcl, readAssert, readPred, 
readFun e readCommand percorrerão a árvore em busca dos elementos correspondentes. 
 Com o uso do DOM é possível montar uma lista dos nodos da árvore e assim percorrer a 
estrutura interna da mesma. No método readDigram, por exemplo, pretende-se buscar as 
possíveis tags <diagram> e para isso, é criada uma lista de nodos através da busca por tags com o 
nome “diagram” em elem, que é um elemento formado pelo documento XML. 
 
 NodeList d = elem.getElementsByTagName("diagram");  
 
 No XML de entrada desse compilador é possível a ocorrência de no máximo um 
diagrama. Assim, é criado um Element que pegará a primeira ocorrência da NodeList e a 
partir dela, criará uma nova NodeList formada pelas classes do diagrama. 
  

Element tagDiagram =(Element)d.item(0); 
     NodeList nl = tagDiagram.getElementsByTagName( "class" ); 
 
 Tendo essa NodeList, um vetor de classes é criado para armazenar os dados presentes 
nas tags <class> e após percorrer toda NodeList o vetor será adicionado no objeto Diagram. 
Para cada <class> do XML um objeto Class será criado com seus atributos armazenados em 
Strings e as tags <attribute> e <relation> em vetores. 
 
 String nameClass = tagClass.getAttribute( "name" ); 
     String abs = tagClass.getAttribute("abstract"); 
     Class classe = new Class(nameClass,abs);  
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     NodeList n2 = tagClass.getElementsByTagName("attribute"); 
 NodeList n3 = tagClass.getElementsByTagName("relation"); 
 
 De maneira semelhante a como se adquire os atributos para <class>, ocorrerá para os 
atributos de <attribute>  e <relation>, e a cada novo atributo ou relacionamento um objeto 
Attibute ou Relation é criado e armazenado no vetor correspondente. 
 
 classe.addAttribute(new Attribute(nameAttr,type)); 

classe.addRelation(new Relation(name, nameRel, multiplicity, 
associationClass)); 

 
 Para o método readOcl as NodeLists para as tags <ocl>, <context> e <invariant> são 
criadas de maneira semelhante a da tag <diagram>. No entanto, a partir da tag <invariant>, não 
se sabe ao certo quais tags estarão internas a ela, nem em que ordem estarão dispostas. Portanto, a 
NodeList formada pelos elementos de <invariant> conterá todos os elementos presentes 
internamente as suas tags, independente de seus tipos e um vetor é criado para guardar os objetos 
que serão criados de acordo com essas tags.  
  
 NodeList list=tagInvariant.getElementsByTagName("*");  
 vetor exps = new vetor(); 
 

No entanto, essa forma de adquirir os elementos irá pegar todas as tags internas a tag 
<invariant>, independente de serem tags filhas ou internas a estas. Assim, ao percorrer essa 
NodeList é necessário se certificar que o elemento que está se trabalhando tem como pai a tag 
<invariant> para poder montar a estrutura apenas com elementos filhos. 
 
 Element element = (Element)list.item(j); 
               if(element.getParentNode()==tagInvariant )  
  
 A partir deste ponto, existem três possíveis tipos de tags internas: as tags que não 
possuem argumentos, as tags de funções que possuem conteúdo interno, e a tag <exp> que 
guarda as expressões que não são funções e nem self. Assim, para cada tag filha de <invariant> 
será analisado, através do método verifyTypes, se trata-se de uma tag <exp> ou de uma tag 
que não possui argumentos. Caso seja uma tag <exp> o método isExp irá criar um objeto do 
tipo Exp e caso seja uma tag que não possui argumentos, o método isType chamará o método 
responsável por criar o objeto do tipo especificado, de acordo com a String com o nome da tag.  
  
 obj = verifyTypes(element,exps); 
 
 Se obj não for nulo, o objeto retornado por verifyTypes será inserido no vetor exps. 
Em caso contrário, o objeto a ser criado é do tipo função com conteúdo interno e com isso, o 
método isOthers será invocado a fim de descobrir a qual função do OCL a tag em questão 
corresponde. 
 
 obj = verifyTypes(element,exps); 
         if(obj!=null){ 
             exps.addElement(obj); 
         }else 
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             exps.addElement(isOthers(element)); 
  
 O método isOthers irá proceder da mesma forma como se a tag fosse <invariant>, pois 
também não se sabe ao certo que conteúdo estará presente. Assim, como internamente as tags de 
funções pode haver os mesmos tipos de tags internas a <invariant>, o mesmo procedimento será 
adotado e isOthers será invocado recursivamente. Ao fim desse método, o método 
isTypeFull será invocado passando o nome da tag e o vetor montado com as tags internas a 
ela e de acordo com o nome da tag o método correspondente a ela criará o objeto a ser retornado. 
 
 ob = isTypeFull(name,elements); 
 return ob; 
 

Ao fim da leitura de cada tag <invariant> um objeto da classe Invariant.java será criado 
e irá armazenar o vetor com os objetos que compõem esse invariante. Por sua vez, esse objeto irá 
ser armazenado em um objeto Context e guardado no vetor de contextos. Terminada a leitura 
de todos os contextos, um objeto Ocl será criado e irá guardar o vetor de contextos. 
 Além da leitura do Diagram e do Ocl, ainda é possível a dos comandos, afirmativas, 
predicados e funções. A leitura das tags correspondentes a eles é feita semelhantemente a das 
classes. Para cada atributo ou conteúdo interno as tags, existe uma String correspondente em Java 
que irá armazenar os valores adquiridos do XML. Ao fim da leitura de cada tag o objeto 
correspondente a ela será guardado no vetor que o representa, ou seja, se, por exemplo, se tem um 
comando, um objeto da classe Command.java será criado e armazenado no vetor commands. 
 
 Command cmd = new Command(type,name,command); 
 commands.addElement(cmd); 
 
 Para criar um objeto da classe Uml.java, é necessário a leitura de todos os componentes 
do XML. O construtor dessa classe é formado por um Diagram, um Ocl, um vetor de 
afirmativas, um vetor de predicados, um vetor de funções e um vetor de comandos. Assim, o 
método compiler cria um objeto Uml formado pelos leitores dos componentes do XML. 
 
 public Uml compiler() throws Exception{ 

uml =new Uml(readDiagram() ,readOcl(), readAssert(), 
readPred(), readFun(), readCommand()); 

  return uml; 
 }   
 
 A classe JavaAlloy.java é a responsável por receber um objeto Uml e construir o arquivo 
com o código Alloy resultante. Esse mapeamento entre as linguagens UML/OCL e Alloy foi 
desenvolvido de acordo com as regras de tradução definidas entre elas. Inicialmente é criado o 
arquivo “test.als” onde será escrito o código. O método readUml tem como argumento um 
vetor de classes e percorre esse vetor montando o correspondente Alloy.  

Para cada classe, além de percorrer as informações de se é abstrata, o nome da mesma e os 
atributos e relacionamentos, também será percorrido o vetor de contextos em busca de algum que 
tenha mesmo nome que o nome da classe. Caso isso ocorra, esse contexto será traduzido de 
acordo com as regras para Alloy e será guardado em um fato anexado. 
 O método test é o responsável pelas regras de tradução das funções do OCL, bem como 
de Exp e Self. Ele tem como parâmetros uma String que corresponde ao código resultante do 
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invariante OCL traduzido para Alloy até o momento, e o objeto a que se está buscando a regra a 
ser aplicada. Se as entradas para test forem, por exemplo, a String “pai” e o objeto  IsEmpty, 
o código resultante seria: 
 
 no pai 

4.4 Resultante Alloy 
O código resultante do compilador é montado na classe JavaAlloy.java e para se chegar a 

ele é necessário percorrer toda a estrutura do Uml e ir escrevendo no arquivo de acordo com as 
regras de tradução. No método readUml inicialmente define-se o módulo que se chama test. 

 
out.write("module test"); 
 
Uma classe do diagrama de classes é mapeada como uma assinatura do Alloy. Para cada 

classe do vetor de classes que entra como parâmetro do método readUml, a primeira coisa a ser 
observada é se ela é abstrata para assim poder definir a assinatura.  

 
if(abs.equals("yes")){ 
 out.write("abstract sig "+ name); 
 } 
else 
 out.write("sig "+ name ); 
 
Em seguida é necessário observar se a classe tem algum relacionamento do tipo 

“generalization” e se é a primeira vez que essa classe tem um relacionamento desse tipo, pois 
caso isso seja verdadeiro a palavra “extends” aparecerá ainda na definição da assinatura, seguida 
pela chave que indica o início do corpo da mesma. 

 
if(rel.getType().equals("generalization")&&f==0){ 
 f++; 
 out.write(" extends "+rel.getClasse()); 
 out.write("{");  
} 
 
Caso não exista nenhuma relação de generalização, é aberta a chave simbolizando o inicio 

do corpo da assinatura. 
 
if(f==0){ 
 out.write("{"); 
} 
 
O corpo da assinatura é formado pelas relações de associações e pelos atributos das 

classes vindos do XML.  No caso das associações, escreve-se o nome da mesma e caso a 
multiplicidade possa ser mapeada como uma palavra reservada do Alloy, como é o caso de “0..1”, 
”*”, “1”, escreve-se uma definição de relação utilizando essa palavra. 

 
if(rel.getType().equals("association")){ 
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 out.write(rel.getName()); 
if(rel.getMultiplicity().equals("0..1")){ 

  out.write(":lone "+rel.getClasse()); 
} 
 
 No caso de não haver palavra reservada que represente a quantidade desejada, escreve-se 

apenas a relação entre as classes e a definição da quantidade possível é definida em um fato 
anexado. 

 
else  

out.write(":"+rel.getClasse()); 
        
Os atributos são escritos no arquivo simplesmente pegando o seu nome seguido por “:” e 

o tipo do mesmo, de acordo com o tipo que vem do  XML. 
 
if(type.equals("int")) 
 out.write(attr.getName()+":Int"); 
 
Terminada a leitura dos atributos o corpo da assinatura é fechado e é iniciado o fato 

anexado. Para cada assinatura um fato anexado será criado com a finalidade de definir as 
multiplicidades que não possuem palavra reservada e guardar o código Alloy correspondente aos 
invariantes do OCL.  

As multiplicidades serão definidas de acordo com os valores e com o que os separam, se 
“,” ou “..”. Foram criados dois StringTokenizer com a finalidade de diferenciar esses 
separadores e de acordo com eles é criado um novo campo no fato anexado.  

str = new StringTokenizer(rel.getMultiplicity(),".."); 
str1= new StringTokenizer(rel.getMultiplicity(),","); 
 
No caso dos valores serem separados por “..” significa que a multiplicidade está entre 

esses dois valores e então se escrevem duas regras para delimitar o valor. 
 
if(str.countTokens()==2){ 

out.write("#"+rel.getClasse()+">"+str.nextToken()); 
out.write("#"+rel.getClasse()+"<"+str.nextToken()); 

} 
    
Já no caso de serem separados por “,” existirá uma relação “||” entre os possíveis valores, 

se esse valor for diferente de 1. 
 
else if(str1.countTokens()!=0){ 
 for(int e=0;e<str1.countTokens()-1;e++){ 

out.write("#"+rel.getClasse()+"=" 
+str1.nextToken() +"||"); 

     } 
} 

out.write("#"+rel.getClasse()+"="+ str1.nextToken()); 
} 
 



 

 

 

41 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

Terminadas as multiplicidades os seguintes campos a serem escritos são os do 
mapeamento dos invariantes, de acordo com as regras de tradução. Para cada contexto é criada 
uma String que guardará o valor do invariante até o presente momento e será percorrido o vetor 
do invariante enviando para o método test a String e o objeto referente ao elemento do vetor. 

 
String str=""; 
for(int j=0;j<context.getInv().getConstraint().size(); j++){ 
Object obj = context.getInv().getConstraint().get(j); 
str=test(str,obj); 
} 
 
Para cada objeto, uma regra de tradução diferente é aplicada, de acordo com o 

mapeamento entre as duas linguagens. Ao terminar de percorrer o vetor, o corpo do fato anexado 
é fechado e serão escritos as afirmativas, os predicados, as funções e os comandos a partir apenas 
dos dados guardados na estrutura Uml e montando de acordo com as construções da linguagem.  
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5  
 

Análise Automática 

A fim de se obter a análise automática do código Alloy gerado pelo compilador, um estudo da 
API do Alloy Analyzer foi necessário para assim poder integrá-la ao projeto em questão. A 
integração da API com o compilador é feita utilizando o arquivo “.als” gerado pelo compilador. 
 A Figura 5-1 mostra a integração do analisador com o compilador explicado na seção 
anterior. O código Alloy resultante do compilador é utilizado como entrada para o analisador que, 
ao fim das análises, gera um XML para cada comando satisfatório. 
 

 
Figura 5-1 Integração do Compilador com o Analisador 

5.1 API do Alloy Analyzer 
A nova versão do Alloy, a versão 4, foi reescrita e trouxe novidades que possibilitam a integração 
e expansão dessa linguagem. A API do AA agora faz parte do alloy4.jar, é composta por 
componentes individuais com mínima dependência e seu acesso é público. 

Como todas as partes da API podem ser acessadas independentemente, a maneira mais 
simples de se trabalhar com os pacotes é incluindo o alloy4.jar diretamente no projeto e importar 
as classes necessárias ao mesmo. Seis pacotes fazem parte da API do AA: 
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1) alloy4 – contém as estruturas de dados fundamentais e classes de ajuda 
2) alloy4compiler.ast – contém a definição dos nodos da AST 
3) alloy4compiler.parser – contém o compilador 
4) alloy4compiler.translator – contém o tradutor do Alloy4 para CNF 
5) alloy4viz – lê e mostra os exemplos do Alloy4. 
6) alloy4whole – contém um cliente simples Graphical User Interface (GUI), e 

alguns exemplos de como utilizar a API. 
 

No pacote alloy4 é possível criar novas mensagens para eventos ou alterar as que 
aparecem quando se está à procura de exemplos através da classe A4Reporter. Caso pretenda-
se alterar algo na estrutura da linguagem, o pacote alloy4compiler.ast deve ser alterado, pois nele 
estão as definições das estruturas da linguagem.  

A classe CompUtil de alloy4compiler.parser é responsável por pegar uma estrutura de 
entrada e reconhecer os tokens que estão corretos de acordo com a linguagem. Já no pacote 
alloy4compiler.translator existe a classe A4Solution que representa a solução, que pode ser 
satisfatória ou não. 

O pacote alloy4viz recebe as soluções, faz a leitura e monta uma janela de visualização 
com os diferentes tipos possíveis de resultados, como por exemplo, o formato gráfico, XML ou 
em pastas. Por fim, no pacote alloy4whole, existem alguns exemplos do uso do compilador, da 
API e também um exemplo na classe SimpleGUI, do uso geral do AA. 

5.2 Integração 
Sem a integração do AA com o compilador, não seria possível a análise automática de um 
diagrama de classes UML utilizando Alloy. Assim, um pacote analyzer foi criado para fazer a 
integração entre o compilador e o AA e gerar um XML para cada solução encontrada para os 
comandos de Alloy.  

5.2.1 Pacote analyzer 

O pacote analyzer é formado apenas pela classe Analyzer.java que foi desenvolvida baseada na 
classe ExampleUsingTheCompiler.java. Essa classe mostra um exemplo de como utilizar 
algumas funções do compilador do AA. Inicialmente ela mostra como criar e imprimir 
mensagens de diagnóstico de acordo com os eventos que estão ocorrendo no decorrer da 
compilação. Em seguida, um exemplo de como criar um visualizador, responsável por mostrar os 
resultados nos diferentes tipos de visualização, a partir do XML criado como solução. 
 No próximo passo ele percorre as Strings que contêm o caminho do arquivo “.als” e 
chama o método da classe CompUtil que monta a AST do arquivo, checa os tipos e cria o XML 
para cada solução satisfatória para os comandos encontrados no arquivo. Caso se pretenda 
observar os resultados no visualizador, é chamado o método run do mesmo. 

No caso da classe Analyzer.java o intuito principal é gerar o XML de solução para os 
comandos encontrados no arquivo. Esse XML é o resultado da análise automática do modelo 
UML que entra em formato de XML no compilador. Para isso, foi construído o método 
analyzer que irá utilizar partes da API do AA e assim, realizará a análise do código Alloy. 
Esse método é o responsável por produzir as soluções resultantes da análise. Dentro dele está, 
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inicialmente a criação de um objeto A4Reporter que irá criar as mensagens de diagnóstico 
seguido por uma String que contém o nome do arquivo gerado pelo compilador. 

 
A4Reporter rep = new A4Reporter() { 

@Override public void warning(ErrorWarning msg) { 
System.out.print("Relevance 

Warning:\n"+(msg.toString().trim())+"\n\n"); 
          System.out.flush(); 
        } 
}; 
 
String filename = "test.als"; 
 
Esse nome de arquivo será genérico, pois para cada arquivo XML de entrada, o 

compilador irá gerar o arquivo “test.als” que será utilizado pelo analisador. Após o nome, dentro 
do método analyzer virá a criação de um objeto World que é responsável por armazenar os 
elementos do Alloy como sig, fun e pred. Esse objeto será criado utilizando o método 
parseEverything_fromFile da classe CompUtil que lê o arquivo e monta uma estrutura 
de árvore, sendo World a raiz. 

 
World world = CompUtil.parseEverything_fromFile(null, null, 

filename, rep);   
 
Após essa criação os tipos serão checados e se tem a possibilidade de criar algumas 

opções para como se quer executar o comando, nesse caso será escolhido que deve ser em Java, 
através da opção A4Options.SatSolver.SAT4J. 

 
A4Options options = new A4Options(); 
options.setReporter(rep); 
options.solver = A4Options.SatSolver.SAT4J; 

  

Por fim, a lista de comandos será percorrida e uma A4Solution será criada para 
armazenar o resultado de cada comando. Caso essa solução seja satisfatória, um XML com nome 
igual ao nome do comando é criado com o resultado da análise do mesmo.   
  

A4Solution ans = 
TranslateAlloyToKodkod.execute_command(world, cmd, 
options, null, null); 

 
if (ans.satisfiable()) { 

  ans.writeXML(cmd.name+".xml", false); 
} 
 
Nessa ferramenta os comandos são inseridos juntamente com as estruturas do diagrama de 

classes no XML de entrada. No entanto, futuramente os comandos deverão ser inseridos pelo 
usuário a cada análise a ser realizada, tornado esta ferramenta mais interativa. 
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5.3 Exemplos 
Nesta seção estão descritos dois exemplos de análises realizadas com a ferramenta desenvolvida. 
Sendo o primeiro deles uma demonstração de um contra-exemplo para uma afirmação dada e o 
segundo, uma instância para um predicado. No resultado Alloy gerado além da representação no 
formato de conjunto dos átomos e relacionamentos, também irá aparecer o conjunto dos possíveis 
números inteiros utilizados pela linguagem  Alloy. 

5.3.1 Contra-exemplo 

 
 No diagrama de classes apresentado na Figura 5-2 a classe Pessoa é uma classe abstrata que 
possui como atributo um inteiro nomeado por idade. Relacionadas a ela estão as classes Aluno e 
Professor, através de relacionamentos de generalização. O diagrama possui ainda a classe 
Disciplina com horasDiarias como atributo do tipo inteiro e se relacionando através de 
associação com as classes Aluno e Professor.  
 Um invariante OCL foi adicionado ao diagrama. Esse invariante indica apenas que as 
horas diárias que uma disciplina pode possuir tem que ser maior do que 1. 

 

 
Figura 5-2 Diagrama de Classes para Geração de Contra-Exemplo 

 
 Para poder encontrar um contra-exemplo é necessário que uma afirmativa não esteja 
correta. Para o diagrama em questão é ainda necessária a criação dessa afirmativa que se deseja 
checar e do comando correspondente a ela. Se afirma-se que existe alguma disciplina que as 
horas diárias terão que ser necessariamente iguais a 1, um contra exemplo será gerado pois, a 
única restrição que foi imposta através do invariante OCL, não garante a veracidade dessa 
afirmação. 
 
 assert horas{ 

some a: Disciplina| a.horasDiarias=1 
} 
 
check horas for 3 
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 O contra-exemplo gerado pela ferramenta é mostrada no Apêndice A e o resultado em 
Alloy é representado a seguir:  
 
integers={-8=-8, -7=-7, -6=-6, -5=-5, -4=-4, -3=-3, -2=-2, -1=-1, 
0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7} 
Aluno={Aluno[0], Aluno[1]} 
Professor={Professor[0]} 
Disciplina={Disciplina[0], Disciplina[1], Disciplina[2]} 
Pessoa.idade={Professor[0]->-8, Aluno[0]->-7, Aluno[1]->-8} 
Disciplina.ministra={Disciplina[0]->Professor[0],  

Disciplina[1]->Professor[0], Disciplina[2]->Professor[0]} 
Disciplina.estuda={Disciplina[0]->Aluno[1],  

Disciplina[1]->Aluno[1], Disciplina[2]->Aluno[0]} 
Disciplina.horasDiarias={Disciplina[0]->2, Disciplina[1]->2, 

Disciplina[2]->5} 
  

 Nesse contra-exemplo gerado, as disciplinas Disciplina[0] e Disciplina[1] e 
Disciplina[2] possuem valores maiores do que 1, como é definido no invariante mas, como 
nenhum deles possui valor igual a 1 como é afirmado. Dessa forma, a afirmação feita torna-se 
então incorreta. 

5.3.2 Instância 

O diagrama da Figura 5-3 ilustra um relacionamento do tipo associação binária entre as classes 
Companhia e Empregado. O Empregado possui um identificador inteiro como atributo e só 
poderá  existir uma única Companhia com papel denominado empregador. 
 Um invariante OCL adicionou ainda uma restrição sobre o diagrama para certificar que o 
identificador do Empregado não será nulo.  
 

 
Figura 5-3 Diagrama de Classes para Geração de Instância 

 
O predicado de Alloy que se faz necessário para poder existir a geração de uma instância  

para o diagrama, procura por algum exemplo que mostre que o identificador de Empregado é 
único. O comando run irá procurar para um conjunto de até no máximo 5 elementos de cada tipo 
se é possível acontecer de não existirem identificadores repetidos. 

 
pred idUnico{ 
 all a, a':Empregado| a!=a' => a.id!= a'.id 
} 
 
run idUnico for 5 
 
A instância gerada pela ferramenta é mostrada no Apêndice B e seu resultado em Alloy 

está representada a seguir: 
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integers={-8=-8, -7=-7, -6=-6, -5=-5, -4=-4, -3=-3, -2=-2, -

1=-1, 0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7} 
Companhia={Companhia[0]} 
Empregado={Empregado[0], Empregado[1], Empregado[2], 

Empregado[3], Empregado[4]} 
Empregado.empregador={Empregado[0]->Companhia[0], 

Empregado[1]->Companhia[0], Empregado[2]->Companhia[0], 
Empregado[3]->Companhia[0], Empregado[4]->Companhia[0]} 

Empregado.id={Empregado[0]->7, Empregado[1]->6, 
Empregado[2]->5, Empregado[3]->3, Empregado[4]->1} 

 
Nessa instância gerada, os identificadores dos empregados  Empregado[0], 

Empregado[1], Empregado[2], Empregado[3], Empregado[4] foram 7, 6, 5, 3 
e 1, respectivamente. Assim, por serem os identificadores distintos, o predicado se torna valido 
para o universo de 5 empregados. 
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6  
 

Conclusão 

A linguagem UML é, sem dúvida, a mais utilizada na área de engenharia de software para 
modelagem de dados devido à facilidade encontrada no seu manejo e também por utilizar-se de 
representação gráfica. 

Realizar a análise de diagramas de classes UML é sem dúvida tarefa importante. A busca 
pela  corretude para assim poder validar o diagrama feita de forma visual, sem ferramentas, pode 
deixar passar erros de construção da linguagem como o esquecimento de elementos importantes e 
até mesmo de restrições necessárias e erros de inconsistência de projeto, como restrições 
conflitantes.  
 Dessa forma, nesta monografia foi desenvolvida uma ferramenta responsável por realizar 
as análises dos diagramas de classes UML de maneira automática. Essa ferramenta recebe um 
modelo representativo do diagrama com restrições em OCL e produz um XML resultante da 
análise. 

6.1 Contribuições 
A fim de realizar essa análise de forma automática, uma integração de componentes das 
linguagens UML e OCL com a linguagem Alloy foi desenvolvida. Alloy faz uso de código para 
realizar suas análises e possui uma ferramenta, o Alloy Analyzer, que gera instancias e contra-
exemplos de acordo com o comando escolhido. 

 De início, foi criado um modelo representativo do diagrama de classes UML com 
restrições em OCL no formato XML visando as construções importantes da linguagem para a 
análise e que serve de entrada para a ferramenta. Nesse modelo foram também incluídos os 
predicados, funções, afirmações e comandos Alloy referentes ao diagrama, para assim poder 
analisar o mesmo utilizando as funcionalidades dessa linguagem. 
 Em seguida, foram elaboradas as regras de tradução com a finalidade de realizar o 
mapeamento entre os elementos das linguagens UML/OCL e a linguagem Alloy. Além disso, foi 
realizado o desenvolvimento de uma estrutura Java equivalente ao modelo de entrada, montada 
de acordo com a leitura dos dados do XML através do DOM, representando a AST do 
compilador. 
 Foi realizada ainda a tradução desse modelo Java  para um código Alloy fazendo uso das 
regras de tradução entre os elementos das linguagens envolvidas. E ainda, a criação de uma 
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relação com o analisador de Alloy, responsável por realizar as análises do código gerado de 
acordo com os comandos recebidos no modelo representativo dado como entrada para o 
compilador e produzindo um XML com o resultado da presente análise para cada comando. 

Para a integração do analisador com o compilador foi necessária a utilização das 
funcionalidades da API do Alloy Analyzer. Através do estudo da mesma  foi possível a utilização 
de funções responsáveis por ler o código Alloy de entrada, verificar a existência de possíveis 
contra-exemplos ou instancias e gerar o XML para cada comando que possua uma solução 
satisfatória.   

6.2 Trabalhos Futuros 
Como dito anteriormente, a presente monografia demonstra o desenvolvimento de uma 
ferramenta de análise automática de diagramas de classes UML e restrições em OCL. No entanto 
essa análise é realizada para construções presentes no mapeamento desenvolvido entre os 
elementos mais importantes dos diagramas e que possuam um possível elemento que possa o 
corresponder em Alloy. Um trabalho futuro seria a busca por novas construções que não estejam 
presentes e que tenham a possibilidade de ser mapeadas, como o mapeamento da parte dinâmica 
dos diagramas. 
 Por ser o compilador desenvolvido de maneira modular, o acréscimo de alguma nova 
construção deverá ser realizado de maneira fácil, sem muitas complicações, e a partir da geração 
do código Alloy, também a análise poderá ser realizada.  

Existem outros trabalhos futuros que poderão ser desenvolvidos em cima da ferramenta 
construída nesta monografia com a finalidade de melhorar de alguma forma a utilização da 
mesma. O primeiro deles seria a criação de uma forma de se adquirir os dados do diagrama de 
classes UML no seu formato gráfico original e assim traduzir para o modelo XML representativo 
dos diagramas.  

Outro trabalho importante seria a criação de uma interface gráfica responsável por, após a 
geração do código Alloy resultante do compilador, solicitar ao usuário que informe os predicados, 
funções e afirmativas, bem como os  seus comandos relacionados. Isso retiraria essas construções 
do XML representativo dado como entrada para o mesmo, dando mais sentido à ferramenta. 
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XML resultante do contra-exemplo 

Este apêndice traz o XML resultante do contra-exemplo da subseção 5.3.1 do capítulo 5. 
 
 

<alloy builddate="2007/Apr/04 12:54 EDT"> 

<instance filename="" bitwidth="4" command="Check horas for 3"> 

<sig name="Pessoa"> 

<atom name="Professor[0]"/> 

   <atom name="Aluno[0]"/> 

   <atom name="Aluno[1]"/> 

</sig> 

<field name="idade"> 

     <type><sig name="Pessoa"/> <sig name="Int"/></type> 

<tuple><atom name="Professor[0]"/><atom name="7"/></tuple> 

     <tuple><atom name="Aluno[0]"/><atom name="7"/></tuple> 

     <tuple><atom name="Aluno[1]"/><atom name="5"/></tuple> 

</field> 

<sig name="Aluno" extends="Pessoa"> 

   <atom name="Aluno[0]"/> 

   <atom name="Aluno[1]"/> 

</sig> 

<sig name="Professor" extends="Pessoa"> 

   <atom name="Professor[0]"/> 

</sig> 

<sig name="Disciplina"> 

   <atom name="Disciplina[0]"/> 

   <atom name="Disciplina[1]"/> 

</sig> 

<field name="ministra"> 

<type><sig name="Disciplina"/><sig name="Professor"/></type> 

<tuple><atom name="Disciplina[0]"/><atom 

name="Professor[0]"/></tuple> 

<tuple><atom name="Disciplina[1]"/><atom 

name="Professor[0]"/></tuple> 

Apêndice A 
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</field> 

<field name="estuda"> 

     <type><sig name="Disciplina"/><sig name="Aluno"/></type> 

<tuple><atom name="Disciplina[0]"/><atom 

name="Aluno[1]"/></tuple> 

<tuple><atom name="Disciplina[1]"/><atom name="Aluno[1]"/> 

</tuple> 

</field> 

<field name="horasDiarias"> 

     <type><sig name="Disciplina"/><sig name="Int"/></type> 

<tuple><atom name="Disciplina[0]"/><atom name="4"/></tuple> 

     <tuple><atom name="Disciplina[1]"/><atom name="4"/></tuple> 

</field> 

<sig name="Int"> 

   <atom name="-8"/> 

   <atom name="-7"/> 

   <atom name="-6"/> 

   <atom name="-5"/> 

   <atom name="-4"/> 

   <atom name="-3"/> 

   <atom name="-2"/> 

   <atom name="-1"/> 

   <atom name="0"/> 

   <atom name="1"/> 

   <atom name="2"/> 

   <atom name="3"/> 

   <atom name="4"/> 

   <atom name="5"/> 

   <atom name="6"/> 

   <atom name="7"/> 

</sig> 

<sig name="seq/Int" extends="Int"> 

   <atom name="0"/> 

   <atom name="1"/> 

   <atom name="2"/> 

</sig> 

<set name="$a" type="Disciplina"> 

   <atom name="Disciplina[1]"/> 

</set> 

</instance> 

</alloy> 
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XML resultante da instância 

Este apêndice traz o XML resultante da instância da subseção 5.3.2 do capítulo 5. 

 
<alloy builddate="2007/Apr/04 12:54 EDT"> 

<instance filename="" bitwidth="4" command="Run idUnico for 5"> 

<sig name="Companhia"> 

<atom name="Companhia[0]"/> 

</sig> 

<sig name="Empregado"> 

<atom name="Empregado[0]"/> 

   <atom name="Empregado[1]"/> 

   <atom name="Empregado[2]"/> 

   <atom name="Empregado[3]"/> 

   <atom name="Empregado[4]"/> 

</sig> 

<field name="empregador"> 

     <type><sig name="Empregado"/><sig name="Companhia"/></type> 

<tuple><atom name="Empregado[0]"/><atom 

name="Companhia[0]"/></tuple> 

<tuple><atom name="Empregado[1]"/><atom 

name="Companhia[0]"/></tuple> 

<tuple> <atom name="Empregado[2]"/> <atom 

name="Companhia[0]"/></tuple> 

<tuple> <atom name="Empregado[3]"/> <atom 

name="Companhia[0]"/></tuple> 

<tuple> <atom name="Empregado[4]"/> <atom 

name="Companhia[0]"/></tuple> 

</field> 

<field name="id"> 

     <type><sig name="Empregado"/><sig name="Int"/></type> 

<tuple><atom name="Empregado[0]"/><atom name="7"/></tuple> 

     <tuple><atom name="Empregado[1]"/><atom name="6"/></tuple> 

     <tuple><atom name="Empregado[2]"/><atom name="5"/></tuple> 

     <tuple><atom name="Empregado[3]"/><atom name="3"/></tuple> 
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     <tuple><atom name="Empregado[4]"/><atom name="1"/></tuple> 

</field> 

<sig name="Int"> 

<atom name="-8"/> 

   <atom name="-7"/> 

   <atom name="-6"/> 

   <atom name="-5"/> 

   <atom name="-4"/> 

   <atom name="-3"/> 

   <atom name="-2"/> 

   <atom name="-1"/> 

   <atom name="0"/> 

   <atom name="1"/> 

   <atom name="2"/> 

   <atom name="3"/> 

   <atom name="4"/> 

   <atom name="5"/> 

   <atom name="6"/> 

   <atom name="7"/> 

</sig> 

<sig name="seq/Int" extends="Int"> 

<atom name="0"/> 

   <atom name="1"/> 

   <atom name="2"/> 

   <atom name="3"/> 

   <atom name="4"/> 

</sig> 

</instance> 

</alloy> 
 


