
 ESCOLA POLITÉCNICA
DE PERNAMBUCO

Um Guia para Controle de Versão de
Projeto de Software

Trabalho de Conclusão de Curso

Engenharia da Computação

Adriano Nântua do Nascimento Carneiro
Orientador: Prof. Sérgio Castelo Branco Soares

Recife, novembro de 2007

 ESCOLA POLITÉCNICA
DE PERNAMBUCO

Um Guia para Controle de Versão de
Projeto de Software

Trabalho de Conclusão de Curso

Engenharia da Computação

 Este Projeto é apresentado como requisito parcial

para obtenção do diploma de Bacharel em
Engenharia da Computação pela Escola
Politécnica de Pernambuco – Universidade de
Pernambuco.

Adriano Nântua do Nascimento Carneiro
Orientador: Prof. Sérgio Castelo Branco Soares

Recife, novembro de 2007

Adriano Nântua do Nascimento Carneiro

Um Guia para Controle de Versão de
Projeto de Software

i

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Resumo

A disciplina de processo de Gerência de Configuração e Mudanças tem como uma de suas

principais atividades a Gerência de Configuração, que diz respeito à estrutura do produto de

software e ao monitoramento das modificações de artefatos ao longo do tempo, também

conhecido como controle de versão. A Gerência de Configuração afirma que o controle de versão

deve ser realizado em projetos de software. No entanto, não dá informações de como o controle

de versão deve ser feito. Este trabalho, um guia para controle de versão de projeto de software,

propõe uma definição de tal processo, determinando ferramentas, regras, políticas, padrões,

fluxos de trabalho e melhores práticas, tendo com meta suprir a carência de orientações

pragmáticas quanto ao processo de controle de versão.

ii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Abstract

The Configuration and Change Control process discipline has, as one of its main activities, the

Configuration Management. This activity deals with software product structure and change

monitoring over artifacts through time, also know as version control. Configuration Management

states that version control must be performed in software development projects. Nevertheless,

there are not instructions about how version control should be executed. This work, a guide to

software project version control, proposes a definition of such process, determining tools, rules,

policies, patterns, workflows and best practices, towards removing the lack of pragmatic

information on the version control process.

iii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Sumário

Índice de Figuras v

Tabela de Símbolos e Siglas vi

1 Introdução 8
1.1 Objetivos 9
1.2 Estrutura do Trabalho 9
1.3 Contribuições 9

2 Controle de Versão 10
2.1 Arquitetura 10
2.2 Modelos de Versionamento 11

2.2.1 O Problema do Compartilhamento de Arquivos 11
2.2.2 O Modelo Lock-Modify-Unlock 12
2.2.3 O Modelo Copy-Modify-Merge 14

2.3 Outros Conceitos Básicos do Controle de Versão 15
2.3.1 Checkout e Update 16
2.3.2 Checkin/Commit 16
2.3.3 Merging e Conflito 16
2.3.4 Revision e Revision Number 17
2.3.5 Tags ou Labels 17
2.3.6 Branches 17

3 Subversion, um Sistema de Controle de Versão 19
3.1 Breve Histórico 19
3.2 Características do Subversion 20

3.2.1 Versões de Diretórios 20
3.2.2 Histórico de Versão Realista 20
3.2.3 Commits Atômicos 20
3.2.4 Metadados e Versões de Metadados 21
3.2.5 Tagging e Branching Eficientes 22

3.3 Sobre a Escolha do Subversion 22

4 Controlando Versões com Subversion 23
4.1 Papel do Guia no Processo de Desenvolvimento 23
4.2 Premissas e Pré-requisitos 24

4.2.1 Ambiente e Ferramentas 24
4.2.2 Natureza dos Artefatos 25

4.3 Iniciando o Controle de Versão 25
4.3.1 Criando o repositório 25
4.3.2 Comandos do Subversion no Cliente 26
4.3.3 Layout do Repositório 26
4.3.4 Checkout e Commit Iniciais 28

4.4 Fluxo Básico de Trabalho 28

iv

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.4.1 Atualizando a Cópia de Trabalho 28
4.4.2 Modificando a Cópia de Trabalho 28
4.4.3 Examinando as Modificações da Cópia de Trabalho 29
4.4.4 Desfazendo Alterações na Cópia de Trabalho 30
4.4.5 Melhores Práticas nas Modificações da Cópia de Trabalho 30
4.4.6 Registrando Mudanças no Repositório: Merges, Conflitos e Commit 31
4.4.7 Melhores Práticas no envio de Modificações para o Repositório 33

4.5 Examinado o Histórico 34
4.6 Tagging e Branching 35

4.6.1 Tagging 36
4.6.2 Branching 36
4.6.3 Melhores práticas em Branching 39

4.7 Um Fluxo Alternativo: Trabalhando com Patches 40

5 Conclusões e Trabalhos Futuros 41
5.1 Trabalhos Futuros 41

v

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Índice de Figuras

Figura 1. Funcionamento de um repositório simples (servidor de arquivos) 11
Figura 2. O problema do compartilhamento de arquivos 12
Figura 3. O modelo Lock-Modify-Unlock 13
Figura 4. O modelo Copy-Modify-Merge (parte 1) 14
Figura 5. O modelo Copy-Modify-Merge (parte 2) 15
Figura 6. Definição de uma tag 17
Figura 7. Uma situação de branching com posterior merging 18
Figura 8. O Fluxo da Gestão de Configuração de Mudança, de acordo com o RUP [1] 24
Figura 9. Menu de opções do TortoiseSVN 26
Figura 10. Opções de layout para repositórios com múltiplos projetos 27
Figura 11. Windows Explorer com TortoiseSVN, indicando o status dos artefatos 29
Figura 12. Listagem detalhada de modificações da cópia de trabalho. 29
Figura 13. Modificações detalhadas em um artefato. 30
Figura 14. Artefato em situação de conflito. 32
Figura 15. TortoiseMerge como ferramenta de resolução de conflitos 32
Figura 16. Tela de commit do TortoiseSVN. 33
Figura 17. Tela de log de modificações do TortoiseSVN 35
Figura 18. Produto de software com duas release branches 37
Figura 19. Tela de operação de Branch/Tag 38
Figura 20. Tela de Merge entre diferentes linhas de desenvolvimento 39

vi

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela de Símbolos e Siglas

GCS Gerência de Configuração de Software
SCM Software Configuration Management, Gerência de Configuração de Software, em

inglês
SVN Subversion, um sistema de controle de versão
CVS Concurrent Versions System, um sistema de controle de versão
MS Microsoft

WEB Redução de World Wide Web (Rede Mundial de Computadores), conhecida também
como Internet

CCM Configuration and Change Management (Gerência de Configuração e Mudanças)
CM Configuration Change Management (Gerência de Configuração)

vii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Agradecimentos

Gostaria de agradecer, primeiramente, a Deus pelo privilégio, acima de tudo, de estar vivo,
premissa básica que as pessoas tendem a esquecer de levar em consideração.

Agradeço também a meus pais, Osmar e Teresa, por me proporcionarem uma educação de
qualidade, tanto acadêmica (nas escolas em que me colocaram) quanto moral e eticamente (em
casa). Sem essa base, não poderia ter chegado até aqui.

Tenho muito a agradecer a todos os Professores do DSC com que tive contato, todos
grandes profissionais e, principalmente, grandes pessoas. Agradecimentos especiais a Sérgio
Soares, cujas aulas não tive oportunidade de freqüentar, mas cuja orientação neste TCC tive o
privilégio de receber; a Ricardo Massa, um amigo que teve paciência (eu espero) com minha
indisponibilidade em semestres anteriores; e, finalmente, a Carlos Alexandre, um professor,
mestre e amigo, com quem aprendi, mesmo que ele não saiba, bem mais que algoritmos e árvores
binárias.

Agradeço muito aos colegas que tive ao longo do curso, que me ajudaram com seu
incentivo e injeções de ânimo, em especial aos amigos Túlio Campos, Bruno Arôxa, Pedro
França e César Augusto.

Por fim agradeço à minha esposa Márcia, minha companheira de vida, sem cujo apoio,
incentivo e compreensão eu não teria sido capaz de concluir este trabalho, e a meu filho do
coração Arthur, cujos abraços e risadas têm poderes de fortalecimento e cura para a alma. Dedico
este trabalho a eles, minha família, com quem aprendo diariamente o valor do suor e do sorriso,
da responsabilidade e da leveza, da felicidade, da sintonia e da alegria insubstituível e
incomparável de viver nossas vidas sob tutela do amor.

Muito obrigado a todos vocês.

8

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1

Introdução

Capítulo

Um projeto de software é composto por um conjunto de diversos tipos de arquivos, que quando
devidamente processados e compilados resultam em um ou mais arquivos binários que são o
produto final do projeto, o software. Como o software pode ser reconstruído a partir de seus
arquivos-fonte, faz-se imprescindível o controle sobre esses artefatos.
 O controle de versão é a atividade básica e primordial dentre as atividades de apoio ao
desenvolvimento de software geralmente definidas na Gerência de Configuração de Software
(GCS ou Software Configuration Management – SCM) [1]. Muitos dos problemas que ocorrem
durante o processo de desenvolvimento são causados pelo controle ineficaz e/ou inexistente dos
artefatos de um projeto de software.
 A atividade de controle de versão dentro de uma organização é definida por políticas que
determinam: os processos e procedimentos a serem seguidos, bem como a forma de executá-los,
as boas práticas e situações a evitar; e a ferramenta a ser utilizada. Da falta de políticas definidas
e, por conseguinte, de uma ferramenta que auxilie o controle de versão decorrem os seguintes
problemas:

• Perda de versões anteriores do projeto;
• Sobrescrita e/ou exclusão acidental de item de configuração;
• Perda de trabalho decorrente de alterações feitas sobre uma versão antiga e/ou

incorreta;
• Dificuldade na manutenção simultânea de diferentes versões do projeto;
• Perda de trabalho decorrente da concorrência dos membros da equipe por itens de

configuração;
• Dificuldade (ou impossibilidade) na auditoria de alterações dos itens de configuração.

Dado o contexto, torna-se imprescindível que projetos de software possuam um processo

de controle de versão bem definido. Toda a literatura sobre SCM disponível confirma que o
controle de versão deve ser realizado. Contudo, esta mesma literatura não define como o controle
de versão deve ser feito, não existindo guias previstos em SCM para este processo.

9

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1.1 Objetivos
Existem fontes de informações, espalhadas e fragmentadas, sobre como realizar controle de
versão. No entanto, não existe um guia unificado que centralize em um único documento um
modelo de trabalho completo para este processo. Dada a falta de guias que definem um processo
de controle de versão, este trabalho tem como objetivo fornecer subsídios concretos para a
definição de um Plano de Gerência de Configuração (Configuration Management Plan) [1], um
documento previsto nos processos de SCM. O propósito deste guia é definir, no que diz respeito
ao controle de versão de artefatos de projeto, um modelo de trabalho consistente, seguro, eficaz e
experimentado para projetos de desenvolvimento de software em equipe.

Este guia foi concebido tendo como base minhas experiências profissionais como gerente
de projetos e de configuração, onde tive a oportunidade de planejar, executar e acompanhar o
controle de versão em diversos projetos de desenvolvimento de software com equipes.

1.2 Estrutura do Trabalho
Este trabalho, um guia para controle de versão de projeto de software, foi estruturado e dividido
em 5 capítulos.

No Capítulo 2 é apresentada a fundamentação teórica sobre controle de versão,
introduzindo os conceitos fundamentais, noções básicas, definições e contextualizações sobre o
tema. A apresentação da ferramenta utilizada no guia é feita no Capítulo 3, onde o sistema de
controle de versão (Subversion), suas características, vantagens e as razões de sua escolha é
apresentado. O Capítulo 4 descreve a metodologia de controle de versão, o objetivo centro do
trabalho, onde os fluxos de trabalho, políticas e melhores práticas no controle de versão de
projeto de software são definidos. Por fim, o Capítulo 5 apresenta as conclusões, considerações
finais e trabalhos futuros.

1.3 Contribuições
Este trabalho tem como suas principais contribuições:

• A apresentação de uma sólida fundamentação teórica sobre controle de versão,
abrangendo os diversos pontos indispensáveis ao entendimento desse processo;

• A definição de um processo completo de controle de versão de projeto de software:
o As ferramentas a serem utilizadas, com os fundamentos sobre seu uso;
o O ambiente mínimo dos projetos e sua configuração;
o A definição de regras, políticas e padrões;
o Os fluxos de trabalho básicos, avançados e alternativos;
o As melhores práticas, em cada uma das etapas do processo;

• Possibilitar que um profissional da área de computação com um mínimo conhecimento
em configuração de ambientes de trabalho e em projetos de desenvolvimento de software
seja capaz de implantar com sucesso em uma organização uma política simples, mas
eficiente, de controle de versões;

• Incentivar que empresas que não possuem controle de versão de software possam ver no
guia uma oportunidade de utilizar uma metodologia pronta para esse processo.

10

ESCOLA POLITÉCNICA
DE PERNAMBUCO

2

Controle de Versão

Capítulo

Este capítulo tem como objetivo apresentar conceitos fundamentais sobre o controle de versão em
projetos de software, expondo, ao longo das seções a seguir, noções básicas, definições e
contextualizações compondo uma base teórica.

2.1 Arquitetura
Uma equipe trabalhando em um projeto de software consiste, em linhas gerais, em indivíduos que
compartilham recursos, os artefatos do projeto. Estes artefatos são arquivos de diversos tipos e
naturezas, tais quais códigos-fonte, scripts, configurações, documentação, automações de tarefas,
entre outros, os quais no âmbito de SCM são também usualmente denominados itens de
configuração (configuration items) [1]. O software é construído através das sucessivas
modificações feitas sobre este conjunto de arquivos, pela criação, alteração e exclusão desses
recursos. Desta forma, é fundamental garantir que o time tenha acesso a esse conjunto de recursos
em seu estado mais atual e íntegro, com todas as modificações realizadas pelos demais membros.
A maneira mais simples de atingir este cenário é criando uma área dentro da organização onde
são armazenados os artefatos do projeto mais atuais, ficando disponíveis para todos os
componentes da equipe. A esta área centralizada de arquivos dá-se o nome de repositório [2, 3,
4, 5].

Fazer com que os membros da equipe trabalhem diretamente nos itens de configuração
localizados no repositório constitui uma péssima prática, apresentando os seguintes problemas:

• Em conseqüência de modificações parciais, o conteúdo do repositório estará
constantemente “em alteração” e dificilmente conterá uma versão do software estável
ou até mesmo compilável;

• Devido à simultaneidade de acesso, o trabalho de um componente do time tem grande
probabilidade de interferir no trabalho dos demais.

Desta forma um outro modelo de trabalho deve ser adotado. Em linhas gerais, o trabalho
conceitual básico da equipe com um repositório, ilustrado pela Figura 1, é extremamente simples,
funcionando em um esquema de cliente/servidor. Para efetuar mudanças, corrigir problemas ou
adicionar funcionalidades no software, um membro da equipe efetua uma cópia (operação
representada na figura pela seta rotulada de Leitura) dos artefatos do projeto (representados pelo
ícone de conjunto arquivos) do repositório para uma área privada em sua estação cliente. O
conjunto de arquivos copiados para a estação cliente é comumente chamado de área de trabalho

11

ESCOLA POLITÉCNICA
DE PERNAMBUCO

(workspace) [1, 2, 5] ou cópia de trabalho (working copy) [2, 4] e sobre esta cópia é que serão
feitas as modificações. Ao concluir as modificações, o componente da equipe envia para o
repositório o conteúdo de sua área de trabalho (operação representada pela seta rotulada de
Escrita), atualizando assim o repositório, que passará a dispor do conjunto de arquivos em seu
estado mais atual. Assim, quando um segundo membro da equipe atualizar sua cópia de trabalho,
ele terá as modificações realizadas pelo primeiro.

Figura 1. Funcionamento de um repositório simples (servidor de arquivos)

Conceitualmente, as noções de repositório e de área/cópia de trabalho independem de uma

ferramenta ou tecnologia específica, podendo este esquema ser implementado desde através de
um diretório compartilhado por um servidor de arquivos até um complexo sistema de controle de
versão, como será apresentado nas próximas seções.

2.2 Modelos de Versionamento
O modelo simplificado apresentado na seção anterior apresenta brechas que podem levar a falhas
que comprometem todo o trabalho da equipe. Nesta seção, é apresentado um problema clássico
do tema e suas soluções, cada uma com as devidas considerações.

2.2.1 O Problema do Compartilhamento de Arquivos
Um dos problemas fundamentais que os sistemas de controle de versão devem resolver é permitir
que os componentes de uma equipe compartilhem os dados do repositório de forma simultânea
sem que haja interferência eles, o que pode acarretar na perda de modificações efetuadas.

O modelo de servidor de arquivos simples introduz o problema do compartilhamento de
arquivos, ilustrado na Figura 2. No cenário apresentado, dois desenvolvedores (Adriano e
Márcia) alteram simultaneamente o Artefato A (representado pelo ícone de documento). Ao
enviar suas alterações para o repositório primeiro, Adriano corre o risco de ter sua versão
sobrescrita pela versão de Márcia, devido ao formato e às condições técnicas do modelo.

12

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 2. O problema do compartilhamento de arquivos

Obviamente, o cenário apresentado deve ser evitado, já que o trabalho de um

desenvolvedor foi sumariamente desprezado e a versão do repositório não apresenta o que
deveria ser a versão mais atual do software.

2.2.2 O Modelo Lock-Modify-Unlock
Alguns sistemas de controle de versão utilizam o modelo Lock-Modify-Unlock (Travar-
Modificar-Destravar) [3,4] para solucionar o problema apresentado na seção anterior. Neste
modelo, o repositório permite que somente uma pessoa por vez efetue modificações sobre um
artefato, sendo esta política de exclusividade gerenciada através do uso de travamentos (locks).

No modelo Lock-Modify-Unlock, contextualizado na Figura 3, o desenvolvedor deve
travar (lock) o arquivo antes de efetuar sobre ele modificações. Assim, um segundo
desenvolvedor não conseguiria travar o mesmo artefato e, portanto, não poderia realizar
modificações sobre este, podendo apenas efetuar uma leitura simples (sem possibilidade de
alteração) e esperar que o primeiro desenvolvedor termine suas modificações sobre o artefato e
remova a trava.

13

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 3. O modelo Lock-Modify-Unlock

Além de ser restritivo, o modelo Lock-Modify-Unlock apresenta problemas que podem

tornar seu uso desaconselhado. Primeiramente, o travamento de artefatos pode causar problemas
administrativos. Contextualizando um cenário onde o desenvolvedor Adriano trava um arquivo e
simplesmente esquece de destravá-lo (por exemplo, focando em modificações de outros artefatos
do projeto), Márcia nada pode fazer além de esperar. Piorando o cenário, Adriano pode ficar
ausente (férias, por exemplo), fazendo com que seja necessária intervenção administrativa para
remover a trava. A situação acaba causando desnecessários trabalho adicional e perda de tempo.

Além disso, o travamento de artefatos causa serialização de trabalho desnecessária. Em
novo cenário, Adriano está modificando a porção inicial de um arquivo-fonte (um método
específico de uma classe, por exemplo) e Márcia precisa modificar a porção final do mesmo
arquivo (por exemplo, outro método da mesma classe, totalmente independente do primeiro). Não
há razão para que o trabalho não possa ser feito simultaneamente, dado que as modificações não
causam interferência mútua e presumindo que haja mecanismos eficazes de mesclar as alterações.
Deste modo, a espera pelo destravamento é desnecessária e constitui perda de tempo.

Por fim, o travamento de artefatos causa uma falsa sensação de segurança. Em mais um
cenário hipotético, Adriano trava e modifica o artefato A enquanto Márcia faz o mesmo com o
artefato B. Se os artefatos A e B dependem mutuamente um do outro e as mudanças realizadas
são semanticamente incompatíveis (uma mudança brusca de conceito, por exemplo), A e B
passam a não mais funcionar juntos e o modelo nada pôde fazer para evitar o problema. Um outro
cenário mostra que o modelo possibilitaria uma situação de Deadlock no desenvolvimento:
Adriano trava e modifica A enquanto Márcia faz o mesmo com B. Se, durante o

14

ESCOLA POLITÉCNICA
DE PERNAMBUCO

desenvolvimento, Adriano percebe que sua modificação em A implica em um ajuste em B e
Márcia, por sua vez, verifica que sua modificação em B exige uma alteração em A, surge o
clássico problema do Deadlock, factível em contextos onde recursos são compartilhados de forma
exclusiva. Concluindo, os desenvolvedores imaginam que, ao travar os arquivos, estão iniciando
uma tarefa segura e isolada, o que pode não vir a se configurar.

2.2.3 O Modelo Copy-Modify-Merge
Os sistemas de controle de versão mais modernos e amplamente utilizados fornecem ferramentas
que possibilitam a utilização do modelo Copy-Modify-Merge (Copiar-Modificar-Mesclar) [3,5]
como uma alternativa ao travamento de artefatos no repositório. Este modelo permite que a
equipe efetue modificações em suas cópias de trabalho privadas de forma simultânea e
independente. Ao final do processo, as cópias privadas são mescladas (quando necessário) em
uma nova e única versão final. Geralmente, o sistema de controle de versão em uso assiste na
tarefa de mesclar dos artefatos (ou o faz por conta própria, dependendo da ferramenta), mas em
última instância é responsabilidade do desenvolvedor fazer com que a mesclagem seja feita
corretamente. O funcionamento do modelo Copy-Modify-Merge é exemplificado através do
cenário ilustrado nas Figuras 4 e 5.

Figura 4. O modelo Copy-Modify-Merge (parte 1)

Nesse modelo, as ferramentas utilizadas dão condições técnicas tanto ao repositório

quanto à cópia de trabalho de consistir as versões que transitam entre estas duas áreas. Desta

15

ESCOLA POLITÉCNICA
DE PERNAMBUCO

forma, o repositório tem a capacidade de aceitar ou não uma tentativa de escrita, comparando a
versão corrente do artefato no repositório com a versão do artefato na cópia de trabalho antes da
mudança.

Figura 5. O modelo Copy-Modify-Merge (parte 2)

Ao ter rejeitada uma tentativa de escrita após verificação de versão, resta ao

desenvolvedor atualizar sua cópia de trabalho, no intuito de obter as alterações feitas por outros
desenvolvedores. Neste momento, é realizada a mesclagem das duas versões do artefato (a do
repositório e a da cópia de trabalho do desenvolvedor), criando-se uma nova versão contendo
todas as alterações feitas pelos desenvolvedores envolvidos no processo. Esta nova versão, por
sua vez, terá a tentativa de escrita aceita pelo repositório.

Apesar de parecer um tanto caótico, o modelo Copy-Modify-Merge funciona bem na
prática, eliminando os principais problemas apresentados pelo modelo Lock-Modify-Unlock.
Quando dois ou mais desenvolvedores trabalham em paralelo em um mesmo artefato, na maioria
das vezes suas modificações não se sobrepõem. Ainda assim, o tempo que se levaria para resolver
este tipo de situação é muito menor que o tempo perdido pelo uso de travamento de artefatos.

2.3 Outros Conceitos Básicos do Controle de Versão
Durante as seções anteriores deste capítulo, alguns conceitos básicos do controle de versão já
foram apresentados e fundamentalmente embasados, tendo em vista que se fizeram necessários

16

ESCOLA POLITÉCNICA
DE PERNAMBUCO

ao entendimento das noções descritas. Em resumo, foram eles: Artefatos de projeto e Itens de
Configuração; Repositório; Área de Trabalho (workspace) ou Cópia de Trabalho (working copy);
Travamento e Destravamento de artefatos. Esta seção tem como objetivo apresentar outros
conceitos fundamentais no tema que não tiveram a oportunidade de serem citados até então.

2.3.1 Checkout e Update
Checkout [2, 3, 4, 5] consiste no ato de realizar a cópia dos artefatos do projeto do repositório
para a cópia de trabalho.

Para alguns sistemas de controle de versão, como o CVS e o Subversion, o check out
significa somente realizar a primeira leitura de artefatos do repositório, realizando-se a criação da
área de trabalho do desenvolvedor; as subseqüentes leituras do repositório para obter novas
modificações realizadas por outros desenvolvedores na cópia de trabalho já criada são chamadas
de updates (atualizações) [2, 3, 4, 5]. Em outros sistemas de controle de versão, como o Visual
Safe Source (VSS), não há distinção entre a primeira leitura e as demais verificações de
modificações, sendo todas chamadas de check out.

Nas figuras apresentadas anteriormente, as operações de check out e update são indicadas
pela seta rotulada de “Leitura”.

2.3.2 Checkin/Commit
Checkin [2, 3, 4, 5] consiste no ato de enviar para o repositório as alterações realizadas na cópia
de trabalho do desenvolvedor. Em alguns sistemas de versão, como o CVS e o Subversion, esta
operação é denominada commit [2, 3, 4, 5]. Em geral, os sistemas de controle de versão
possibilitam a digitação de uma mensagem de texto associada ao commit, a qual o desenvolvedor
deve preencher com informações sobre o que foi feito na alteração sendo enviada para o
repositório. Esta mensagem é de extrema importância na rastreabilidade das modificações em um
repositório.

Nas figuras apresentadas anteriormente, as operações de checkin/commit são indicadas
pela seta rotulada de “Escrita”.

2.3.3 Merging e Conflito
Merging (Mesclagem ou Fusão) [2, 3, 4, 5] consiste no ato de mesclar ou fundir duas versões
diferentes de um mesmo artefato, criando uma terceira e nova versão deste artefato que contém
todas as modificações presentes nas duas versões anteriores. Basicamente, existem dois diferentes
contextos em que a pode ocorrer merging: quando se realiza uma atualização de um artefato que
foi modificado tanto localmente quanto no repositório (contexto que será descrito nesta seção e
que também pode ser observado na Figura 5) ou quando se trabalha com branches (ver seção
Branches).

Sistemas de controle de versão como CVS e Subversion, através de um mecanismo de
comparação e indexação de linhas, tentam realizar mesclagem automática no momento em que é
realizado um update em um artefato que foi alterado na cópia de trabalho e cuja versão no
repositório é posterior à versão local.

Vale ressaltar que a mesclagem automática não é possível para todo e qualquer tipo de
artefato: basicamente apenas arquivos que contém texto plano (como, por exemplo, arquivos de
código-fonte e XML, entre tantos outros) oferecem possibilidade de mesclagem automática.

Quando as modificações nas duas versões a serem mescladas estão localizadas em
diferentes trechos dentro do artefato, a mesclagem automática é bem sucedida. O caso contrário,

17

ESCOLA POLITÉCNICA
DE PERNAMBUCO

onde as modificações se sobrepõem, é denominado de conflito (conflict) [2, 3, 4, 5]. Conflitos
devem ser resolvidos por um ser humano, contudo, mesmo sendo uma tarefa manual na essência,
os sistemas de controle de versão fornecem ferramentas para auxiliar os desenvolvedores na
conciliação de conflitos, apontando os pontos conflitantes no artefato e as opções de mesclagem.

2.3.4 Revision e Revision Number
Sob a tutela de um sistema de controle de versão, sempre que um artefato é modificado no
repositório, é criada uma nova revision (revisão) [2, 3, 4, 5], a qual recebe um revision number
(número de revisão) [2, 3, 4]. A maioria dos sistemas de controle de versão atribui os números de
revisão por artefato, ou seja, cada artefato possui seu próprio número de revisão. O Subversion
atribui o número de revisão à árvore inteira do projeto, conforme será mostrado mais adiante.

2.3.5 Tags ou Labels
Uma tag (Marcação) [2, 3, 4] ou label (rótulo) [5] é, de forma pragmática, uma “fotografia” do
repositório em um determinado momento. Através da criação de tags, o sistema de controle de
versão permite que seja possível dar um nome significativo (release-1.0, por exemplo) a uma
versão do conjunto de artefatos do repositório correspondente a um determinado ponto no tempo,
para posterior acesso.
 A Figura 6 ilustra a criação de uma tag. A linha horizontal representa a evolução da linha
principal de desenvolvimento ao longo do tempo. Cada versão dos artefatos é indicada por um
círculo, contendo o número da versão ou o número da revisão dos artefatos. A tag é representada
pelo ícone de uma etiqueta. No exemplo apresentado pela figura, foi criada uma tag da revisão de
número 3 dos artefatos do projeto, indicando um nome significativo para esta revisão.

Figura 6. Definição de uma tag

Tags são úteis para manter versões de momentos-chave do projeto de software ao longo

do tempo.

2.3.6 Branches
Normalmente, uma equipe trabalha na linha principal de desenvolvimento do projeto de software,
onde são encontrados os artefatos em sua versão mais atual. No entanto, há situações em que é
necessária a utilização de outras linhas de desenvolvimento, paralelas à linha principal. Um
branch (ramificação) [2, 3, 4, 5] é uma linha de desenvolvimento independente, que funciona
como um repositório paralelo do mesmo projeto, mas que mantém um vínculo histórico com a
linha principal.

18

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tecnicamente, é possível fazer branch de um único artefato, de um conjunto de artefatos
ou de toda a árvore do projeto, podendo esse branch ser criado a partir da linha principal de
desenvolvimento, de uma tag ou mesmo de outro branch.

A Figura 7 ilustra uma situação em que foi utilizado o recurso de branching. No contexto
apresentado, a linha de desenvolvimento principal de um produto evoluiu até sua versão 2.0, que
foi disponibilizada para os usuários. Ao continuar a evolução do produto, através da criação de
novas funcionalidades que acabarão por ser lançadas na futura versão 3.0, os usuários do produto
indicam problemas e ajustes a serem realizadas na versão 2.0 lançada. Não é possível, neste
momento, corrigir os problemas indicados na linha principal, pois nesta linha o produto não está
numa versão estável para ser liberada para os usuários. Assim, a solução foi criar uma linha
paralela de desenvolvimento, um branch criado a partir da versão 2.0 (indicado pela seta rotulada
“branch”), cujos artefatos do projeto correspondem à versão do produto em posse dos usuários.
Nesta nova ramificação, foram corrigidos os problemas relatados e realizados os devidos ajustes,
sendo gerada a versão 2.1, que pode ser liberada para os usuários.

Figura 7. Uma situação de branching com posterior merging

Este mesmo branch tem a possibilidade de continuar a evoluir em paralelo à linha

principal de desenvolvimento, através outras correções e ajustes (no exemplo, é gerada a versão
2.2 do produto). Por fim, será necessário que as correções e os ajustes realizados na linha paralela
sejam incorporados na linha principal de desenvolvimento. Esta ação é realizada através de um
merge (indicada por uma seta pontilhada, rotulada “merge”) da versão 2.2 (a versão origem do
merge, localizada no branch paralelo) para a versão 3 (a versão destino do merge, localizada na
linha principal de desenvolvimento). Esta operação, conforme já foi descrito na seção sobre
merging, é auxiliada pelo sistema de controle de versão, que pode desde realizar mesclagem
automática a fornecer ferramentas que assistam o desenvolvedor na mesclagem manual.

Branching é um importante mecanismo no controle de versões, fornecendo ao projeto
diversas vantagens no decorrer do desenvolvimento. Contudo, a ramificação de linhas de
desenvolvimento é um instrumento que deve ser utilizado com inteligência, cautela e muita
comunicação interna na equipe. A utilização de branches será explorada mais detalhadamente
mais à frente neste guia.

19

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3

Subversion, um Sistema de Controle
de Versão

Capítulo

A metodologia de trabalho contida neste guia foi desenvolvida utilizando-se do Subversion, um
sistema de controle de versão. O objetivo deste capítulo é apresentar esta ferramenta, incluindo
um breve histórico, características, particularidades, benefícios e as razões de sua escolha como
instrumento para o controle de versão deste guia.

3.1 Breve Histórico
Por muitos anos, o Concurrent Versions System (CVS) [2, 3, 4, 5, 6, 7] foi o mais popular sistema
de controle de versão no mundo do Open Source Software (Software de Código Aberto), sendo
considerado praticamente um padrão nesta esfera, mas também frequentemente adotado fora dela.
Extensivamente utilizado ainda hoje, a popularidade desta ferramenta é facilmente explicada: o
próprio CVS é um software de código aberto; seu modo de utilização não é restritivo, ou seja, não
há somente uma forma de trabalhar com CVS, permitindo a adoção de diferentes políticas de
acordo com o projeto; baseado no modelo de versionamento Copy-Modify-Merge, mas
possibilitando também o uso de locks; amplo suporte em operações pela rede, permitindo que
desenvolvedores geograficamente separados pudessem compartilhar projetos e unir esforços.
Estas características tornaram o CVS uma das pedras angulares da cultura de código aberto.

Apesar de ter sua utilização altamente difundida, o CVS tem algumas deficiências,
apresentando vários problemas, falhas e limitações (que serão apresentadas mais adiante) que
tornavam seu uso, em alguns momentos, ineficiente, ineficaz, inconsistente e até mesmo irritante.
Considerando que consertar as deficiências do CVS seria uma operação que demandaria
excessivo tempo e esforço, um grupo de pessoas (entre elas desenvolvedores do CVS, usuários de
CVS e autores de livros sobre CVS) apoiado por uma empresa (CollabNet) resolveu criar um
novo sistema de controle de versão de código aberto. Este nova ferramenta, o Subversion (SVN)
[2, 3, 4, 7], deveria fornecer funcionalidades similares às do CVS, preservar o mesmo modelo de
desenvolvimento e não apresentar as falhas e limitações de seu antecessor, de forma que fosse
similar o suficiente para que usuários do CVS pudessem realizar a migração com um mínimo de
esforço e aprendizado. Desta forma, o Subversion foi construído, tendo sua versão 1.0 lançada no
início de 2004.

20

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Apesar de não poder ser considerado o próximo passo evolutivo das ferramentas de
controle de versão, o Subversion é o sucessor melhorado do CVS e vale ressaltar que este seu
antecessor já se encontra vários passos adiante de outras ferramentas do gênero. Isso coloca o
Subversion muito à frente do que existe atualmente na esfera do código-aberto, sendo inclusive
um competitivo sério das ferramentas pagas. Por todo o contexto apresentado, o Subversion
ocupa atualmente (no lugar de seu antecessor) a posição de ferramenta padrão para os novos
projetos de código aberto, sendo gradualmente adotado em projetos já existentes que utilizam seu
antecessor, o CVS.

3.2 Características do Subversion
Transcorrida a devida apresentação do Subversion (e sua similaridade com o CVS), esta seção
tem como objetivo descrever as características mais relevantes para este guia desse sistema de
controle de versão. Serão também descritas, quando pertinente, as vantagens do Subversion sobre
seu antecessor.

3.2.1 Versões de Diretórios
O CVS mantém o registro histórico de modificações apenas de arquivos, individualmente. O
Subversion, no entanto, implementa um sistema de arquivos capaz de registras o histórico de
mudanças de árvores de diretório inteiras ao longo do tempo, ou seja, o Subversion controla não
só as versões dos arquivos, como também dos diretórios.

3.2.2 Histórico de Versão Realista
Como o CVS controla somente a versão de arquivos individualmente, operações como copiar ou
renomear arquivos, que podem acontecer a arquivos mas são na verdade mudanças no conteúdo
de um diretório, não são suportadas. Como um efeito colateral indesejado, ao excluir um arquivo
e alguns check ins depois incluir um outro arquivo com o mesmo nome, o novo item herdará todo
o histórico do item anterior, mesmo que o novo arquivo tenha pouco ou nada a ver com o
anterior. Com o Subversion, é possível adicionar, excluir, copiar e renomear tanto arquivos
quanto diretórios. Cada novo item adicionado tem um histórico próprio, limpo e novo.

3.2.3 Commits Atômicos
Ao contrário do que acontece no CVS, no Subversion um conjunto de modificações (que pode
envolver diversos arquivos e diretórios) é enviado para o repositório de forma atômica, ou seja,
ou todas as modificações são registradas no repositório ou nenhuma é. Inicialmente, isso pode
não parecer importante, mas em um sistema de controle de versão onde esta característica não
está presente, os seguintes efeitos colaterais indesejados podem ocorrer:

• Cenário 1: Em um commit de três artefatos, o último na lista de envio não está
atualizado na cópia de trabalho e terá seu recebimento rejeitado pelo repositório. Se o
commit não for atômico, o repositório aceitará os dois primeiros, o que acarretará em
uma inconsistência dos artefatos no repositório, já que as modificações realizadas pelo
desenvolvedor só funcionariam, por exemplo, se todos os arquivos tivessem sido
enviados com sucesso. No caso de commit atômico, todos os três itens seriam
rejeitados, não permitindo inconsistências no repositório.

21

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Cenários 2: Um desenvolvedor realiza um commit com 200 artefatos, operação que
tem uma latência de tempo para acontecer. Em um commit não atômico, enquanto esta
operação está em andamento, é possível que um outro desenvolvedor efetue update
em sua cópia de trabalho e obtenha algumas das modificações presentes no commit
mencionado acima, mas não todas, causando uma inconsistência em sua área de
trabalho. No caso de commit atômico, esta inconsistência não seria possível já que o
segundo desenvolvedor teria em sua cópia de trabalho ou a versão do repositório antes
do commit ou a versão depois do final do commit, dependendo do momento em que o
update foi comandado.

Como conseqüência da característica de commit atômico, o número de revisão no

Subversion tem uma regra diferente do número de revisão no CVS. No CVS, os números de
revisão são atribuídos por artefato. Assim, é possível, por exemplo, um repositório conter dois
artefatos: um com o número de revisão 2 (ou r2, aderindo à notação de número de revisão [2, 3,
4, 5]) e outro com o número de revisão r123. Neste conceito o número de revisão de um artefato
significa o número de vezes que o artefato foi modificado (incluindo sua criação).

No Subversion, o conceito de número de revisão tem outro contexto: aplica-se ao
repositório como um todo, ou seja, é um número de revisão global. Neste conceito, o número de
revisão rN representa o estado do repositório após o enésimo commit. Desta forma, quando a
equipe de desenvolvimento se refere, por exemplo, à “r456 do artefato Fachada.java”, isso não
significa que este artefato foi modificado 456 vezes, mais sim que a equipe se refere a
“Fachada.java como estava na revisão 456 do repositório”.

Esse conceito de número de revisão decorrente de commit atômico auxilia em algumas
tarefas como, por exemplo, reverter a uma versão anterior do repositório (o que é bastante
delicado quando cada arquivo possui um número de revisão diferente) ou obter respostas a
perguntas como “o que foi modificado entre as revisões 75 e 78?”.

Por fim, a introdução deste conceito parece levar à “perda da informação” da quantidade
de mudanças por artefato em seu número de revisão. No entanto, o Subversion possui
mecanismos que determinam facilmente a quantidade de mudanças em um artefato em um
período, não havendo necessidade de esta informação estar presente no número de revisão. Em
todo caso, a quantidade de vezes que um artefato foi modificado é uma informação fútil, já que
uma modificação pode significar mudança em uma linha ou a criação de 20 métodos, cada um
com 50 linhas, sendo mais valioso avaliar o que foi modificado em cada versão do artefato, o que
também é facilmente obtido no Subversion.

3.2.4 Metadados e Versões de Metadados
O Subversion possui um mecanismo através do qual é possível atribuir informações diversas aos
artefatos, sem que seja necessário armazená-los no interior do repositório. Este metadados são
chamados propriedades (properties) [2, 3, 4]. Cada artefato pode possuir uma ou mais
propriedades, que são em essência pares do tipo chave/valor. Mesmo havendo propriedades pré-
definidas pelo Subversion, é possível criar e armazenar propriedades personalizadas, não havendo
um limite para a quantidade de propriedades por artefato.

O Subversion também controla a versão das propriedades de um artefato: criação,
exclusão e modificações.

22

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.2.5 Tagging e Branching Eficientes
No CVS, tanto o tempo para realização de tagging e branching como o espaço em disco
consumido por estas operações são diretamente proporcionais ao número de artefatos envolvidos
no processo. Devido à arquitetura avançada de seus repositórios, no Subversion, as operações de
tagging e branching apresentam constantes (e baixas) quantidades de tempo e espaço em disco.

Devido às características do Subversion de possuir commit atômico e, por conseguinte,
número de revisão global, tecnicamente não seria necessária a criação de tags neste sistema de
controle de versão: cada revisão do repositório consiste em uma tag, que contém os estado global
do repositório em um momento específico, identificado pelo número de revisão. A única razão da
criação de tags no Subversion é a possibilidade de se nomear uma revisão específica com um
título amigável, mais fácil de ser lembrado posteriormente.

3.3 Sobre a Escolha do Subversion
Todas as características, vantagens e benefícios apresentados na seção anterior exerceram
influência na escolha do Subversion como ferramenta para este guia. Além delas, serviram como
argumento para sua escolha:

• Simples de instalar e de usar. A instalação e manutenção básica do servidor é simples e
o tempo de aprendizado da equipe para trabalhar com o Subversion é curto;

• Funciona sobre redes TCP/IP. Não só funciona sobre o atual padrão de redes de
computador, como o faz de forma eficiente: trafegam entre cliente e servidor (em ambas
as direções) somente as diferenças entre os itens alterados (artefatos e/ou diretórios) e não
os itens em seu tamanho completo;

• Leve e eficiente. No Subversion, o custo das diversas operações é proporcional ao
tamanho das mudanças e não a tamanho dos dados envolvidos;

• Integrável ao Apache. O Subversion tem a possibilidade de ser integrado a um servidor
de rede Apache, tendo como ganho: o uso do protocolo HTTP para comunicação
cliente/servidor; autenticação de usuário integrado ao domínio do servidor; compressão de
dados na comunicação cliente/servidor; navegação básica de repositório em um web
browser. A integração do Subversion com o Apache, no entanto, requer um alto grau de
expertise técnica para sua implantação, configuração e manutenção e, por esta razão, a
integração não será utilizada neste guia. Contudo, a integração com Apache é opcional
(utilizada somente para o ganho de funcionalidades não-essenciais ao processo) e sua
ausência não impede em absoluto a realização de controle de versão;

• Multi-plataforma. Existem versões da ferramenta para os mais populares sistemas
operacionais do mercado: Linux (diversas distribuições), MS Windows, Apple Mac OS e
Sun Solaris;

• Código-aberto. Para que o guia possa ter maior penetração e aceitação, o fato da
ferramenta ser código-aberto e, por conseguinte, gratuita é um fatores de grande
influência na escolha.

23

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4

Controlando Versões com Subversion

Capítulo

Os dois capítulos anteriores apresentaram conceitos fundamentais sobre, respectivamente, a
disciplina de controle de versão e o Subversion, uma base teórica necessária para o entendimento
deste guia. O conteúdo deste capítulo é o objetivo central deste trabalho: a definição de um guia
para controle de versão de projeto de software, utilizando a ferramenta Subversion.

4.1 Papel do Guia no Processo de Desenvolvimento
O Rational Unified Process (RUP) [1], uma renomada abordagem de procedimentos de
desenvolvimento de software, define como uma de suas disciplinas de processo a Gerência de
Configuração e Mudanças (Configuration and Change Management – CCM), que é composta de
dois aspectos básicos:

• Gerência de Configuração (Configuration Management - CM), cuja responsabilidade é a
estrutura do produto (projeto de software) e convenciona que os artefatos devem estar sob
controle de versão;

• Gerência de Requisição de Mudança (Change Request Management), que tem como
responsabilidade o controle das solicitações de mudança no produto.

A necessidade de um guia para controle de versão de projeto de software reside no fato de

o RUP afirmar que em CM é necessário realizar controle de versão, mas não fornece informações
sobre como este controle deve ser realizado. Assim, as informações contidas neste guia podem
ser utilizadas para auxiliar nas seguintes atividades do processo de CCM, que estão ilustradas na
Figura 8:

• Planejar Configuração de Projeto e Controle de Mudanças (Plan Project Configuration

and Chage Control)
• Criar Ambientes de CM do Projeto (Create Project CM Environments);
• Monitorar e Reportar Itens de Configuração (Monitor and Report Configuration Items);
• Mudar e Entregar Itens de Configuração (Change and Deliver Configuration Items);
• Gerenciar Linhas de Desenvolvimento e Releases (Manage Baselines and Releases).

24

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 8. O Fluxo da Gestão de Configuração de Mudança, de acordo com o RUP [1]

4.2 Premissas e Pré-requisitos
Esta seção destaca os pré-requisitos para a utilização deste guia como o ambiente de
desenvolvimento, ferramentas envolvidas e a natureza dos artefatos.

4.2.1 Ambiente e Ferramentas
Um dos pré-requisitos fundamentais para o controle de versão de um projeto de software é a
presença de uma rede de computadores sobre o protocolo TCP/IP entre o servidor (estação central
onde está situado o repositório) e os clientes (estações onde trabalham os desenvolvedores e onde
estão localizadas as áreas de trabalho).

No servidor, o sistema operacional poderá ser qualquer um dos previamente indicados
como compatíveis com o Subversion (Capítulo 3). A versão mínima da ferramenta para emprego
neste processo é o Subversion 1.3.0, tendo como versão recomendada o Subversion 1.4.5, a mais
recentemente lançada1.

Conforme mencionado anteriormente, o processo descrito neste guia não utiliza a
integração com Apache. A comunicação dos clientes com o servidor se dará através do serviço
stand-alone chamado svnserve [2, 3, 4]. Existem tutoriais disponíveis na WEB que demonstram
como fazer com que o svnserve funcione como serviço no Windows (ou como um deamon no

1 Versão lançada em 27 de agosto de 2007.

25

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Linux). Além disso, a autenticação de usuário deverá ser feita através dos arquivos de
configuração do repositório.

Nas estações cliente, o guia utiliza como ferramenta cliente o TortoiseSVN [8], um
aplicativo Windows que funciona sobre o Windows Explorer e cuja a interface e instrumentos
internos facilitam as operações básicas do fluxo de trabalho dos desenvolvedores, promovendo
um menor tempo de aprendizado e maior produtividade. Deverá ser utilizada a versão mínima
compatível com a versão instalada no servidor, sendo recomendada a versão TortoiseSVN 1.4.5,
a mais atual2. Contudo, o guia define procedimentos de utilização que independem da ferramenta
cliente adotada, podendo ser utilizada a ferramenta cliente de linha de comando do Subversion,
disponível para qualquer sistema operacional compatível com o SVN. Todas as operações
descritas no guia estão disponíveis tanto no TortoiseSVN quanto nos clientes Subversion de linha
de comando, fornecendo uma alternativa para projetos em ambientes não-Windows.

Vale ressaltar que não é objetivo deste guia ensinar a instalar e configurar as ferramentas
envolvidas no processo. Este tipo de informação pode ser obtido na WEB e na literatura listada
na bibliografia deste trabalho.

4.2.2 Natureza dos Artefatos
Como o objetivo deste guia é auxiliar no controle de versões de projetos de software, os tipos de
artefato de projeto preferenciais devem ser aqueles considerados mescláveis, ou seja, arquivos
cujo conteúdo é texto plano, como, por exemplo, arquivos de código-fonte, XML, scripts, entre
diversos outros.
 Contudo, a presença de arquivos “não mescláveis” não é proibida, já que estes tipos de
arquivos podem ter seu histórico de versão mantido, o que será mostrado mais à frente neste
capítulo. Dentre os artefatos “não mescláveis” comuns em projetos de software destacam-se os
cronogramas de atividades, diagramas diversos (casos de uso, seqüência, classe, entre outros),
planilhas de testes, imagens, entre diversos outros.

Apesar de ser não poderem ser considerados artefatos de texto plano, documentos gerados
por processadores de texto (normalmente com a extensão de arquivo “doc”) têm suporte para
mesclagem através da utilização da ferramenta TortoiseSVN.

4.3 Iniciando o Controle de Versão
As subseções a seguir deste tópico descrevem como iniciar o trabalho de desenvolvimento de
equipe o Subversion.

4.3.1 Criando o repositório
A criação do repositório deve ser feita no servidor, através do comando svnadmin (consultar
referências bibliográficas [2, 3, 4]). É definido um nome para repositório no momento de sua
criação, bem como o diretório no servidor onde será armazenado o repositório. Vale ressaltar que
ao analisar o conteúdo desse diretório, não serão encontrados os artefatos do projeto tais como em
uma área de trabalho, mas sim um conjunto de arquivos que fornecem os mecanismos necessários
ao controle de versão. A única forma de ter acesso aos artefatos do projeto, seja qual for a versão,
é através de um cliente Subversion.

2 Mais especificamente a versão TortoiseSVN-1.4.5.10425, lançada em 27 de agosto de 2007.

26

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Após a criação do repositório, seu endereço na rede para acesso por clientes Subversion
terá o seguinte formato:

protocolo://endereco_servidor/nome_repositorio

Existem diversos protocolos possíveis para comunicação como Subversion e neste guia
utilizaremos o protocolo svn, por causa da previamente comentada utilização do svnserve no
servidor. O endereço do servidor pode ser um endereço IP, um endereço na Internet resolvível
por DNS ou o nome de um computador em uma rede interna.

4.3.2 Comandos do Subversion no Cliente
A ferramenta cliente de linha de comando do Subversion possui um conjunto de instruções
(comandos) através dos quais é possível efetuar operações no repositório. Não é objetivo deste
guia ensinar esses comandos e suas respectivas sintaxes. Estes conceitos podem ser observados
na literatura indicada na bibliografia deste trabalho.

A aplicação cliente TortoiseSVN, a ser utilizada neste guia fornece uma interface gráfica
intuitiva para os comandos do Subversion. Seu menu, integrado no Windows Explorer quando a
aplicação é instalada, está ilustrado na Figura 9.

Figura 9. Menu de opções do TortoiseSVN

Além dos comandos de operação, o TortoiseSVN fornece ferramentas úteis como

navegação de repositório, gráfico de revisões, log de alterações, auxílio para resolução de
conflitos, entre diversas outras.

4.3.3 Layout do Repositório
Um projeto de software deve conter três diretórios considerados essenciais dentro da árvore do
repositório:

• trunk – Este diretório contém os artefatos do projeto em seu estado referente à linha
principal de desenvolvimento do software. A maior parte do trabalho dos desenvolvedores
será feito no trunk;

• tags – Neste diretório são armazenadas as tags do projeto de software. Nele podem ser
criados quantos subdiretórios quanto forem necessários, já que o nome dado a uma tag é

27

ESCOLA POLITÉCNICA
DE PERNAMBUCO

utilizado para nomear seu respectivo subdiretório. Podem ser criados outros subdiretórios
para organizar internamente as tags, de acordo com critérios que podem ser definidos
pelos gestores do projeto;

• branches – Este último diretório armazenará as linhas de desenvolvimento paralelas do
projeto de software.

Tecnicamente, não há diferença no Subversion entre tags e branches, sendo ambos

inclusive criados através do mesmo comando. A diferença é organizacional e processual: ao
contrário dos branches, tags não devem ser modificadas, devendo permanecer estáticas ao longo
do tempo.

Em situações onde dois ou mais projetos têm suas versões controladas, existem dois
layouts básicos de repositório que podem ser seguidos. Quando os projetos compartilham código
de forma a se tornarem mutuamente dependentes, os diretórios trunk, tags e branches devem
estar no primeiro nível do repositório e dentro deles devem estar contidos os diretórios dos
projetos. Por conta de compartilharem artefatos, engenhos ou até mesmo módulos, não faz
sentido gerenciar tags e branches desses projetos separadamente, tampouco separar sua linha de
desenvolvimento principal (o trunk).

Em contrapartida, quando os projetos não compartilham dependências, os diretórios dos
projetos devem ficar no primeiro nível, cada um com seus próprios diretórios trunk, tags e
branches. Como são projetos independentes, eles possuem seus próprios diretórios de controle de
desenvolvimento (trunk, tags e branches). A Figura 10 ilustra as duas opções de layout de
repositório, de acordo com o nível de dependência entre os projetos.

Figura 10. Opções de layout para repositórios com múltiplos projetos

28

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.3.4 Checkout e Commit Iniciais
No momento de sua criação, o repositório está vazio. Para que seja possível preenchê-lo, é
necessário haver pelo menos uma cópia de trabalho ativa em uma estação cliente, o que é
conseguido através do checkout inicial.

Nesse checkout, o desenvolvedor informa o endereço do repositório a ser acessado.
Apesar de ser possível especificar a revisão do repositório a obter, no checkout inicial deve-se
obter a versão mais recente do repositório (também chamada de head revision [2, 3, 4], sendo
HEAD uma palavra-chave reconhecida pelo Subversion). Também é possível, em um checkout,
especificar o subdiretório que está sendo obtido para trabalhar localmente. No caso do checkout
inicial, deve ser especificado o diretório trunk, concatenando-o ao final do endereço, como por
exemplo em svn://servidor/repositorio/trunk.

Além do endereço e da revisão, o desenvolvedor informa as credenciais de acesso para
autenticação. O cliente Subversion (linha de comando ou TortoiseSVN) guarda localmente essas
informações, para que não seja necessário autenticar-se a cada nova operação.

O checkout cria em um diretório indicado pelo desenvolvedor uma cópia de trabalho ativa,
que consiste em uma estrutura de arquivos local capaz de operações de Subversion locais e com
integração com o repositório.

Por fim, para povoar o repositório com os artefatos do projeto, é necessário copiar estes
arquivos para o diretório da cópia de trabalho, adicioná-los localmente (comando svn add ou
opção de Adicionar no menu do TortoiseSVN) e depois efetuar commit, operação que envia as
alterações locais (no caso, a adição dos artefatos) para o repositório, deixando os artefatos recém
adicionados disponíveis para os demais desenvolvedores. As operações de adição e commit serão
mais exploradas nas seções a seguir.

4.4 Fluxo Básico de Trabalho
Esta seção tem por fim descrever o fluxo básico de trabalho, indicando o que deve ser feito, as
melhores práticas e o que evitar nas operações de controle de versão.

4.4.1 Atualizando a Cópia de Trabalho
Antes de iniciar quaisquer mudanças no projeto, o desenvolvedor deverá certificar-se de que
estará trabalhando com os artefatos em sua revisão mais recente da linha de desenvolvimento em
que está trabalhando, a qual foi definida no checkout (na maioria dos casos, o trunk). Para isto,
basta realizar um svn update (via linha de comando ou TortoiseSVN), ação que verificará
quais os artefatos na cópia de trabalho estão defasados em relação ao repositório e obterá a head
revision destes artefatos.

4.4.2 Modificando a Cópia de Trabalho
Basicamente, há dois tipos de modificações que podem ser feitas na cópia de trabalho: mudanças
em arquivos e mudanças em diretórios. As mudanças em arquivos dizem respeito tão somente às
mudanças realizadas no conteúdo de um ou mais artefatos. As mudanças em diretórios, por sua
vez, podem se dar pelas operações básicas de adicionar (incluir um novo item, livre de histórico),
excluir (remover um item), e copiar (criar uma cópia de um item, fazendo também uma cópia do
seu histórico) arquivos ou diretórios. Existem outras operações de modificação de diretório
possíveis, mas que são meramente composições da adição, exclusão e cópia: mover item

29

ESCOLA POLITÉCNICA
DE PERNAMBUCO

(copiar+deletar), renomear item (copiar+deletar), entre outras. Vale lembrar que todas as
modificações realizadas na área de trabalho são locais à estação do desenvolvedor e só serão
concretizadas no repositório quando for efetuado o commit.
 Não é necessário, ainda, indicar previamente ao Subversion quais as alterações que serão
realizadas. Para modificar artefatos, por exemplo, basta editar seu conteúdo. O Subversion
automaticamente detecta que arquivos foram alterados, assim como detecta modificações nos
diretórios da cópia de trabalho.

Por fim, não é imperativo estar conectado ao repositório para realizar modificações na
cópia de trabalho. O Subversion fornece a vantagem de poder se trabalhar offline, sendo a
conexão requerida somente no momento do commit.

4.4.3 Examinando as Modificações da Cópia de Trabalho
O Subversion dota a cópia de trabalho ativa de condições de saber, ao longo das modificações, o
que foi alterado. A Figura 11 exibe o TortoiseSVN integrado ao Windows Explorer, através do
qual o desenvolvedor pode verificar visualmente e de forma rápida as modificações ocorridas na
cópia de trabalho.

Figura 11. Windows Explorer com TortoiseSVN, indicando o status dos artefatos

No exemplo, os itens marcados com o ícone de check verde não foram alterados

localmente, os marcados com o ícone de exclamação vermelha sofreram alterações e os itens sem
ícone ainda não foram adicionados formalmente à área de trabalho.

Uma outra listagem, mais completa, pode ser obtida através do menu “SVN Check for
Modifications” do TortoiseSVN. Nesta listagem, ilustrada na Figura 12, pode-se ver que o
diretório “Sub-Módulo B” aparece como modificado na Figura 11 para alertar que o artefato
“operações.java” sofreu uma alteração.

Figura 12. Listagem detalhada de modificações da cópia de trabalho.

30

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Além disso, o TortoiseSVN fornece também uma ferramenta visual a qual possibilita o

desenvolvedor de verificar detalhadamente as modificações realizadas no conteúdo de um
artefato, conforme pode ser visto na Figura 13.

Figura 13. Modificações detalhadas em um artefato.

Neste exemplo, verificam-se as alterações realizadas no artefato “operacoes.java”, sendo

possível identificar que linhas do arquivo foram incluídas, modificadas ou excluídas. A janela do
lado esquerdo, titulada “Working Base” mostra a versão do artefato como este se encontrava no
momento em que foi obtido (por checkout ou update), ou seja, a versão local do artefato antes da
modificação local. Do lado direito, é exibido o conteúdo deste artefato após a modificação, ou
seja, como ele está na cópia de trabalho.

É importante destacar que os mecanismos de verificação de modificações apresentados
nesta seção não necessitam que a estação esteja conectada ao repositório, podendo ser realizadas
em offline.

4.4.4 Desfazendo Alterações na Cópia de Trabalho
O Subversion fornece a instrução Revert (reverter), cuja função é desfazer modificações locais na
cópia de trabalho. É possível desfazer desde modificações em um único artefato a diversas
modificações em vários artefatos e diretórios. Reverter um item significa perder todas as
modificações realizadas neste item, revertendo-o ao seu estado original referente ao momento em
que o item foi obtido pela cópia de trabalho. Esta operação é local e não exige estar conectado ao
repositório, podendo ser feita em offline.

4.4.5 Melhores Práticas nas Modificações da Cópia de Trabalho
Ao efetuar modificações em sua cópia de trabalho, o desenvolvedor deve ter sempre e mente as
seguintes práticas:

• Sempre realizar update da cópia de trabalho antes de iniciar as modificações. Apesar
de já ter sido mencionada anteriormente, é uma prática que vale enfatizar. Esta ação
garante que o desenvolvedor trabalhará na revisão mais recente dos artefatos e diminui a
chance de conflitos;

• Nunca efetuar travamento de artefatos “mescláveis”. Apesar de funcionar no modelo
Copy-Modify-Merge, o Subversion permite o travamento de itens no repositório. Este
recurso, no entanto, deve ser erradicado para artefatos mescláveis;

31

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Sempre efetuar travamento de artefatos “não mescláveis”. O travamento de itens tem
sua utilidade no processo de controle de versão, se usado de forma proveitosa e cuidadosa.
O trabalho sobre artefatos que não podem ser mesclados deve ser serializado, por falta de
alternativa. Ao modificar, por exemplo, uma planilha eletrônica, o desenvolvedor deverá
travá-la, evitando assim que tenha seu trabalho sumariamente perdido. A perda de
trabalho acontece quando há conflito em artefatos “não mescláveis”, quando, ao final,
uma das duas versões conflitantes será considerada e a outra descartada;

• Somente reverter quando há certeza que as modificações podem ser desprezadas.
Quando se usa um sistema de controle de versão (aliado a um procedimento seguro,
eficiente e eficaz de backup no servidor), virtualmente nada do que é feito se perde, com
exceção das modificações locais às cópias de trabalho e reverter significa desprezar essas
modificações sem deixar histórico. Portanto, antes de realizar esta operação, é necessário
estar seguro que as modificações devem de fato ser desfeitas;

• Sempre planejar suas modificações de acordo com a equipe. As ferramentas auxiliam
o desenvolvimento, contudo não substituem a comunicação entre os membros da equipe.
O líder de projeto deve estar atento à distribuição das tarefas, para que dois
desenvolvedores, por exemplo, não percam tempo realizando uma mesma modificação.
Essa prática pode parecer óbvia, contudo é comum a diminuição da comunicação em
times de desenvolvimento por conta do uso de um sistema de controle de versão.

4.4.6 Registrando Mudanças no Repositório: Merges, Conflitos e Commit
Após as modificações na cópia de trabalho, o desenvolvedor deve enviar para o repositório as
alterações através de um commit. Antes disso, no entanto, é boa prática realizar um novo update
no intuito de verificar se houve mudanças no repositório envolvendo os artefatos modificados
localmente, caso em que um commit antes do update seria rejeitado, em todo caso. O update pode
resultar em três situações:

• Nenhum dos artefatos alterados na cópia de trabalho foi alterado no repositório.
Neste caso outros artefatos são atualizados (em alguns casos nenhum é), não interferindo
nas modificações a serem enviadas. O commit pode ser efetuado sem problemas;

• Pelo menos um dos artefatos foi modificado no repositório, mas em trechos
diferentes. Neste caso, o Subversion encarrega-se de efetuar o merge automático, listando
os artefatos onde esta composição aconteceu. O desenvolvedor deve certificar-se de que a
fusão foi realizada com sucesso, podendo fazer uso da ferramenta TortoiseMerge
(mostrada anteriormente na Figura 13), que compara diferente versões e revisões de um
artefato.

• Pelo menos um dos artefatos foi modificado no repositório e em trechos que se
sobrepõem. Este caso configura uma situação de conflito.

Em uma situação de conflito, conforme exemplo ilustrado na Figura 14, o Subversion

cria, para cada artefato conflitante, três arquivos que podem auxiliar a resolução.

32

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 14. Artefato em situação de conflito.

Dois dos arquivos criados são cópias das duas últimas revisões mais recente do repositório

(no exemplo, r136 e r137). O terceiro (com extensão “mine”) é uma cópia do artefato modificado
na área de trabalho. Ao final da resolução do conflito, o resultado deve ser colocado no conteúdo
do artefato, marcado no exemplo com um ícone de exclamação amarelo, indicador do conflito.

Para resolver este conflito, o desenvolvedor pode utilizar a abordagem manual (o que é
desaconselhável) ou utilizar o TortoiseMerge, que pode ser evocado através do menu “Edit
Conflicts” do TortoiseSVN. Esta ferramenta, conforme visto na Figura 15, presta um valioso
auxílio na solução do problema.

Figura 15. TortoiseMerge como ferramenta de resolução de conflitos

33

ESCOLA POLITÉCNICA
DE PERNAMBUCO

No exemplo, o conflito aconteceu porque dois desenvolvedores adicionaram um novo

método no final do arquivo, uma área onde houve sobreposição. A ferramenta permite localizar e
navegar entre pontos de conflito, bem como propor alternativas para sua resolução, através de um
menu de contexto. No exemplo em questão, os dois métodos devem ser incluídos na versão final,
sem haver importância na ordem deles dentro do artefato. Assim, o desenvolvedor pode utilizar
uma das duas últimas opções do menu de contexto, que são “usar meu bloco de texto antes do
deles” e vice-versa. O aplicativo se encarregará de distribuir o código de acordo com o
especificado, o que deve ser verificado e validado pelo desenvolvedor. Ao final, o desenvolvedor
marca o conflito como resolvido, o que faz com que o artefato seja mesclado e possa ser enviado
ao repositório.

Somente após a realização de todas essas etapas, o desenvolvedor poderá realizar o
commit de suas modificações. Na operação de commit, o desenvolvedor deverá especificar um
texto descritivo das modificações sendo enviadas ao repositório, também conhecida como
mensagem de log. A Figura 16 ilustra a tela de commit do TortoiseSVN.

Figura 16. Tela de commit do TortoiseSVN.

Caso o commit seja rejeitado pelo repositório, o que aconteceria somente se uma nova

modificação de um artefato envolvido fosse enviada para o repositório enquanto o desenvolvedor
não enviasse a sua versão, todo processo teria que ser repetido a partir do update.

4.4.7 Melhores Práticas no envio de Modificações para o Repositório
Ao enviar modificações de sua cópia de trabalho para o repositório, o desenvolvedor deve ter
sempre e mente as seguintes práticas:

• Efetuar commit sem demora e frequentemente. Enviar para o repositório assim que as
modificações estiverem prontas evita a perda da versão local por motivos adversos como,

34

ESCOLA POLITÉCNICA
DE PERNAMBUCO

por exemplo, falha no hardware. Apesar de também estar suscetível a falhas de hardware,
é bem mais provável o servidor contar com soluções de backup do que uma estação. Além
disso, essa prática diminui os riscos de acontecer merging e conflitos. Quanto mais tempo
se leva para submeter as modificações ao repositório, maiores são as chances de haver
conflitos e mais complexo se torna resolvê-los;

• Procurar fazer modificações atômicas e quanto menor possíveis. Não é boa prática o
desenvolvedor tentar resolver mais de um problema antes de efetuar o commit.
Extrapolando, seria uma péssima prática desenvolver todo um módulo sem efetuar
commit. Quanto mais atômicas as modificações, melhor o rastreamento das mudanças,
mais facilmente identificável fica a introdução de problemas (bugs) e mais natural se
torna o texto do commit. O desenvolvedor deve procurar corrigir no máximo um problema
por vez, salvo a exceção quando ele está resolvendo uma questão de médio ou grande
porte e encontra um pequeno problema que lhe custará pouquíssimo esforço para resolver,
como, por exemplo, algo na ordem de até 5 linhas de código ou até 1 minuto. O
planejamento das mudanças a serem realizadas é fundamental e deve ser discutido com o
líder do projeto;

• Em caso de conflito, não dê um novo update antes de resolvê-lo. O TortoiseMerge só é
capaz de comparar dois artefatos por vez, já que em um conflito básico são duas as
versões sobrepondo código. Em caso de um novo update, é possível que o artefato tenha
sido alterado novamente no repositório, trazendo para a cópia de trabalho mais uma
versão do artefato e fazendo com que haja um conflito ternário, contexto em que a
ferramenta não terá condições de auxiliar. Resolver conflitos ternários (ou de maior
ordem) manualmente é uma tarefa longe de ser trivial;

• Escrever mensagens de log significativas. Não há ferramenta que valide uma mensagem
de log, portanto isto deve ser cobrado dos desenvolvedores. Deve ser descrito, em poucas
linhas, o que foi corrigido e como, em texto comum, nunca código-fonte. Caso haja algum
na organização um sistema de gestão de requisição de mudanças, deve ser especificado o
código/número/ID da solicitação atendida pela mudança. É preferível que as mensagens
de log sejam padronizadas na organização. Quanto melhores as mensagens de log, mas
rastreáveis são as modificações no repositório;

• Destravar os artefatos previamente travados. Após feitas as devidas modificações nos
artefatos “não mesclavéis” travados anteriormente e realizado o commit destas alterações,
não há razão pela qual manter a trava sobre os artefatos em questão. As ferramentas
envolvidas no processo dão subsídios para a automação desta tarefa;

• Evitar “quebrar a árvore do projeto”. Apesar de parecer uma recomendação óbvia, são
comuns ocasiões em que um desenvolvedor efetua commit de artefatos que sequer
compilam. Isto é grave: outros desenvolvedores, ao atualizarem suas cópias de trabalha,
obtêm esta “quebra”, que pode muitas vezes impossibilitar o trabalho de toda a equipe.
Deve ser vedado ao desenvolvedor tomar o commit por um salvamento parcial de
trabalho, seja por que razão ele o faça. Uma correção não deve ser enviada pela metade,
um artefato deve ser, no mínimo, compilável e o projeto, quando não for impeditivo, deve
ser reconstruído (build) na área de trabalho do desenvolvedor. Todo procedimento viável
que ajude a garantir a integridade do repositório deve ser implementado.

4.5 Examinado o Histórico
Existem várias formas de examinar o histórico de modificações de um ou mais itens de um
repositório. A mais prática e versátil é através do menu “Show log” do TortoiseSVN. Na tela de

35

ESCOLA POLITÉCNICA
DE PERNAMBUCO

log de modificações de um item, conforme ilustrado na Figura 17, estão disponíveis as seguintes
informações e ações:

• Listagem de modificações em um período, com número da revisão, data, hora, usuário e
mensagem de log;

• Comparação de revisões de um artefato, através de texto e no TortoiseMerge, dando uma
visão do que exatamente foi alterado em um artefato entre duas revisões quaisquer;

• Busca por mensagem de log, usuários, caminho do artefato e/ou número de revisão;
• Exibir estatísticas gerais de modificação, gráficos de commits por data e por usuário;
• Reverter a cópia de trabalho local para uma determinada revisão do repositório,

possibilitando assim desfazer alterações já registradas no repositório.

Figura 17. Tela de log de modificações do TortoiseSVN

4.6 Tagging e Branching
Esta seção tem por meta a definição das situações em que são utilizados os mecanismos de
tagging e branching, bem como indicar as melhores práticas e que evitar nestes métodos não-
triviais do controle de versão.

36

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.6.1 Tagging
Conforme foi mencionado anteriormente, do ponto de vista técnico, a criação de tags é um
mecanismo redundante, já que cada revisão do repositório consiste em uma tag. No entanto, do
ponto de vista processual e organizacional, as tags exercem uma função importante na
identificação etapas do projeto.

Basicamente, existem duas situações em que é pertinente a criação de uma tag:
• Milestone Tag. É uma tag que indica um marco interno atingido no projeto. Por exemplo,

num projeto de automação comercial, cria-se uma tag para indicar o momento em que o
módulo de estoque foi finalizado. É útil para manter um registro legível da evolução do
projeto, no entanto, não pode considerada uma tag de criação obrigatória;

• Release Tag. Esta uma tag de criação obrigatória, uma release tag deve ser criada sempre
que uma versão do produto do software for liberada para seus usuários. É de extrema
importância haver no repositório uma fotografia dos artefatos do projeto no momento em
que houve uma liberação de versão. Este tipo de tag é um provável candidato a conceber,
em algum momento, um branch.

Por fim, tags não devem ser alteradas. Mesmo que tecnicamente não haja diferença entre

uma tag e um branch, não é boa prática a modificação de artefatos de uma tag: esta deve ser
sempre uma “fotografia estática” do estado do repositório em um dado momento.

Para criar uma tag, basta utilizar a instrução “Branch/Tag” do menu de contexto do
TortoiseSVN.

4.6.2 Branching
A ramificação do trabalho em duas ou mais linhas de desenvolvimento em um projeto de
software é um mecanismo que aumenta a complexidade de todo o processo:

• O trabalho sobre a gestão do projeto aumenta, tendo em vista que é preciso mapear as
ramificações e sua relação com a linha principal e controlá-las de forma ordenada, de
forma a não permitir um caos organizacional no repositório;

• A atenção da equipe é dividida entre as ramificações criadas. Todos os membros da
equipe devem estar cientes de quais branches existem, qual a finalidade de cada um deles
e quais devem ser utilizados no dia-a-dia do time;

• As atividades de planejamento se intensificam, dado que a maioria dos branches retorna,
em algum momento, à linha principal de desenvolvimento. Este retorno (merging) deve
ser previsto e planejado, de forma que não se perca o controle sobre as ramificações em
andamento.

Assim sendo, o uso de branches deve ser limitado somente a situações em que este

mecanismo se mostre estritamente necessário. Existem algumas boas razões para se fazer uso
deste recurso:

• Uma modificação grande no produto, que leve muito tempo para ser concluída e/ou que
envolva duas ou mais pessoas no processo, pode ser um bom candidato a branch, quando
a próxima versão do produto tem previsão de liberação anterior ao prazo previsto de
término da grande mudança em questão. Este tipo de branch é mais comum em projetos
de grande porte;

37

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Uma mudança que deixaria a linha principal do projeto inutilizável para trabalhos não
necessariamente relacionados. Por exemplo, a mudança do engenho de estoque em um
sistema industrial afetaria direta ou indiretamente praticamente todos os módulos do
produto. A solução seria realizar esta modificação em um branch à parte, para não
interferir no trabalho da linha principal de desenvolvimento;

• Caso a equipe tenha necessidade de uma área experimental, pode ser criado um branch
onde os desenvolvedores possam avaliar componentes de terceiros, avaliar
funcionalidades não previstas ou ensaiar mudanças de interface com o usuário. Este tipo
de branch exige uma equipe mais experimentada no ofício de trabalhar em projetos com
diversas ramificações, para evitar o caos organizacional do repositório.

É essencial que o gerente de configuração ou o gerente de projeto avalie se os benefícios

trazidos pela utilização de múltiplas linhas de desenvolvimento valem o custo e o trabalho de
gerenciar essas múltiplas linhas e de manter a equipe atenta a este modelo de desenvolvimento.

No entanto, o release branch, é um tipo de ramificação virtualmente inevitável. Ele se faz
necessário sempre que é liberada uma versão do produto para os clientes e esta versão apresenta
pelo menos um problema. Este tipo de branch nasce, em maior parte, a partir de release tags,
sendo dificilmente criadas a partir da linha principal de desenvolvimento.

No exemplo apresentado na Figura 18, observa-se um produto que em determinado
momento tem sua versão 1.0 lançada para os clientes. Logo após este release, a linha principal de
desenvolvimento continuou sua evolução, através da criação de novas funcionalidades, mas em
um dado momento, foram constatados problemas na versão 1.0. Não é viável, neste contexto
corrigir os problemas na linha principal e criar um novo release a partir dessa linha, pois ela
contém modificações não terminadas em andamento. Tampouco é viável fazer com que os
clientes aguardem a versão 2.0 para que os problemas sejam corrigidos. A solução foi criar um
release branch a partir da release tag “Release 1.0”, onde foram corrigidos os problemas e
rapidamente lançada uma nova versão para os clientes (1.1).

Figura 18. Produto de software com duas release branches

Enquanto a linha principal evolui em direção à versão 2.0, mais problemas são detectados

nos clientes, que agora utilizam a versão 1.1 do produto. Por necessidade, esta será seguida pela
1.2. Pela proximidade estratégica do momento das versões 1.2 e 2.0, as correções realizadas ao
longo do release branch superior (1.1 e 1.2) são aplicadas, por merging, para a versão 2.0.

38

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Ainda, podem existir razões comerciais pelas quais os clientes não migrarão da versão 1.2
para a 2.0. Assim, a ramificação deverá ser mantida enquanto houver clientes ou enquanto a
empresa estiver disposta (por contrato ou por mercado) a dar suporte às versões 1.X, podendo
haver uma versão 1.3, criada a partir de correções da versão 1.2. Enquanto isso, a versão 2.0
apresentou problemas, justificando um release branch para corrigi-los. Desta vez, contudo a
próxima versão da linha principal (3.0) estava agendada não muito no futuro, permitindo um
merge das correções a partir da versão 2.1.

Para criar um branch, assim como uma tag, basta utilizar a instrução “Branch/Tag” do
menu de contexto do TortoiseSVN. Para criar um branch a partir de uma tag, basta indicar a
revisão a ser copiada na operação, conforme pode ser visto na Figura 19.

Figura 19. Tela de operação de Branch/Tag

Após a criação do branch, os desenvolvedores devem realizar checkout dessa nova

ramificação para poder trabalhar nas alterações dessa linha paralela de desenvolvimento.
Para mesclar de volta à linha principal as alterações realizadas no branch, o TortoiseSVN

fornece uma tela de fácil utilização, conforme ilustrada na Figura 20. Nesta ferramenta, é
possível:

• Especificar as linhas de origem e destino do merge;
• Listar as diferenças entre as linhas e as modificações que serão aplicadas;
• Observar as modificações por artefato, individualmente;
• Simular o merge (“Dry run”), possibilitando estimar o resultado do merge.

39

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 20. Tela de Merge entre diferentes linhas de desenvolvimento

4.6.3 Melhores práticas em Branching
Ao realizar operações de branching e merging, os membros da equipe devem ter sempre e mente
as seguintes práticas:

• Ao trabalhar em um branch, o desenvolvedor deve ater-se a modificar o mínimo
necessário para resolver os problemas. Colocar ou tirar linhas e espaços em branco e
refazer indentação do código-fonte são modificações válidas no trunk. Em um branch, no
entanto, são consideradas fúteis e prejudiciais, pois efetuam mudanças no artefato que em
nada contribuem no ponto de vista do problema a resolver, já que desnecessariamente
aumentam a complexidade e dificultam a operação de merge com o trunk;

• Apesar de vários membros da equipe poderem trabalhar no mais diversos branches do
projeto, é recomendável que apenas pouquíssimas pessoas (uma ou duas, no máximo) seja
responsável pelo merge das ramificações para o trunk. Esta operação requer experiência
do profissional que irá realizá-lo, estando ele apto a resolver problemas que porventura
surjam neste processo.

40

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.7 Um Fluxo Alternativo: Trabalhando com Patches
Em um projeto de código aberto, como o Subversion, por exemplo, todos os usuários têm acesso
ao código-fonte do sistema, todos podem ler e até mesmo alterar os artefatos do projeto. No
entanto, não são muitos os usuários que têm acesso a registrar alterações no repositório, ou seja, o
acesso ao commit é restrito. Cada projeto código-aberto tem um grupo seleto de usuários com
poderes para decidir o que entra no repositório. Isso acontece para controlar o projeto, de forma a
evitar a constante “quebra da árvore” por desenvolvedores inexperientes ou mal intencionados.

Desta forma, para que possam ser aceitas contribuições de desenvolvedores comuns em
um projeto código-aberto, é lançado mão do recurso de patches. Nesta abordagem, o
desenvolvedor atualiza sua cópia de trabalho, realiza as modificações a que se propôs e ao final,
ao invés de efetuar um commit, ele cria um patch (menu de contexto “Create Patch” do
TortoiseSVN). Tecnicamente, um patch é um arquivo de texto plano onde são registradas as
alterações realizadas em uma cópia de trabalho. Criado o patch, ele é enviado a um
desenvolvedor privilegiado com o acesso a escrita no repositório. Este, por seu vez, atualiza sua
cópia de trabalho e nela aplica o patch (menu de contexto “Apply Patch” do TortoiseSVN).
Assim, todas as alterações realizadas pelo primeiro desenvolvedor são refeitas na cópia de
trabalho do segundo, que analisa as mudanças e decide se as modificações devem ser enviadas ao
repositório.

Esta abordagem é extremamente útil a projetos com muitos membros envolvidos no
desenvolvimento, mostrando a flexibilidade da ferramenta de adaptar-se a novos cenários.

41

ESCOLA POLITÉCNICA
DE PERNAMBUCO

5

Conclusões e Trabalhos Futuros

Capítulo

A melhoria do processo de desenvolvimento de software vem sendo estimulada por um mercado
cada vez mais exigente por qualidade e pela necessidade de mais produtividade no
desenvolvimento. As atividades da SCM, entre elas o controle de versão, são essenciais no
processo de produção de software, já que constituem um apoio para as demais atividades,
mantendo o desenvolvimento controlável. No entanto, ainda existem muitos mitos sobre o custo e
os benefícios destas atividades [9], o que impede que muitas empresas, principalmente as de
micro e pequeno porte, façam uso de metodologias e ferramentas de SCM.
 Portanto, o guia para controle de versão de projeto de software definido neste trabalho
preenche uma lacuna existente em SCM, que carece de tais guias que definam seus processos
internos. Conforme mencionado na lista de contribuições do Capítulo 1, este guia possibilita que
um profissional da área de computação com conhecimento em ambientes e projetos de software
seja capaz de implantar com sucesso uma política de controle de versões em uma organização.

Além disso, este trabalho demonstra que a implantação de uma política de controle de
versão é factível e viável: pode ser implementada através de ferramentas de código aberto
(Subversion); demanda um nível de gestão proporcional ao tamanho dos projetos e da
organização; requer um treinamento simples de pessoal (desenvolvedores); e, por fim, um
pequeno esforço de adequação a novos processos.

5.1 Trabalhos Futuros
O trabalho futuro mais natural ao atual estado deste guia é o seu aprofundamento teórico e
técnico de seus principais tópicos:

• Ampliar a fundamentação teórica sobre controle de versão, incluindo padrões de SCM
conhecidos, disponíveis na bibliografia [5];

• Fornecer mais detalhes técnicos quanto à instalação, configuração e manutenção de
repositórios do Subversion no servidor;

• Pormenorizar mais ricamente as ferramentas cliente, tanto na ferramenta cliente
Subversion de linha de comando como no TortoiseSVN;

• Dedicar mais espaço para a integração dos procedimentos do guia com os processos
previstos no RUP, ou outro processo unificado de software, propondo uma instância
pronta de processo para controle de versão;

42

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Incluir seções sobre testes, builds e releases, integrados com Subversion;
• Fornecer mais exemplos e contextualizações;
• Executar experimentos em projetos de software, através dos quais podem ser colhidas

métricas para verificar o grau de eficácia dos procedimentos descrito no guia.

Além desse aprofundamento, o guia pode ser estendido de forma a adionar a outra pedra
angular de SCM, a Gerência de Requisição de Mudança (Change Request Management),
incluindo uma ferramenta que auxilie este novo controle e que se integre ao Subversion. Desta
forma, o guia tem a possibilidade deixar de ser somente um guia de controle de versão para
tornar-se um guia completo de SCM.

43

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Bibliografia

[1] KRUCHTEN, P. The Rational Unified Process: An Introduction, Third Edition. Addison-
Wesley, 2003.

[2] MASON, M. Pragmatic Version Control Using Subversion. Pragmatic Bookshelf, 2006.
[3] COLLINS-SUSSMAN, B.; FITZPATRICK, B.W.; PILATO, C. M. Version Control with

Subversion. O'Reilly Media, 2004.
[4] BERLIN, D. e ROONEY, G. Practical Subversion, Second Edition. Apress, 2006.
[5] BERCZUK, S e APPLETON, B. Software Configuration Management Patterns: Effective

Teamwork, Practical Integration. Addison-Wesley, 2002.
[6] CVS, Open Source Version Control, http://www.nongnu.org/cvs/, ultimo acesso em 26 de

novembro de 2007.
[7] Subversion Home Page, http://subversion.tigris.org/, último acesso em 24 de novembro de

2007.
[8] TortoiseSVN Home Page, http://tortoisesvn.tigris.org/, ultimo acesso em 25 de novembro

de 2007.
[9] LEON, A. Software Configuration Management Handbook, Second Edition. Artech

House Publishers, 2004.

	Capa

	Monografia

	Índice de Figuras
	Tabela de Símbolos e Siglas
	Introdução
	1.1 Objetivos
	1.2 Estrutura do Trabalho
	1.3 Contribuições

	Controle de Versão
	2.1 Arquitetura
	2.2 Modelos de Versionamento
	2.3 Outros Conceitos Básicos do Controle de Versão

	Subversion, um Sistema de Controle de Versão
	3.1 Breve Histórico
	3.2 Características do Subversion
	3.3 Sobre a Escolha do Subversion

	Controlando Versões com Subversion
	4.1 Papel do Guia no Processo de Desenvolvimento
	4.2 Premissas e Pré-requisitos
	4.3 Iniciando o Controle de Versão
	4.4 Fluxo Básico de Trabalho
	4.5 Examinado o Histórico
	4.6 Tagging e Branching
	4.7 Um Fluxo Alternativo: Trabalhando com Patches

	Conclusões e Trabalhos Futuros
	5.1 Trabalhos Futuros

