Departamento de

e

POLE Sistemas
ESCOLA POLITECNICA) .
DE PERNAMBUCO Computacionais

Um Guia para Controle de Versao de
Projeto de Software

Trabalho de Conclusao de Curso

Engenharia da Computacao

Adriano Nantua do Nascimento Carneiro
Orientador: Prof. Sérgio Castelo Branco Soares

Recife, novembro de 2007

dde

UNIVERSIDADE
DE PERNAMBUCO

e

Departamento de

POLE Sistemas
ESCOLA POLITECNICA) .
DE PERNAMBUCO Computacionais

Um Guia para Controle de Versao de
Projeto de Software

Trabalho de Conclusao de Curso

Engenharia da Computacao

Este Projeto € apresentado como requisito parcial
para obtencdo do diploma de Bacharel em
Engenharia da Computacdo pela Escola
Politécnica de Pernambuco — Universidade de
Pernambuco.

Adriano Nantua do Nascimento Carneiro
Orientador: Prof. Sérgio Castelo Branco Soares

Recife, novembro de 2007

ddd

UNIVERSIDADE
DE PERNAMBUCO

Adriano Nantua do Nascimento Carneiro

Um Guia para Controle de Versao de
Projeto de Software

-

ESCOLA POLITECNICA
DE PERNAMBUCO
i

Resumo

A disciplina de processo de Geréncia de Configuracdo e Mudancas tem como uma de suas
principais atividades a Geréncia de Configuracdo, que diz respeito a estrutura do produto de
software e ao monitoramento das modificacbes de artefatos ao longo do tempo, também
conhecido como controle de versdo. A Geréncia de Configuracédo afirma que o controle de versao
deve ser realizado em projetos de software. No entanto, ndo da informacdes de como o controle
de verséo deve ser feito. Este trabalho, um guia para controle de verséo de projeto de software,
propde uma definicdo de tal processo, determinando ferramentas, regras, politicas, padrdes,
fluxos de trabalho e melhores préticas, tendo com meta suprir a caréncia de orientacdes

pragmaticas quanto ao processo de controle de verséo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO
i

Abstract

The Configuration and Change Control process discipline has, as one of its main activities, the
Configuration Management. This activity deals with software product structure and change
monitoring over artifacts through time, also know as version control. Configuration Management
states that version control must be performed in software development projects. Nevertheless,
there are not instructions about how version control should be executed. This work, a guide to
software project version control, proposes a definition of such process, determining tools, rules,
policies, patterns, workflows and best practices, towards removing the lack of pragmatic

information on the version control process.

Sumario

Indice de Figuras
Tabela de Simbolos e Siglas

1 Introducéo

1.1 Objetivos
1.2 Estrutura do Trabalho
1.3 Contribuicdes

2 Controle de Versao

2.1 Arquitetura
2.2 Modelos de Versionamento
2.2.1 O Problema do Compartilhamento de Arquivos
2.2.2 O Modelo Lock-Modify-Unlock
2.2.3 O Modelo Copy-Modify-Merge
2.3 Outros Conceitos Basicos do Controle de Versao
2.3.1 Checkout e Update
2.3.2 Checkin/Commit
2.3.3 Merging e Conflito
2.3.4 Revision e Revision Number
2.35 Tags ou Labels
2.3.6 Branches

3 Subversion, um Sistema de Controle de Versao

3.1 Breve Histérico
3.2 Caracteristicas do Subversion
3.2.1 Versoes de Diretorios
3.2.2 Historico de Versdo Realista
3.2.3 Commits Atdmicos
3.24 Metadados e Versdes de Metadados
3.25 Tagging e Branching Eficientes
3.3 Sobre a Escolha do Subversion

4 Controlando Versdes com Subversion

4.1 Papel do Guia no Processo de Desenvolvimento
4.2 Premissas e Pré-requisitos
42.1 Ambiente e Ferramentas
422 Natureza dos Artefatos
4.3 Iniciando o Controle de Versao
43.1 Criando o repositdrio
43.2 Comandos do Subversion no Cliente
4.3.3 Layout do Repositério
434 Checkout e Commit Iniciais
4.4 Fluxo Basico de Trabalho

-

ESCOLA POLITECNICA
DE PERNAMBUCO

Vi

o ©

10

10
11
11
12
14
15
16
16
16
17
17
17

19

19
20
20
20
20
21
22
22

23

23
24
24
25
25
25
26
26
28
28

-

ESCOLA POLITECNICA
DE PERNAMBUCO

iv

4.4.1 Atualizando a Copia de Trabalho 28
4.4.2 Modificando a Copia de Trabalho 28
4.4.3 Examinando as Modificagdes da Copia de Trabalho 29
444 Desfazendo Alteragdes na Copia de Trabalho 30
445 Melhores Praticas nas Modificagbes da Copia de Trabalho 30
4.4.6 Registrando Mudancas no Repositério: Merges, Conflitos e Commit 31
4.4.7 Melhores Préticas no envio de Modifica¢des para o Repositério 33
45 Examinado o Histérico 34
4.6 Tagging e Branching 35
46.1 Tagging 36
46.2 Branching 36
4.6.3 Melhores préaticas em Branching 39
4.7 Um Fluxo Alternativo: Trabalhando com Patches 40
5 Conclusdes e Trabalhos Futuros 41

5.1 Trabalhos Futuros 41

Indice de Figuras

Figura 1.
Figura 2.
Figura 3.
Figura 4.
Figura 5.
Figura 6.
Figura 7.
Figura 8.
Figura 9.

Figura 10.
Figura 11.
Figura 12.
Figura 13.
Figura 14.
Figura 15.
Figura 16.
Figura 17.
Figura 18.
Figura 19.
Figura 20.

Funcionamento de um repositério simples (servidor de arquivos)

O problema do compartilhamento de arquivos

O modelo Lock-Modify-Unlock

O modelo Copy-Modify-Merge (parte 1)

O modelo Copy-Modify-Merge (parte 2)

Definicdo de uma tag

Uma situacéo de branching com posterior merging

O Fluxo da Gestao de Configuracdo de Mudanca, de acordo com o RUP [1]
Menu de op¢des do TortoiseSVN

Opcdes de layout para repositdrios com multiplos projetos

Windows Explorer com TortoiseSVN, indicando o status dos artefatos
Listagem detalhada de modificacdes da copia de trabalho.
Modificacdes detalhadas em um artefato.

Artefato em situacdo de conflito.

TortoiseMerge como ferramenta de resolugdo de conflitos

Tela de commit do TortoiseSVN.

Tela de log de modificagdes do TortoiseSVN

Produto de software com duas release branches

Tela de operacdo de Branch/Tag

Tela de Merge entre diferentes linhas de desenvolvimento

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vv

11
12
13
14
15
17
18
24
26
27
29
29
30
32
32
33
35
37
38
39

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vi

Tabela de Simbolos e Siglas

GCS Geréncia de Configuracao de Software
SCM Software Configuration Management, Geréncia de Configuragdo de Software, em
inglés
SVN Subversion, um sistema de controle de verséo
CVS Concurrent Versions System, um sistema de controle de versao
MS Microsoft
WEB Reducdo de World Wide Web (Rede Mundial de Computadores), conhecida também
como Internet
CCM Configuration and Change Management (Geréncia de Configuracdo e Mudancas)
CM Configuration Change Management (Geréncia de Configuragéo)

-

ESCOLA POLITECNICA
DE PERNAMBUCO
vii

Agradecimentos

Gostaria de agradecer, primeiramente, a Deus pelo privilégio, acima de tudo, de estar vivo,
premissa basica que as pessoas tendem a esquecer de levar em consideracéo.

Agradeco também a meus pais, Osmar e Teresa, por me proporcionarem uma educacao de
qualidade, tanto académica (nas escolas em que me colocaram) quanto moral e eticamente (em
casa). Sem essa base, ndo poderia ter chegado até aqui.

Tenho muito a agradecer a todos os Professores do DSC com que tive contato, todos
grandes profissionais e, principalmente, grandes pessoas. Agradecimentos especiais a Sérgio
Soares, cujas aulas ndo tive oportunidade de frequentar, mas cuja orientacdo neste TCC tive 0
privilégio de receber; a Ricardo Massa, um amigo que teve paciéncia (eu espero) com minha
indisponibilidade em semestres anteriores; e, finalmente, a Carlos Alexandre, um professor,
mestre e amigo, com quem aprendi, mesmo que ele ndo saiba, bem mais que algoritmos e &rvores
binarias.

Agradeco muito aos colegas que tive ao longo do curso, que me ajudaram com seu
incentivo e injecbes de animo, em especial aos amigos Tulio Campos, Bruno Ardxa, Pedro
Franca e César Augusto.

Por fim agradeco a minha esposa Marcia, minha companheira de vida, sem cujo apoio,
incentivo e compreensdo eu néo teria sido capaz de concluir este trabalho, e a meu filho do
coracao Arthur, cujos abracos e risadas tém poderes de fortalecimento e cura para a alma. Dedico
este trabalho a eles, minha familia, com quem aprendo diariamente o valor do suor e do sorriso,
da responsabilidade e da leveza, da felicidade, da sintonia e da alegria insubstituivel e
incomparavel de viver nossas vidas sob tutela do amor.

Muito obrigado a todos vocés.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

8

Capitulo 1

Introducao

Um projeto de software é composto por um conjunto de diversos tipos de arquivos, que quando
devidamente processados e compilados resultam em um ou mais arquivos binarios que sao o
produto final do projeto, o software. Como o software pode ser reconstruido a partir de seus
arquivos-fonte, faz-se imprescindivel o controle sobre esses artefatos.

O controle de versdo € a atividade basica e primordial dentre as atividades de apoio ao
desenvolvimento de software geralmente definidas na Geréncia de Configuracdo de Software
(GCS ou Software Configuration Management — SCM) [1]. Muitos dos problemas que ocorrem
durante o processo de desenvolvimento sdo causados pelo controle ineficaz e/ou inexistente dos
artefatos de um projeto de software.

A atividade de controle de versdo dentro de uma organizacao é definida por politicas que
determinam: os processos e procedimentos a serem seguidos, bem como a forma de executa-los,
as boas praticas e situacdes a evitar; e a ferramenta a ser utilizada. Da falta de politicas definidas
e, por conseguinte, de uma ferramenta que auxilie o controle de versdo decorrem 0s seguintes
problemas:

e Perda de versdes anteriores do projeto;

e Sobrescrita e/ou exclusdo acidental de item de configuragéo;

e Perda de trabalho decorrente de alteracbes feitas sobre uma verséo antiga e/ou

incorreta;

e Dificuldade na manutencao simultanea de diferentes versdes do projeto;

e Perda de trabalho decorrente da concorréncia dos membros da equipe por itens de

configuracéo;

e Dificuldade (ou impossibilidade) na auditoria de alteracdes dos itens de configuracao.

Dado o contexto, torna-se imprescindivel que projetos de software possuam um processo
de controle de versdao bem definido. Toda a literatura sobre SCM disponivel confirma que o
controle de verséo deve ser realizado. Contudo, esta mesma literatura ndo define como o controle
de versdo deve ser feito, ndo existindo guias previstos em SCM para este processo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

9

1.1 Objetivos

Existem fontes de informacGes, espalhadas e fragmentadas, sobre como realizar controle de
versdo. No entanto, ndo existe um guia unificado que centralize em um Unico documento um
modelo de trabalho completo para este processo. Dada a falta de guias que definem um processo
de controle de versdo, este trabalho tem como objetivo fornecer subsidios concretos para a
definicdo de um Plano de Geréncia de Configuracdo (Configuration Management Plan) [1], um
documento previsto nos processos de SCM. O proposito deste guia é definir, no que diz respeito
ao controle de versdo de artefatos de projeto, um modelo de trabalho consistente, seguro, eficaz e
experimentado para projetos de desenvolvimento de software em equipe.

Este guia foi concebido tendo como base minhas experiéncias profissionais como gerente
de projetos e de configuragdo, onde tive a oportunidade de planejar, executar e acompanhar o
controle de versao em diversos projetos de desenvolvimento de software com equipes.

1.2 Estrutura do Trabalho

Este trabalho, um guia para controle de versdo de projeto de software, foi estruturado e dividido
em 5 capitulos.

No Capitulo 2 é apresentada a fundamentacdo teorica sobre controle de verséo,
introduzindo os conceitos fundamentais, nogdes basicas, definicbes e contextualizagdes sobre o
tema. A apresentacdo da ferramenta utilizada no guia é feita no Capitulo 3, onde o sistema de
controle de versdo (Subversion), suas caracteristicas, vantagens e as razGes de sua escolha é
apresentado. O Capitulo 4 descreve a metodologia de controle de versdo, o objetivo centro do
trabalho, onde os fluxos de trabalho, politicas e melhores praticas no controle de versdo de
projeto de software sdo definidos. Por fim, o Capitulo 5 apresenta as conclusdes, consideracdes
finais e trabalhos futuros.

1.3 Contribuicoes

Este trabalho tem como suas principais contribui¢es:

e A apresentacdo de uma sélida fundamentacdo tedrica sobre controle de verséo,
abrangendo os diversos pontos indispensaveis ao entendimento desse processo;

e A definicdo de um processo completo de controle de versao de projeto de software:

0 As ferramentas a serem utilizadas, com os fundamentos sobre seu uso;
o0 O ambiente minimo dos projetos e sua configuracao;

o0 A definigdo de regras, politicas e padrdes;

0 Os fluxos de trabalho basicos, avancados e alternativos;

o0 As melhores préticas, em cada uma das etapas do processo;

e Possibilitar que um profissional da area de computacdo com um minimo conhecimento
em configuracdo de ambientes de trabalho e em projetos de desenvolvimento de software
seja capaz de implantar com sucesso em uma organizacdo uma politica simples, mas
eficiente, de controle de versdes;

¢ Incentivar que empresas que nao possuem controle de versdo de software possam ver no
guia uma oportunidade de utilizar uma metodologia pronta para esse processo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

10

Capitulo 2

Controle de Versao

Este capitulo tem como objetivo apresentar conceitos fundamentais sobre o controle de versdo em
projetos de software, expondo, ao longo das secdes a seguir, nogdes basicas, definicbes e
contextualizagdes compondo uma base tedrica.

2.1 Arquitetura

Uma equipe trabalhando em um projeto de software consiste, em linhas gerais, em individuos que
compartilham recursos, os artefatos do projeto. Estes artefatos sdo arquivos de diversos tipos e
naturezas, tais quais codigos-fonte, scripts, configuracfes, documentacdo, automac@es de tarefas,
entre outros, 0s quais no &mbito de SCM sdo também usualmente denominados itens de
configuracdo (configuration items) [1]. O software é construido através das sucessivas
modificagcdes feitas sobre este conjunto de arquivos, pela criacdo, alteracdo e exclusdo desses
recursos. Desta forma, € fundamental garantir que o time tenha acesso a esse conjunto de recursos
em seu estado mais atual e integro, com todas as modificacdes realizadas pelos demais membros.
A maneira mais simples de atingir este cenario é criando uma area dentro da organizacao onde
sdo armazenados os artefatos do projeto mais atuais, ficando disponiveis para todos os
componentes da equipe. A esta area centralizada de arquivos da-se o nome de repositorio [2, 3,
4, 5].

Fazer com que 0os membros da equipe trabalhem diretamente nos itens de configuracédo
localizados no repositério constitui uma péssima pratica, apresentando os seguintes problemas:

e Em consequéncia de modificacbes parciais, o conteddo do repositorio estara
constantemente “em alteracdo” e dificilmente contera uma versdo do software estavel
ou até mesmo compilavel;

e Devido a simultaneidade de acesso, o trabalho de um componente do time tem grande
probabilidade de interferir no trabalho dos demais.

Desta forma um outro modelo de trabalho deve ser adotado. Em linhas gerais, o trabalho
conceitual basico da equipe com um repositério, ilustrado pela Figura 1, é extremamente simples,
funcionando em um esquema de cliente/servidor. Para efetuar mudancas, corrigir problemas ou
adicionar funcionalidades no software, um membro da equipe efetua uma copia (operacéao
representada na figura pela seta rotulada de Leitura) dos artefatos do projeto (representados pelo
icone de conjunto arquivos) do repositorio para uma area privada em sua estacdo cliente. O
conjunto de arquivos copiados para a estacdo cliente € comumente chamado de &rea de trabalho

-

ESCOLA POLITECNICA
DE PERNAMBUCO

11

(workspace) [1, 2, 5] ou copia de trabalho (working copy) [2, 4] e sobre esta cOpia é que seréo
feitas as modificagdes. Ao concluir as modificacbes, 0 componente da equipe envia para o
repositorio o conteudo de sua area de trabalho (operacdo representada pela seta rotulada de
Escrita), atualizando assim o repositorio, que passara a dispor do conjunto de arquivos em seu
estado mais atual. Assim, quando um segundo membro da equipe atualizar sua copia de trabalho,
ele tera as modificacOes realizadas pelo primeiro.

/ Repositorio -\

(Servidor)

Leitura Leitira
Escrita
Copia de Trabalho Copia de Trabalho
(Cliente 1) (Cliente 2) _/

Figura 1. Funcionamento de um repositdrio simples (servidor de arquivos)

Conceitualmente, as nogdes de repositorio e de area/copia de trabalho independem de uma
ferramenta ou tecnologia especifica, podendo este esquema ser implementado desde atraves de
um diretorio compartilhado por um servidor de arquivos até um complexo sistema de controle de
versdo, como sera apresentado nas proximas secoes.

2.2 Modelos de Versionamento

O modelo simplificado apresentado na secéo anterior apresenta brechas que podem levar a falhas
que comprometem todo o trabalho da equipe. Nesta secdo, € apresentado um problema cléssico
do tema e suas solugdes, cada uma com as devidas consideracdes.

2.2.1 O Problema do Compartilhamento de Arquivos

Um dos problemas fundamentais que os sistemas de controle de versdo devem resolver € permitir
gue os componentes de uma equipe compartilhem os dados do repositorio de forma simultanea
sem que haja interferéncia eles, o que pode acarretar na perda de modificagdes efetuadas.

O modelo de servidor de arquivos simples introduz o problema do compartilhamento de
arquivos, ilustrado na Figura 2. No cenario apresentado, dois desenvolvedores (Adriano e
Marcia) alteram simultaneamente o Artefato A (representado pelo icone de documento). Ao
enviar suas alteracfes para o0 repositorio primeiro, Adriano corre o risco de ter sua versao
sobrescrita pela versdo de Marcia, devido ao formato e as condicdes técnicas do modelo.

/_ Dois desenvolvedores efetuam \

_ned

ESCOLA POLITECNICA

Ambos efetuam alteracoes em

DE PERNAMBUCO
12

leitura do mesmo arquivo suas respectivas copias de trabalho

Repositario

A

Repositorio

B

Leitura Leitura

A A

Mércia/

/,._Adrianﬂ envia primeiro sua versﬁu;\\l
para o repositorio

AI | Arl |
\Adriann Hércia/

Marcia acidentalmente
sobrescreve a versao de Adriano

l\Ad riano

Repositorio Repositario

Escrita

Adrianﬂ M.r:'lrcia./ kﬁ.drianﬂ Mércia_./

Figura 2. O problema do compartilhamento de arquivos

Obviamente, o cenario apresentado deve ser evitado, jA& que o trabalho de um
desenvolvedor foi sumariamente desprezado e a versdao do repositdrio ndo apresenta o que
deveria ser a versdo mais atual do software.

2.2.2 O Modelo Lock-Modify-Unlock

Alguns sistemas de controle de versdo utilizam o modelo Lock-Modify-Unlock (Travar-
Modificar-Destravar) [3,4] para solucionar o problema apresentado na secdo anterior. Neste
modelo, o repositério permite que somente uma pessoa por vez efetue modificacdes sobre um
artefato, sendo esta politica de exclusividade gerenciada através do uso de travamentos (locks).

No modelo Lock-Modify-Unlock, contextualizado na Figura 3, o desenvolvedor deve
travar (lock) o arquivo antes de efetuar sobre ele modificacbes. Assim, um segundo
desenvolvedor ndo conseguiria travar o mesmo artefato e, portanto, ndo poderia realizar
modificagOes sobre este, podendo apenas efetuar uma leitura simples (sem possibilidade de
alteracé@o) e esperar que o primeiro desenvolvedor termine suas modificagdes sobre o artefato e
remova a trava.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

13
Adrianeo trava o artefato A, _\ Enquanto Adriano muda o .z.‘r'l‘r_-.-"al‘l-:r_:"\I
copiando-o para edicdo Mdrcia tenta travd-lo, sem sucesso
Repositorio Repositario

Leitura

I\Adriano Mércia/ \Adriano Mércia/

f/_ Adriano envia sua versio e —'\I /Agara, Mdrcia pode travar, ler E_'\'
remove sua trava editar a versao mais atual do artefato

Repositorio Repaositario

AI

Escrita Leitura

l\Adrianﬂ M.r:'lrcia_./ kﬁudrianﬂ Mérciaj
Figura 3. O modelo Lock-Modify-Unlock

Além de ser restritivo, 0 modelo Lock-Modify-Unlock apresenta problemas que podem
tornar seu uso desaconselhado. Primeiramente, o travamento de artefatos pode causar problemas
administrativos. Contextualizando um cenario onde o desenvolvedor Adriano trava um arquivo e
simplesmente esquece de destrava-lo (por exemplo, focando em modificacdes de outros artefatos
do projeto), Marcia nada pode fazer alem de esperar. Piorando o cenario, Adriano pode ficar
ausente (férias, por exemplo), fazendo com que seja necessaria intervencdo administrativa para
remover a trava. A situacdo acaba causando desnecessarios trabalho adicional e perda de tempo.

Além disso, o travamento de artefatos causa serializacdo de trabalho desnecesséria. Em
novo cenario, Adriano estd modificando a por¢édo inicial de um arquivo-fonte (um método
especifico de uma classe, por exemplo) e Marcia precisa modificar a por¢do final do mesmo
arquivo (por exemplo, outro método da mesma classe, totalmente independente do primeiro). Nao
h& razdo para que o trabalho ndo possa ser feito simultaneamente, dado que as modificagdes ndo
causam interferéncia muatua e presumindo que haja mecanismos eficazes de mesclar as alteracdes.
Deste modo, a espera pelo destravamento é desnecessaria e constitui perda de tempo.

Por fim, o travamento de artefatos causa uma falsa sensacdo de seguranca. Em mais um
cenario hipotético, Adriano trava e modifica o artefato A enquanto Marcia faz 0 mesmo com o
artefato B. Se os artefatos A e B dependem mutuamente um do outro e as mudancas realizadas
sdo semanticamente incompativeis (uma mudanca brusca de conceito, por exemplo), A ¢ B
passam a ndo mais funcionar juntos e o modelo nada p6de fazer para evitar o problema. Um outro
cenadrio mostra que o modelo possibilitaria uma situacdo de Deadlock no desenvolvimento:
Adriano trava e modifica A enquanto Marcia faz 0 mesmo com B. Se, durante o

-

ESCOLA POLITECNICA
DE PERNAMBUCO

14

desenvolvimento, Adriano percebe que sua modificacdo em A implica em um ajuste em B e
Marcia, por sua vez, verifica que sua modificacdo em B exige uma alteracdo em A, surge o
classico problema do Deadlock, factivel em contextos onde recursos séo compartilhados de forma
exclusiva. Concluindo, os desenvolvedores imaginam que, ao travar 0s arquivos, estdo iniciando
uma tarefa segura e isolada, o que pode n&o vir a se configurar.

2.2.3 O Modelo Copy-Modify-Merge

Os sistemas de controle de versdao mais modernos e amplamente utilizados fornecem ferramentas
que possibilitam a utilizacdo do modelo Copy-Modify-Merge (Copiar-Modificar-Mesclar) [3,5]
como uma alternativa ao travamento de artefatos no repositorio. Este modelo permite que a
equipe efetue modificagcbes em suas copias de trabalho privadas de forma simultanea e
independente. Ao final do processo, as cOpias privadas sdo mescladas (quando necessario) em
uma nova e unica versao final. Geralmente, o sistema de controle de versdo em uso assiste na
tarefa de mesclar dos artefatos (ou o faz por conta prépria, dependendo da ferramenta), mas em
Gltima instancia é responsabilidade do desenvolvedor fazer com que a mesclagem seja feita
corretamente. O funcionamento do modelo Copy-Modify-Merge é exemplificado através do
cenario ilustrado nas Figuras 4 e 5.

Dois desenvolvedores efetuam _\ /,_Amf.ms efetuam modificacoes em_-\.l

copia do mesmo artefato suas copias de trabalho
Repositorio Repositario
A | A I
Leitura Leifura
N
A A A i
\\Ad riano Mércia/ \Ad riano Mércia/
/_Mérc:'a envia sua versio antes de"\l ﬁ envio da versdo de Adriano fama_:'\
Adriano enviar a sua por estar desatualizada
Repositorio Repaositario

Escrita

Escrita

l\Adrianﬂ M.r:'lrcia_./ kﬁudrianﬂ Mérciaj
Figura 4. O modelo Copy-Modify-Merge (parte 1)

Nesse modelo, as ferramentas utilizadas ddo condicGes técnicas tanto ao repositério
guanto a copia de trabalho de consistir as versdes que transitam entre estas duas areas. Desta

_ned

ESCOLA POLITECNICA
DE PERNAMBUCO

15
forma, o repositorio tem a capacidade de aceitar ou ndo uma tentativa de escrita, comparando a
versao corrente do artefato no repositério com a versao do artefato na copia de trabalho antes da
mudanca.

/.-é_ldﬂ'.mﬂ copia a versio mais nav.]:\
comparando-a com a sua

Uma nova versio mesclada é criac?;\
na drea de trabalhe de Adriano

Repositorio Repositorio

A!I

Lertura

A'A" A"

Mércia/

/.— A versio mesclada é enviada -\‘l
para o repositério

Arl

\Adriann Mércia/

{_Agnra ambos os dESEHVD!VEdB!’ES\
tém as modificagbes um do outro

_Ad riano

Repositario Repositorio

Escrita Lertura

M.r:'lrcia_./ kﬁudriann Mérciaj

Figura5. O modelo Copy-Modify-Merge (parte 2)

_Ad riano

Ao ter rejeitada uma tentativa de escrita apds verificacdo de versdo, resta ao
desenvolvedor atualizar sua copia de trabalho, no intuito de obter as alteracfes feitas por outros
desenvolvedores. Neste momento, é realizada a mesclagem das duas versdes do artefato (a do
repositorio e a da copia de trabalho do desenvolvedor), criando-se uma nova versdo contendo
todas as alteracOes feitas pelos desenvolvedores envolvidos no processo. Esta nova verséo, por
sua vez, tera a tentativa de escrita aceita pelo repositorio.

Apesar de parecer um tanto cadtico, o modelo Copy-Modify-Merge funciona bem na
pratica, eliminando os principais problemas apresentados pelo modelo Lock-Modify-Unlock.
Quando dois ou mais desenvolvedores trabalham em paralelo em um mesmo artefato, na maioria
das vezes suas modificacbes ndo se sobrepdem. Ainda assim, o tempo que se levaria para resolver
este tipo de situacdo € muito menor que o tempo perdido pelo uso de travamento de artefatos.

2.3 Outros Conceitos Basicos do Controle de Versao

Durante as secOes anteriores deste capitulo, alguns conceitos basicos do controle de versao ja
foram apresentados e fundamentalmente embasados, tendo em vista que se fizeram necessarios

-

ESCOLA POLITECNICA
DE PERNAMBUCO

16
ao entendimento das nocGes descritas. Em resumo, foram eles: Artefatos de projeto e Itens de
Configuracio; Repositorio; Area de Trabalho (workspace) ou Copia de Trabalho (working copy);
Travamento e Destravamento de artefatos. Esta secdo tem como objetivo apresentar outros
conceitos fundamentais no tema que ndo tiveram a oportunidade de serem citados até ent&o.

2.3.1 Checkout e Update

Checkout [2, 3, 4, 5] consiste no ato de realizar a copia dos artefatos do projeto do repositorio
para a cépia de trabalho.

Para alguns sistemas de controle de versdo, como o CVS e o Subversion, o check out
significa somente realizar a primeira leitura de artefatos do repositorio, realizando-se a cria¢do da
area de trabalho do desenvolvedor; as subsequientes leituras do repositorio para obter novas
modificacOes realizadas por outros desenvolvedores na copia de trabalho ja criada sdo chamadas
de updates (atualizacGes) [2, 3, 4, 5]. Em outros sistemas de controle de versédo, como o Visual
Safe Source (VSS), ndo h& distincdo entre a primeira leitura e as demais verificagdes de
modificacdes, sendo todas chamadas de check out.

Nas figuras apresentadas anteriormente, as operacoes de check out e update sdo indicadas
pela seta rotulada de “Leitura”.

2.3.2 Checkin/Commit

Checkin [2, 3, 4, 5] consiste no ato de enviar para o repositorio as alteracdes realizadas na copia
de trabalho do desenvolvedor. Em alguns sistemas de versdo, como o CVS e o Subversion, esta
operagdo € denominada commit [2, 3, 4, 5]. Em geral, os sistemas de controle de versdo
possibilitam a digitacdo de uma mensagem de texto associada ao commit, a qual o desenvolvedor
deve preencher com informacgdes sobre o que foi feito na alteracdo sendo enviada para o
repositorio. Esta mensagem é de extrema importancia na rastreabilidade das modificacfes em um
repositorio.

Nas figuras apresentadas anteriormente, as operagdes de checkin/commit sdo indicadas
pela seta rotulada de “Escrita”.

2.3.3 Merging e Conflito

Merging (Mesclagem ou Fuséo) [2, 3, 4, 5] consiste no ato de mesclar ou fundir duas versodes
diferentes de um mesmo artefato, criando uma terceira e nova versao deste artefato que contém
todas as modificacOes presentes nas duas versdes anteriores. Basicamente, existem dois diferentes
contextos em que a pode ocorrer merging: quando se realiza uma atualizacdo de um artefato que
foi modificado tanto localmente quanto no repositorio (contexto que sera descrito nesta se¢do e
que também pode ser observado na Figura 5) ou quando se trabalha com branches (ver secdo
Branches).

Sistemas de controle de versdo como CVS e Subversion, através de um mecanismo de
comparacdo e indexacdo de linhas, tentam realizar mesclagem automéatica no momento em que é
realizado um update em um artefato que foi alterado na cdpia de trabalho e cuja versdo no
repositério € posterior a versdo local.

Vale ressaltar que a mesclagem automatica ndo € possivel para todo e qualquer tipo de
artefato: basicamente apenas arquivos que contém texto plano (como, por exemplo, arquivos de
codigo-fonte e XML, entre tantos outros) oferecem possibilidade de mesclagem automatica.

Quando as modificagfes nas duas versdes a serem mescladas estdo localizadas em
diferentes trechos dentro do artefato, a mesclagem automatica € bem sucedida. O caso contrério,

-

ESCOLA POLITECNICA
DE PERNAMBUCO

17
onde as modificacdes se sobrepdem, é denominado de conflito (conflict) [2, 3, 4, 5]. Conflitos
devem ser resolvidos por um ser humano, contudo, mesmo sendo uma tarefa manual na esséncia,
os sistemas de controle de versdo fornecem ferramentas para auxiliar os desenvolvedores na
conciliacdo de conflitos, apontando os pontos conflitantes no artefato e as op¢des de mesclagem.

2.3.4 Revision e Revision Number

Sob a tutela de um sistema de controle de versdo, sempre que um artefato € modificado no
repositorio, é criada uma nova revision (revisdo) [2, 3, 4, 5], a qual recebe um revision number
(nimero de revisao) [2, 3, 4]. A maioria dos sistemas de controle de versédo atribui os niUmeros de
revisdo por artefato, ou seja, cada artefato possui seu préprio nimero de revisdo. O Subversion
atribui 0 nimero de revisao a arvore inteira do projeto, conforme sera mostrado mais adiante.

2.3.5 Tags ou Labels

Uma tag (Marcacdo) [2, 3, 4] ou label (rétulo) [5] €, de forma pragmatica, uma “fotografia” do
repositorio em um determinado momento. Atraves da criacdo de tags, o sistema de controle de
versdo permite que seja possivel dar um nome significativo (release-1.0, por exemplo) a uma
versdo do conjunto de artefatos do repositorio correspondente a um determinado ponto no tempo,
para posterior acesso.

A Figura 6 ilustra a criacdo de uma tag. A linha horizontal representa a evolucgéo da linha
principal de desenvolvimento ao longo do tempo. Cada versdo dos artefatos é indicada por um
circulo, contendo o numero da versdo ou 0 nimero da revisdo dos artefatos. A tag é representada
pelo icone de uma etiqueta. No exemplo apresentado pela figura, foi criada uma tag da revisdo de
numero 3 dos artefatos do projeto, indicando um nome significativo para esta reviséo.

4 N
O—O—0—

3
beta.release
0.9.12

- _J

Figura 6. Definicdo de uma tag

Tags sdo uteis para manter versdes de momentos-chave do projeto de software ao longo
do tempo.

2.3.6 Branches

Normalmente, uma equipe trabalha na linha principal de desenvolvimento do projeto de software,
onde sdo encontrados os artefatos em sua versao mais atual. No entanto, ha situacGes em que é
necesséria a utilizacdo de outras linhas de desenvolvimento, paralelas & linha principal. Um
branch (ramificacdo) [2, 3, 4, 5] € uma linha de desenvolvimento independente, que funciona
como um repositorio paralelo do mesmo projeto, mas que mantém um vinculo histérico com a
linha principal.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

18

Tecnicamente, é possivel fazer branch de um Unico artefato, de um conjunto de artefatos
ou de toda a &rvore do projeto, podendo esse branch ser criado a partir da linha principal de
desenvolvimento, de uma tag ou mesmo de outro branch.

A Figura 7 ilustra uma situacdo em que foi utilizado o recurso de branching. No contexto
apresentado, a linha de desenvolvimento principal de um produto evoluiu até sua versdo 2.0, que
foi disponibilizada para os usuérios. Ao continuar a evolugdo do produto, através da criagdo de
novas funcionalidades que acabarédo por ser langadas na futura versdo 3.0, 0s usuarios do produto
indicam problemas e ajustes a serem realizadas na versdo 2.0 langada. Ndo € possivel, neste
momento, corrigir os problemas indicados na linha principal, pois nesta linha o produto nao esta
numa versao estavel para ser liberada para os usuarios. Assim, a solugdo foi criar uma linha
paralela de desenvolvimento, um branch criado a partir da versédo 2.0 (indicado pela seta rotulada
“branch”), cujos artefatos do projeto correspondem a versdo do produto em posse dos usuarios.
Nesta nova ramificacdo, foram corrigidos os problemas relatados e realizados os devidos ajustes,
sendo gerada a versao 2.1, que pode ser liberada para os usuarios.

4 N\

Produto
Release 2.0

. J

Figura 7. Uma situacdo de branching com posterior merging

Este mesmo branch tem a possibilidade de continuar a evoluir em paralelo a linha
principal de desenvolvimento, atraves outras correcfes e ajustes (no exemplo, € gerada a versao
2.2 do produto). Por fim, sera necessario que as corre¢des e 0s ajustes realizados na linha paralela
sejam incorporados na linha principal de desenvolvimento. Esta agdo é realizada através de um
merge (indicada por uma seta pontilhada, rotulada “merge”) da versdo 2.2 (a versdo origem do
merge, localizada no branch paralelo) para a versdo 3 (a versdo destino do merge, localizada na
linha principal de desenvolvimento). Esta operacdo, conforme ja foi descrito na secdo sobre
merging, é auxiliada pelo sistema de controle de versdo, que pode desde realizar mesclagem
automatica a fornecer ferramentas que assistam o desenvolvedor na mesclagem manual.

Branching ¢ um importante mecanismo no controle de vers@es, fornecendo ao projeto
diversas vantagens no decorrer do desenvolvimento. Contudo, a ramificacdo de linhas de
desenvolvimento é um instrumento que deve ser utilizado com inteligéncia, cautela e muita
comunicacdo interna na equipe. A utilizacdo de branches serd explorada mais detalhadamente
mais a frente neste guia.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

19

Capitulo 3

Subversion, um Sistema de Controle
de Versao

A metodologia de trabalho contida neste guia foi desenvolvida utilizando-se do Subversion, um
sistema de controle de versdo. O objetivo deste capitulo é apresentar esta ferramenta, incluindo
um breve historico, caracteristicas, particularidades, beneficios e as razdes de sua escolha como
instrumento para o controle de versdo deste guia.

3.1 Breve Histdrico

Por muitos anos, o Concurrent Versions System (CVS) [2, 3, 4, 5, 6, 7] foi o mais popular sistema
de controle de versdo no mundo do Open Source Software (Software de Codigo Aberto), sendo
considerado praticamente um padrao nesta esfera, mas também frequentemente adotado fora dela.
Extensivamente utilizado ainda hoje, a popularidade desta ferramenta é facilmente explicada: o
proprio CVS € um software de codigo aberto; seu modo de utilizacdo néo é restritivo, ou seja, ndo
ha somente uma forma de trabalhar com CVS, permitindo a adocdo de diferentes politicas de
acordo com o projeto; baseado no modelo de versionamento Copy-Modify-Merge, mas
possibilitando também o uso de locks; amplo suporte em operacfes pela rede, permitindo que
desenvolvedores geograficamente separados pudessem compartilhar projetos e unir esforcos.
Estas caracteristicas tornaram o CVS uma das pedras angulares da cultura de codigo aberto.

Apesar de ter sua utilizacdo altamente difundida, o CVS tem algumas deficiéncias,
apresentando varios problemas, falhas e limitacGes (que serdo apresentadas mais adiante) que
tornavam seu uso, em alguns momentos, ineficiente, ineficaz, inconsistente e até mesmo irritante.
Considerando que consertar as deficiéncias do CVS seria uma operacdo que demandaria
excessivo tempo e esfor¢o, um grupo de pessoas (entre elas desenvolvedores do CVS, usuarios de
CVS e autores de livros sobre CVS) apoiado por uma empresa (CollabNet) resolveu criar um
novo sistema de controle de versao de cddigo aberto. Este nova ferramenta, o Subversion (SVN)
[2, 3, 4, 7], deveria fornecer funcionalidades similares as do CV'S, preservar 0 mesmo modelo de
desenvolvimento e ndo apresentar as falhas e limitacdes de seu antecessor, de forma que fosse
similar o suficiente para que usuarios do CVS pudessem realizar a migragdo com um minimo de
esforco e aprendizado. Desta forma, o Subversion foi construido, tendo sua versédo 1.0 langada no
inicio de 2004.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

20

Apesar de ndo poder ser considerado o proximo passo evolutivo das ferramentas de
controle de versdo, o Subversion é o sucessor melhorado do CVS e vale ressaltar que este seu
antecessor ja se encontra varios passos adiante de outras ferramentas do género. Isso coloca o
Subversion muito a frente do que existe atualmente na esfera do cddigo-aberto, sendo inclusive
um competitivo sério das ferramentas pagas. Por todo o contexto apresentado, o Subversion
ocupa atualmente (no lugar de seu antecessor) a posicdo de ferramenta padrdo para 0S novos
projetos de codigo aberto, sendo gradualmente adotado em projetos ja existentes que utilizam seu
antecessor, o CVS.

3.2 Caracteristicas do Subversion

Transcorrida a devida apresentacdo do Subversion (e sua similaridade com o CVS), esta secao
tem como objetivo descrever as caracteristicas mais relevantes para este guia desse sistema de
controle de versdo. Serdo também descritas, quando pertinente, as vantagens do Subversion sobre
Seu antecessor.

3.2.1 Versoes de Diretorios

O CVS mantém o registro historico de modificacdes apenas de arquivos, individualmente. O
Subversion, no entanto, implementa um sistema de arquivos capaz de registras o histérico de
mudancas de arvores de diretorio inteiras ao longo do tempo, ou seja, 0 Subversion controla ndo
s0 as versdes dos arquivos, como também dos diretorios.

3.2.2 Historico de Versao Realista

Como o CVS controla somente a versdo de arquivos individualmente, opera¢es como copiar ou
renomear arquivos, que podem acontecer a arquivos mas sao na verdade mudangas no contetdo
de um diretdrio, ndo sdo suportadas. Como um efeito colateral indesejado, ao excluir um arquivo
e alguns check ins depois incluir um outro arquivo com 0 mesmo nome, o novo item herdara todo
0 historico do item anterior, mesmo que 0 novo arquivo tenha pouco ou nada a ver com 0
anterior. Com o Subversion, é possivel adicionar, excluir, copiar e renomear tanto arquivos
quanto diretdrios. Cada novo item adicionado tem um histérico préprio, limpo e novo.

3.2.3 Commits Atdmicos

Ao contrério do que acontece no CVS, no Subversion um conjunto de modificagcdes (que pode
envolver diversos arquivos e diretorios) € enviado para o repositorio de forma atdmica, ou seja,
ou todas as modificagdes sdo registradas no repositorio ou nenhuma é. Inicialmente, isso pode
ndo parecer importante, mas em um sistema de controle de versdo onde esta caracteristica néo
esta presente, 0s seguintes efeitos colaterais indesejados podem ocorrer:

e Cenério 1: Em um commit de trés artefatos, o ultimo na lista de envio ndo esta
atualizado na copia de trabalho e tera seu recebimento rejeitado pelo repositorio. Se o
commit ndo for atdbmico, o repositério aceitard os dois primeiros, o que acarretard em
uma inconsisténcia dos artefatos no repositorio, ja que as modificacdes realizadas pelo
desenvolvedor s6 funcionariam, por exemplo, se todos os arquivos tivessem sido
enviados com sucesso. No caso de commit atdbmico, todos os trés itens seriam
rejeitados, ndo permitindo inconsisténcias no repositério.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

21

e Cenérios 2: Um desenvolvedor realiza um commit com 200 artefatos, operacdo que
tem uma laténcia de tempo para acontecer. Em um commit ndo atémico, enquanto esta
operacdo esta em andamento, é possivel que um outro desenvolvedor efetue update
em sua copia de trabalho e obtenha algumas das modificacdes presentes no commit
mencionado acima, mas ndo todas, causando uma inconsisténcia em sua area de
trabalho. No caso de commit atdbmico, esta inconsisténcia ndo seria possivel ja que o
segundo desenvolvedor teria em sua cdpia de trabalho ou a versdo do repositério antes
do commit ou a versao depois do final do commit, dependendo do momento em que o
update foi comandado.

Como conseqliéncia da caracteristica de commit atdmico, o nimero de revisdao no
Subversion tem uma regra diferente do numero de revisdo no CVS. No CVS, 0s nameros de
revisdo sdo atribuidos por artefato. Assim, é possivel, por exemplo, um repositorio conter dois
artefatos: um com o nimero de revisao 2 (ou r2, aderindo a notacao de nimero de revisao [2, 3,
4, 5]) e outro com o namero de revisdo r123. Neste conceito o nimero de revisao de um artefato
significa o numero de vezes que o artefato foi modificado (incluindo sua criacéo).

No Subversion, o conceito de nimero de revisdo tem outro contexto: aplica-se ao
repositorio como um todo, ou seja, € um numero de revisdo global. Neste conceito, o nimero de
revisdo rN representa o estado do repositério apds o enésimo commit. Desta forma, quando a
equipe de desenvolvimento se refere, por exemplo, a “r456 do artefato Fachada. java”, isso ndo
significa que este artefato foi modificado 456 vezes, mais sim que a equipe se refere a
“Fachada. java como estava na revisdo 456 do repositorio”.

Esse conceito de nimero de revisdo decorrente de commit atdbmico auxilia em algumas
tarefas como, por exemplo, reverter a uma versdo anterior do repositério (0 que é bastante
delicado quando cada arquivo possui um numero de revisdo diferente) ou obter respostas a
perguntas como “o que foi modificado entre as revisdes 75 e 78?”.

Por fim, a introducdo deste conceito parece levar a “perda da informacgédo” da quantidade
de mudancas por artefato em seu numero de revisdo. No entanto, o Subversion possui
mecanismos que determinam facilmente a quantidade de mudancas em um artefato em um
periodo, ndo havendo necessidade de esta informacdo estar presente no nimero de revisdao. Em
todo caso, a quantidade de vezes que um artefato foi modificado é uma informacéo fdtil, ja que
uma modificacdo pode significar mudanca em uma linha ou a criacdo de 20 métodos, cada um
com 50 linhas, sendo mais valioso avaliar o que foi modificado em cada versao do artefato, o que
também é facilmente obtido no Subversion.

3.2.4 Metadados e Versdes de Metadados

O Subversion possui um mecanismo através do qual € possivel atribuir informaces diversas aos
artefatos, sem que seja necessario armazena-los no interior do repositorio. Este metadados sdo
chamados propriedades (properties) [2, 3, 4]. Cada artefato pode possuir uma ou mais
propriedades, que sdo em esséncia pares do tipo chave/valor. Mesmo havendo propriedades pré-
definidas pelo Subversion, é possivel criar e armazenar propriedades personalizadas, ndo havendo
um limite para a quantidade de propriedades por artefato.

O Subversion também controla a versdo das propriedades de um artefato: criacéo,
exclusdo e modificacoes.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

22

3.2.5 Tagging e Branching Eficientes

No CVS, tanto o tempo para realizacdo de tagging e branching como o espaco em disco
consumido por estas operagdes sao diretamente proporcionais ao numero de artefatos envolvidos
no processo. Devido a arquitetura avancada de seus repositorios, no Subversion, as operacoes de
tagging e branching apresentam constantes (e baixas) quantidades de tempo e espagco em disco.

Devido as caracteristicas do Subversion de possuir commit atbmico e, por conseguinte,
namero de revisdo global, tecnicamente ndo seria necessaria a criacdo de tags neste sistema de
controle de versdo: cada revisdo do repositério consiste em uma tag, que contém os estado global
do repositério em um momento especifico, identificado pelo nimero de revisdo. A Unica razdo da
criacdo de tags no Subversion € a possibilidade de se nomear uma revisao especifica com um
titulo amigavel, mais facil de ser lembrado posteriormente.

3.3 Sobre a Escolha do Subversion

Todas as caracteristicas, vantagens e beneficios apresentados na secdo anterior exerceram
influéncia na escolha do Subversion como ferramenta para este guia. Além delas, serviram como
argumento para sua escolha:

e Simples de instalar e de usar. A instalacdo e manutengéo basica do servidor é simples e
o tempo de aprendizado da equipe para trabalhar com o Subversion € curto;

e Funciona sobre redes TCP/IP. Ndo sO funciona sobre o atual padrdo de redes de
computador, como o faz de forma eficiente: trafegam entre cliente e servidor (em ambas
as direcdes) somente as diferencas entre os itens alterados (artefatos e/ou diret6rios) e ndo
0s itens em seu tamanho completo;

e Leve e eficiente. No Subversion, o custo das diversas operacdes é proporcional ao
tamanho das mudangas e néo a tamanho dos dados envolvidos;

e Integravel ao Apache. O Subversion tem a possibilidade de ser integrado a um servidor
de rede Apache, tendo como ganho: o uso do protocolo HTTP para comunicacdo
cliente/servidor; autenticacdo de usuario integrado ao dominio do servidor; compressao de
dados na comunicagédo cliente/servidor; navegacdo béasica de repositorio em um web
browser. A integracdo do Subversion com o Apache, no entanto, requer um alto grau de
expertise técnica para sua implantacdo, configuracdo e manutencéo e, por esta razdo, a
integracdo ndo serd utilizada neste guia. Contudo, a integracdo com Apache é opcional
(utilizada somente para o ganho de funcionalidades ndo-essenciais ao processo) e sua
auséncia ndo impede em absoluto a realizacdo de controle de versao;

e Multi-plataforma. Existem versdes da ferramenta para os mais populares sistemas
operacionais do mercado: Linux (diversas distribui¢ces), MS Windows, Apple Mac OS e
Sun Solaris;

e (Cddigo-aberto. Para que o guia possa ter maior penetracdo e aceitacdo, o fato da
ferramenta ser cddigo-aberto e, por conseguinte, gratuita € um fatores de grande
influéncia na escolha.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

23

Capitulo 4

Controlando Versdes com Subversion

Os dois capitulos anteriores apresentaram conceitos fundamentais sobre, respectivamente, a
disciplina de controle de versdo e o Subversion, uma base tedrica necessaria para o entendimento
deste guia. O conteido deste capitulo é o objetivo central deste trabalho: a definigdo de um guia
para controle de versdo de projeto de software, utilizando a ferramenta Subversion.

4.1 Papel do Guia no Processo de Desenvolvimento

O Rational Unified Process (RUP) [1], uma renomada abordagem de procedimentos de
desenvolvimento de software, define como uma de suas disciplinas de processo a Geréncia de
Configuragdo e Mudangas (Configuration and Change Management — CCM), que é composta de
dois aspectos basicos:

e Geréncia de Configuracdo (Configuration Management - CM), cuja responsabilidade é a
estrutura do produto (projeto de software) e convenciona que os artefatos devem estar sob
controle de verséo;

e Geréncia de Requisicdo de Mudanca (Change Request Management), que tem como
responsabilidade o controle das solicitacdes de mudanca no produto.

A necessidade de um guia para controle de verséo de projeto de software reside no fato de
0 RUP afirmar que em CM ¢ necessario realizar controle de versdo, mas ndo fornece informagdes
sobre como este controle deve ser realizado. Assim, as informacGes contidas neste guia podem
ser utilizadas para auxiliar nas seguintes atividades do processo de CCM, que estdo ilustradas na
Figura 8:

e Planejar Configuragcdo de Projeto e Controle de Mudancas (Plan Project Configuration
and Chage Control)

Criar Ambientes de CM do Projeto (Create Project CM Environments);

Monitorar e Reportar Itens de Configuracdo (Monitor and Report Configuration Items);
Mudar e Entregar Itens de Configuragéo (Change and Deliver Configuration Items);
Gerenciar Linhas de Desenvolvimento e Releases (Manage Baselines and Releases).

-

ESCOLA POLITECNICA
DE PERNAMBUCO

24

E.—;{.

Plan Projact
Configuration
and Change Control
v
;
\.I'Ianagn Chang&
Requests Creale Project
CM Erwironments
Y
v
Menitor and Report Change and Daliver Manage Baselines
Configuration Status Configuration ltems and Releases
' Y v
v

Figura 8. O Fluxo da Gestéo de Configuracdo de Mudanca, de acordo com o RUP [1]

4.2 Premissas e Pré-requisitos

Esta secdo destaca os pré-requisitos para a utilizacdo deste guia como o ambiente de
desenvolvimento, ferramentas envolvidas e a natureza dos artefatos.

4.2.1 Ambiente e Ferramentas

Um dos pré-requisitos fundamentais para o controle de versdo de um projeto de software é a
presenca de uma rede de computadores sobre o protocolo TCP/IP entre o servidor (estagao central
onde estéa situado o repositdrio) e os clientes (estacdes onde trabalham os desenvolvedores e onde
estdo localizadas as areas de trabalho).

No servidor, o sistema operacional podera ser qualquer um dos previamente indicados
como compativeis com o Subversion (Capitulo 3). A versdo minima da ferramenta para emprego
neste processo € o Subversion 1.3.0, tendo como versdo recomendada o Subversion 1.4.5, a mais
recentemente lancada’.

Conforme mencionado anteriormente, o processo descrito neste guia ndo utiliza a
integracdo com Apache. A comunicacdo dos clientes com o servidor se dara através do servigo
stand-alone chamado svnserve [2, 3, 4]. Existem tutoriais disponiveis na WEB que demonstram
como fazer com que o svnserve funcione como servico no Windows (ou como um deamon no

! Versdo lancada em 27 de agosto de 2007.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

25

Linux). Além disso, a autenticacdo de usuario deverd ser feita atraveés dos arquivos de
configuracdo do repositorio.

Nas estacOes cliente, o guia utiliza como ferramenta cliente o TortoiseSVN [8], um
aplicativo Windows que funciona sobre o Windows Explorer e cuja a interface e instrumentos
internos facilitam as operac6es basicas do fluxo de trabalho dos desenvolvedores, promovendo
um menor tempo de aprendizado e maior produtividade. Devera ser utilizada a versdo minima
compativel com a versdo instalada no servidor, sendo recomendada a versdo TortoiseSVN 1.4.5,
a mais atual®. Contudo, o guia define procedimentos de utilizacio que independem da ferramenta
cliente adotada, podendo ser utilizada a ferramenta cliente de linha de comando do Subversion,
disponivel para qualquer sistema operacional compativel com o SVN. Todas as operacgdes
descritas no guia estdo disponiveis tanto no TortoiseSVN quanto nos clientes Subversion de linha
de comando, fornecendo uma alternativa para projetos em ambientes ndo-Windows.

Vale ressaltar que ndo é objetivo deste guia ensinar a instalar e configurar as ferramentas
envolvidas no processo. Este tipo de informacdo pode ser obtido na WEB e na literatura listada
na bibliografia deste trabalho.

4.2.2 Natureza dos Artefatos

Como o objetivo deste guia € auxiliar no controle de versdes de projetos de software, os tipos de
artefato de projeto preferenciais devem ser aqueles considerados mesclaveis, ou seja, arquivos
cujo contetido é texto plano, como, por exemplo, arquivos de codigo-fonte, XML, scripts, entre
diversos outros.

Contudo, a presenca de arquivos “ndo mesclaveis” ndo é proibida, ja que estes tipos de
arquivos podem ter seu historico de versdo mantido, o que serd mostrado mais a frente neste
capitulo. Dentre os artefatos “ndo mesclaveis” comuns em projetos de software destacam-se 0s
cronogramas de atividades, diagramas diversos (casos de uso, sequiéncia, classe, entre outros),
planilhas de testes, imagens, entre diversos outros.

Apesar de ser ndo poderem ser considerados artefatos de texto plano, documentos gerados
por processadores de texto (normalmente com a extensdo de arquivo “doc”) tém suporte para
mesclagem através da utilizacdo da ferramenta TortoiseSVN.

4.3 Iniciando o Controle de Versao

As subsecgdes a seguir deste topico descrevem como iniciar o trabalho de desenvolvimento de
equipe o Subversion.

4.3.1 Criando o repositorio

A criacdo do repositério deve ser feita no servidor, através do comando svnadmin (consultar
referéncias bibliograficas [2, 3, 4]). E definido um nome para repositorio no momento de sua
criacdo, bem como o diret6rio no servidor onde sera armazenado o repositorio. Vale ressaltar que
ao analisar o conteudo desse diretorio, ndo serdo encontrados os artefatos do projeto tais como em
uma area de trabalho, mas sim um conjunto de arquivos que fornecem os mecanismos necessarios
ao controle de versdo. A Unica forma de ter acesso aos artefatos do projeto, seja qual for a versao,
é através de um cliente Subversion.

2 Mais especificamente a versdo TortoiseSVN-1.4.5.10425, lancada em 27 de agosto de 2007.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

26

Ap0s a criacdo do repositorio, seu endereco na rede para acesso por clientes Subversion
tera o seguinte formato:

protocolo://endereco_servidor/nome_repositorio

Existem diversos protocolos possiveis para comunicacdo como Subversion e neste guia
utilizaremos o protocolo svn, por causa da previamente comentada utilizagdo do svnserve no
servidor. O endereco do servidor pode ser um endereco IP, um endereco na Internet resolvivel
por DNS ou 0 nome de um computador em uma rede interna.

4.3.2 Comandos do Subversion no Cliente

A ferramenta cliente de linha de comando do Subversion possui um conjunto de instrucées
(comandos) através dos quais é possivel efetuar operacfes no repositorio. Nao € objetivo deste
guia ensinar esses comandos e suas respectivas sintaxes. Estes conceitos podem ser observados
na literatura indicada na bibliografia deste trabalho.

A aplicagdo cliente TortoiseSVN, a ser utilizada neste guia fornece uma interface gréfica
intuitiva para os comandos do Subversion. Seu menu, integrado no Windows Explorer quando a
aplicacdo é instalada, esté ilustrado na Figura 9.

i SWM Update X Delete

A SYN Commit, .. 1# eranchjtza...
Bz, 5w Check for modifications Ei% Switch...

&= Show log }{ Merge...

CL‘ Repo-browser Efi Export...

& Revizion graph " pelocate. .
& Resolved... @ Add...

i Update to revision... % Create patch,.,
=) Revert... % apply patch...
B Cleanup L= Properties

& Rename... ? Help

o Getlock... ‘lﬂ Settings

1 Release lock é About

Figura 9. Menu de op¢Oes do TortoiseSVN

Além dos comandos de operacdo, o TortoiseSVN fornece ferramentas Uteis como
navegacdo de repositério, grafico de revisdes, log de alteracBes, auxilio para resolucdo de
conflitos, entre diversas outras.

4.3.3 Layout do Repositorio

Um projeto de software deve conter trés diretorios considerados essenciais dentro da &rvore do
repositorio:

e trunk — Este diretdrio contém os artefatos do projeto em seu estado referente a linha
principal de desenvolvimento do software. A maior parte do trabalho dos desenvolvedores
sera feito no trunk;

e tags — Neste diretério sdo armazenadas as tags do projeto de software. Nele podem ser
criados quantos subdiretorios quanto forem necessarios, ja que 0 nome dado a uma tag é

_ned

ESCOLA POLITECNICA

DE PERNAMBUCO

27

utilizado para nomear seu respectivo subdiretorio. Podem ser criados outros subdiretorios
para organizar internamente as tags, de acordo com critérios que podem ser definidos
pelos gestores do projeto;

e Dbranches — Este ultimo diretorio armazenara as linhas de desenvolvimento paralelas do
projeto de software.

Tecnicamente, ndo h& diferenca no Subversion entre tags e branches, sendo ambos
inclusive criados através do mesmo comando. A diferenca é organizacional e processual: ao
contrério dos branches, tags ndo devem ser modificadas, devendo permanecer estaticas ao longo
do tempo.

Em situagdes onde dois ou mais projetos tém suas versdes controladas, existem dois
layouts basicos de repositério que podem ser seguidos. Quando os projetos compartilham codigo
de forma a se tornarem mutuamente dependentes, os diretorios trunk, tags e branches devem
estar no primeiro nivel do repositério e dentro deles devem estar contidos os diretdrios dos
projetos. Por conta de compartilharem artefatos, engenhos ou até mesmo modulos, ndo faz
sentido gerenciar tags e branches desses projetos separadamente, tampouco separar sua linha de
desenvolvimento principal (o trunk).

Em contrapartida, quando os projetos ndo compartilham dependéncias, os diretorios dos
projetos devem ficar no primeiro nivel, cada um com seus préprios diretorios trunk, tags e
branches. Como séo projetos independentes, eles possuem seus proprios diretérios de controle de
desenvolvimento (trunk, tags e branches). A Figura 10 ilustra as duas opcdes de layout de
repositorio, de acordo com o nivel de dependéncia entre os projetos.

rd ” Layout 1 y Layout 2 Y
Projetos que compartilham codigo | { Projetos independentes i
b E i
branches | projeto 1 I
p— ——— .
projeto 1 branchos
[e .
projeto 2 tags
—
tags | — trunk
 — : s
| projeto 1 projeto 2 I
’) — .
projeta 2 branches
.
trunk tags
—
] :.
projeto 1
trunk
[x
projeto 2 | |
\ 4 \ /
S v b

Figura 10.Opcoes de layout para repositorios com multiplos projetos

-

ESCOLA POLITECNICA
DE PERNAMBUCO

28

4.3.4 Checkout e Commit Iniciais

No momento de sua criacdo, o repositorio esta vazio. Para que seja possivel preenché-lo, é
necessario haver pelo menos uma cépia de trabalho ativa em uma estagdo cliente, o que é
conseguido através do checkout inicial.

Nesse checkout, o desenvolvedor informa o endereco do repositorio a ser acessado.
Apesar de ser possivel especificar a revisdo do repositorio a obter, no checkout inicial deve-se
obter a versdo mais recente do repositério (também chamada de head revision [2, 3, 4], sendo
HEAD uma palavra-chave reconhecida pelo Subversion). Também € possivel, em um checkout,
especificar o subdiretério que esta sendo obtido para trabalhar localmente. No caso do checkout
inicial, deve ser especificado o diretorio trunk, concatenando-o ao final do endereco, como por
exemplo em svn://servidor/repositorio/trunk.

Além do endereco e da revisdo, o desenvolvedor informa as credenciais de acesso para
autenticacdo. O cliente Subversion (linha de comando ou TortoiseSVN) guarda localmente essas
informacdes, para que ndo seja necessario autenticar-se a cada nova operagao.

O checkout cria em um diretério indicado pelo desenvolvedor uma cépia de trabalho ativa,
que consiste em uma estrutura de arquivos local capaz de operagdes de Subversion locais e com
integracdo com o repositorio.

Por fim, para povoar o repositorio com os artefatos do projeto, é necessario copiar estes
arquivos para o diretdério da copia de trabalho, adiciona-los localmente (comando svn add ou
opcao de Adicionar no menu do TortoiseSVN) e depois efetuar commit, operacdo que envia as
alteracdes locais (no caso, a adicao dos artefatos) para o repositorio, deixando os artefatos recém
adicionados disponiveis para 0s demais desenvolvedores. As operagdes de adi¢do e commit serdo
mais exploradas nas se¢des a sequir.

4.4 Fluxo Basico de Trabalho

Esta secdo tem por fim descrever o fluxo basico de trabalho, indicando o que deve ser feito, as
melhores préticas e 0 que evitar nas operacgdes de controle de verséo.

4.4.1 Atualizando a Copia de Trabalho

Antes de iniciar quaisquer mudancas no projeto, o desenvolvedor devera certificar-se de que
estara trabalhando com os artefatos em sua revisdo mais recente da linha de desenvolvimento em
que esta trabalhando, a qual foi definida no checkout (na maioria dos casos, o trunk). Para isto,
basta realizar um svn update (via linha de comando ou TortoiseSVN), acdo que verificara
quais os artefatos na copia de trabalho estdo defasados em relacdo ao repositorio e obtera a head
revision destes artefatos.

4.4.2 Modificando a Cépia de Trabalho

Basicamente, ha dois tipos de modificacdes que podem ser feitas na cdpia de trabalho: mudancas
em arquivos e mudancas em diretdrios. As mudangas em arquivos dizem respeito tdo somente as
mudangas realizadas no conteudo de um ou mais artefatos. As mudancas em diretorios, por sua
vez, podem se dar pelas operacGes bésicas de adicionar (incluir um novo item, livre de historico),
excluir (remover um item), e copiar (criar uma cépia de um item, fazendo também uma copia do
seu histérico) arquivos ou diretdrios. Existem outras operacfes de modificacdo de diretorio
possiveis, mas que sdo meramente composicdes da adicdo, exclusdo e coOpia: mover item

-

ESCOLA POLITECNICA
DE PERNAMBUCO

29

(copiar+deletar), renomear item (copiar+deletar), entre outras. Vale lembrar que todas as
modificacOes realizadas na area de trabalho séo locais a estacdo do desenvolvedor e s6 seréo
concretizadas no repositdrio quando for efetuado o commit.

N&o € necessario, ainda, indicar previamente ao Subversion quais as alteragdes que serdo
realizadas. Para modificar artefatos, por exemplo, basta editar seu conteddo. O Subversion
automaticamente detecta que arquivos foram alterados, assim como detecta modificacbes nos
diretorios da copia de trabalho.

Por fim, ndo € imperativo estar conectado ao repositorio para realizar modificacGes na
copia de trabalho. O Subversion fornece a vantagem de poder se trabalhar offline, sendo a
conexao requerida somente no momento do commit.

4.4.3 Examinando as Modifica¢Ges da Cépia de Trabalho

O Subversion dota a copia de trabalho ativa de condigdes de saber, ao longo das modificacdes, o
que foi alterado. A Figura 11 exibe o TortoiseSVN integrado ao Windows Explorer, através do
qual o desenvolvedor pode verificar visualmente e de forma rapida as modificacdes ocorridas na

copia de trabalho.
5N || Sub-Madulo A
e umaclasse.java
|| Sub-Mddulo B J

JAVA File
";FH] outraclasse. txt

:i

[k

il

n [5
Text Document

I

0 KB

d

Figura 11. Windows Explorer com TortoiseSVN, indicando o status dos artefatos

No exemplo, os itens marcados com o icone de check verde ndo foram alterados
localmente, os marcados com o icone de exclamacdo vermelha sofreram alteracoes e 0s itens sem
icone ainda nao foram adicionados formalmente a area de trabalho.

Uma outra listagem, mais completa, pode ser obtida atraves do menu “SVN Check for
Modifications” do TortoiseSVN. Nesta listagem, ilustrada na Figura 12, pode-se ver que o
diretorio “Sub-Modulo B” aparece como modificado na Figura 11 para alertar que o artefato
“operacdes.java” sofreu uma alteracéo.

= Working Copy - D:\Raiz\Trivia\Testes E] [E| E|
File Text status Author | Revision Date
Ej Sub-Madulo Bfoperacoes.java modified adriano 131 26/11/2007 22:55:32
[%j outraclasse. twt non-versioned

Show unversioned files
[]5how unmodified files
[]show ignored files
Lowest revision: 129 - Highest revision: 131 [Chedk repositary] [QK]

Figura 12. Listagem detalhada de modificacdes da copia de trabalho.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

30

Além disso, o TortoiseSVN fornece também uma ferramenta visual a qual possibilita o
desenvolvedor de verificar detalhadamente as modificacbes realizadas no conteddo de um
artefato, conforme pode ser visto na Figura 13.

operacoes . java : Working Baase operacoes . java : Working Copy
1l pubklic class operacoes® | 1l pubklic-class aoperacoes” |
z z
wm 3 aapmhliasintdabhrae{intsumaral| + 3 *'public-double-dobro{double ~numerc) |
4 s rreturnt Z¥numero; 4 rreturnt Z¥numero;
5 -} =1
g =
+ 7 **public-double "metad (double ~numerc) |
+ =] ‘rraturntnumeros2Z;
+ 91
10
7} 11 }

Figura 13. Modificac¢Oes detalhadas em um artefato.

Neste exemplo, verificam-se as alteragdes realizadas no artefato “operacoes.java”, sendo
possivel identificar que linhas do arquivo foram incluidas, modificadas ou excluidas. A janela do
lado esquerdo, titulada “Working Base” mostra a versdo do artefato como este se encontrava no
momento em que foi obtido (por checkout ou update), ou seja, a versao local do artefato antes da
modificacdo local. Do lado direito, é exibido o conteldo deste artefato apds a modificacdo, ou
seja, como ele esta na copia de trabalho.

E importante destacar que os mecanismos de verificacdo de modificacbes apresentados
nesta secdo ndo necessitam que a estacdo esteja conectada ao repositdrio, podendo ser realizadas
em offline.

4.4.4 Desfazendo Alterag6es na Cépia de Trabalho

O Subversion fornece a instrucdo Revert (reverter), cuja funcao é desfazer modificacGes locais na
copia de trabalho. E possivel desfazer desde modificagbes em um Unico artefato a diversas
modificacbes em varios artefatos e diretorios. Reverter um item significa perder todas as
modificacOes realizadas neste item, revertendo-o ao seu estado original referente a0 momento em
que o item foi obtido pela copia de trabalho. Esta operacéo € local e ndo exige estar conectado ao
repositorio, podendo ser feita em offline.

4.4.5 Melhores Préticas nas Modificacbes da Copia de Trabalho

Ao efetuar modificacGes em sua copia de trabalho, o desenvolvedor deve ter sempre e mente as
seguintes praticas:

e Sempre realizar update da copia de trabalho antes de iniciar as modificagdes. Apesar
de ja ter sido mencionada anteriormente, é uma pratica que vale enfatizar. Esta acdo
garante que o desenvolvedor trabalhara na revisdo mais recente dos artefatos e diminui a
chance de conflitos;

¢ Nunca efetuar travamento de artefatos “mesclaveis”. Apesar de funcionar no modelo
Copy-Modify-Merge, o Subversion permite o travamento de itens no repositério. Este
recurso, no entanto, deve ser erradicado para artefatos mesclaveis;

-

ESCOLA POLITECNICA
DE PERNAMBUCO

31

e Sempre efetuar travamento de artefatos “ndo mesclaveis”. O travamento de itens tem
sua utilidade no processo de controle de verséo, se usado de forma proveitosa e cuidadosa.
O trabalho sobre artefatos que ndo podem ser mesclados deve ser serializado, por falta de
alternativa. Ao modificar, por exemplo, uma planilha eletronica, o desenvolvedor devera
trava-la, evitando assim que tenha seu trabalho sumariamente perdido. A perda de
trabalho acontece quando ha conflito em artefatos “ndo mesclaveis”, quando, ao final,
uma das duas versdes conflitantes sera considerada e a outra descartada;

e Somente reverter quando ha certeza que as modificagdes podem ser desprezadas.
Quando se usa um sistema de controle de versdo (aliado a um procedimento seguro,
eficiente e eficaz de backup no servidor), virtualmente nada do que é feito se perde, com
excecdo das modificacdes locais as copias de trabalho e reverter significa desprezar essas
modificacGes sem deixar historico. Portanto, antes de realizar esta operacdo, é necessario
estar seguro que as modificagdes devem de fato ser desfeitas;

e Sempre planejar suas modificacdes de acordo com a equipe. As ferramentas auxiliam
0 desenvolvimento, contudo ndo substituem a comunicagdo entre 0s membros da equipe.
O lider de projeto deve estar atento a distribuicdo das tarefas, para que dois
desenvolvedores, por exemplo, ndo percam tempo realizando uma mesma modificagéo.
Essa pratica pode parecer ébvia, contudo é comum a diminuicdo da comunicacdo em
times de desenvolvimento por conta do uso de um sistema de controle de versao.

4.4.6 Registrando Mudancas no Repositorio: Merges, Conflitos e Commit

Apdbs as modificagdes na copia de trabalho, o desenvolvedor deve enviar para o repositorio as
alteracGes através de um commit. Antes disso, no entanto, é boa pratica realizar um novo update
no intuito de verificar se houve mudancas no repositério envolvendo os artefatos modificados
localmente, caso em que um commit antes do update seria rejeitado, em todo caso. O update pode
resultar em trés situagdes:

¢ Nenhum dos artefatos alterados na copia de trabalho foi alterado no repositorio.
Neste caso outros artefatos sdo atualizados (em alguns casos nenhum ¢€), ndo interferindo
nas modificacOes a serem enviadas. O commit pode ser efetuado sem problemas;

e Pelo menos um dos artefatos foi modificado no repositorio, mas em trechos
diferentes. Neste caso, o Subversion encarrega-se de efetuar o merge automatico, listando
os artefatos onde esta composi¢cdo aconteceu. O desenvolvedor deve certificar-se de que a
fusdo foi realizada com sucesso, podendo fazer uso da ferramenta TortoiseMerge
(mostrada anteriormente na Figura 13), que compara diferente versdes e revisdes de um
artefato.

e Pelo menos um dos artefatos foi modificado no repositério e em trechos que se
sobrepbem. Este caso configura uma situacéo de conflito.

Em uma situacdo de conflito, conforme exemplo ilustrado na Figura 14, o Subversion
cria, para cada artefato conflitante, trés arquivos que podem auxiliar a resolucéo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

32

operacoes.java
JAVA File
1KB

SN

operacoes,java.mine
MIME File
1KB

operacoes.java.r 136
R 136 File
1KB

operacoes.java.r137
R137 File
1KB

Figura 14. Artefato em situacao de conflito.

Dois dos arquivos criados sdo copias das duas ultimas revisdes mais recente do repositdrio
(no exemplo, r136 e r137). O terceiro (com extensdo “mine”) é uma copia do artefato modificado
na area de trabalho. Ao final da resolucdo do conflito, o resultado deve ser colocado no contetido
do artefato, marcado no exemplo com um icone de exclamacdo amarelo, indicador do conflito.

Para resolver este conflito, o desenvolvedor pode utilizar a abordagem manual (o0 que é
desaconselhavel) ou utilizar o TortoiseMerge, que pode ser evocado através do menu “Edit
Conflicts” do TortoiseSVN. Esta ferramenta, conforme visto na Figura 15, presta um valioso
auxilio na solucéo do problema.

TortoiseMerge I._”I:I |E|
File Edit View Merge Help
BEHE9 +8483 4 [T]l]==@ ?
Theirs - operacoes.java.rl37 !2 Mine - operacces.java.mine l:
1 E@li!’.—‘.’..‘;}.@.ﬁ_%_‘PP.@.F.EEQE—:%‘..I{ I 1 E‘-.!“-Pl_i-!’_—‘.'..';J-_E_.E_E..‘PP.@.F.EEQE—:?..‘..I{.
2 2
3+ *public-double *dobro (double *numera) { 3+ *public-double *dobro{double *numera) {
4 - rreturn-numerc”+roumero; 4 -+ rreturnTnumerc”+roumero;
51 51
13 13
7 +-public-double-metade (double-numero) { 7 - 'public-double-metade (double numero) {
B -+ +-return-numero/Z; B -+ -return-numero/Z;
g -} COEES
10 10
11 tripl 11 terc
iz *numexr iz /
=13 =13
14 14
15
161 w 16} w
| Merged - operacces.java 2
1public-class-operacoss-]
2
3 - +public-double-dobro(double numera) {
4 +»+rreturn numero*+numero;
51
3
7 --public- double-metade {(double - -numero) {
B ****return numero/z;
9 -}
10
111
12 :
J13 Use text block from "theirs™
_f-: = _ Use text block from "mine” b
= | Use text block from “mine” before “theirs” bt
|
| Use text block from "theirs” before "mine”
For Help, press F1. Scroll horizontally with Ctrl-Scrollwheel Left View: -2/+4 Right View: -2/ +5 Conflicts: 5

Figura 15. TortoiseMerge como ferramenta de resolugéo de conflitos

-

ESCOLA POLITECNICA
DE PERNAMBUCO

33

No exemplo, o conflito aconteceu porque dois desenvolvedores adicionaram um novo
método no final do arquivo, uma area onde houve sobreposicao. A ferramenta permite localizar e
navegar entre pontos de conflito, bem como propor alternativas para sua resolucédo, atraves de um
menu de contexto. No exemplo em questdo, os dois métodos devem ser incluidos na versao final,
sem haver importancia na ordem deles dentro do artefato. Assim, o desenvolvedor pode utilizar
uma das duas ultimas op¢des do menu de contexto, que sdo “usar meu bloco de texto antes do
deles” e vice-versa. O aplicativo se encarregard de distribuir o cddigo de acordo com o
especificado, o que deve ser verificado e validado pelo desenvolvedor. Ao final, o desenvolvedor
marca o conflito como resolvido, o que faz com que o artefato seja mesclado e possa ser enviado
ao repositorio.

Somente apds a realizacdo de todas essas etapas, o desenvolvedor podera realizar o
commit de suas modificagdes. Na operacdo de commit, o desenvolvedor devera especificar um
texto descritivo das modifica¢cBes sendo enviadas ao repositorio, também conhecida como
mensagem de log. A Figura 16 ilustra a tela de commit do TortoiseSVN.

" Enter Log Message - D:\Raiz\Monografia\Sub-Mddulo B g@g|

Commit to:
gvn: ffcpserver, ddns. com. br ftrivia/TestesSub-Maddulo B/operacoes.java

Message:

[Recent messages]

|I3ria-;é'u:| do método triploi) em operacoes. java

Changes made {double-dick on file for diff):

File Extension = Textstatus | Property status | Lock
E’l OpEracoes.java .java modified
Show unversioned files 1 files selected, 1 files total
Select f deselect all
[Ikeep locks
[oK l [Cancel] [Help

Figura 16. Tela de commit do TortoiseSVN.

Caso o commit seja rejeitado pelo repositério, 0 que aconteceria somente se uma nova
modificacdo de um artefato envolvido fosse enviada para o repositério enquanto o desenvolvedor
ndo enviasse a sua versdo, todo processo teria que ser repetido a partir do update.

4.4.7 Melhores Préticas no envio de ModificacBes para o Repositorio
Ao enviar modifica¢fes de sua cOpia de trabalho para o repositdrio, o desenvolvedor deve ter
sempre e mente as seguintes praticas:

e Efetuar commit sem demora e frequentemente. Enviar para o repositério assim que as
modificacOes estiverem prontas evita a perda da versao local por motivos adversos como,

-

ESCOLA POLITECNICA
DE PERNAMBUCO

34

por exemplo, falha no hardware. Apesar de também estar suscetivel a falhas de hardware,
€ bem mais provavel o servidor contar com solugdes de backup do que uma estacdo. Além
disso, essa pratica diminui os riscos de acontecer merging e conflitos. Quanto mais tempo
se leva para submeter as modificacBes ao repositorio, maiores sdo as chances de haver
conflitos e mais complexo se torna resolvé-los;

e Procurar fazer modificacfes atbmicas e quanto menor possiveis. Ndo é boa pratica o
desenvolvedor tentar resolver mais de um problema antes de efetuar o commit.
Extrapolando, seria uma pessima pratica desenvolver todo um mddulo sem efetuar
commit. Quanto mais atomicas as modificacGes, melhor o rastreamento das mudangas,
mais facilmente identificavel fica a introducdo de problemas (bugs) e mais natural se
torna o texto do commit. O desenvolvedor deve procurar corrigir no maximo um problema
por vez, salvo a excecdo quando ele estd resolvendo uma questdo de médio ou grande
porte e encontra um pequeno problema que lhe custard pouquissimo esfor¢o para resolver,
como, por exemplo, algo na ordem de até 5 linhas de codigo ou até 1 minuto. O
planejamento das mudangas a serem realizadas é fundamental e deve ser discutido com o
lider do projeto;

e Em caso de conflito, ndo dé um novo update antes de resolvé-lo. O TortoiseMerge s6 é
capaz de comparar dois artefatos por vez, ja que em um conflito basico sdo duas as
versdes sobrepondo cddigo. Em caso de um novo update, € possivel que o artefato tenha
sido alterado novamente no repositério, trazendo para a copia de trabalho mais uma
versdo do artefato e fazendo com que haja um conflito ternario, contexto em que a
ferramenta ndo tera condicOes de auxiliar. Resolver conflitos ternarios (ou de maior
ordem) manualmente € uma tarefa longe de ser trivial;

e Escrever mensagens de log significativas. Ndo ha ferramenta que valide uma mensagem
de log, portanto isto deve ser cobrado dos desenvolvedores. Deve ser descrito, em poucas
linhas, o que foi corrigido e como, em texto comum, nunca codigo-fonte. Caso haja algum
na organizacdo um sistema de gestdo de requisicdo de mudancas, deve ser especificado o
codigo/nimero/ID da solicitacdo atendida pela mudanca. E preferivel que as mensagens
de log sejam padronizadas na organizagdo. Quanto melhores as mensagens de log, mas
rastreaveis sdo as modificaces no repositorio;

e Destravar os artefatos previamente travados. Apos feitas as devidas modificacdes nos
artefatos “ndo mesclavéis” travados anteriormente e realizado o commit destas alteracdes,
ndo ha razdo pela qual manter a trava sobre os artefatos em questdo. As ferramentas
envolvidas no processo ddo subsidios para a automacdo desta tarefa;

e Evitar “quebrar a arvore do projeto”. Apesar de parecer uma recomendacdo 6bvia, sdo
comuns ocasides em que um desenvolvedor efetua commit de artefatos que sequer
compilam. Isto é grave: outros desenvolvedores, ao atualizarem suas copias de trabalha,
obtém esta “quebra”, que pode muitas vezes impossibilitar o trabalho de toda a equipe.
Deve ser vedado ao desenvolvedor tomar o commit por um salvamento parcial de
trabalho, seja por que razédo ele o faca. Uma correcdo ndo deve ser enviada pela metade,
um artefato deve ser, no minimo, compilével e o projeto, quando n&o for impeditivo, deve
ser reconstruido (build) na area de trabalho do desenvolvedor. Todo procedimento viavel
que ajude a garantir a integridade do repositorio deve ser implementado.

4.5 Examinado o Histdrico

Existem varias formas de examinar o historico de modifica¢cbes de um ou mais itens de um
repositorio. A mais pratica e versatil € atraves do menu “Show log” do TortoiseSVN. Na tela de

-

ESCOLA POLITECNICA
DE PERNAMBUCO

35

log de modifica¢Bes de um item, conforme ilustrado na Figura 17, estdo disponiveis as seguintes
informacdes e acoes:

e Listagem de modificaces em um periodo, com nimero da revisdo, data, hora, usuario e
mensagem de log;

e Comparacdo de revisdes de um artefato, através de texto e no TortoiseMerge, dando uma
visdo do que exatamente foi alterado em um artefato entre duas revisfes quaisquer;

e Busca por mensagem de log, usuarios, caminho do artefato e/ou numero de reviséo;

e Exibir estatisticas gerais de modificacdo, graficos de commits por data e por usuario;

e Reverter a copia de trabalho local para uma determinada revisdo do repositorio,
possibilitando assim desfazer alteracGes ja registradas no repositorio.

' | og Messages - operacoes.java =] E|
From: ‘26,‘11,*2!30? v ‘ To: ‘2?;11;200? v | |&-i 53|
Revision | Actions Author Date Message

138 adriano :07:15, ira, 27 de novembro de 2007 Criagdo
adriano

adriano e

ol adriano 02:09:44, terca-feira) Compare revisions

134 gl adriano 02:08:59, terca-feira) Blame revisions
o
o

133 adriano 02:03:06, terca-feiral show differences as unified diff
132 adriano 23:25:37, sequnda-fi

Revert ch from th isi
131 & % adriano 22:55:32, sequnda-fi FVErtEnanges from MEsE revisions

Copy to dipboard
Search log messages. ..

Action = Path Copy from path | Revision
[Testes/Sub-Madulo Bfoperacoes. java

[E]Hide unrelated changed paths Statistics

[showart -] [Nextin | [J5toponcopyjrename oK

Figura 17.Tela de log de modificagdes do TortoiseSVN

4.6 Tagging e Branching

Esta secdo tem por meta a definicdo das situagdes em que sdo utilizados os mecanismos de
tagging e branching, bem como indicar as melhores préaticas e que evitar nestes métodos nédo-
triviais do controle de verséo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

36

4.6.1 Tagging

Conforme foi mencionado anteriormente, do ponto de vista técnico, a criacdo de tags é um
mecanismo redundante, ja que cada revisdo do repositério consiste em uma tag. No entanto, do
ponto de vista processual e organizacional, as tags exercem uma funcdo importante na
identificacdo etapas do projeto.

Basicamente, existem duas situacGes em que € pertinente a criagdo de uma tag:

e Milestone Tag. E uma tag que indica um marco interno atingido no projeto. Por exemplo,
num projeto de automagdo comercial, cria-se uma tag para indicar o0 momento em que 0
moédulo de estoque foi finalizado. E (til para manter um registro legivel da evolugio do
projeto, no entanto, ndo pode considerada uma tag de cria¢do obrigatdria;

e Release Tag. Esta uma tag de criacdo obrigatdria, uma release tag deve ser criada sempre
que uma versdo do produto do software for liberada para seus usuarios. E de extrema
importancia haver no repositorio uma fotografia dos artefatos do projeto no momento em
que houve uma liberagédo de versdo. Este tipo de tag € um provavel candidato a conceber,
em algum momento, um branch.

Por fim, tags ndo devem ser alteradas. Mesmo que tecnicamente ndo haja diferenca entre
uma tag e um branch, ndo é boa pratica a modificacdo de artefatos de uma tag: esta deve ser
sempre uma “fotografia estatica” do estado do repositério em um dado momento.

Para criar uma tag, basta utilizar a instrucdo “Branch/Tag” do menu de contexto do
TortoiseSVN.

4.6.2 Branching

A ramificacdo do trabalho em duas ou mais linhas de desenvolvimento em um projeto de
software € um mecanismo que aumenta a complexidade de todo o processo:

e O trabalho sobre a gestdo do projeto aumenta, tendo em vista que é preciso mapear as
ramificacdes e sua relacdo com a linha principal e controla-las de forma ordenada, de
forma a ndo permitir um caos organizacional no repositorio;

e A atencdo da equipe é dividida entre as ramificacdes criadas. Todos 0s membros da
equipe devem estar cientes de quais branches existem, qual a finalidade de cada um deles
e quais devem ser utilizados no dia-a-dia do time;

e As atividades de planejamento se intensificam, dado que a maioria dos branches retorna,
em algum momento, a linha principal de desenvolvimento. Este retorno (merging) deve
ser previsto e planejado, de forma que ndo se perca o controle sobre as ramificacGes em
andamento.

Assim sendo, 0 uso de branches deve ser limitado somente a situacdes em que este
mecanismo se mostre estritamente necessario. Existem algumas boas razbes para se fazer uso
deste recurso:

e Uma modificagdo grande no produto, que leve muito tempo para ser concluida e/ou que
envolva duas ou mais pessoas no processo, pode ser um bom candidato a branch, quando
a proxima versdo do produto tem previsdo de liberacdo anterior ao prazo previsto de
término da grande mudanca em questdo. Este tipo de branch é mais comum em projetos
de grande porte;

-

ESCOLA POLITECNICA
DE PERNAMBUCO

37

e Uma mudanca que deixaria a linha principal do projeto inutilizavel para trabalhos néao
necessariamente relacionados. Por exemplo, a mudanga do engenho de estoque em um
sistema industrial afetaria direta ou indiretamente praticamente todos os mdédulos do
produto. A solucdo seria realizar esta modificagdo em um branch a parte, para nao
interferir no trabalho da linha principal de desenvolvimento;

e Caso a equipe tenha necessidade de uma area experimental, pode ser criado um branch
onde os desenvolvedores possam avaliar componentes de terceiros, avaliar
funcionalidades ndo previstas ou ensaiar mudangas de interface com o usuario. Este tipo
de branch exige uma equipe mais experimentada no oficio de trabalhar em projetos com
diversas ramificagOes, para evitar o caos organizacional do repositorio.

E essencial que o gerente de configuragio ou o gerente de projeto avalie se os beneficios
trazidos pela utilizacdo de multiplas linhas de desenvolvimento valem o custo e o trabalho de
gerenciar essas multiplas linhas e de manter a equipe atenta a este modelo de desenvolvimento.

No entanto, o release branch, é um tipo de ramificacdo virtualmente inevitavel. Ele se faz
necessario sempre que é liberada uma versdo do produto para os clientes e esta versao apresenta
pelo menos um problema. Este tipo de branch nasce, em maior parte, a partir de release tags,
sendo dificilmente criadas a partir da linha principal de desenvolvimento.

No exemplo apresentado na Figura 18, observa-se um produto que em determinado
momento tem sua versao 1.0 lancada para os clientes. Logo apds este release, a linha principal de
desenvolvimento continuou sua evolucéo, através da criagdo de novas funcionalidades, mas em
um dado momento, foram constatados problemas na versdo 1.0. Ndo é viavel, neste contexto
corrigir os problemas na linha principal e criar um novo release a partir dessa linha, pois ela
contém modificacbes ndo terminadas em andamento. Tampouco € vidvel fazer com que o0s
clientes aguardem a versdo 2.0 para que os problemas sejam corrigidos. A solucéo foi criar um
release branch a partir da release tag “Release 1.0”, onde foram corrigidos os problemas e
rapidamente lan¢ada uma nova versao para os clientes (1.1).

4 N

branch merge

o0t

Release
1.0

branch L L)

Release
2.0

N J

Figura 18.Produto de software com duas release branches

Enquanto a linha principal evolui em direcéo a verséo 2.0, mais problemas sdo detectados
nos clientes, que agora utilizam a versdo 1.1 do produto. Por necessidade, esta sera seguida pela
1.2. Pela proximidade estratégica do momento das versdes 1.2 e 2.0, as corre¢des realizadas ao
longo do release branch superior (1.1 e 1.2) sdo aplicadas, por merging, para a versdo 2.0.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

38

Ainda, podem existir razdes comerciais pelas quais os clientes ndo migrardo da versdo 1.2
para a 2.0. Assim, a ramificacdo devera ser mantida enquanto houver clientes ou enquanto a
empresa estiver disposta (por contrato ou por mercado) a dar suporte as versdes 1.X, podendo
haver uma versdo 1.3, criada a partir de corre¢des da versdo 1.2. Enquanto isso, a verséo 2.0
apresentou problemas, justificando um release branch para corrigi-los. Desta vez, contudo a
proxima versdo da linha principal (3.0) estava agendada ndo muito no futuro, permitindo um
merge das correcOes a partir da versao 2.1.

Para criar um branch, assim como uma tag, basta utilizar a instru¢do “Branch/Tag” do
menu de contexto do TortoiseSVN. Para criar um branch a partir de uma tag, basta indicar a
revisao a ser copiada na operacdo, conforme pode ser visto na Figura 19.

= Copy (Branch / Tag)

Repositary
From WC at URL:
svn: ffcpserver . ddns. com. br ftrivia /Testes

To URL:
|l svn:/fcpserver.ddns. com. br firivia/Testes b E]
Create copy in the repository from:
D HEAD revision in the repository
(%) 5pecific revision in repository: E]
) Working copy

Log message

[Recent messages

DE:E:-Hd‘lFt;E "a copy o net [(0] 4 l [Cancel] [Help]

Figura 19. Tela de operacao de Branch/Tag

Apbs a criacdo do branch, os desenvolvedores devem realizar checkout dessa nova
ramificacdo para poder trabalhar nas alteracdes dessa linha paralela de desenvolvimento.

Para mesclar de volta a linha principal as alterac6es realizadas no branch, o TortoiseSVN
fornece uma tela de facil utilizacdo, conforme ilustrada na Figura 20. Nesta ferramenta, é
possivel:

Especificar as linhas de origem e destino do merge;

Listar as diferencas entre as linhas e as modificagcdes que serdo aplicadas;
Observar as modificacdes por artefato, individualmente;

Simular o merge (“Dry run”), possibilitando estimar o resultado do merge.

_ned

ESCOLA POLITECNICA

DE PERNAMBUCO

39

Spedfy the revision range which you want to merge:
From: (start URL and revision of the range to merge)
svn: [fcpserver.ddns. com. br ftrivia/ Testes/Sub-Mddulo A
) HEAD Revision
(%) Revision _ _ I Show log]

[]1gnore ancestry

To: (end URL and revision of the range to merge)
IIse "From:” URL {revision ranage is selectable in the above log diglog)

{¥) HEAD Revision

() Revigion

The result of the merge is stored in the working copy at:

which points to the repository at LIRL:
svn: ffcpserver . ddns. com. br ftrivia/Testes /Sub-M%C 3%%6 3dulo 3204

D:\Raiz\Maonografiaisub-Madulo A

—

e

[Merge l [Ciry run] [Ciff] [Linified diff] [Cancel][

Help

Figura 20. Tela de Merge entre diferentes linhas de desenvolvimento

4.6.3 Melhores praticas em Branching

Ao realizar operacOes de branching e merging, os membros da equipe devem ter sempre e mente

as seguintes préticas:

Ao trabalhar em um branch, o desenvolvedor deve ater-se a modificar 0 minimo
necessario para resolver os problemas. Colocar ou tirar linhas e espacos em branco e
refazer indentacao do cdodigo-fonte sdo modificacdes validas no trunk. Em um branch, no
entanto, sdo consideradas futeis e prejudiciais, pois efetuam mudancas no artefato que em
nada contribuem no ponto de vista do problema a resolver, ja que desnecessariamente
aumentam a complexidade e dificultam a operacdo de merge com o trunk;

Apesar de varios membros da equipe poderem trabalhar no mais diversos branches do
projeto, € recomendavel que apenas pouquissimas pessoas (uma ou duas, no maximo) seja
responsavel pelo merge das ramificacGes para o trunk. Esta operacdo requer experiéncia
do profissional que ira realiza-lo, estando ele apto a resolver problemas que porventura
surjam neste processo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

40
4.7 Um Fluxo Alternativo: Trabalhando com Patches

Em um projeto de codigo aberto, como o Subversion, por exemplo, todos 0s usuarios tém acesso
ao codigo-fonte do sistema, todos podem ler e até mesmo alterar os artefatos do projeto. No
entanto, ndo sdo muitos os usuarios que tém acesso a registrar alteracées no repositorio, ou seja, 0
acesso ao commit é restrito. Cada projeto codigo-aberto tem um grupo seleto de usuarios com
poderes para decidir 0 que entra no repositério. Isso acontece para controlar o projeto, de forma a
evitar a constante “quebra da arvore” por desenvolvedores inexperientes ou mal intencionados.

Desta forma, para que possam ser aceitas contribui¢cGes de desenvolvedores comuns em
um projeto codigo-aberto, é lancado mao do recurso de patches. Nesta abordagem, o
desenvolvedor atualiza sua copia de trabalho, realiza as modificacdes a que se prop6s e ao final,
ao invés de efetuar um commit, ele cria um patch (menu de contexto “Create Patch” do
TortoiseSVN). Tecnicamente, um patch € um arquivo de texto plano onde sdo registradas as
alteracGes realizadas em uma cépia de trabalho. Criado o patch, ele é enviado a um
desenvolvedor privilegiado com o acesso a escrita no repositorio. Este, por seu vez, atualiza sua
copia de trabalho e nela aplica o patch (menu de contexto “Apply Patch” do TortoiseSVN).
Assim, todas as alteraces realizadas pelo primeiro desenvolvedor sdo refeitas na copia de
trabalho do segundo, que analisa as mudancas e decide se as modificagcOes devem ser enviadas ao
repositorio.

Esta abordagem é extremamente Util a projetos com muitos membros envolvidos no
desenvolvimento, mostrando a flexibilidade da ferramenta de adaptar-se a novos cenarios.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

41

Capitulo 5

Conclusoes e Trabalhos Futuros

A melhoria do processo de desenvolvimento de software vem sendo estimulada por um mercado
cada vez mais exigente por qualidade e pela necessidade de mais produtividade no
desenvolvimento. As atividades da SCM, entre elas o controle de versdo, sdo essenciais no
processo de producdo de software, ja que constituem um apoio para as demais atividades,
mantendo o desenvolvimento controlavel. No entanto, ainda existem muitos mitos sobre o custo e
os beneficios destas atividades [9], o que impede que muitas empresas, principalmente as de
micro e pequeno porte, fagam uso de metodologias e ferramentas de SCM.

Portanto, o guia para controle de versdo de projeto de software definido neste trabalho
preenche uma lacuna existente em SCM, que carece de tais guias que definam seus processos
internos. Conforme mencionado na lista de contribui¢cdes do Capitulo 1, este guia possibilita que
um profissional da area de computagdo com conhecimento em ambientes e projetos de software
seja capaz de implantar com sucesso uma politica de controle de versdes em uma organizagao.

Além disso, este trabalho demonstra que a implantacdo de uma politica de controle de
versdo é factivel e viavel: pode ser implementada através de ferramentas de cddigo aberto
(Subversion); demanda um nivel de gestdo proporcional ao tamanho dos projetos e da
organizacdo; requer um treinamento simples de pessoal (desenvolvedores); e, por fim, um
pequeno esforgo de adequagdo a Novos Processos.

5.1 Trabalhos Futuros

O trabalho futuro mais natural ao atual estado deste guia é o seu aprofundamento tedrico e
técnico de seus principais topicos:

e Ampliar a fundamentacdo tedrica sobre controle de versdo, incluindo padrées de SCM
conhecidos, disponiveis na bibliografia [5];

e Fornecer mais detalhes técnicos quanto a instalacdo, configuracdo e manutencdo de
repositorios do Subversion no servidor;

e Pormenorizar mais ricamente as ferramentas cliente, tanto na ferramenta cliente
Subversion de linha de comando como no TortoiseSVN;

e Dedicar mais espaco para a integracdo dos procedimentos do guia com 0S processos
previstos no RUP, ou outro processo unificado de software, propondo uma instancia
pronta de processo para controle de verséo;

-

ESCOLA POLITECNICA
DE PERNAMBUCO

42

e Incluir secdes sobre testes, builds e releases, integrados com Subversion;

e Fornecer mais exemplos e contextualizagdes;

e Executar experimentos em projetos de software, através dos quais podem ser colhidas
métricas para verificar o grau de eficacia dos procedimentos descrito no guia.

Além desse aprofundamento, o guia pode ser estendido de forma a adionar a outra pedra
angular de SCM, a Geréncia de Requisicdo de Mudanca (Change Request Management),
incluindo uma ferramenta que auxilie este novo controle e que se integre ao Subversion. Desta
forma, o guia tem a possibilidade deixar de ser somente um guia de controle de verséo para
tornar-se um guia completo de SCM.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

43

Bibliografia

[1] KRUCHTEN, P. The Rational Unified Process: An Introduction, Third Edition. Addison-
Wesley, 2003.

[2] MASON, M. Pragmatic Version Control Using Subversion. Pragmatic Bookshelf, 2006.

[3] COLLINS-SUSSMAN, B.; FITZPATRICK, B.W.; PILATO, C. M. Version Control with
Subversion. O'Reilly Media, 2004.

[4] BERLIN, D. e ROONEY, G. Practical Subversion, Second Edition. Apress, 2006.

[5] BERCZUK, S e APPLETON, B. Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Addison-Wesley, 2002.

[6] CVS, Open Source Version Control, http://www.nongnu.org/cvs/, ultimo acesso em 26 de
novembro de 2007.

[7] Subversion Home Page, http://subversion.tigris.org/, ultimo acesso em 24 de novembro de
2007.

[8] TortoiseSVN Home Page, http://tortoisesvn.tigris.org/, ultimo acesso em 25 de novembro
de 2007.

[9] LEON, A. Software Configuration Management Handbook, Second Edition. Artech
House Publishers, 2004.

	Capa

	Monografia

	Índice de Figuras
	Tabela de Símbolos e Siglas
	Introdução
	1.1 Objetivos
	1.2 Estrutura do Trabalho
	1.3 Contribuições

	Controle de Versão
	2.1 Arquitetura
	2.2 Modelos de Versionamento
	2.3 Outros Conceitos Básicos do Controle de Versão

	Subversion, um Sistema de Controle de Versão
	3.1 Breve Histórico
	3.2 Características do Subversion
	3.3 Sobre a Escolha do Subversion

	Controlando Versões com Subversion
	4.1 Papel do Guia no Processo de Desenvolvimento
	4.2 Premissas e Pré-requisitos
	4.3 Iniciando o Controle de Versão
	4.4 Fluxo Básico de Trabalho
	4.5 Examinado o Histórico
	4.6 Tagging e Branching
	4.7 Um Fluxo Alternativo: Trabalhando com Patches

	Conclusões e Trabalhos Futuros
	5.1 Trabalhos Futuros

