

Ligo: Uma linha de produtos de
software para gerenciamento de

igrejas cristãs

Trabalho de Conclusão de Curso

Engenharia da Computação

Leopoldo Motta Teixeira
Orientador: Prof. Tiago Lima Massoni

Recife, dezembro de 2007

ESCOLA POLITÉCNICA

DE PERNAMBUCO

Este Projeto é apresentado como requisito parcial
para obtenção do diploma de Bacharel em
Engenharia da Computação pela Escola
Politécnica de Pernambuco – Universidade de
Pernambuco.

Ligo: Uma linha de produtos de
software para gerenciamento de

igrejas cristãs

Trabalho de Conclusão de Curso

Engenharia da Computação

Leopoldo Motta Teixeira
Orientador: Prof. Tiago Lima Massoni

Recife, dezembro de 2007

ESCOLA POLITÉCNICA

DE PERNAMBUCO

Leopoldo Motta Teixeira

Ligo: Uma linha de produtos de
software para gerenciamento de

igrejas cristãs

i

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Resumo

A tendência atual de globalização pressiona a indústria de software a explorar maneiras de
diversificar e entregar os produtos que desenvolve de maneira rápida e eficiente. Sistemas de
software em um mesmo domínio de aplicação costumam possuir diversas características em
comum, como é observado no domínio de sistemas de informação para igrejas cristãs. Linhas de
produtos de software, que são definidas como conjuntos de sistemas de software que têm
características em comum, mas são distintos entre si, podem ser aplicadas neste domínio para
diminuir custos de desenvolvimento, maximizando reuso de software e aumentando a qualidade
dos produtos desenvolvidos. Este trabalho apresenta o desenvolvimento da linha de produtos de
software Ligo, destinada ao gerenciamento de igrejas cristãs. O texto descreve as fases de
desenvolvimento da linha de produtos de software, assim como os artefatos gerados em cada fase.
Esta linha de produtos foi utilizada para gerar um sistema de informação para uma igreja
específica, através da instanciação da linha.

ii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Abstract

The current trend of globalization pressures the software industry to explore means to diversify
and deliver the products it develops in a timely and efficient way. Software systems in the same
application domain usually share many common features, as observed in the domain of Christian
church management systems. Software product lines, defined as sets of software-intensive
systems that share common features, but are distinct from each other, can be applied in this
domain to reduce development costs, maximizing software reuse and enhancing the quality of the
developed products. This work presents the development of the Ligo software product line,
targeted to the management of Christian churches. The text describes the development phases of
the software product line, as well as the artefacts generated in each one of these phases. This
product line was used to generate an information system for a specific church, by product
instantiation.

iii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Sumário

Índice de Figuras v

Índice de Tabelas vi

Tabela de Símbolos e Siglas vii

1 Introdução 9

1.1 Objetivos 9
1.2 Estrutura do trabalho 10

2 Fundamentação Teórica 11

2.1 Linhas de Produtos de Software 11
2.2 O método PLUS 14

2.2.1 Requisitos 16
2.2.1.1 Análise de Escopo 16
2.2.1.2 Modelagem de features 16
2.2.1.3 Modelagem de casos de uso 18
2.2.2 Análise 18
2.2.3 Projeto e desenvolvimento 19

2.3 Tecnologias Empregadas 20
2.3.1 PHP 20
2.3.2 Programação orientada a aspectos 21
2.3.3 phpAspect 23
2.3.3.1 Contribuições ao phpAspect 24
2.3.4 XML 25

3 A linha de produtos Ligo 26

3.1 Considerações Iniciais 26
3.2 Modelagem de Requisitos 27

3.2.1 Análise de escopo 27
3.2.2 Modelagem de features 28
3.2.3 Modelagem de casos de uso 30
3.2.4 Relação entre features e casos de uso 32

4 Análise, Projeto e Desenvolvimento 35

4.1 Análise 35
4.1.1 Modelagem estática 35
4.1.2 Modelagem dinâmica 38

4.2 Projeto e Desenvolvimento 40
4.2.1 Gerenciamento e implementação de variabilidade 40

4.3 Engenharia da Aplicação 42
4.3.1 Avaliação 44

5 Conclusões e Trabalhos Futuros 45

iv

ESCOLA POLITÉCNICA
DE PERNAMBUCO

5.1 Contribuições 45
5.2 Dificuldades encontradas 46
5.3 Trabalhos futuros 46

Bibliografia 47

Apêndice A Caso de uso Adicionar Pessoa (UC_1) 50

Apêndice B Telas da LPS Ligo 51

v

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Índice de Figuras

Figura 1 Framework de desenvolvimento de uma LPS 12
Figura 2 Modelo geral do processo de geração de produtos em uma LPS 13
Figura 3 Processo de desenvolvimento ESPLEP. Adaptado de [19] 15
Figura 4 Software Product Line Engineering com ESPLEP. Adaptado de [19] 15
Figura 5 Modelo de features da linha de produtos TCCarro 17
Figura 6 Exemplo de código PHP embutido em um arquivo HTML 21
Figura 7 Implementação de uma classe Java e um aspecto em AspectJ [35] 23
Figura 8 phpAspect weaving chain [37] 23
Figura 9 Exemplo utilizado na Figura 7 em sintaxe phpAspect 24
Figura 10 Exemplo de código XML 25
Figura 11 Modelo de features da LPS Ligo gerado com o auxílio da ferramenta

pure::variants
29

Figura 12 Diagrama de casos de uso da LPS Ligo referente ao ator Secretária 30
Figura 13 Diagrama de casos de uso da LPS Ligo referente ao ator Pastor 31
Figura 14 Diagrama de casos de uso da LPS Ligo referente ao ator Tesoureiro 31
Figura 15 Diagrama de casos de uso da LPS Ligo referente ao ator Membro 32
Figura 16 Diagrama de classes entity da LPS Ligo 36
Figura 17 Classes entity obrigatórias da LPS Ligo 36
Figura 18 Classes entity opcionais da LPS Ligo 37
Figura 19 Diagrama de seqüência do caso de uso Editar Pessoa 39
Figura 20 Diagrama de seqüência do caso de uso Editar Pessoa com a adição da feature

Família
39

Figura 21 Implementação de variabilidade de banco de dados utilizando herança. 41
Figura 22 Implementação do aspecto relacionado à feature Família. 42
Figura 23 Diagrama de atividades que ilustra o processo de geração de um produto 43
Figura 24 Exemplo de descrição XML da feature Família 44

vi

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Índice de Tabelas

Tabela 1 Notação de símbolos utilizada na modelagem de features pela ferramenta
pure::variants.

17

Tabela 2 Notação de símbolos de features utilizada na Tabela 4. 32
Tabela 3 Notação de símbolos de casos de uso utilizada na Tabela 4. 33
Tabela 4 Representação tabular de relacionamentos entre features e casos de uso 34

vii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela de Símbolos e Siglas

(Dispostos por ordem de aparição no texto)

LPS – Linha de Produtos de Software
PLUS – Product Line UML-Based Software Engineering

UML - Unified Modeling Language
ESPLEP - Evolutionary Software Product Line Engineering
PHP - PHP: Hypertext Preprocessor
HTML - Hypertext Markup Language
XML - Extensible Markup Language

XSL - Extensible Stylesheet Language
AOP - Aspect Oriented Programming
XSLT - XSL Transformations
ChMS - Church Management System
CMS - Content Management System
DLL - Dynamic-link library
CSS - Cascading Style Sheets
SQL - Structured Query Language
APDT - Aspect PHP Development Tools

viii

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Agradecimentos

Agradeço inicialmente a Deus, razão principal deste trabalho e da minha vida. Sem que eu
merecesse ou fizesse coisa alguma, pela Sua infinita graça, Ele me adotou e me ajuda a
perseverar diariamente.

À minha família, em especial aos meus pais, Aluizio e Ana, que em todos estes anos me
apoiaram e procuraram me estimular, propiciando um ambiente sadio e agradável em casa,
essencial para a formação do meu caráter. Às minhas avós Graça e Vilma, pelo exemplo dado. Às
minhas irmãs, Ella e Raissa, pelas diversas brigas, elas fortaleceram o meu raciocínio
argumentativo. =) Vocês são muito importantes para mim.

À minha maravilhosa namorada Raquel, que consegue a façanha de me agüentar,
independente do meu humor. Obrigado por estar ao meu lado, me apoiando, pacientemente me
acalmando, não me deixando nem cogitar a possibilidade de desistir. Agradeço à família Carneiro
Leão também, em especial ao Dr. José Carneiro Leão, pela revisão do texto.

Aos amigos feitos durante estes anos de caminhada na POLI, o meu muito obrigado.
Gostaria de poder citar nome a nome, cada um que me marcou durante este tempo. Fico apenas
com a menção honrosa para “Os Caras”, a turma que me acompanhou desde o início. Valeu
galera!

Aos professores do DSC, todos vocês têm sido exemplo de profissionalismo e ética, e

foram de fundamental importância na minha formação acadêmica. Em especial, agradeço ao
professor Tiago Massoni, que me orientou de forma impecável durante o decorrer deste trabalho,
com sugestões, idéias e conselhos que foram essenciais para que eu chegasse até a conclusão do
mesmo.

Aos pastores e líderes que ofereceram sugestões para este trabalho. Especialmente ao Pr.

Felipe, pela amizade e orientação espiritual nos últimos anos.

Aos meus demais amigos da igreja, açaí, Candelabro, ACBV e todos que, de alguma forma,

contribuíram para o que sou hoje. Vocês conseqüentemente, contribuíram com este trabalho.

Finalmente, termino, assim como os cristãos antigos, louvando a Ele, que é o princípio e

fim de todas as coisas:

“ Gloria Patri, et Filio, et Spiritui Sancto.

 Sicut erat in principio, et nunc, et in semper, et in sæcula sæculorum.

Amen.”

9

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1

Introdução

A tendência atual de globalização pressiona a indústria de software a explorar maneiras de
diversificar e entregar os produtos que desenvolve de uma maneira rápida e eficiente. Durante a
última década, a abordagem de linhas de produtos de software (LPS) tem surgido como um dos
paradigmas de desenvolvimento de software mais promissores para aumentar a produtividade das
organizações desenvolvedoras de software [1].

Uma idéia chave em LPS é a de que a maior parte dos sistemas de software não são únicos.
Sistemas de software em um mesmo domínio de aplicação compartilham diversas características
em comum. A maioria das organizações constrói sistemas de software em um domínio particular,
repetidamente lançando variações de produtos, ao adicionar novas funcionalidades. Podemos tirar
vantagem desta situação para melhorar este processo, utilizando uma abordagem sistemática de
reuso de software.

Linhas de produtos de software são definidas como conjuntos de sistemas de software que
têm características em comum, mas são suficientemente distintos entre si [1]. Os produtos que
compõem uma LPS compartilham uma infra-estrutura de ativos base, normalmente formada por
uma arquitetura de software e seus componentes. Esta infra-estrutura também deve suportar as
variações entre os produtos, de modo a compreender ativos que estarão presentes apenas em
alguns dos produtos.

Recentemente, temos observado a necessidade e dependência de sistemas de informação
em todos os setores da indústria, comércio, e governo [2]. Não é diferente no âmbito das igrejas
cristãs. Pastores e líderes vêm utilizando a tecnologia para propósitos espirituais, como
aconselhamento, pesquisa e reflexão, e na preparação e apresentação de seus sermões [3].
 As igrejas cristãs podem ser definidas como a reunião de pessoas que professam a mesma
fé e se reúnem periodicamente, sob a liderança de oficiais. No entanto, existem diferentes fatores
que influenciam a maneira como a igreja se organiza, e suas necessidades. Dentre estes fatores,
podemos citar a forma de governo [4], tamanho e localização, por exemplo. O impacto destes
fatores no projeto da LPS é detalhado no Capítulo 3. Portanto, concluímos que o domínio de
gerenciamento de igrejas cristãs mostra-se adequado à idéia de linhas de produtos de software.

1.1 Objetivos
O principal objetivo do trabalho é o desenvolvimento de uma LPS voltada para o gerenciamento
de igrejas cristãs.

Capítulo

10

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Esta linha deve englobar todos os aspectos relacionados ao gerenciamento de uma igreja,
procurando facilitar a integração e compartilhamento de dados entre os setores da igreja. Os
produtos gerados por esta linha devem ser adequados à estrutura da organização alvo.

Como objetivos específicos do trabalho, podemos destacar:

• Instanciar um processo de desenvolvimento de LPS;
• Estudar técnicas de implementação de variabilidade em LPS, visando a utilização das

técnicas mais adequadas, de acordo com o tipo de variabilidade;
• Desenvolver um gerador de produtos para a LPS;
• Gerar um produto a partir dos ativos da LPS, e realizar uma avaliação deste, implantando-

o em uma igreja existente.

1.2 Estrutura do trabalho
Esta monografia está organizada em Capítulos e Apêndices. A seguir será detalhado o conteúdo
de cada parte:

O Capítulo 2 discute a fundamentação teórica necessária para o entendimento do trabalho.
Detalha o conceito de linhas de produtos de software, o método de desenvolvimento utilizado, e
as tecnologias empregadas na construção da LPS.

O Capítulo 3 introduz a linha de produtos de software Ligo. O nome Ligo vem do latim e
significa unir, ligar. Procura ilustrar o conceito de LPS, onde unimos diversos ativos para
produzir produtos. Algumas considerações sobre o domínio da aplicação são feitas e depois é
detalhada a fase de modelagem de requisitos da linha.

O Capítulo 4 descreve as fases de análise e projeto de desenvolvimento da linha. Também é
descrito o processo de geração semi-automática de produtos da linha.

O Capítulo 5 conclui o trabalho, detalhando as principais contribuições referentes a este
trabalho, algumas dificuldades e limitações ocorridas durante o desenvolvimento e possíveis
trabalhos futuros.

O Apêndice A apresenta o caso de uso Adicionar Pessoa, escrito durante a fase de
modelagem de requisitos.

O Apêndice B contém telas do processo de geração de produto, bem como do produto
gerado.

11

ESCOLA POLITÉCNICA
DE PERNAMBUCO

2

Fundamentação Teórica

Neste capítulo são descritos os conceitos de linhas de produtos de software, a metodologia de
desenvolvimento adotada, e as tecnologias utilizadas para a realização do projeto.

2.1 Linhas de Produtos de Software
Reuso de software tem sido motivo constante e recorrente de pesquisas em engenharia de
software. O foco destas pesquisas tem se concentrado em métodos, técnicas e ferramentas que
permitam melhorias em termos de estimativas de custo, tempo de desenvolvimento e qualidade.
A idéia chave do reuso é: desenvolver algo uma vez, e reutilizar várias vezes [5]. Desta forma,
procura-se evitar que as atividades de desenvolvimento de software se repitam. No entanto, para
tornar esta prática efetiva, faz-se necessário o planejamento deste reuso.

Além da questão do reuso, que demonstra o lado da produção de software, há de se levar
em conta o aspecto do cliente, o consumidor de software. Os clientes desejam adquirir softwares
personalizados, mas sem que isso acarrete em um custo alto. Os custos de desenvolvimento de
software personalizado são altos, em contraste com a produção de software em massa, que
diminui os custos, porém limita a personalização do software de acordo com as necessidades do
cliente.

A abordagem de linhas de produtos de software (LPS), também conhecida como famílias
de produtos de software, procura estabelecer o reuso sistemático de software, assim como a
customização em massa. Por reuso sistemático, entende-se o reuso planejado de componentes,
reutilizando ativos base dentre os produtos [6]. A customização em massa diz respeito à produção
em larga escala de produtos customizados às necessidades dos clientes [7]. A abordagem procura
aproveitar-se da constatação de que poucos sistemas de software são de fato únicos. Muitas
vezes, organizações desenvolvem produtos similares que pertencem a um domínio específico.

Uma LPS consiste em um conjunto de sistemas de software que compartilham
funcionalidades em comum, e têm características individuais, ou seja, há variação entre produtos.
O conceito é similar ao de linha de produção em outros domínios, por exemplo, nas indústrias
automobilística e aérea. Uma definição dada por Clements e Northrop [1] é que uma LPS é “um

conjunto de sistemas de software que compartilham um conjunto gerenciável comum de

características que satisfazem as necessidades específicas de um segmento de mercado

particular e que são desenvolvidas de um conjunto de ativos base comum, de modo planejado”.
Weiss e Lai [8] definem LPS como famílias de produtos projetadas para tirar vantagem de suas

Capítulo

12

ESCOLA POLITÉCNICA
DE PERNAMBUCO

características comuns e variações previstas. De acordo com Griss [9], uma LPS é um conjunto
de produtos que compartilham um conjunto comum de requisitos, mas também exibem variações
significativas nos requisitos.

O objetivo de uma LPS é minimizar o custo de desenvolvimento e manutenção de produtos
de software que pertençam a um domínio comum. Para que seja possível o desenvolvimento
customizado em massa a custo reduzido, é necessário utilizar uma base comum, chamada de
plataforma, ou arquitetura da LPS. Esta arquitetura deve antecipar os possíveis produtos que
podem ser gerados a partir de uma linha. Portanto, ela deve contemplar não apenas as
características comuns aos produtos, mas também as possíveis variações e características
opcionais. Esta é uma das principais diferenças entre a abordagem de LPS e as abordagens de
desenvolvimento de um único sistema. O desenvolvimento baseado em LPS visa uma pluralidade
de produtos que serão mantidos ao mesmo tempo, ao invés de um único produto que evolui no
tempo. Outra diferença entre as abordagens é na aplicação de reuso. Enquanto em LPS, o reuso é
planejado, no desenvolvimento de sistemas únicos, muitas vezes o reuso é feito de forma ad hoc
ou oportunista. A prática de LPS encoraja escolhas e opções que procuram ser otimizadas, desde
sua introdução, à aplicação em mais de um produto.

O desenvolvimento de uma LPS engloba duas etapas distintas [10]: Engenharia de Domínio
(Domain Engineering) e Engenharia de Aplicação (Application Engineering), conforme
observamos na Figura 1. Engenharia de Domínio, também citada como a etapa de
desenvolvimento da linha de produtos, diz respeito ao desenvolvimento da arquitetura que servirá
de base à LPS, e à definição das características comuns e variáveis da LPS. Esta arquitetura é
composta pelos artefatos gerados, normalmente chamados de ativos base. Como exemplo destes
ativos, podemos citar documentos de requisitos, bibliotecas de código, casos de testes, entre
outros. Alguns destes ativos serão comuns a todos os produtos de uma LPS, enquanto outros
serão opcionais ou alternativos.

Figura 1. Framework de desenvolvimento de uma LPS. Adaptado de [10].

13

ESCOLA POLITÉCNICA
DE PERNAMBUCO

A etapa de Engenharia de Aplicação, também citada como desenvolvimento do produto, é
responsável pela criação de produtos específicos a partir da LPS estabelecida na etapa anterior. O
processo de geração de um produto de uma LPS é também referido como instanciação ou
derivação de produto. Podemos observar um modelo geral de geração de produtos a partir dos
ativos base de uma LPS na Figura 2. O processo de geração de produtos recebe como entradas os
ativos base desenvolvidos, e uma configuração de produto. Esta configuração, também chamada
de modelo de decisão, consiste na escolha dos ativos opcionais e variáveis, que irão compor o
produto junto aos ativos comuns a todos os produtos. O mecanismo de geração então, ao receber
estas entradas, faz a composição dos ativos, gerando como saída os produtos da LPS. O conjunto
de todos os produtos possíveis de serem gerados a partir destas entradas determina o escopo da
LPS. Os produtos de uma LPS também são referidos como membros da LPS.

Figura 2. Modelo geral do processo de geração de produtos em uma LPS. Adaptado de [11].

Muitos são os benefícios trazidos por LPS [10]:

• Redução nos custos de desenvolvimento: Ao reutilizarmos os ativos-base nos
produtos de uma LPS, há uma significativa redução de custos ao desenvolver
produtos, em contraste com a abordagem de desenvolvimento de sistemas únicos.
Investigações empíricas têm demonstrado que o investimento em uma LPS é
compensado quando temos por volta de três produtos [8] em uma linha, pelo menos.
É importante ressaltar que isto depende também da estratégia em que a LPS é
adotada e iniciada em uma organização;

• Melhora na qualidade por conta do reuso: Os ativos de uma LPS são utilizados,
analisados, e testados, em diversos produtos, o que gera melhores garantias de
qualidade e confiabilidade;

• Redução de tempo para comercializar: Assim como os custos, o tempo para
desenvolvimento de produtos é reduzido por conta do reuso;

• Especialização em um domínio particular: Aumenta a capacidade das organizações
de atender a mudanças no mercado, permitindo a construção de novos produtos
rapidamente, utilizando o conhecimento adquirido sobre o segmento de mercado em
que atua;

• Redução no esforço de manutenção: A alteração de um artefato implica na
propagação desta mudança para todos os produtos que o utilizam. A equipe de
manutenção, em uma situação ideal, não modifica os produtos gerados, apenas os
ativos que geram estes produtos. Portanto, caso haja algum erro em um ativo que é
compartilhado por diversos produtos, a correção é feita no ativo, e os produtos são
gerados novamente, já corrigidos.

14

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Existem também alguns fatores a se considerar ao adotar a abordagem de LPS:

• Custos de desenvolvimento: O investimento para se iniciar uma LPS é superior ao
de desenvolvimento convencional, por conta da necessidade de se criar ativos base
para a formação da arquitetura. Existem abordagens que procuram minimizar este
custo inicial, como a reativa e extrativa [11], em que ativos são desenvolvidos
apenas quando necessários;

• Tempo para comercializar: Pelas mesmas razões do fator custos, o tempo para
geração do primeiro produto geralmente é maior;

• Controle de versões: Deve haver cuidado para que as personalizações a um produto
não ocorram fora da linha de produção, por exemplo, modificando o produto gerado
ao invés dos ativos que o compõem;

• Apoio gerencial: As questões organizacionais são mais importantes do que o
esperado [1]. O papel dos gestores é fundamental na prática de LPS, provendo
treinamento, desenvolvendo a correta estrutura organizacional, criando e
implementando um plano de adoção de LPS, lançando e institucionalizando a
abordagem de maneira apropriada à organização, entre outros.

Alguns estudos têm sugerido que a abordagem de LPS estimula o reuso nas organizações

[12], além de prover evidência empírica para a hipótese de que as organizações obtêm mais
benefícios de reuso durante os estágios iniciais de desenvolvimento [13][14]. Diversas
organizações, com diferentes características, têm relatado melhoras em produtividade e aumento
dos ganhos com a adoção de LPS [1][10][15][16][17][18].

Por conta disso e dos benefícios citados, conclui-se que é válido a uma organização que
desenvolve produtos similares a um domínio específico de mercado, investir tempo e dinheiro em
métodos e processos de desenvolvimento de LPS. Existem diversas abordagens para o
desenvolvimento de LPS. A abordagem adotada neste trabalho é detalhada na seção a seguir.

2.2 O método PLUS
PLUS (Product Line UML-Based Software Engineering) é o método de desenvolvimento de LPS
baseado em UML proposto por Hassan Gomaa [19]. O processo no qual o método se baseia é o
Evolutionary Software Product Line Engineering (ESPLEP), um processo de desenvolvimento
iterativo e orientado a objetos. O método é compatível com os modelos de desenvolvimento
unificado [20] e espiral [21], por meio de adaptações ao processo geral descrito a seguir.

O ESPLEP é um processo de desenvolvimento que, baseado no framework apresentado na
seção anterior, consiste em duas atividades principais, conforme ilustrado na Figura 3:

• Engenharia da Linha de Produtos (Software product line engineering): durante esta

atividade, o objetivo é desenvolver os ativos da linha como um todo. Estes ativos
são armazenados no repositório da linha de produtos de software;

• Engenharia da Aplicação (Software application engineering): nesta atividade, um
membro da LPS é desenvolvido. Os ativos gerados pela atividade de engenharia de
produto são utilizados como base. O desenvolvimento da aplicação torna-se uma
derivação dos artefatos da linha, de acordo com os requisitos específicos do produto
a ser gerado.

15

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 3. Processo de desenvolvimento ESPLEP. Adaptado de [19].

Esta abordagem elimina a distinção entre o desenvolvimento e manutenção de software,

permitindo que o sistema evolua por meio de iterações. No entanto, o sistema deve ser projetado
visando estas possíveis mudanças durante as iterações.

Existem duas estratégias de desenvolvimento de LPS. Forward engineering e reverse

engineering. A estratégia forward é utilizada quando não há sistemas legado para guiar o
desenvolvimento, em contraste à estratégia reverse, onde o desenvolvimento inicia com sistemas
que já existem e são candidatos à inclusão na LPS.

A fase de Engenharia da Linha de Produtos pode ser dividida em três atividades principais:
(i) Requisitos, onde definimos os requisitos funcionais da linha, e o que será comum e variável
dentre os produtos. Caso os requisitos não sejam entendidos claramente, um protótipo descartável
pode ser desenvolvido para esclarecimento; (ii) Análise, onde é feita a decomposição do
problema, para melhor entendimento deste; (iii) Projeto e Desenvolvimento, que consiste na
síntese da solução, contando com a implementação incremental de componentes. A cada iteração
de desenvolvimento destes componentes, testes funcionais são realizados. Podemos visualizar as
fases na Figura 4. Estas fases são adaptadas para se tornarem compatíveis com os processos
unificado e espiral.

Figura 4. Software Product Line Engineering com ESPLEP. Adaptado de [19].

16

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Nas seções a seguir, são detalhadas as atividades de desenvolvimento da fase de Software

Product Line Engineering instanciadas para o desenvolvimento da LPS Ligo.

2.2.1 Requisitos

Durante esta fase, é desenvolvido o modelo de requisitos, que consiste do modelo de casos de uso
e modelo de features. Esta fase é dividida em três atividades principais, detalhadas a seguir.

2.2.1.1 Análise de Escopo

O objetivo desta atividade é definir em alto nível, os possíveis sistemas que podem surgir a partir
da linha. É recomendável que haja a participação de especialistas do domínio durante esta etapa,
para melhor entendimento do problema.

Esta fase é importante para a decisão sobre a viabilidade de desenvolvimento de uma LPS.
Durante a análise dos potenciais produtos que podem formar a linha, deve-se observar não apenas
as semelhanças, como as diferenças entre os possíveis produtos.

É também a primeira tentativa de especificar os requisitos da linha, definindo o que vai
pertencer à linha e o que estará fora.

2.2.1.2 Modelagem de features

A atividade de modelagem de features tem como finalidade descrever os requisitos da LPS da
perspectiva do usuário final, por meio de um modelo de features.

Features podem ser descritas como conceitos [22], ou requisitos e características
reutilizáveis de uma LPS [19]. O conceito de feature é utilizado para fazer distinção entre os
possíveis produtos de uma LPS, definindo as funcionalidades comuns e variáveis de uma linha.
Uma feature também pode se referir a requisitos não-funcionais.

Para que possamos modelar a variabilidade de uma linha, é preciso categorizar as features.
Features, portanto, serão classificadas em (i) obrigatórias, o subconjunto de features

compartilhados por todos os membros da linha; (ii) opcionais, features que são fornecidas por
apenas alguns dos membros da linha; (iii) alternativas, grupo de features onde se deve fazer uma
única escolha dentre as possíveis, as opções são mutuamente exclusivas; (iv) or, similar ao tipo
alternativo, neste caso podemos fazer uma ou mais escolhas, dentre as possíveis.

Além destas categorias, também podemos adicionar regras de composição, para explicitar
interdependência entre features [22]. Por exemplo, a regra require captura implicações entre
features, definindo features como pré-requisito de outras. Outro exemplo é a regra mutually-

exclusive, ou conflict, que coloca limitações nas combinações entre features. Esta regra é usada,
em geral, quando desejamos excluir combinações de features que estejam em locais distintos da
hierarquia do modelo.

Por exemplo [19], considere uma linha de produtos automobilística desenvolvida por uma
empresa hipotética DSCars, que produz vários modelos de veículos. Suponha que é desenvolvido
o modelo TCCarro, com versões sedã, esportiva e station wagon. Todas as versões compartilham
o mesmo chassi, o que pode ser considerado uma feature comum, ou obrigatória. Existem
features opcionais, como o pacote esportivo, câmbio automático e teto solar. A versão station

wagon utiliza apenas a transmissão automática, um exemplo de regra require. Existem também
features alternativas, como o tamanho do motor e a cor do veículo. É óbvio que todo veículo
precisa de um motor. No entanto, o motor pode variar de tamanho. Portanto, a feature tamanho
do motor tem as opções de 2 litros (padrão), 2,5 litros e 3 litros. No caso da feature cor do
veículo, não há uma opção de cor padrão, portanto, uma cor deve sempre ser escolhida na

17

ESCOLA POLITÉCNICA
DE PERNAMBUCO

configuração de um produto da linha. Em certos casos, não escolher uma feature é também uma
opção. Considere a possibilidade de o veículo ter bagageiro de teto. As opções alternativas da
feature bagageiro de teto compreenderiam: bagageiro básico, bagageiro para pranchas, e
bagageiro para bicicletas, embora seja possível não selecionar a feature bagageiro de teto.

A ferramenta utilizada para criar o modelo de features foi pure::variants Community

Edition [23], desenvolvida pela empresa pure.systems na forma de um plugin do Eclipse [24]. A
Tabela 1 explica a notação utilizada pela ferramenta na classificação de features e a Figura 11
mostra o modelo de features desenvolvido para a linha de produtos automobilística descrita
anteriormente.

Tabela 1. Notação de símbolos utilizada na modelagem de features pela ferramenta

pure::variants.
Símbolo Explicação

 Feature obrigatória

 Feature opcional

 Feature alternativa

 Indicação de que uma feature requer outra feature

Figura 5. Modelo de features da linha de produtos TCCarro

Ao modelar as features de uma LPS, são levados em conta todos os produtos que podem

ser gerados. Em contraste com o desenvolvimento de sistemas individuais, em que todas as
features devem estar presentes, um produto da LPS vai compreender apenas um subconjunto das
features.

18

ESCOLA POLITÉCNICA
DE PERNAMBUCO

2.2.1.3 Modelagem de casos de uso

A modelagem de casos de uso para LPS difere da abordagem tradicional, pois, nem todos os
casos de uso serão utilizados por todos os produtos. Desta forma, é necessária a categorização dos
casos de uso, de forma análoga ao que é feito com as features. Cada caso de uso terá um tipo
definido de acordo com a sua característica.

A visualização destes diferentes tipos de casos de uso no modelo é feita por meio de
estereótipos UML. Os estereótipos são um mecanismo padrão de extensão da linguagem UML,
utilizados para distinguir entre os diferentes tipos de elementos da modelagem [25]. A
representação visual do estereótipo é feita pelo seu nome entre os sinais “«” e “»”, acima do
nome do elemento a que este se aplica.

Os documentos de casos de uso são documentados de acordo com as seguintes seções:

1. Nome do caso de uso;
2. Categoria de reuso: Esta seção especifica se o caso de uso é obrigatório, opcional ou

alternativo;
3. Sumário: Esta seção descreve brevemente o caso de uso;
4. Atores: Lista os atores participantes do caso de uso;
5. Dependência: Esta seção opcional descreve se o caso de uso depende de outros casos –

se inclui ou estende outro caso de uso;
6. Pré-condições: Esta seção especifica as condições que devem ser satisfeitas para que o

caso de uso seja iniciado;
7. Descrição: O conteúdo desta seção é uma descrição narrativa da seqüência de

interações entre o ator e o sistema. O foco é nas respostas do sistema às interações, e
não em como o sistema processa estas respostas;

8. Alternativas: Esta seção prove uma descrição de alternativas à seqüência principal
descrita anteriormente. É possível haver mais de uma possibilidade de alternativa;

9. Pontos de variação: Esta seção define os locais na descrição do caso de uso onde
funcionalidades diferentes podem ser introduzidas para membros distintos da linha de
produtos. No caso de pequenas variações, como a inserção de um campo em um
formulário, podemos identificar a(s) linha(s) da descrição de caso de uso onde serão
introduzidas as novas funcionalidades. No caso de variações complexas, onde começam
a surgir demasiadas alternativas à seqüência principal, podemos modelar estes pontos
por meio de relacionamentos include e extend;

10. Pós-condição: Esta seção identifica a condição que será sempre verdadeira ao fim do
caso de uso, supondo que a seqüência principal tenha ocorrido.

2.2.2 Análise

Durante esta fase, é dada ênfase ao entendimento do problema. Um objetivo importante é
identificar os objetos e a informação trocada entre eles.

As atividades que compõem esta etapa são:

• Modelagem estática: Nesta atividade, é desenvolvido um modelo estático que define
o relacionamento estrutural entre as classes de domínio do problema. Isto é feito por
meio de um diagrama de classes entity. Durante esta atividade, também é feita a
análise da dependência entre features e classes, onde, similar ao que acontece com
features e casos de uso, classificamos classes entre obrigatórias, opcionais ou
alternativas. Nesta análise, definimos os pontos de variação das classes, que podem

19

ESCOLA POLITÉCNICA
DE PERNAMBUCO

ser modelados por meio de classes abstratas, ou parametrização, onde uma classe
tem parâmetros de configuração, em que são assinalados diferentes valores de
acordo com o produto da linha;

• Modelagem dinâmica: Durante esta atividade, os casos de uso são descritos por
meio de diagramas de seqüência e comunicação. Com estes diagramas, é possível
demonstrar a interação entre objetos durante a execução de casos de uso. A
variabilidade é modelada por meio de diagramas alternativos, onde é dado destaque
à mudança na seqüência de mensagens entre os objetos.

2.2.3 Projeto e desenvolvimento

Na fase de projeto e desenvolvimento, o foco principal é em como sintetizar os artefatos descritos
nas fases anteriores em uma solução. O modelo de análise, que ilustra o problema, é mapeado
para o projeto, que se concentra na solução.

Com base nos modelos criados, os componentes que compõem a linha de produto são
desenvolvidos, de forma incremental. A cada iteração, um subconjunto da linha de produtos é
selecionado para ser implementado. A implementação inicia com os casos de uso obrigatórios,
seguidos pelos opcionais e alternativos, de acordo com a seqüência estabelecida durante a fase de
análise. Esta implementação consiste do projeto, codificação e teste dos componentes.

Um dos pontos chave de uma LPS é a variabilidade entre produtos. A representação
explícita de variabilidade torna possível a geração de produtos específicos de uma LPS. Podemos
identificar e categorizar a variabilidade de uma LPS por meio de modelos de features. Porém,
esta variabilidade precisa ser implementada em código fonte. Diversos tipos de variabilidade
podem ocorrer em um programa, como a adição, remoção, substituição e mudança de
funcionalidades.

A variabilidade pode ser interna, isto é, escondida do usuário final, ou externa, visível ao
usuário final do produto gerado. Como exemplo de variabilidade interna, podemos citar a escolha
entre a utilização um protocolo de comunicação ao invés de outro ou a possibilidade de escolha
do sistema de gerenciamento de banco de dados. As variabilidades internas geralmente são
questões técnicas que não precisam ser consideradas pelo usuário final, como a alteração do
banco de dados utilizado pela aplicação.

Existem diversas técnicas para a implementação de variabilidade em LPS [26]. Algumas
destas técnicas são:

• Agregação/delegação: Permite que objetos encaminhem (deleguem) requisições

que eles não conseguem satisfazer a objetos delegados. A variabilidade é alcançada
colocando a funcionalidade obrigatória no objeto que delega e a variação no objeto
delegado. É aplicável a features opcionais, porém, não é satisfatória para features
alternativas, por conta da indireção em vários pontos de variação. Tipicamente
resolvida em tempo de compilação, porém, é possível resolver em tempo de
linkagem e até mesmo em tempo de execução, utilizando carga dinâmica de classes
ou bibliotecas de ligações dinâmicas (DLLs);

• Herança: Esta técnica pode ser utilizada ao colocarmos funções básicas nas
superclasses e funções especializadas nas filhas. A técnica mostra-se problemática
com o crescimento na quantidade e tipos de variações, gerando árvores complexas
de herança. Isso pode ser exacerbado em linguagens que implementam herança
múltipla, como C++ e AspectJ;

• Compilação Condicional: Possibilita o controle sobre os segmentos de código a
serem incluídos ou excluídos da compilação de um programa. Diretivas marcam os

20

ESCOLA POLITÉCNICA
DE PERNAMBUCO

pontos de variação no código. A funcionalidade desejada é selecionada pela
definição dos símbolos condicionais apropriados. A compilação condicional é
resolvida antes da compilação;

• Parametrização (Arquivos de configuração): A idéia é representar software
reutilizável como bibliotecas de componentes parametrizados. O comportamento do
componente é determinado pelos valores escolhidos para os parâmetros. Isto evita
duplicação de código, centralizando decisões de projeto em um conjunto de
variáveis. Por exemplo, uma pilha, na qual o tipo dos elementos é definido por um
parâmetro. A parametrização pode melhorar o reuso em LPS, assim como facilitar o
rastreamento das decisões de projeto. No entanto, centralizar código apenas
definindo parâmetros é uma tarefa difícil, se não impossível, e a tarefa torna-se mais
complexa à medida que os sistemas crescem;

• Reflexão: É a capacidade de um programa manipular como dados, elementos que
representam o próprio programa durante sua execução. Essa técnica está relacionada
fortemente à meta-programação, onde objetos em altos níveis de abstração
representam entidades, como sistemas operacionais, processadores e linguagens de
programação. Porém, código escrito com esta técnica é difícil de entender, depurar,
e manter;

• Orientação a aspectos: A técnica de programação orientada a aspectos é descrita
na seção a seguir. A variabilidade pode ser alcançada com a implementação das
funcionalidades obrigatórias de maneira padrão, enquanto as variações são
encapsuladas em aspectos. Os benefícios são acumulados, pois combinações de
aspectos, bem como diferentes interpretações para um aspecto são facilmente
realizáveis.

Como detalhado acima, cada técnica tem vantagens e desvantagens, não existe uma técnica

que seja ideal em todos os casos possíveis de variabilidade. Portanto, é interessante que se faça
combinações de técnicas, se possível, para aproveitar os pontos fortes das técnicas utilizadas.

2.3 Tecnologias Empregadas
Nesta seção apresentamos as tecnologias utilizadas para desenvolvimento da linha de produtos
Ligo. A linguagem de programação escolhida para o desenvolvimento foi PHP. Esta escolha foi
baseada nos requisitos do programa, que definiam o seu uso em ambiente web. Para o
gerenciamento de variabilidade, utilizamos arquivos de configuração, na forma de classes
estáticas e descrições XML, além de orientação a aspectos, para introduzir comportamentos de
acordo com a configuração de features de um produto da linha.

2.3.1 PHP

PHP, um acrônimo recursivo para "PHP: Hypertext Preprocessor”, é uma linguagem de script de
código aberto embutida no HTML (Hypertext Markup Language) [27]. A inclusão de código se
dá por meio de tags específicas, conforme vemos na Figura 6. O exemplo da figura imprime a
string “Exemplo do TCC” entre as tags <h2> e </h2>. O objetivo da linguagem é permitir o
desenvolvimento de aplicações Web de forma rápida.

PHP é geralmente usado em conjunto com um servidor web, como o Apache [28]. As
requisições de scripts PHP são recebidas pelo servidor e são interpretadas pelo interpretador PHP.

21

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Os resultados desta execução são retornados ao servidor Web que, por sua vez, os inclui no texto
da página HTML como substituição ao programa original PHP e transmite a resposta ao cliente.

Figura 6. Exemplo de código PHP embutido em um arquivo HTML

A linguagem é fortemente baseada em C, Java e Perl, com algumas influências da

linguagem de processamento de texto awk, além de características específicas da própria
linguagem. A linguagem inclui variáveis de vários tipos, arrays, funções, e dá suporte a
orientação a objetos, com a maior parte dos mecanismos comuns à este paradigma. As variáveis
de PHP são fracamente tipadas e sempre começam com o símbolo $, além de não requererem
declaração, simplesmente passam a existir ao serem inicializadas. Ao ser inicializada, a variável
tem o valor “null” ou “zero”, até ser assinalada a um valor específico. Também existem variáveis
de ambiente, que representam itens de dados cujo valor pode ser determinado pelo servidor, como
o endereço IP do cliente que fez a requisição ou da parte dinâmica da URL requisitada, como
valores enviados por meio de formulários HTML.

Um dos grandes pontos fortes de PHP é o mecanismo de extensão, onde podemos incluir
rotinas à biblioteca PHP. Existem diversas extensões escritas em C, embutidas na distribuição
padrão, que podem ser ativadas ou não, de acordo com a configuração de sua instalação. Como
exemplo, podemos citar o suporte nativo a diversos bancos de dados, por exemplo, MySQL [29],
manipulação de XML [30], processamento XSL [31]. Também é possível desenvolver extensões
para otimizar o desempenho de execução de certos algoritmos.

Atualmente, é a linguagem de script mais popular dentre os servidores web, sendo utilizada
em mais de 20 milhões de domínios [32].

2.3.2 Programação orientada a aspectos

O conceito de programação orientada a aspectos surgiu da necessidade de melhorar a
modularidade dos programas, promovendo uma melhor separação de interesses – do inglês
concerns, é um termo geral que diz respeito a requisitos, funcionais ou não, que são úteis ou
precisam estar presentes nos sistemas [33]. O conceito de separação de interesses envolve quebrar
um programa em partes que se sobreponham em funcionalidade o mínimo possível. Os
paradigmas de programação oferecem mecanismos que dão suporte à separação e
encapsulamento de interesses. Como exemplo, citamos procedimentos, pacotes, classes, métodos.

Alguns interesses não se encaixam nas formas de encapsulamento providas por paradigmas
tradicionais, como o funcional ou orientação a objetos. Estes são os chamados interesses
transversais (crosscutting concerns), ou ortogonais, atravessam o programa, em pontos diversos.
Como exemplo destes interesses podemos citar logging, persistência, debugging, gerenciamento
de exceções. Em alguns casos, uma porção considerável de código de uma operação ou classe
não está relacionada com o interesse da classe ou operação e sim com esses interesses
transversais. O código então se torna (i) disperso, pois interesses estão espalhados por meio de
diversas partes do programa; (ii) entrelaçado, pois uma parte do programa pode envolver diversos

22

ESCOLA POLITÉCNICA
DE PERNAMBUCO

interesses transversais e a modificação de código torna-se difícil, pois deve-se entender e levar
em conta todos estes interesses.

O paradigma de programação orientada a aspectos [34] (AOP – Aspect Oriented

Programming), assim como a primeira linguagem orientada a aspectos, AspectJ [35], surgiu para
complementar o paradigma de orientação a objetos. AOP provê os meios para separação de
código que contém interesses transversais, modularizando-o em aspectos, elementos principais da
linguagem. O termo interesse é muitas vezes substituído por aspecto, na literatura da área. AOP
pode ser entendida como o desejo de fazer declarações quantificadas sobre o comportamento dos
programas e ter estas quantificações aplicadas a programas escritos por programadores alheios a
estas [36].

Existem alguns elementos específicos do paradigma que é necessário entender, para
compreender o seu funcionamento:

• Join Points (pontos de junção): Pontos específicos da execução de um programa.

Por exemplo, chamada a um método, execução de método, ou construção de um
objeto. São locais, no código, em que podemos alterar o comportamento do
programa, por meio dos aspectos. Compõem o elemento chave da AOP, pois as
modificações semânticas serão baseadas nestes pontos;

• Pointcuts (conjuntos de pontos de junção): Permitem a seleção de conjuntos de join

points de interesse. É possível coletar o contexto destes pontos. A composição é
dada por meio de operadores, como && (And), || (or) e ! (not). Também podemos
utilizar wildcards, como *, que é similar a função * de expressões regulares, ou seja,
vai casar com zero ou mais caracteres, e +, que casa com todos os subtipos possíveis
de uma classe;

• Advice (adendos): São elementos em que especificamos o comportamento que um
aspecto observará, ao encontrar um join point. Este adendo pode se dar antes
(before), depois (after) ou ao redor de (around) um ponto de junção;

• Inter-type declarations (Declarações intertipos): Declarações de atributos e métodos
a serem inseridos em classes, no código resultante.

Estes elementos combinados, na maioria das abordagens, compõem um aspecto, cujo

objetivo é encapsular todas as instruções relativas a um interesse. Podemos observar um exemplo
de aspecto na Figura 7, com o aspecto PointAssertions. Verificamos a presença de inter-

type declarations, na introdução de novos métodos na classe Point, que fazem verificações
(assertions) sobre valores passados como argumentos. Também é possível observar a presença de
advice, interceptando o código nos join points de chamada dos métodos setX() e setY(). O
código presente dentro da declaração do advice, neste caso, será executado antes do join point
definido. Ao observar o código da função main() de Point, vemos que a execução de
p.setY(333) resulta na impressão da mensagem de erro na tela.

Após a identificação e decomposição dos interesses e implementação dos aspectos, é
necessário fazer a recomposição aspectual. De alguma maneira, o comportamento do programa
final deve compreender o comportamento original combinado com o comportamento definido
nos aspectos. Este processo, chamado weaving, faz a combinação de código e pode ocorrer tanto
de forma estática, quanto dinâmica.

23

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 7. Implementação de uma classe Java e um aspecto em AspectJ [35]

2.3.3 phpAspect

phpAspect é uma extensão à linguagem PHP que implementa programação orientada a aspectos
[37]. A sintaxe do interpretador PHP é estendida, de maneira a introduzir uma nova entidade
chamada aspecto. Os aspectos devem ser escritos em arquivos com a extensão .aspect.php.

O compilador phpAspect insere o código especificado nos aspectos no código fonte PHP. O
processo de weaving é estático, acontecendo antes da execução do código no servidor, e se baseia
nos geradores de analisadores léxico (Lex) e sintático (Yacc) [38] para gerar árvores sintáticas em
XML, para o código PHP e os aspectos. Transformações XSL (Extensible Stylesheet Language)
[31] são usadas para realizar a transformação de código utilizando estas árvores em XML. O
código PHP resultante pode ser executado com qualquer versão de PHP 5. O processo de weaving
é ilustrado na Figura 8.

Figura 8. phpAspect weaving chain [37]

24

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Os aspectos são entidades de primeira classe durante a execução do programa e são

representados por classes com atributos e métodos. Todos os aspectos são instanciados, com um
padrão singleton quando o programa é inicialmente executado.

A sintaxe de phpAspect é similar à de AspectJ. Contém os join points tradicionais, como
chamada e execução de método, construção de classes. Um exemplo de aspecto em phpAspect é
demonstrado na Figura 9. Este exemplo é equivalente ao demonstrado na Figura 7, mas em
código phpAspect. O exemplo insere os métodos assertX e assertY à classe Point, além
de executar verificações antes da chamada dos métodos setX e setY. Em um arquivo
.aspect.php, qualquer código localizado fora da declaração do aspecto será ignorado.

Figura 9. Exemplo utilizado na Figura 7 em sintaxe phpAspect

2.3.3.1 Contribuições ao phpAspect

O projeto phpAspect, como a maior parte dos projetos em estágios iniciais de desenvolvimento,
ainda não é estável, e apresentou diversos problemas durante o desenvolvimento deste trabalho.
O elemento inter-type declarations protagonizou um dos problemas mais críticos encontrados.
Especificamente, a inserção de atributos e constantes não funcionava.

Para a solução deste problema foi necessário estudar a linguagem XSL, para maior
compreensão do funcionamento das transformações XSLT. Posteriormente, as folhas de estilo
XSL referentes ao processamento dos elementos inter-type declarations foram alteradas,
possibilitando então, a inserção de atributos e constantes em classes. O weaver phpAspect foi
então alterado para acomodar estas modificações.

Outro problema encontrado foi com a utilização de acentos. A extensão Parse_Tree [39],
responsável pela montagem da árvore sintática abstrata dos aspectos e códigos PHP, utiliza uma
codificação de XML UTF8, que gerava erros ao utilizarmos acentos nos códigos fonte. Foi
necessário utilizar funções de codificação e decodificação UTF8 no processo de weaving para
contornar este problema. Outra solução possível seria alterar o código fonte da extensão e

25

ESCOLA POLITÉCNICA
DE PERNAMBUCO

recompilá-la, mas a solução acima mostrou-se funcional, portanto, para economizar tempo, foi
utilizada.

2.3.4 XML

Extensible Markup Language (XML) é uma especificação de formato de texto derivada de
SGML desenvolvida pelo World Wide Web Consortium (W3C) [30]. Originalmente, sua
aplicação destinava-se a publicação eletrônica. Atualmente, XML tem um papel importante,
sendo muitas vezes utilizado como padrão para a definição e comunicação de dados estruturados
entre serviços Web, assim como em aplicações offline.

A sintaxe de XML, conforme podemos observar na Figura 10, é semelhante à de HTML
(Hypertext Markup Language). Porém, HTML é uma linguagem de apresentação de documentos,
enquanto XML é uma linguagem de descrição de dados. Outra diferença é relacionada ao uso de
tags. Embora ambas as linguagens façam uso deste recurso, no HTML, só são relevantes as tags
já existentes. Já nos arquivos XML, é possível definir as próprias tags, de acordo com a aplicação
do documento, assim como podemos especificar regras como a ordem em que aparecem, como
devem ser processadas e apresentadas. Essa flexibilidade é importante, pois torna XML uma
meta-linguagem. Como exemplo, podemos citar aplicações como RSS [40], Atom [41], MathML
[42], MusicXML [43]. É possível definir regras de validação (esquemas) em documentos no
formato XML. Um exemplo de linguagem XML utilizada para tal fim é XML Schema [44].

O exemplo da Figura 10 descreve uma estrutura de dados para descrição de features.
Podemos observar elementos como o nome e tipo da feature, assim como classes, aspectos e
arquivos relativos à feature em questão.

Figura 10. Exemplo de código XML

26

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3

A linha de produtos Ligo

Neste capítulo é apresentada a linha de produtos de software Ligo. São discutidos alguns
conceitos relacionados ao domínio da aplicação e é descrita a fase de modelagem de requisitos da
linha.

3.1 Considerações Iniciais
Conforme visto no capítulo 1, temos acompanhado a crescente utilização de Tecnologia da
Informação, buscando eficiência na realização de tarefas, nos setores da indústria, comércio e
governo. Isto também tem ocorrido no âmbito das igrejas cristãs. Observamos a utilização da
tecnologia por líderes, para propósitos espirituais, onde podemos destacar aconselhamento via e-
mail, pesquisa, e preparação e apresentação de mensagens [3].

Igrejas cristãs podem ser caracterizadas como a reunião de pessoas que professam a mesma
fé e se reúnem periodicamente, sob a liderança de oficiais. No entanto, existem diferentes formas
de governo dentre as igrejas, de acordo com a sua denominação [4]. Denominação é o nome que
se dá a um subgrupo de uma religião que opera sob um nome comum, e um conjunto comum de
doutrinas e tradições. Dentre as formas de governo possíveis, podemos destacar três principais:

• Episcopal – Neste sistema, as igrejas são governadas por bispos, que têm autoridade

sobre dioceses. Os bispos podem estar sujeitos à autoridade de oficiais de maior
escalão, como arcebispos, cardeais e patriarcas. Até a Reforma, era o sistema
predominante entre as igrejas cristãs. Como exemplo de igrejas que utilizam esta
forma de governo, podemos citar as igrejas católicas, anglicanas, episcopais, e
algumas luteranas e metodistas.

• Congregacional – Também chamado de independente, neste sistema, cada igreja
local, ou congregação, é eclesiasticamente soberana, ou autônoma. Dentre as
principais igrejas protestantes que utilizam o sistema, podemos destacar as
congregacionais e batistas. Recentemente, têm-se observado um crescimento de
igrejas não-denominacionais, que não se alinham formalmente a uma denominação
estabelecida. Estas igrejas geralmente adotam esta forma de governo, por prover
maior independência.

• Presbiteriana – Este sistema é caracterizado pelo governo por meio de assembléias
de presbíteros. Consiste numa ordem crescente de conselhos. O menor conselho é o

Capítulo

27

ESCOLA POLITÉCNICA
DE PERNAMBUCO

da igreja local, consistindo dos pastores (ministros docentes) e presbíteros
(ministros leigos) eleitos pelos membros da igreja. Acima dos conselhos locais, se
encontra o Presbitério, formado por representantes dos conselhos locais. O Sínodo,
instância superior, é formado por representantes dos Presbitérios, e finalmente, a
última instância decisória sobre a igreja é o Supremo Concílio. Esta forma de
governo é principalmente utilizada nas igrejas presbiterianas.

É certo afirmar que todas as formas de governo utilizadas pelas igrejas são variações destas

três formas descritas acima. A forma de governo utilizada por uma igreja define a política da
igreja e as regras, por exemplo, sobre quais serão os cargos que os membros da igreja podem
assumir e os pré-requisitos para poder assumi-lo.

Além da forma de governo, existem outros fatores que influenciam a maneira como a igreja
se organiza, qual sua ênfase ministerial principal e suas demais necessidades. Como exemplo,
podemos citar tamanho e localização das igrejas. Portanto, verificamos que, apesar da
semelhança na definição, há certa diversidade entre igrejas, por conta dos fatores acima
explicitados. Por exemplo, uma igreja com 500 membros tem, normalmente, mais atividades
durante a semana do que uma igreja com 100 membros.

Diversas aplicações têm surgido para solucionar problemas específicos do gerenciamento
de uma igreja, como o gerenciamento de grupos familiares [45], controle financeiro [46], cadastro
de sermões e reflexões [47], gestão de ministério de música [48], entre outros. Apesar de algumas
destas aplicações resolverem bem o problema a que se propõem, o uso de diversos sistemas em
separado gera novos problemas, como a inconsistência e dificuldade de compartilhamento de
dados entre as aplicações.

Faz-se necessária, portanto, a utilização de um sistema que integre os dados e processos
relativos ao gerenciamento da igreja. Tais sistemas são conhecidos como Church Management

Systems (ChMS). No Brasil, existem poucas opções de sistemas ChMS, onde destacamos os
produtos Church Tradicional [49] e SIGI [50] como principais expoentes do mercado.

A proposta da linha de produtos Ligo é atender a estas demandas, gerando produtos
personalizados, visando satisfazer às necessidades individuais da igreja alvo, usuária final do
produto gerado.

3.2 Modelagem de Requisitos
Conforme visto no capítulo anterior, a fase de modelagem de requisitos consiste de três
atividades principais: (i) Análise de escopo; (ii) Modelagem de features; (iii) Modelagem de
casos de uso. Esta etapa define os requisitos funcionais da linha, em particular, o que os produtos
terão em comum, e o que será variável.

3.2.1 Análise de escopo

Durante esta atividade, foram realizadas as seguintes tarefas: (i) avaliações de ChMSs existentes,
procurando identificar possíveis funcionalidades, além de observar como algumas
funcionalidades foram implementadas; (ii) entrevistas com pastores e líderes de igrejas locais,
visando maior entendimento das necessidades destes que seriam os principais usuários dos
produtos gerados pela linha. Foram entrevistadas pessoas ligadas à liderança de igrejas
pertencentes a três denominações que representam as formas de governo citadas na seção anterior
(Batista, Episcopal e Presbiteriana) e pertencentes a igrejas de tamanho e localização distintas
também; (iii) estudo sobre as formas de governo eclesiástico, procurando fazer a distinção de

28

ESCOLA POLITÉCNICA
DE PERNAMBUCO

organização entre as diversas igrejas estudadas, e observar como isso se reflete nos requisitos da
linha de produto.

Esta atividade serviu para a solidificação do conhecimento sobre o domínio, criando um
maior entendimento das necessidades reais de utilização do sistema. O resultado da atividade foi
a definição de que a linha compreenderá produtos para cada uma das denominações citadas,
assim como a possibilidade de personalização de configurações. Esta personalização faz-se
necessária, de acordo com a observação de que igrejas constituem um domínio bastante variável,
conforme explicado na seção anterior.

3.2.2 Modelagem de features

A atividade de modelagem de features tem como finalidade descrever os requisitos da LPS da
perspectiva do usuário final, por meio de um feature model. No modelo de features, foram
incluídos apenas os requisitos funcionais. No entanto, conforme visto no Capítulo 2, features
também podem representar requisitos não-funcionais.

Uma breve explicação de cada feature segue abaixo:

• Tipo Igreja (alternativa): Especifica se o produto irá gerenciar apenas uma igreja
(padrão), ou um conjunto de igrejas;

• Denominação (alternativa): Especifica a denominação da igreja utilizadora do
produto. Esta escolha se refletirá na adaptação de alguns termos específicos a cada
denominação, bem como as configurações de classificação de membros e cargos.
Também é possível personalizar estas configurações. De forma similar ao exemplo
da feature cor na linha de produtos de veículos no Capítulo 2, esta feature é
alternativa, e não tem nenhuma seleção padrão, porém, uma denominação deve ser
escolhida dentre as opções possíveis;

• Pessoas (obrigatória): Agrupa as funções relacionadas ao gerenciamento das
informações relacionadas a uma pessoa ligada à igreja;

• Mala Direta (obrigatória): Possibilita o envio de e-mail em massa para a base de
dados do produto. As configurações possíveis para envio de e-mails podem ser
alteradas de acordo com a seleção de features opcionais. Por exemplo, ao
incluirmos a feature famílias, podemos enviar e-mail para famílias em específico e
assim por diante;

• Relatórios (obrigatória): Possibilita a geração de relatórios a partir da base de
dados do produto. Assim como a feature Mailing, a configuração de relatórios pode
ser alterada de acordo com a seleção de features opcionais.

• Famílias (opcional): Agrupa as funções de gerenciamento das informações de
famílias ligadas à igreja;

• Grupos (opcional): Agrupa as funções de gerenciamento das informações de
grupos pertencentes à igreja. Como exemplos de grupos podemos citar o grupo de
música, pequenos grupos que se reúnem em casas, grupos de jovens, entre outros. A
definição de um grupo envolve a escolha de um tipo e a criação de papéis possíveis
dentro de um grupo, bem como a possibilidade de definição de propriedades
específicas para um grupo, no formato de campos adicionais. Esta definição foi
generalizada, mas podemos ter especializações de grupos, como pequenos grupos, e
ministérios, com configurações específicas pré-definidas;

• Finanças (opcional): Agrupa as funções de gerenciamento das informações de
movimentações financeiras ligadas à igreja. As movimentações podem ou não ser
associadas a uma pessoa;

29

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Website (opcional): Transforma o ChMS em um Content Management System
(CMS), onde torna-se possível também gerenciar um website da igreja;

• Eventos (opcional): Agrupa as funções de gerenciamento das informações de
eventos da igreja. A feature filha opcional Registro online, possibilita o registro via
site em eventos da igreja, o que torna necessária a presença da feature website;

• Cursos (opcional): Agrupa as funções de gerenciamento das informações de cursos
ministrados por uma igreja. A feature filha opcional Aulas online, possibilita a
disponibilização via site de material de aulas de um curso, o que torna necessária a
presença da feature website;

• Rede Ministerial (opcional): É um programa desenvolvido pela Network Ministries

International [51], que visa a descoberta dos dons e talentos dos participantes de
uma igreja, por meio de exercícios e questionários.

O modelo de features gerado pode ser visto na Figura 11. Estas features compreendem uma

lista não-exaustiva de possibilidades para um sistema de gerenciamento de igrejas cristãs.
Conforme já citado acima, é possível, a partir destas features, gerar outras especializadas em um
determinado foco. A evolução da LPS ocorre com a adição e remoção de features, alteração da
lógica e reclassificação de features já existentes, possibilitando a inclusão de novos produtos à
LPS, assim também como a eliminação de produtos que não atendam a demandas do mercado.

Figura 11. Modelo de features da LPS Ligo gerado com o auxílio da ferramenta pure::variants

30

ESCOLA POLITÉCNICA
DE PERNAMBUCO

3.2.3 Modelagem de casos de uso

A modelagem de casos de uso, descrita no capítulo 2, consiste na descrição e montagem dos
diagramas de casos de uso. Os casos de uso são classificados e categorizados com o auxílio de
estereótipos, e foram divididos de acordo com os atores. Foram identificados 4 atores, que são
detalhados, com seus respectivos diagramas de casos de uso, a seguir.

O ator Secretária modela a pessoa que é responsável pelas atividades administrativas de
uma igreja. Este ator tem acesso à maior parte dos casos de uso da LPS Ligo, conforme
visualizamos na Figura 12. Os casos de uso que o ator executa são referentes às features Pessoa,
Famílias, Grupos, Eventos, Finanças, Tipo de Igreja, Mala Direta, Relatórios.

Figura 12. Diagrama de casos de uso da LPS Ligo referente ao ator Secretária

O ator Pastor modela a pessoa que é responsável pela liderança e supervisão de uma igreja.

O papel de um pastor em grandes igrejas é até comparável ao de um CEO (Chief Executive

Officer) [52], pois lidera equipes, faz o acompanhamento de membros da igreja, planejamentos
anuais, direciona a visão da igreja, dentre outras atividades. Este ator, portanto, está associado aos
casos de uso relacionados à visualização das informações e não necessita realizar os casos de uso

31

ESCOLA POLITÉCNICA
DE PERNAMBUCO

operacionais, como adicionar/editar/remover elementos. A exceção se faz aos casos relacionados
à feature Cursos, pois normalmente, o Pastor é o responsável pela concepção e planejamento dos
cursos de uma igreja. Os casos de uso que o ator executa são referentes às features: Pessoa,
Famílias, Grupos, Eventos, Cursos, Tipo de Igreja, Relatórios, Mailing.

Figura 13. Diagrama de casos de uso da LPS Ligo referente ao ator Pastor

O ator Tesoureiro modela a pessoa responsável pelo gerenciamento de finanças de uma

igreja. O papel desta pessoa é supervisionar e documentar as movimentações financeiras da
igreja. Este ator, portanto, está associado apenas aos caso de usos relacionados à feature Finanças
e pode gerar relatórios, mas apenas do tipo financeiro.

Figura 14. Diagrama de casos de uso da LPS Ligo referente ao ator Tesoureiro

O ator Membro modela a pessoa que é envolvida em uma igreja e não se encaixa em uma

das definições anteriores. Inicialmente, este ator pode apenas editar as informações relativas à sua

32

ESCOLA POLITÉCNICA
DE PERNAMBUCO

pessoa e realizar o questionário Rede Ministerial, caso esteja presente na configuração do
produto. No entanto, a este ator podem ser concedidas permissões para executar outros casos de
uso. Por exemplo, um Membro pode ser líder de um grupo, portanto poderá editar informações
relacionadas àquele grupo específico.

Figura 15. Diagrama de casos de uso da LPS Ligo referente ao ator Membro

A descrição do caso de uso Adicionar Pessoa encontra-se no Apêndice A. Na descrição,

podemos observar o ponto de variação introduzido com a adição da feature Família.

3.2.4 Relação entre features e casos de uso

Podemos representar os relacionamentos entre features e casos de uso por meio de tabelas. As
Tabelas 2 e 3 informam a notação de símbolos utilizada para identificar features e casos de uso
na Tabela 4. Esta representação é importante para visualização dos casos de uso que a seleção de
uma feature introduz em um produto, bem como o impacto que esta feature terá nos casos de uso.

Como exemplo, podemos analisar a feature Grupos. Ao observarmos a tabela, verificamos
que esta feature impacta não apenas os casos de uso relacionados ao gerenciamento de grupos. A
adição da feature tem impacto também nos casos de uso relacionados a pessoas, pois grupos são
formados por pessoas, assim como os casos de uso de enviar e-mail e gerar relatórios. Podemos
analisar também o caso de uso Gerar Relatórios. Este caso de uso sofre impacto de diversas
features. Por exemplo, caso a feature Finanças esteja presente em um produto, poderemos gerar
relatórios financeiros.

Tabela 2. Notação de símbolos de features utilizada na Tabela 4.

Símbolo Feature
F_2 Mala Direta
F_3 Pessoas
F_4 Relatórios
F_5 Tipo Igreja
F_8 Denominação

F_13 Eventos
F_14 Famílias
F_15 Cursos
F_16 Grupos
F_17 Finanças
F_19 Rede Ministerial

33

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 3. Notação de símbolos de casos de uso utilizada na Tabela 4.
Símbolo Caso de Uso
UC_1 Adicionar Pessoa
UC_2 Editar Pessoa
UC_3 Remover Pessoa
UC_4 Visualizar Pessoa
UC_5 Adicionar Grupo
UC_6 Editar Grupo
UC_7 Remover Grupo
UC_8 Visualizar Grupo
UC_9 Adicionar Família
UC_10 Editar Família
UC_11 Remover Família
UC_12 Visualizar Família
UC_13 Adicionar Curso
UC_14 Editar Curso
UC_15 Remover Curso
UC_16 Visualizar Curso
UC_17 Adicionar Evento
UC_18 Editar Evento
UC_19 Remover Evento
UC_20 Visualizar Evento
UC_21 Adicionar Movimentação
UC_22 Editar Movimentação
UC_23 Remover Movimentação
UC_24 Visualizar Movimentação
UC_25 Enviar e-mail
UC_26 Associar Pessoa a Curso
UC_27 Associar Pessoa a Grupo
UC_28 Associar Pessoa a Evento
UC_29 Gerenciar Papéis Familiares
UC_30 Gerenciar Lista
UC_31 Gerenciar Tipos de Curso
UC_32 Gerenciar Tipos de Grupo
UC_33 Gerenciar Tipos de Evento
UC_34 Gerenciar Tipos de Movimentação
UC_35 Realizar Rede Ministerial
UC_36 Editar Configurações Denominação
UC_37 Gerar Relatórios

34

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tabela 4. Representação tabular de relacionamentos entre features e casos de uso

!! "#$! "#%! "#&! "#'! "#(! "#)%! "#)&! "#)'! "#)*! "#)+! "#),!

-.#)! !! "! !! !! !! !! "! !! ! !! !!

-.#$! !! "! !! !! !! !! "! !! "! !! !!

-.#%! !! "! !! !! !! !! "! !! "! !! !!

-.#&! !! "! !! !! !! !! "! !! "! !! !!

-.#'! !! !! !! !! !! !! !! !! "! !! !!

-.#*! !! !! !! !! !! !! !! !! "! !! !!

-.#+! !! !! !! !! !! !! !! !! "! !! !!

-.#(! !! !! !! !! !! !! !! !! "! !! !!

-.#,! !! !! !! !! !! !! "! !! !! !! !!

-.#)/! !! !! !! !! !! !! "! !! !! !! !!

-.#))! !! !! !! !! !! !! "! !! !! !! !!

-.#)$! !! !! !! !! !! !! "! !! !! !! !!

-.#)%! !! !! !! !! !! !! !! "! !! !! !!

-.#)&! !! !! !! !! !! !! !! "! !! !! !!

-.#)'! !! !! !! !! !! !! !! "! !! !! !!

-.#)*! !! !! !! !! !! !! !! "! !! !! !!

-.#)+! !! !! !! !! !! "! !! !! !! !! !!

-.#)(! !! !! !! !! !! "! !! !! !! !! !!

-.#),! !! !! !! !! !! "! !! !! !! !! !!

-.#$/! !! !! !! !! !! "! !! !! !! !! !!

-.#$)! !! !! !! !! !! !! !! !! !! "! !!

-.#$$! !! !! !! !! !! !! !! !! !! "! !!

-.#$%! !! !! !! !! !! !! !! !! !! "! !!

-.#$&! !! !! !! !! !! !! !! !! !! "! !!

-.#$'! "! "! !! "! !! "! "! "! "! !! !!

-.#$*! !! "! !! !! !! !! !! "! !! !! !!

-.#$+! !! "! !! !! !! !! !! !! "! !! !!

-.#$(! !! "! !! !! !! "! !! !! !! !! !!

-.#$,! !! !! !! !! !! !! "! !! !! !! !!

-.#%/! !! !! !! !! !! !! !! !! !! !! !!

-.#%)! !! !! !! !! !! !! !! "! !! !! !!

-.#%$! !! !! !! !! !! !! !! !! "! !! !!

-.#%%! !! !! !! !! !! "! !! !! !! !! !!

-.#%&! !! !! !! !! !! !! !! !! !! "! !!

-.#%'! !! !! !! !! !! !! !! !! !! !! "!

-.#%*! !! !! !! !! "! !! !! !! !! !! !!

-.#%+! !! "! "! "! !! "! "! "! "! "! !!

35

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4

Análise, Projeto e Desenvolvimento

Neste capítulo são descritas as fases de Análise, Projeto e Desenvolvimento da linha de produtos
de software Ligo, bem como os artefatos resultantes. Também é descrito o processo de geração
de produto da LPS Ligo.

4.1 Análise
A etapa de análise, conforme visto no Capítulo 2, enfatiza o entendimento do problema. Esta
etapa foi dividida em duas atividades, que são descritas nas seções a seguir.

4.1.1 Modelagem estática

A modelagem estática descreve a estrutura estática da LPS em desenvolvimento. O papel desta
atividade é expressivo na modelagem de LPS, pois esta é uma notação poderosa para capturar as
características comuns e variáveis de uma LPS. O modelo estático pode ser utilizado para
modelar as associações entre classes entity, que modelam entidades centradas em dados, similar
ao desenvolvimento de sistemas únicos, assim como pode modelar as hierarquias utilizadas em
modelos de LPS para famílias de sistemas. Esta modelagem de hierarquias utiliza classes
physical, que modelam dispositivos físicos, e é útil para contextualizar o problema,
principalmente em casos de desenvolvimento de software embarcado. Por este não ser o caso da
LPS Ligo, o foco foi dado na modelagem de classes entity e suas dependência em relação às
features.

Assim como aconteceu com as features e casos de uso, as classes também são classificadas
entre obrigatórias, opcionais e alternativas. A estratégia utilizada para o desenvolvimento foi
similar à do desenvolvimento da LPS, forward evolutionary engineering. O modelo estático das
classes obrigatórias à LPS foi desenvolvido e depois evoluído com a inclusão de variações.

O modelo estático de classes entity da LPS Ligo pode ser visto na Figura 16. Foram
utilizados estereótipos, assim como na modelagem de casos de uso, para classificação de reuso
das classes. O estereótipo entity foi removido das classes para eliminar redundância pois todas as
classes são entity. Pela aplicação ser centrada em dados, as classes demonstradas no modelo
representam os dados que estão armazenados no banco de dados.

Capítulo

36

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 16. Diagrama de classes entity da LPS Ligo

É possível observar que as classes obrigatórias estarão presentes em todos os produtos

gerados pela LPS, porém a presença de alguns de seus atributos ou métodos dependerá da escolha
das features. A modelagem destes casos é feita através de parametrização de classes. Esta
parametrização pode ser implementada de diversas maneiras, e é detalhada na seção de
implementação de variabilidade. Com classes parametrizadas, uma classe da LPS terá parâmetros
de configuração, que têm diferentes valores, entre membros da LPS. A vantagem desta
abordagem é a simplificação, pois ao invés de gerarmos inúmeras classes adicionais, temos
apenas uma classe parametrizada. Estes atributos e métodos serão incluídos ou modificados
durante o processo de geração de um produto a partir dos ativos da LPS. Podemos observar os
atributos das classes obrigatórias na Figura 17 e das classes opcionais na Figura 18. Ao lado dos
atributos parametrizados, é colocada a restrição para que estes atributos estejam presentes. Neste
caso, a inclusão da feature citada entre chaves.

Figura 17. Classes entity obrigatórias da LPS Ligo

37

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 18. Classes entity opcionais da LPS Ligo

É importante ressaltar que as classes entity são apenas um dos tipos de classes da LPS. A

modelagem estática utiliza este tipo de classe pois são elementos centrados em informação. Para
podermos realizar a atividade seguinte, modelagem dinâmica, precisamos determinar que classes
e objetos serão necessários para realizar os casos de uso. A identificação de objetos de software
pode ser assistida por critérios de estruturação de objetos, que provêem direção na estruturação da
aplicação em objetos. A idéia é categorizar classes e objetos pelos papéis que desempenham na
aplicação. Os tipos de objetos que estarão presentes na LPS Ligo, foram divididos em:

• Interfaces: Objetos que se comunicam com elementos externos ao sistema, como

interfaces com o usuário, sistemas externos e dispositivos externos;
• Entities: Objetos persistentes que armazenam informação. Estes objetos são

instanciados de classes que seriam modeladas como entidades em modelos
entidade-relacionamento;

• Controle: Objetos que provêem coordenação de coleção de objetos em casos de uso;
• Lógica de negócio: Objetos que contém detalhes da lógica da aplicação. Estes

objetos são necessários quando é desejável esconder a lógica da aplicação
separadamente dos dados sendo manipulados.

Estereótipos serão utilizados para descrever o tipo de cada classe nos diagramas que

mostram a interação entre objetos.

38

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.1.2 Modelagem dinâmica

A modelagem dinâmica provê uma visão da LPS em que a seqüência e controle de ações são
considerados, seja em um objeto, por meio de máquinas de estado finito, seja entre objetos, pela
análise de interações entre os mesmos. Neste trabalho o foco foi mantido na interação entre
objetos. A modelagem é baseada nos casos de uso desenvolvidos durante a modelagem de casos
de uso e pode ser feita por meio de diagramas de comunicação ou diagramas de seqüência. Uma
descrição narrativa da interação entre objetos acompanha o modelo. Por serem baseados nos
casos de uso, os diagramas de interação são classificados em obrigatórios, opcionais ou
alternativos.

A estratégia de desenvolvimento dos diagramas de interação é chamada evolucionária e
inicia com o padrão kernel first approach. Os diagramas referentes aos casos de uso obrigatórios
serão inicialmente desenvolvidos, seguidos dos opcionais e alternativos. Adicionalmente, com
base na análise da dependência entre features e casos de uso (ver Tabela 4), as possíveis
variações em um caso de uso são adicionadas ao diagrama.

A Figura 19 mostra o diagrama de seqüência para o caso de uso Editar Pessoa. Podemos
observar a interação entre os diversos tipos de objetos descritos na seção anterior. O objeto
interfaceUsuario representa a tela disponibilizada no navegador para o usuário, neste caso,
com uma lista de pessoas. Ao clicarmos em editar pessoa, para uma pessoa hipotética, o objeto
controlador handlerPessoa interage com os objetos form, responsável pela montagem do
formulário HTML, e pessoa, objeto que representa a entidade Pessoa. Os dados da pessoa são
obtidos do banco de dados utilizando o objeto dbHandler, que retorna as informações relativas
à pessoa em questão. Com estas informações, é possível montar o formulário, via mensagem
setForm, e gerar o código HTML do mesmo, com a mensagem toHTML. O formulário então é
apresentado ao usuário no navegador.

O usuário pode então adicionar e editar os dados que acha necessário e após esta ação,
clicar no botão salvar para efetivar as mudanças no banco de dados. O handler
handlerPessoa então faz a validação dos dados, de acordo com as regras estabelecidas
quando da geração do formulário, e caso não haja nenhum problema, o objeto pessoa é
atualizado com os novos valores. Após a atualização do objeto, os valores são armazenados no
banco de dados, e, na ausência de erros, é retornada a mensagem de sucesso ao usuário.

Com a adição da feature Famílias a um produto, o fluxo de mensagens é alterado e é
necessário demonstrar esta mudança no diagrama. As mudanças ocorrem (Figura 19.i) no
momento da obtenção dos dados de uma pessoa, em que também obtemos as informações que
dizem respeito à família da pessoa; (Figura 19.ii) no momento de configuração do formulário,
quando os campos relacionados com a feature Família são adicionados – família a que uma
pessoa pertence, e o papel desempenhado nesta; (Figura 19.iii) ao atualizarmos as informações
no objeto Pessoa, onde atualizamos os atributos da família de uma pessoa; (Figura 19.iv)
finalmente, ao realizarmos a consulta de atualização das informações no banco de dados,
atualizaremos também os campos da tabela de pessoas adicionados por conta da presença da
feature Família.

O diagrama de seqüência alternativo do caso de uso Adicionar Pessoa, com a adição da
feature Família, é demonstrado na Figura 20. As interações adicionais são destacadas com o seu
respectivo número assinalado. A maneira como estas alterações são implementadas é discutida na
seção a seguir.

39

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 19. Diagrama de seqüência do caso de uso Editar Pessoa

Figura 20. Diagrama de seqüência do caso de uso Editar Pessoa com a adição da feature Família

40

ESCOLA POLITÉCNICA
DE PERNAMBUCO

4.2 Projeto e Desenvolvimento
O objetivo desta fase é, baseado nos modelos gerados nas etapas anteriores, sintetizar a solução
em código. A linguagem utilizada para desenvolvimento da solução foi PHP, conforme citado no
Capítulo 2.

A estratégia utilizada foi, assim como em situações anteriores, desenvolver os casos de uso
obrigatórios inicialmente. Adicionalmente, para dar suporte à decisão de como implementar a
variabilidade nos casos de uso, foram desenvolvidos protótipos destes casos de uso, com as
variações implementadas manualmente. O objetivo destes protótipos foi a identificação dos
possíveis pontos de variação, assim como a maneira como se dá esta variação. A abordagem de
gerenciamento de variabilidade utilizada neste trabalho é descrita na seção a seguir.

4.2.1 Gerenciamento e implementação de variabilidade

Conforme visto no Capítulo 2, um dos pontos chave de uma LPS é a variabilidade entre produtos.
Visualizamos na Figura 11 uma maneira de identificar e categorizar a variabilidade de uma LPS,
por meio de modelos de features. Porém, esta variabilidade precisa ser implementada em código
fonte. As features descritas no modelo de features da Figura 11 são exemplos de variabilidades
externas, pois a seleção destas resultará em mudanças visíveis ao usuário de um produto gerado.

Na implementação de variabilidade da LPS Ligo, foram utilizadas as técnicas de herança,
arquivos de configuração e orientação a aspectos. A escolha foi baseada em estudos sobre
técnicas que se mostram mais adequadas, e demonstram maior modularidade, de acordo com o
tipo da variabilidade [26][53]. A técnica de herança foi utilizada em variações onde era
necessária a alteração completa dos métodos (whole method). Arquivos de configuração foram
utilizados para substituição de valores constantes, e mudanças na estrutura organizacional de uma
igreja. Programação orientada a aspectos foi utilizada para as variações acontecidas antes e
depois de métodos, de modo a separar os códigos das features. A aplicação das técnicas é
detalhada a seguir.

Herança

O uso de herança se deu principalmente na implementação das classes relacionadas ao

gerenciamento de banco de dados. Foram desenvolvidas classes abstratas de conexão ao banco de
dados, bem como classes abstratas de geração de consultas SQL Update, Insert, Delete e Select.

A especialização para um banco de dados específico se deu herdando destas classes
abstratas. Na classe filha, são especificados os métodos de acesso ao banco de dados, bem como a
geração de consultas na sintaxe do banco de dados escolhido. Desta forma, é necessário apenas
especializar a classe abstrata para possibilitar o uso de um banco de dados específico. Este é um
caso de variabilidade interna, pois a escolha do banco de dados é feita pela organização.

Por exemplo, conforme visualizamos na Figura 21, a classe abstrata Database declara
atributos e métodos comuns a qualquer implementação de banco de dados. Para tornar possível a
utilização do banco de dados MySQL [29], por exemplo, a classe que implementará as funções
relacionadas ao banco é declarada como filha de Database. Os métodos específicos de acesso ao
banco de dados são definidos na classe. A utilização desta técnica em conjunto com o padrão de
projeto Factory, que lida com o problema de criação de objetos sem a especificação da classe
exata, provê a modularidade necessária para alterarmos o banco de dados utilizado sem grande
prejuízo ao restante do código dos ativos da LPS. Caso seja necessário alterar o banco de dados
utilizado, é necessário apenas modificar o factory e criar uma nova classe com os métodos de
acesso específicos ao banco de dados desejado.

41

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 21. Implementação de variabilidade de banco de dados utilizando herança.

Arquivos de Configuração

A técnica de arquivos de configuração foi utilizada para gerenciar a variabilidade trazida

pela feature Denominação. Conforme foi visto no Capítulo 2, a denominação de uma igreja
reflete-se em mudanças não apenas na forma como a igreja se organiza, assim como na
nomenclatura de termos específicos do domínio.

Para cada denominação foram criados arquivos de configuração contendo os mapeamentos
de termos específicos relacionados a ela, assim como arquivos XML descrevendo a hierarquia de
organização. Durante o processo de geração de produto, que será descrito na próxima seção, de
acordo com a escolha da denominação, são carregados os arquivo de configuração referentes à
denominação. No caso da escolha de personalização de uma denominação, é possível editar estes
termos, assim como configurar a hierarquia.

Orientação a Aspectos

As variabilidades das demais features foram implementadas utilizando programação

orientada a aspectos (AOP). AOP mostra-se adequada à implementação das variações que
ocorrem antes e depois da chamadas de métodos, inserindo comportamento com os advice before

e after [53]. A análise dos artefatos gerados nas etapas anteriores, permitiu a identificação dos
possíveis pontos de variação nos casos de uso, de acordo com cada feature. Esta análise também
identifica features como interesses transversais, visto que a adição de features impacta diversos
casos de uso do sistema.

Inicialmente, foram desenvolvidos protótipos dos casos de uso Adicionar Pessoa e Editar
Pessoa, para visualização de como estas variações ocorrem no código. Posteriormente, foi
estudado como estas variações poderiam ser separadas em aspectos. Com base neste estudo
preliminar, foram desenvolvidos aspectos para cada feature. O desenvolvimento dos casos de uso
também levou em conta os possíveis join points em que o aspecto deve interceptar o programa,
inserindo comportamento.

Um exemplo do aspecto relacionado à feature Famílias pode ser visto na Figura 22. Este
aspecto insere atributos e métodos de gerenciamento da Família à classe Pessoa. Intercepta as
inserções, atualizações e consultas da classe Pessoa ao banco de dados, inserindo, atualizando e
obtendo os valores relacionados à família. Também adiciona campos na geração do formulário
HTML de adição e edição de Pessoas. Esta abordagem permitiu a manter o código das features
separado, evitando problemas de código entrelaçado e disperso, além de permitir a fácil
combinação de aspectos, ao selecionarmos diversas features opcionais.

42

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 22. Implementação do aspecto relacionado à feature Família.

4.3 Engenharia da Aplicação
A atividade de Engenharia da Aplicação consiste em desenvolver os produtos membros da linha.
O desenvolvimento de um produto não é feito do zero, mas, é baseado nos ativos gerados durante
o desenvolvimento da linha. A arquitetura da LPS é utilizada como base e é adaptada e
personalizada de acordo com as necessidades específicas do produto. Por estas razões, o
desenvolvimento de um produto em uma LPS é também chamado de geração ou derivação de
produtos.

Durante esta atividade, novos requisitos para um produto podem surgir. Neste caso, é
necessário fazer uma nova iteração de desenvolvimento da linha, para que estes novos requisitos
sejam inclusos nos modelos da linha. Esta nova iteração inicia com a inclusão das novas features,
adição de novos casos de uso ou adaptação dos já existentes. Os modelos estáticos e dinâmicos
são adaptados, o que se reflete na alteração da arquitetura da LPS, se necessário, e em seguida os
novos requisitos são implementados. Desta forma, os novos requisitos são incorporados à LPS,
possibilitando inclusive a utilização destes por outros produtos da linha. É importante ressaltar
que a abordagem utilizada para evolução da linha varia de acordo com a estratégia utilizada pela
organização que a utiliza.

Para a LPS Ligo, foi desenvolvido um gerador de produtos, que guia o processo de
derivação de membros da LPS. As atividades do processo de geração são descritas a seguir, e
podem ser visualizadas na Figura 23.

43

ESCOLA POLITÉCNICA
DE PERNAMBUCO

1. Escolher denominação: Esta atividade é definida como a atividade inicial de geração
de produtos, pois, desde o processo de geração, já utilizaremos termos específicos
de acordo com a seleção feita;

2. Personalização: Caso seja escolhida
3. Escolher Tipo de Igreja: De acordo com a feature Tipo de Igreja, é feita a escolha

do tipo da igreja utilizadora;
4. Configuração da igreja: Nesta etapa, são adicionadas as informações iniciais

relacionadas à igreja, como nome, endereço e, no caso da seleção do tipo como
multi-site, esta etapa é repetida para cada uma das igrejas que será gerenciada;

5. Seleção de features: As demais features são selecionadas e a seleção passa por um
processo de validação pois, conforme vimos no Capítulo 2, existem features que
podem ser mutuamente inclusivas ou exclusivas;

6. Escolher diretório de destino: O diretório alvo, onde serão colocados os arquivos
gerados referentes ao produto é escolhido;

7. Gerar produto: A atividade final consiste em, baseado nas escolhas anteriores,
realizar o processo de weaving dos aspectos com o código fonte.

Figura 23. Diagrama de atividades que ilustra o processo de geração de um produto.

As features são descritas por meio de arquivos XML, que contém uma estrutura descritiva

dos componentes de código participantes em uma feature, como classes, aspectos, folhas de estilo
CSS (Cascading Style Sheets) [54], bibliotecas javascript [55], templates de páginas. Estas
informações são utilizadas pelo gerador durante o processo de geração de produto. Um exemplo
de descrição de features é visto na Figura 24. Neste exemplo, é possível observar a estrutura de
descrição na própria figura, por meio das tags. O exemplo da figura ilustra a descrição da feature
opcional Família. São descritas as classes e aspectos participantes da feature, neste caso, apenas
Familia.php e familia.aspect.php, respectivamente. Arquivos auxiliares também são descritos
para inclusão durante o processo de geração do produto.

44

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Figura 24. Exemplo de descrição XML da feature Família

O processo de geração de produtos é ilustrado com telas no Apêndice B.

4.3.1 Avaliação

Durante a fase de desenvolvimento da LPS, diversas igrejas foram consultadas para avaliação das
features providas pela linha. Essa interação foi importante, pois já durante a fase de
desenvolvimento foram identificadas novas features, como Rede Ministerial, assim como outras
features foram rearranjadas, como se vê no agrupamento das features Pequenos Grupos e
Ministérios sob a feature Grupos e na divisão de tipos de igrejas.

Como forma de validação, um produto gerado está sendo atualmente implantado na igreja
presbiteriana Comunidade Memorial [56], situada na Lagoa do Araçá, Recife – PE. O produto
gerado consiste da seleção de features opcionais Família, Finanças, Cursos e Grupos, que
refletem a necessidade atual da igreja, não foram necessárias alterações ou desenvolvimento de
novas features.

Um outro produto foi gerado de acordo com as necessidades da Igreja Episcopal
Carismática Paróquia da Reconciliação [57], situada em Boa Viagem, Recife – PE. Este produto
consiste da seleção das features Família, Finanças, Grupos, Website e Eventos. Foi observado
que a feature Eventos precisa ser especializada para lidar com eventos específicos. Um exemplo é
a realização de Cursilhos, pequenos retiros durante o final de semana, onde homens ou mulheres
passam este tempo convivendo e estudando a Bíblia. Este tipo de evento, característico da igreja
Episcopal, leva em conta não apenas o agendamento do evento, mas também o registro das
pessoas participantes, registro das pessoas que irão trabalhar, controle das finanças, entre outras
necessidades específicas.

45

ESCOLA POLITÉCNICA
DE PERNAMBUCO

5

Conclusões e Trabalhos Futuros

O desenvolvimento de software é uma atividade que muitas vezes torna-se repetitiva, pois poucos
sistemas são de fato únicos. Reuso de software é uma preocupação constante dos
desenvolvedores e vem mostrando-se como algo essencial a organizações desenvolvedoras de
software. Diversas organizações desenvolvem produtos similares em domínios específicos. Faz-
se necessário adotar metodologias para tirar proveito das características comuns a estes produtos,
e procurar otimizar o reuso de software nestas situações. Linhas de produtos de software é uma
abordagem que se propõe a tirar vantagem desta situação e melhorar a produtividade do
desenvolvimento de software.

Este trabalho propôs o desenvolvimento de uma linha de produtos de software para
gerenciamento de igrejas cristãs. O domínio de aplicação mostrou-se adequado ao
desenvolvimento de uma LPS. Igrejas cristãs compartilham muitas semelhanças, porém vimos
que aspectos como denominação, tamanho e localização afetam a organização de uma igreja.

Este capítulo apresenta as principais contribuições dadas por este trabalho, dificuldades
encontradas, bem como possíveis trabalhos futuros.

5.1 Contribuições
A principal contribuição do trabalho é a LPS Ligo, que agrupa aspectos essenciais do
gerenciamento de igrejas cristãs. Algumas outras contribuições estão listadas a seguir:

• Instanciação de um processo de desenvolvimento de LPS;
• Estudo e implementação de técnicas de variabilidade de acordo com o tipo de

variabilidade. As técnicas utilizadas foram: Herança, Arquivos de Configuração e
Programação Orientada a Aspectos;

• Modificação do weaver do phpAspect, visando a correção de inter-type declarations para
inserção de atributos e constantes e a possibilidade de poder trabalhar com acentos;

• Desenvolvimento de um gerador de produtos de LPS parametrizável, que pode ser
utilizado em outras LPS;

• Geração de um produto específico para a igreja Comunidade Memorial [56], situada na
Lagoa do Araçá, Recife – PE. O produto se mostrou apropriado às necessidades desta
igreja, e está atualmente sendo implantado.

Capítulo

46

ESCOLA POLITÉCNICA
DE PERNAMBUCO

• Geração de um produto para a igreja Paróquia da Reconciliação [57], situada em Boa
Viagem, Recife – PE. Este produto ainda precisa de algumas modificações para se
adequar às necessidades desta igreja.

5.2 Dificuldades encontradas
Por ser uma técnica com que não tinha experiência prévia, houve dificuldade em passar da etapa
de requisitos e projeto para o código fonte. Existem poucas ferramentas disponíveis à
comunidade acadêmica, que dão suporte ao desenvolvimento de LPS como um todo. Por
exemplo, a ferramenta pure::variants auxilia no processo de desenvolvimento do modelo de
features, porém não é útil para modelagem de casos de uso, modelagem estática, entre outros.
Algumas ferramentas comerciais não permitem o seu uso em ambiente acadêmico. Na literatura
da área, existe bastante material relacionado aos aspectos de requisitos, análise e projeto, porém,
pouca informação relacionada a implementação de LPS.

O phpAspect, como toda ferramenta em desenvolvimento, ainda possui alguns problemas, e
não está completa. A comunicação com o principal desenvolvedor do projeto foi escassa, só foi
possível obter um retorno do mesmo ao fim do projeto. A base de usuários também ainda não é
vasta. Desta forma, alguns destes problemas foram solucionados durante o decorrer deste
trabalho.

5.3 Trabalhos futuros
Como trabalhos futuros, podemos citar a evolução da LPS Ligo, incluindo novas features,
refinando e especializando algumas já existentes, procurando atender às necessidades dos
usuários finais, como visto no caso da igreja Episcopal, com a feature Eventos. Outra possível
adição ao trabalho é a integração da LPS a uma distribuição Linux, gerando uma distribuição
direcionada à igrejas, visando minimizar o problema de uso de software ilegal.

Para melhorar o processo de desenvolvimento da LPS, sugere-se que, ao invés de
descrições XML escritas manualmente pelos desenvolvedores da LPS, sejam incluídas anotações,
na forma de comentários, detalhando a relação do componente de código com uma feature. O
gerador então ficaria responsável por ler estas anotações e gerar as descrições a partir delas.

Conforme visto na seção anterior, há uma falta de ferramentas que dêem suporte a LPS
como um todo, auxiliando em todas as fases do desenvolvimento. O desenvolvimento de uma
ferramenta que, baseada em uma metodologia de desenvolvimento de LPS, dê suporte às fases
desta metodologia, é um potencial trabalho futuro. A própria ferramenta pode ser desenvolvida
como uma LPS, em que cada produto seria a instância de uma determinada metodologia de
desenvolvimento de LPS.

Assim como visto na seção anterior, apenas próximo à conclusão do trabalho, foi possível
estabelecer contato com o principal desenvolvedor do phpAspect. Este contato no entanto, se
mostrou importante para possíveis trabalhos futuros, neste caso, específicos para o phpAspect. A
inclusão de join points específicos relacionados à linguagem PHP e ambiente web é um dos
principais. Também podemos citar o auxílio no desenvolvimento do plugin APDT (Aspect PHP

Development Tools) [58], que visa o suporte ao desenvolvimento orientado a aspectos com a
linguagem phpAspect no ambiente Eclipse [24].

47

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Bibliografia

[1] CLEMENTS, Paul, NORTHROP, Linda. Software Product Lines: Practices and Patterns.
3. ed. Boston: Addison-Wesley, 2002. 608 p.

[2] LAUDON, Kenneth, LAUDON, Jane. Management Information Systems: Managing the

Digital Firm. 10. ed. New Jersey: Prentice Hall, 2006. 736 p.
[3] WYCHE, Susan, et al. Technology in Spiritual Formation: An Exploratory Study of

Computer Mediated Religious Communications. In: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work CSCW '06, 2006,
Alberta. p.199-208.

[4] AKIN, Daniel, GARRETT Jr., James, REYMOND, Robert, WHITE, James, ZAHL, Paul.
Perspectives on Church Government: Five Views of Church Polity. 1. ed. Nashville: B&H
Publishing Group, 2004. 353 p.

[5] MILI, Hafedh, MILI, Ali, YACOUB, Sherif, ADDY, Edward. Reuse-Based Software

Engineering: Techniques, Organizations, and Controls. 1. ed. New York: Wiley-
Interscience, 2001. 650 p.

[6] GREENFIELD, Jack, SHORT, Keith, COOK, Steve, KENT, Stuart. Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools. 1 ed. New York:
Wiley, 2004. 500 p.

[7] DAVIS, Stanley. Future Perfect. 1. ed. New York: Perseus Book Group, 1997. 255 p.
[8] WEISS, David. LAI, Robert. Software Product-Line Engineering. A Family-Based

Software Development Process. 1. Ed. Boston: Addison-Wesley Professional, 1999. 448
p.

[9] GRISS, Martin. Product-line architectures. In G. T. Heineman and W. T. Councill,
editors, Component-Based Software Engineering, cap.22 p. 405-420. Addison Wesley,
2001

[10] POHL, Klaus, BÖCKLE, Günter, VAN DER LINDEN, Frank. Software Product Line

Engineering: Foundations, Principles, and Techniques. 1. ed. New York: Springer, 2005.
468 p.

[11] KRUEGER, Charles. “Introduction to the Emerging Practice of Software Product Line

Development”, In: Methods and Tools, vol 14, nr. 3, pp 3-15, Fall 2006.
[12] RINE, D.C., SONNEMANN, R.M. “Investments in reusable software. A study of software

reuse investment success factors”, In: The journal of systems and software, nr. 41, pp 17-
32, Elsevier, 1998.

[13] RINE, D.C., NADA, N. An empirical study of a software reuse reference model. in
Information and Software Technology, nr 42, pp. 47-65, Elsevier, 2000.

[14] BASS, Len, CLEMENTS, Paul, KAZMAN, Rick. Software Architecture in Practice. 2.
Ed. Boston: Addison-Wesley Professional, 2003. 560 p.

[15] DAGER, J.C. Cummin’s Experience in Developing a Software Product Line Architecture

for Real-Time Embedded Diesel Engine Controls. In: Proc. 1st Software Product Line
Conf. (SPLC1), Kluwer, Dordrecht, Netherlands, 2000, pp. 23–46.

[16] BUHRDORF, Ross, CHURCHETT, Dale, KRUEGER, Charles. Salion’s Experience with

a Reactive Software Product Line Approach. In: Proceeding of the 5th International

48

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Workshop on Product Family Engineering. Nov 2003. Siena, Italy. Springer-Verlag
LNCS 3014, p 315.

[17] HETRICK, William, KRUEGER, Charles, MOORE, Joseph. Incremental Return on

Incremental Investment: Engenio’s Transition to Software Product Line Practice. In:
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA. ACM 1-59593-491-
X/06/0010.

[18] VERLAGE, Martin, KIESGEN, Thomas. Five Years of Product Line Engineering in a

Small Company. In: ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA. Copyright
2005 ACM 1-58 113-963-2/05/0005

[19] GOMAA, Hassan. Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. 1. ed. Boston: Addison-Wesley Professional, 2004.
736 p.

[20] JACOBSON, Ivar, BOOCH, Grady, RUMBAUGH, James. The Unified Software

Development Process. 1. ed. Reading, MA: Addison-Wesley Professional, 1999. 463 p.
[21] BOEHM, Barry. A Spiral Model of Software Development and Enhancement. IEEE

Computer v.21, Issue 5: p.61–72, 1998.
[22] CZARNECKI, Krzysztof, EISENECKER, Ulrich. Generative Programming: Methods,

Tools, and Applications. 1. ed. Boston: Addison-Wesley Professional, 2000. 864 p.
[23] pure-systems: pure::variants. Disponível em: <http://www.pure-systems.com/Community

_Edition.55.0.html> Acesso em: 17 de Novembro de 2007.
[24] Eclipse Foundation: Eclipse. Disponível em: <http://www.eclipse.org> Acesso em: 17 de

Novembro de 2007.
[25] RUMBAUGH, James, BOOCH, Grady, JACOBSON, Ivar. The Unified Modeling

Language Reference Manual, 2 ed. Boston: Addison-Wesley, 2005. 576p.
[26] ANASTASOPOULOS, Michalis, GACEK, Cristina. Implementing Product Line

Variabilities. In: SSR’01, May 18-20, 2001, Toronto, Ontario, Canada. Copyright 2001
ACM 1-58113-358-8/01/0005.

[27] PHP. Disponível em: <http://www.php.net/> Acesso em: 17 de Novembro de 2007.
[28] Apache Foundation: HTTP Server. Disponível em: <http://httpd.apache.org/> Acesso em:

17 de Novembro de 2007.
[29] MySQL AB: MySQL. Disponível em: <http://www.mysql.org/> Acesso em: 17 de

Novembro de 2007.
[30] W3C: Extensible Markup Language. Disponível em: <http://www.w3.org/XML/> Acesso

em: 19 de Novembro de 2007.
[31] W3C: XSL Transformations. Disponível em: <http://www.w3.org/TR/xslt> Acesso em:

17 de Novembro de 2007.
[32] Netcraft: Web Server Survey. Disponível em: <http://www.netcraft.com/Survey/> Acesso

em: 17 de Novembro de 2007.
[33] ELRAD, T., AKSIT, M, KICZALES, G, LIEBERHERR, K, OSSHER, H. Discussing

Aspects of AOP. In: Communications of the ACM 44(10),pp.33-38, October 2001b.
[34] KICZALES, Gregor, LAMPING, John, MENDHEKAR, Anurag, MAEDA, Chris,

LOPES, Cristina, Jean-Marc, IRWIN, John. Aspect-Oriented Programming. In: European
Conference on Object-Oriented Programming, ECOOP’97, LNCS 1241, p. 220–242,
Finland, June 1997. Springer-Verlag.

[35] AspectJ. Disponível em: <http://www.eclipse.org/aspectj/> Acesso em: 17 de Novembro
de 2007.

[36] FILMAN, Robert, FRIEDMAN, Daniel. Aspect-Oriented Programming is Quantification

and Obliviousness. In: Workshop on Advanced Separation of Concerns, OOPSLA’2000,
p. 220–242, Minnesota, October 2000.

49

ESCOLA POLITÉCNICA
DE PERNAMBUCO

[37] phpAspect. Disponível em: <http://phpaspect.org/> Acesso em: 17 de Novembro de 2007.
[38] The Lex & Yacc Page. Disponível em: <http://dinosaur.compilertools.net/> Acesso em:

17 de Novembro de 2007.
[39] PECL: Parse_Tree. Disponível em: <http://pecl.php.net/package/Parse_Tree> Acesso em:

17 de Novembro de 2007.
[40] RSS Advisory Board: RSS 2.0 Specification. Disponível em: <http://www.

rssboard.org/rss-specification> Acesso em: 19 de Novembro de 2007.
[41] AtomEnabled: Atom. Disponível em: <http://www.atomenabled.org/> Acesso em: 19 de

Novembro de 2007.
[42] W3C: MathML. Disponível em: <http://www.w3.org/Math/> Acesso em: 19 de

Novembro de 2007.
[43] Recordare: MusicXML. Disponível em: <http://www.musicxml.org/xml.html> Acesso

em: 19 de Novembro de 2007.
[44] W3C: XML Schema. Disponível em: <http://www.w3.org/XML/Schema> Acesso em: 19

de Novembro de 2007.
[45] G-Cell 2.0. Disponível em: <http://www.celulas.com.br/ferra1.htm> Acesso em: 17 de

Novembro de 2007.
[46] Ativo Sistemas: abcFinance. Disponível em: <http://www.ativosistemas.com.br/

abcFinance.htm> Acesso em: 17 de Novembro de 2007.
[47] Ativo Sistemas: Reflex. Disponível em: <http://www.ativosistemas.com.br/Reflex.htm>

Acesso em: 17 de Novembro de 2007.
[48] Wisys: LOUVADEUS. Disponível em: <http://www.wisys.com.br/Louvadeus/> Acesso

em: 17 de Novembro de 2007.
[49] DM10: Church Tradicional. Disponível em: <http://www.dm10.com.br/> Acesso em: 17

de Novembro de 2007.
[50] SN Systems: SIGI. Disponível em: <http://www.soareseneves.com.br/> Acesso em: 17 de

Novembro de 2007.
[51] BUGBEE, Bruce, COUSINS, Don, SEIDMAN, Wendy. Network Participant's Guide:

The Right People, in the Right Places, for the Right Reasons, at the Right Time. 2 ed.
Grand Rapids: Zondervan, 2005. 192 p.

[52] The Economist: Jesus, CEO: Churches as Businesses. The Economist (Dec 20, 2005).
2005. http://www.economist.com/world/na/displaystory.cfm?story_id=5323597&no_jw_
tran=5323591&no_na_tran=5323591.

[53] RIBEIRO, Márcio, MATOS JR., Pedro, BORBA, Paulo, CARDIM, Ivan. On the

Modularity of Aspect-Oriented and Other Techniques for Implementing Product Lines

Variabilities. In: I Latin American Workshop on Aspect-Oriented Software Development
- LA-WASP'2007, affiliated with SBES'07, João Pessoa-PB, Brazil, October 2007.

[54] W3C: Cascading Style Sheets. Disponível em: <http://www.w3.org/Style/CSS/> Acesso
em: 17 de Novembro de 2007.

[55] Mozilla Developer Center: Javascript. Disponível em: <http://developer.mozilla.org/
en/docs/JavaScript/> Acesso em: 17 de Novembro de 2007.

[56] Comunidade Memorial. Disponível em: <http://www.comunidadememorial.com/> Acesso
em: 17 de Novembro de 2007.

[57] Paróquia da Reconciliação. Disponível em: <http://www.reconciliacao.org/> Acesso em:
17 de Novembro de 2007.

[58] Google Code: APDT: Aspect PHP Development Tools. Disponível em:
<http://code.google.com/p/apdt/> Acesso em: 17 de Novembro de 2007.

50

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Apêndice A

Caso de uso Adicionar Pessoa (UC_1)

Categoria Reuso

Obrigatório

Sumário

Este caso de uso permite a adição de pessoas ao banco de dados

Atores

Secretária

Pré-Condições

Usuário precisa estar logado no sistema.

Descrição

1. Usuário clica em Adicionar Pessoa
2. O formulário de cadastro de pessoa é apresentado ao usuário
3. O usuário digita os dados da pessoa a ser adicionada e clica em salvar
4. O sistema faz a validação dos dados
5. O sistema adiciona a nova pessoa ao banco de dados
6. A relação de pessoas atualizada é apresentada ao usuário, encerra caso de uso

Alternativas

A01 – Cancelar cadastro
1. O usuário pode, a qualquer momento, clicar em cancelar e encerrar o caso de uso.

Pontos de variação

V01 – Famílias
• Tipo: opcional
• Linhas: 2,4,5
• Descrição: Campos relacionados à feature família são adicionados, na apresentação

do formulário. As informações destes campos são também validadas e adicionadas ao
banco de dados.

Pós-Condição

Cadastro de pessoas atualizado

51

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Apêndice B

Telas da LPS Ligo

Apresentaremos aqui as telas referentes ao processo de geração do produto para implantação na
igreja Comunidade Memorial, conforme descrito no texto da monografia. Ao final, é apresentada
uma tela do sistema em execução.

52

ESCOLA POLITÉCNICA
DE PERNAMBUCO

53

ESCOLA POLITÉCNICA
DE PERNAMBUCO

Tela do produto em execução, caso de uso Editar Pessoa:

