e

Departamento de

[oy ¢ N | Sistemas
ESCOLA POLITECNICA ; .
DE PERNAMBUCO Computacionais

Ligo: Uma linha de produtos de
software para gerenciamento de
igrejas cristas

Trabalho de Conclusao de Curso

Engenharia da Computacao

Leopoldo Motta Teixeira
Orientador: Prof. Tiago Lima Massoni

Recife, dezembro de 2007
ddd

&

UNIVERSIDADE
DE PERNAMBUCO

e

Departamento de

[oy ¢ N | Sistemas
ESCOLA POLITECNICA ; .
DE PERNAMBUCO Computacionais

Ligo: Uma linha de produtos de
software para gerenciamento de
igrejas cristas

Trabalho de Conclusao de Curso

Engenharia da Computacao

Este Projeto € apresentado como requisito parcial
para obtencdo do diploma de Bacharel em
Engenharia da Computacdo pela Escola
Politécnica de Pernambuco - Universidade de
Pernambuco.

Leopoldo Motta Teixeira
Orientador: Prof. Tiago Lima Massoni

Recife, dezembro de 2007

ddd

&

UNIVERSIDADE
DE PERNAMBUCO

Leopoldo Motta Teixeira

Ligo: Uma linha de produtos de
software para gerenciamento de
igrejas cristas

-

ESCOLA POLITECNICA
DE PERNAMBUCO
i

Resumo

A tendéncia atual de globalizacdo pressiona a industria de software a explorar maneiras de
diversificar e entregar os produtos que desenvolve de maneira rapida e eficiente. Sistemas de
software em um mesmo dominio de aplicagdo costumam possuir diversas caracteristicas em
comum, como ¢ observado no dominio de sistemas de informagao para igrejas cristds. Linhas de
produtos de software, que sdo definidas como conjuntos de sistemas de software que tém
caracteristicas em comum, mas sdo distintos entre si, podem ser aplicadas neste dominio para
diminuir custos de desenvolvimento, maximizando reuso de software e aumentando a qualidade
dos produtos desenvolvidos. Este trabalho apresenta o desenvolvimento da linha de produtos de
software Ligo, destinada ao gerenciamento de igrejas cristds. O texto descreve as fases de
desenvolvimento da linha de produtos de software, assim como os artefatos gerados em cada fase.
Esta linha de produtos foi utilizada para gerar um sistema de informagdo para uma igreja
especifica, através da instanciacdo da linha.

-

ESCOLA POLITECNICA
DE PERNAMBUCO
il

Abstract

The current trend of globalization pressures the software industry to explore means to diversify
and deliver the products it develops in a timely and efficient way. Software systems in the same
application domain usually share many common features, as observed in the domain of Christian
church management systems. Software product lines, defined as sets of software-intensive
systems that share common features, but are distinct from each other, can be applied in this
domain to reduce development costs, maximizing software reuse and enhancing the quality of the
developed products. This work presents the development of the Ligo software product line,
targeted to the management of Christian churches. The text describes the development phases of
the software product line, as well as the artefacts generated in each one of these phases. This
product line was used to generate an information system for a specific church, by product
instantiation.

Sumario

Indice de Figuras
indice de Tabelas
Tabela de Simbolos e Siglas

1 Introducio

1.1 Objetivos
1.2 Estrutura do trabalho

2 Fundamentag¢ao Tedrica

2.1 Linhas de Produtos de Software
2.2 O método PLUS
2.2.1 Requisitos
2.2.1.1 Analise de Escopo
2.2.1.2 Modelagem de features
2.2.1.3 Modelagem de casos de uso
222 Analise

223 Projeto e desenvolvimento
23 Tecnologias Empregadas
23.1 PHP
232 Programag@o orientada a aspectos

233 phpAspect
2.3.3.1 Contribuigdes ao phpAspect
234 XML

3 Alinha de produtos Ligo

3.1 Consideracdes Iniciais
3.2 Modelagem de Requisitos
3.2.1 Analise de escopo
322 Modelagem de features
323 Modelagem de casos de uso
324 Relagdo entre features e casos de uso

4 Anailise, Projeto e Desenvolvimento

4.1 Analise

4.1.1 Modelagem estatica

412 Modelagem dindmica
42 Projeto e Desenvolvimento

42.1 Gerenciamento e implementac@o de variabilidade
43 Engenharia da Aplicagéo

43.1 Avaliacdo

5 Conclusoes e Trabalhos Futuros

-

ESCOLA POLITECNICA
DE PERNAMBUCO
iii

vi

vii

10

11

11
14
16
16
16
18
18
19
20
20
21
23
24
25

26

26
27
27
28
30
32

35

35
35
38
40
40
42
44

45

e

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO

v

5.1 Contribuigdes 45
52 Dificuldades encontradas 46
53 Trabalhos futuros 46
Bibliografia 47
Apéndice A Caso de uso Adicionar Pessoa (UC 1) 50
51

Apéndice B Telas da LPS Ligo

e

POLI

ESCOLA POLITECNICA

DE PERNAMBUCO

4 o o '

Indice de Figuras
Figura 1 Framework de desenvolvimento de uma LPS 12
Figura 2 Modelo geral do processo de geracdao de produtos em uma LPS 13
Figura 3 Processo de desenvolvimento ESPLEP. Adaptado de [19] 15
Figura4 Software Product Line Engineering com ESPLEP. Adaptado de [19] 15
Figura 5 Modelo de features da linha de produtos TCCarro 17
Figura 6 Exemplo de codigo PHP embutido em um arquivo HTML 21
Figura 7 Implementagao de uma classe Java e um aspecto em AspectJ [35] 23
Figura 8 phpAspect weaving chain [37] 23
Figura 9 Exemplo utilizado na Figura 7 em sintaxe phpAspect 24
Figura 10 Exemplo de codigo XML 25
Figura 11 Modelo de features da LPS Ligo gerado com o auxilio da ferramenta 29
pure::variants

Figura 12 Diagrama de casos de uso da LPS Ligo referente ao ator Secretéria 30
Figura 13 Diagrama de casos de uso da LPS Ligo referente ao ator Pastor 31
Figura 14 Diagrama de casos de uso da LPS Ligo referente ao ator Tesoureiro 31
Figura 15 Diagrama de casos de uso da LPS Ligo referente ao ator Membro 32
Figura 16 Diagrama de classes entity da LPS Ligo 36
Figura 17 Classes entity obrigatorias da LPS Ligo 36
Figura 18 Classes entity opcionais da LPS Ligo 37
Figura 19 Diagrama de seqiiéncia do caso de uso Editar Pessoa 39
Figura 20 Diagrama de seqiiéncia do caso de uso Editar Pessoa com a adi¢do da feature 39

Familia

Figura 21 Implementacdo de variabilidade de banco de dados utilizando heranca. 41
Figura 22 Implementacdo do aspecto relacionado a feature Familia. 42
Figura 23 Diagrama de atividades que ilustra o processo de geracdo de um produto 43

Figura 24 Exemplo de descricdo XML da feature Familia 44

e

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO
Vi
z [J
Indice de Tabelas
Tabela 1 Notagdo de simbolos utilizada na modelagem de features pela ferramenta 17
pure::variants.
Tabela 2 Notagdo de simbolos de features utilizada na Tabela 4. 32
Tabela3 Notac¢ao de simbolos de casos de uso utilizada na Tabela 4. 33

Tabela4 Representacdo tabular de relacionamentos entre features e casos de uso 34

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vil

Tabela de Simbolos e Siglas

(Dispostos por ordem de apari¢do no texto)

LPS — Linha de Produtos de Software

PLUS — Product Line UML-Based Software Engineering
UML - Unified Modeling Language

ESPLEP - Evolutionary Sofiware Product Line Engineering
PHP - PHP: Hypertext Preprocessor

HTML - Hypertext Markup Language

XML - Extensible Markup Language

XSL - Extensible Stylesheet Language

AOP - Aspect Oriented Programming

XSLT - XSL Transformations

ChMS - Church Management System

CMS - Content Management System

DLL - Dynamic-link library

CSS - Cascading Style Sheets

SQL - Structured Query Language

APDT - Aspect PHP Development Tools

-

ESCOLA POLITECNICA
DE PERNAMBUCO
VIii

Agradecimentos

Agradeco inicialmente a Deus, razdo principal deste trabalho e da minha vida. Sem que eu
merecesse ou fizesse coisa alguma, pela Sua infinita graca, Ele me adotou e me ajuda a
perseverar diariamente.

A minha familia, em especial aos meus pais, Aluizio ¢ Ana, que em todos estes anos me
apoiaram e procuraram me estimular, propiciando um ambiente sadio e agradavel em casa,
essencial para a formagdo do meu carater. As minhas avés Graca e Vilma, pelo exemplo dado. As
minhas irmas, FElla e Raissa, pelas diversas brigas, elas fortaleceram o meu raciocinio
argumentativo. =) Vocés sdo muito importantes para mim.

A minha maravilhosa namorada Raquel, que consegue a facanha de me agiientar,
independente do meu humor. Obrigado por estar ao meu lado, me apoiando, pacientemente me
acalmando, ndo me deixando nem cogitar a possibilidade de desistir. Agradego a familia Carneiro
Ledo também, em especial ao Dr. José Carneiro Ledo, pela revisao do texto.

Aos amigos feitos durante estes anos de caminhada na POLI, o meu muito obrigado.
Gostaria de poder citar nome a nome, cada um que me marcou durante este tempo. Fico apenas
com a men¢do honrosa para “Os Caras”, a turma que me acompanhou desde o inicio. Valeu
galera!

Aos professores do DSC, todos vocés tém sido exemplo de profissionalismo e ética, e
foram de fundamental importincia na minha formacdo académica. Em especial, agradeco ao
professor Tiago Massoni, que me orientou de forma impecavel durante o decorrer deste trabalho,
com sugestoes, idéias e conselhos que foram essenciais para que eu chegasse até a conclusdo do
mesmo.

Aos pastores e lideres que ofereceram sugestdes para este trabalho. Especialmente ao Pr.
Felipe, pela amizade e orientagdo espiritual nos Ultimos anos.

Aos meus demais amigos da igreja, acai, Candelabro, ACBV e todos que, de alguma forma,
contribuiram para o que sou hoje. Vocés conseqiientemente, contribuiram com este trabalho.

Finalmente, termino, assim como os cristdos antigos, louvando a Ele, que ¢ o principio e
fim de todas as coisas:

“Gloria Patri, et Filio, et Spiritui Sancto.
Sicut erat in principio, et nunc, et in semper, et in scecula sceculorum.
Amen.”

-

ESCOLA POLITECNICA
DE PERNAMBUCO

9

Capitulo 1

Introducao

A tendéncia atual de globalizacdo pressiona a industria de software a explorar maneiras de
diversificar e entregar os produtos que desenvolve de uma maneira répida e eficiente. Durante a
ultima década, a abordagem de linhas de produtos de software (LPS) tem surgido como um dos
paradigmas de desenvolvimento de software mais promissores para aumentar a produtividade das
organizagdes desenvolvedoras de software [1].

Uma idéia chave em LPS ¢ a de que a maior parte dos sistemas de software ndo sdo Unicos.
Sistemas de software em um mesmo dominio de aplicagdo compartilham diversas caracteristicas
em comum. A maioria das organizagdes constroi sistemas de software em um dominio particular,
repetidamente langando variagdes de produtos, ao adicionar novas funcionalidades. Podemos tirar
vantagem desta situacdo para melhorar este processo, utilizando uma abordagem sistematica de
reuso de software.

Linhas de produtos de software sdo definidas como conjuntos de sistemas de software que
tém caracteristicas em comum, mas sdo suficientemente distintos entre si [1]. Os produtos que
compdem uma LPS compartilham uma infra-estrutura de ativos base, normalmente formada por
uma arquitetura de software e seus componentes. Esta infra-estrutura também deve suportar as
variagOes entre os produtos, de modo a compreender ativos que estardo presentes apenas em
alguns dos produtos.

Recentemente, temos observado a necessidade e dependéncia de sistemas de informagao
em todos os setores da industria, comércio, e governo [2]. Nao ¢ diferente no ambito das igrejas
cristds. Pastores e lideres vém utilizando a tecnologia para propositos espirituais, como
aconselhamento, pesquisa e reflexdo, e na preparagdo e apresentacao de seus sermoes [3].

As igrejas cristds podem ser definidas como a reunido de pessoas que professam a mesma
fé e se retinem periodicamente, sob a lideranga de oficiais. No entanto, existem diferentes fatores
que influenciam a maneira como a igreja se organiza, e suas necessidades. Dentre estes fatores,
podemos citar a forma de governo [4], tamanho e localizacdo, por exemplo. O impacto destes
fatores no projeto da LPS ¢ detalhado no Capitulo 3. Portanto, concluimos que o dominio de
gerenciamento de igrejas cristds mostra-se adequado a idéia de linhas de produtos de software.

1.1 Objetivos

O principal objetivo do trabalho ¢ o desenvolvimento de uma LPS voltada para o gerenciamento
de igrejas cristas.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

10

Esta linha deve englobar todos os aspectos relacionados ao gerenciamento de uma igreja,
procurando facilitar a integra¢do e compartilhamento de dados entre os setores da igreja. Os
produtos gerados por esta linha devem ser adequados a estrutura da organizagao alvo.

Como objetivos especificos do trabalho, podemos destacar:

* Instanciar um processo de desenvolvimento de LPS;

* Estudar técnicas de implementagdo de variabilidade em LPS, visando a utilizagdo das
técnicas mais adequadas, de acordo com o tipo de variabilidade;

* Desenvolver um gerador de produtos para a LPS;

* Gerar um produto a partir dos ativos da LPS, e realizar uma avaliagdo deste, implantando-
0 em uma igreja existente.

1.2 Estrutura do trabalho

Esta monografia estd organizada em Capitulos e Apéndices. A seguir sera detalhado o contetido
de cada parte:

O Capitulo 2 discute a fundamentagao tedrica necessaria para o entendimento do trabalho.
Detalha o conceito de linhas de produtos de software, o método de desenvolvimento utilizado, e
as tecnologias empregadas na construgao da LPS.

O Capitulo 3 introduz a linha de produtos de software Ligo. O nome Ligo vem do latim e
significa unir, ligar. Procura ilustrar o conceito de LPS, onde unimos diversos ativos para
produzir produtos. Algumas consideragdes sobre o dominio da aplicacdo sdo feitas e depois €
detalhada a fase de modelagem de requisitos da linha.

O Capitulo 4 descreve as fases de andlise e projeto de desenvolvimento da linha. Também ¢
descrito o processo de geragdao semi-automatica de produtos da linha.

O Capitulo 5 conclui o trabalho, detalhando as principais contribui¢des referentes a este
trabalho, algumas dificuldades e limitacdes ocorridas durante o desenvolvimento e possiveis
trabalhos futuros.

O Apéndice A apresenta o caso de uso Adicionar Pessoa, escrito durante a fase de
modelagem de requisitos.

O Apéndice B contém telas do processo de geragdo de produto, bem como do produto
gerado.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

11

Capitulo 2

Fundamentacao Teorica

Neste capitulo sdo descritos os conceitos de linhas de produtos de software, a metodologia de
desenvolvimento adotada, e as tecnologias utilizadas para a realiza¢do do projeto.

2.1 Linhas de Produtos de Software

Reuso de software tem sido motivo constante e recorrente de pesquisas em engenharia de
software. O foco destas pesquisas tem se concentrado em métodos, técnicas e ferramentas que
permitam melhorias em termos de estimativas de custo, tempo de desenvolvimento e qualidade.
A 1idéia chave do reuso ¢: desenvolver algo uma vez, e reutilizar varias vezes [5]. Desta forma,
procura-se evitar que as atividades de desenvolvimento de software se repitam. No entanto, para
tornar esta pratica efetiva, faz-se necessario o planejamento deste reuso.

Além da questdo do reuso, que demonstra o lado da producdo de software, ha de se levar
em conta o aspecto do cliente, o consumidor de software. Os clientes desejam adquirir softwares
personalizados, mas sem que isso acarrete em um custo alto. Os custos de desenvolvimento de
software personalizado sdo altos, em contraste com a producdo de software em massa, que
diminui os custos, porém limita a personaliza¢do do software de acordo com as necessidades do
cliente.

A abordagem de linhas de produtos de software (LPS), também conhecida como familias
de produtos de software, procura estabelecer o reuso sistemdtico de software, assim como a
customizacdo em massa. Por reuso sistemdtico, entende-se o reuso planejado de componentes,
reutilizando ativos base dentre os produtos [6]. A customiza¢do em massa diz respeito a producao
em larga escala de produtos customizados as necessidades dos clientes [7]. A abordagem procura
aproveitar-se da constatacdo de que poucos sistemas de software sdo de fato Unicos. Muitas
vezes, organizacdes desenvolvem produtos similares que pertencem a um dominio especifico.

Uma LPS consiste em um conjunto de sistemas de software que compartilham
funcionalidades em comum, e tém caracteristicas individuais, ou seja, hé variagdo entre produtos.
O conceito ¢ similar ao de linha de produgdo em outros dominios, por exemplo, nas industrias
automobilistica e aérea. Uma defini¢do dada por Clements e Northrop [1] € que uma LPS ¢ “um
conjunto de sistemas de software que compartilham um conjunto gerenciavel comum de
caracteristicas que satisfazem as necessidades especificas de um segmento de mercado
particular e que sdo desenvolvidas de um conjunto de ativos base comum, de modo planejado”.
Weiss e Lai [8] definem LPS como familias de produtos projetadas para tirar vantagem de suas

-

ESCOLA POLITECNICA
DE PERNAMBUCO

12

caracteristicas comuns e variagdes previstas. De acordo com Griss [9], uma LPS é um conjunto
de produtos que compartilham um conjunto comum de requisitos, mas também exibem variacdes
significativas nos requisitos.

O objetivo de uma LPS ¢ minimizar o custo de desenvolvimento e manutengao de produtos
de software que pertencam a um dominio comum. Para que seja possivel o desenvolvimento
customizado em massa a custo reduzido, € necessario utilizar uma base comum, chamada de
plataforma, ou arquitetura da LPS. Esta arquitetura deve antecipar os possiveis produtos que
podem ser gerados a partir de uma linha. Portanto, ela deve contemplar ndo apenas as
caracteristicas comuns aos produtos, mas também as possiveis variagdes e caracteristicas
opcionais. Esta ¢ uma das principais diferengas entre a abordagem de LPS e as abordagens de
desenvolvimento de um Unico sistema. O desenvolvimento baseado em LPS visa uma pluralidade
de produtos que serdo mantidos ao mesmo tempo, ao invés de um unico produto que evolui no
tempo. Outra diferenca entre as abordagens ¢ na aplicag@o de reuso. Enquanto em LPS, o reuso ¢
planejado, no desenvolvimento de sistemas tUnicos, muitas vezes o reuso ¢ feito de forma ad hoc
ou oportunista. A pratica de LPS encoraja escolhas e opgdes que procuram ser otimizadas, desde
sua introdug¢do, a aplicacdo em mais de um produto.

O desenvolvimento de uma LPS engloba duas etapas distintas [10]: Engenharia de Dominio
(Domain Engineering) e Engenharia de Aplicacdo (Application Engineering), conforme
observamos na Figura 1. Engenharia de Dominio, também citada como a etapa de
desenvolvimento da linha de produtos, diz respeito ao desenvolvimento da arquitetura que servira
de base a LPS, e a definicdo das caracteristicas comuns e variaveis da LPS. Esta arquitetura ¢é
composta pelos artefatos gerados, normalmente chamados de ativos base. Como exemplo destes
ativos, podemos citar documentos de requisitos, bibliotecas de codigo, casos de testes, entre
outros. Alguns destes ativos serdo comuns a todos os produtos de uma LPS, enquanto outros
serdo opcionais ou alternativos.

Gerenciamento
.g do Produto
= Engenhari ; i
g | d e"g::u;;;zs Prolet’o _do Reallzag'at_: Testes: .
a o Dominio Dominio do Dominio do Dominio
3
z 3) 4 4
S
©
= Ativos base
: SRR
g *2.8a2® — Hupnig = sptreiil o
~_ Requisitos Arquitetura Componentes ~ Testes
]]]
: — =
% ‘
= dinlg:::izgzs ‘ Projeto da Realizagao Testes |
% da Aplicagdo Aplicacao da Aplicagao da Aplicagao
@
o©
H b) 1})
S
@ 5 o g e
£ Ld¢dO I\ ElNVdUd Ua S5Eic(al Ut vos DUdas
§o Aplicagao 1 - derivada da selegdo de ativos base
c
& — | hidh N
Requisitos Arquitetura Componentes Testes

Figura 1. Framework de desenvolvimento de uma LPS. Adaptado de [10].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

13

A etapa de Engenharia de Aplica¢do, também citada como desenvolvimento do produto, ¢
responsavel pela criacdo de produtos especificos a partir da LPS estabelecida na etapa anterior. O
processo de geracdo de um produto de uma LPS ¢ também referido como instanciagdo ou
derivacdo de produto. Podemos observar um modelo geral de geracdo de produtos a partir dos
ativos base de uma LPS na Figura 2. O processo de gera¢do de produtos recebe como entradas os
ativos base desenvolvidos, e uma configuracdo de produto. Esta configuracdo, também chamada
de modelo de decisdo, consiste na escolha dos ativos opcionais e varidveis, que irdo compor o
produto junto aos ativos comuns a todos os produtos. O mecanismo de geragdo entdo, ao receber
estas entradas, faz a composi¢@o dos ativos, gerando como saida os produtos da LPS. O conjunto
de todos os produtos possiveis de serem gerados a partir destas entradas determina o escopo da
LPS. Os produtos de uma LPS também sao referidos como membros da LPS.

Configuracdes de Produtos

Ativos Base
Produtos gerados

>

Figura 2. Modelo geral do processo de geracdo de produtos em uma LPS. Adaptado de [11].

[l

Muitos sdo os beneficios trazidos por LPS [10]:

* Reducdo nos custos de desenvolvimento: Ao reutilizarmos os ativos-base nos
produtos de uma LPS, hd uma significativa redugcdo de custos ao desenvolver
produtos, em contraste com a abordagem de desenvolvimento de sistemas unicos.
Investigacdes empiricas tém demonstrado que o investimento em uma LPS ¢
compensado quando temos por volta de trés produtos [8] em uma linha, pelo menos.
E importante ressaltar que isto depende também da estratégia em que a LPS ¢é
adotada e iniciada em uma organizagao;

* Melhora na qualidade por conta do reuso: Os ativos de uma LPS sado utilizados,
analisados, e testados, em diversos produtos, o que gera melhores garantias de
qualidade e confiabilidade;

* Redugdo de tempo para comercializar: Assim como o0s custos, o tempo para
desenvolvimento de produtos ¢ reduzido por conta do reuso;

* Especializagdo em um dominio particular: Aumenta a capacidade das organizagdes
de atender a mudancas no mercado, permitindo a construcdo de novos produtos
rapidamente, utilizando o conhecimento adquirido sobre o segmento de mercado em
que atua;

* Reducdo no esforco de manutencdo: A alteracio de um artefato implica na
propagacdo desta mudanga para todos os produtos que o utilizam. A equipe de
manuten¢do, em uma situagcdo ideal, ndo modifica os produtos gerados, apenas os
ativos que geram estes produtos. Portanto, caso haja algum erro em um ativo que ¢
compartilhado por diversos produtos, a corre¢do ¢ feita no ativo, e os produtos sdo
gerados novamente, ja corrigidos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

14

Existem também alguns fatores a se considerar ao adotar a abordagem de LPS:

* Custos de desenvolvimento: O investimento para se iniciar uma LPS ¢ superior ao
de desenvolvimento convencional, por conta da necessidade de se criar ativos base
para a formacdo da arquitetura. Existem abordagens que procuram minimizar este
custo inicial, como a reativa e extrativa [11], em que ativos sdo desenvolvidos
apenas quando necessarios;

* Tempo para comercializar: Pelas mesmas razdes do fator custos, o tempo para
geracdo do primeiro produto geralmente ¢ maior;

* Controle de versdes: Deve haver cuidado para que as personaliza¢cdes a um produto
nao ocorram fora da linha de produgao, por exemplo, modificando o produto gerado
ao invés dos ativos que o compdem;

* Apoio gerencial: As questdes organizacionais sdo mais importantes do que o
esperado [1]. O papel dos gestores ¢ fundamental na pratica de LPS, provendo
treinamento, desenvolvendo a correta estrutura organizacional, criando e
implementando um plano de adog¢do de LPS, lancando e institucionalizando a
abordagem de maneira apropriada a organizagdo, entre outros.

Alguns estudos tém sugerido que a abordagem de LPS estimula o reuso nas organizagdes
[12], além de prover evidéncia empirica para a hipdtese de que as organizacdes obtém mais
beneficios de reuso durante os estagios iniciais de desenvolvimento [13][14]. Diversas
organizagdes, com diferentes caracteristicas, tém relatado melhoras em produtividade e aumento
dos ganhos com a adog¢do de LPS [1][10][15][16][17][18].

Por conta disso e dos beneficios citados, conclui-se que ¢ valido a uma organizagdo que
desenvolve produtos similares a um dominio especifico de mercado, investir tempo e dinheiro em
métodos e processos de desenvolvimento de LPS. Existem diversas abordagens para o
desenvolvimento de LPS. A abordagem adotada neste trabalho ¢ detalhada na secdo a seguir.

2.2 0O método PLUS

PLUS (Product Line UML-Based Software Engineering) ¢ o método de desenvolvimento de LPS
baseado em UML proposto por Hassan Gomaa [19]. O processo no qual o método se baseia € o
Evolutionary Software Product Line Engineering (ESPLEP), um processo de desenvolvimento
iterativo e orientado a objetos. O método ¢ compativel com os modelos de desenvolvimento
unificado [20] e espiral [21], por meio de adaptagdes ao processo geral descrito a seguir.

O ESPLEP ¢ um processo de desenvolvimento que, baseado no framework apresentado na
secdo anterior, consiste em duas atividades principais, conforme ilustrado na Figura 3:

* Engenharia da Linha de Produtos (Software product line engineering): durante esta
atividade, o objetivo ¢ desenvolver os ativos da linha como um todo. Estes ativos
sdo armazenados no repositorio da linha de produtos de software;

* Engenharia da Aplicag¢do (Software application engineering): nesta atividade, um
membro da LPS ¢ desenvolvido. Os ativos gerados pela atividade de engenharia de
produto sdo utilizados como base. O desenvolvimento da aplicagdo torna-se uma
derivacdo dos artefatos da linha, de acordo com os requisitos especificos do produto
a ser gerado.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

15

modelo de requisitos,
modelos de analise,
arquitetura,

Requisitos componentes reutilizéveisc—\\
da Linha

de Produto | Engenharia Repositério
—> da linha de da Linha de
Produtos Produtos
Engenheiro —
da Linha de
Produtos
Requisitos Aplicacao
da Aplicagao A gerada
S Engenharia 5
da Aplicagdo
Engenheiro N
da Aplicagao Cliente

Requisitos ndo satisfeitos, erros, adaptagoes

Figura 3. Processo de desenvolvimento ESPLEP. Adaptado de [19].

Esta abordagem elimina a distingdo entre o desenvolvimento e manutencdo de software,
permitindo que o sistema evolua por meio de iteracdes. No entanto, o sistema deve ser projetado
visando estas possiveis mudancgas durante as iteragdes.

Existem duas estratégias de desenvolvimento de LPS. Forward engineering e reverse
engineering. A estratégia forward ¢ utilizada quando ndo hé sistemas legado para guiar o
desenvolvimento, em contraste a estratégia reverse, onde o desenvolvimento inicia com sistemas
que ja existem e sdo candidatos a inclusdo na LPS.

A fase de Engenharia da Linha de Produtos pode ser dividida em trés atividades principais:
(i) Requisitos, onde definimos os requisitos funcionais da linha, e o que sera comum e variavel
dentre os produtos. Caso os requisitos ndo sejam entendidos claramente, um prototipo descartavel
pode ser desenvolvido para esclarecimento; (ii) Andlise, onde ¢ feita a decomposicdo do
problema, para melhor entendimento deste; (iii) Projeto e Desenvolvimento, que consiste na
sintese da solu¢do, contando com a implementacao incremental de componentes. A cada iteracao
de desenvolvimento destes componentes, testes funcionais sdo realizados. Podemos visualizar as
fases na Figura 4. Estas fases sdo adaptadas para se tornarem compativeis com 0s processos
unificado e espiral.

- I ra— R
>{Requisitos | e
P
/\ I |
P T B
Eng o % Andlise
da Linha de Frototipo K
Produtos et
Projeto > Repositorio
S da Linha de
T I Produtos
e
o 2
]
Testes [—>
b o

Engenheiro de testes
da Linha de Produtos

Figura 4. Sofiware Product Line Engineering com ESPLEP. Adaptado de [19].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

16

Nas secOes a seguir, sdo detalhadas as atividades de desenvolvimento da fase de Software
Product Line Engineering instanciadas para o desenvolvimento da LPS Ligo.

2.2.1 Requisitos

Durante esta fase, ¢ desenvolvido o modelo de requisitos, que consiste do modelo de casos de uso
e modelo de features. Esta fase ¢ dividida em trés atividades principais, detalhadas a seguir.

2.2.1.1 Analise de Escopo

O objetivo desta atividade ¢ definir em alto nivel, os possiveis sistemas que podem surgir a partir
da linha. E recomendavel que haja a participagdo de especialistas do dominio durante esta etapa,
para melhor entendimento do problema.

Esta fase ¢ importante para a decisdo sobre a viabilidade de desenvolvimento de uma LPS.
Durante a andlise dos potenciais produtos que podem formar a linha, deve-se observar ndo apenas
as semelhancas, como as diferencas entre os possiveis produtos.

E também a primeira tentativa de especificar os requisitos da linha, definindo o que vai
pertencer a linha e o que estara fora.

2.2.1.2 Modelagem de features

A atividade de modelagem de features tem como finalidade descrever os requisitos da LPS da
perspectiva do usudrio final, por meio de um modelo de features.

Features podem ser descritas como conceitos [22], ou requisitos e caracteristicas
reutilizdveis de uma LPS [19]. O conceito de feature ¢ utilizado para fazer distingdo entre os
possiveis produtos de uma LPS, definindo as funcionalidades comuns e varidveis de uma linha.
Uma feature também pode se referir a requisitos ndo-funcionais.

Para que possamos modelar a variabilidade de uma linha, € preciso categorizar as features.
Features, portanto, serdo classificadas em (i) obrigatérias, o subconjunto de features
compartilhados por todos os membros da linha; (ii) opcionais, features que sdo fornecidas por
apenas alguns dos membros da linha; (iii) alternativas, grupo de features onde se deve fazer uma
unica escolha dentre as possiveis, as opgdes sdo mutuamente exclusivas; (iv) or, similar ao tipo
alternativo, neste caso podemos fazer uma ou mais escolhas, dentre as possiveis.

Além destas categorias, também podemos adicionar regras de composicao, para explicitar
interdependéncia entre features [22]. Por exemplo, a regra require captura implicagcdes entre
features, definindo features como pré-requisito de outras. Outro exemplo ¢ a regra mutually-
exclusive, ou conflict, que coloca limitagdes nas combinagdes entre features. Esta regra ¢ usada,
em geral, quando desejamos excluir combinagdes de features que estejam em locais distintos da
hierarquia do modelo.

Por exemplo [19], considere uma linha de produtos automobilistica desenvolvida por uma
empresa hipotética DSCars, que produz véarios modelos de veiculos. Suponha que ¢ desenvolvido
o modelo TCCarro, com versdes seda, esportiva e station wagon. Todas as versdes compartilham
o mesmo chassi, o que pode ser considerado uma feature comum, ou obrigatéria. Existem
features opcionais, como 0 pacote esportivo, cAmbio automatico e teto solar. A versdo station
wagon utiliza apenas a transmissdo automatica, um exemplo de regra require. Existem também
features alternativas, como o tamanho do motor e a cor do veiculo. E 6bvio que todo veiculo
precisa de um motor. No entanto, o motor pode variar de tamanho. Portanto, a feature tamanho
do motor tem as opgdes de 2 litros (padrdo), 2,5 litros e 3 litros. No caso da feature cor do
veiculo, ndo hd uma opcdo de cor padrdo, portanto, uma cor deve sempre ser escolhida na

-

ESCOLA POLITECNICA
DE PERNAMBUCO

17

configuracdo de um produto da linha. Em certos casos, ndo escolher uma feature ¢ também uma
opcdo. Considere a possibilidade de o veiculo ter bagageiro de teto. As opgdes alternativas da
feature bagageiro de teto compreenderiam: bagageiro bdasico, bagageiro para pranchas, e
bagageiro para bicicletas, embora seja possivel ndo selecionar a feature bagageiro de teto.

A ferramenta utilizada para criar o modelo de features foi pure::variants Community
Edition [23], desenvolvida pela empresa pure.systems na forma de um plugin do Eclipse [24]. A
Tabela 1 explica a notacdo utilizada pela ferramenta na classificacdo de features e a Figura 11
mostra o modelo de features desenvolvido para a linha de produtos automobilistica descrita
anteriormente.

Tabela 1. Notacdo de simbolos utilizada na modelagem de features pela ferramenta
pure::variants.
Simbolo Explicaciao

Feature obrigatoria

H Feature opcional
i Feature alternativa
«» Indicacdo de que uma feature requer outra feature
= 1 TCCarro
=l & WYersdes
& Sedan

- 4% Station Wagon
@ Requires: 'Automatico’
& Esportiva
Chassi
=l & C3mbio
& Automatico
& Manual
= ¥ Motor
@ 2litros
@ 2,5 litros
& 3litros
- ¥ Cor
& Prata
@ vermelho
& azul
@ Preto
-l ? Bagageiro de Teto
& Basico
& Prancha
& Bicicleta

Figura 5. Modelo de features da linha de produtos TCCarro

Ao modelar as features de uma LPS, sdo levados em conta todos os produtos que podem
ser gerados. Em contraste com o desenvolvimento de sistemas individuais, em que todas as
features devem estar presentes, um produto da LPS vai compreender apenas um subconjunto das
features.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

18

2.2.1.3 Modelagem de casos de uso

A modelagem de casos de uso para LPS difere da abordagem tradicional, pois, nem todos os
casos de uso serdo utilizados por todos os produtos. Desta forma, ¢ necessaria a categorizagio dos
casos de uso, de forma analoga ao que ¢ feito com as features. Cada caso de uso terd um tipo
definido de acordo com a sua caracteristica.

A visualizacdo destes diferentes tipos de casos de uso no modelo ¢ feita por meio de
estereotipos UML. Os esteredtipos sdo um mecanismo padrdo de extensdo da linguagem UML,
utilizados para distinguir entre os diferentes tipos de elementos da modelagem [25]. A
representacdo visual do esteredtipo ¢ feita pelo seu nome entre os sinais “«” e “»”, acima do
nome do elemento a que este se aplica.

Os documentos de casos de uso sdo documentados de acordo com as seguintes segdes:

1. Nome do caso de uso;

2. Categoria de reuso: Esta se¢do especifica se o caso de uso ¢ obrigatdrio, opcional ou
alternativo;

3. Sumario: Esta secao descreve brevemente o caso de uso;

4. Atores: Lista os atores participantes do caso de uso;

5. Dependéncia: Esta secdo opcional descreve se o caso de uso depende de outros casos —

se inclui ou estende outro caso de uso;

6. Pré-condigoes: Esta secdo especifica as condi¢des que devem ser satisfeitas para que o
caso de uso seja iniciado;

7. Descrigdo: O conteudo desta secdo ¢ uma descrigdo narrativa da seqiiéncia de
interagdes entre o ator e o sistema. O foco € nas respostas do sistema as interagdes, e
ndo em como o sistema processa estas respostas;

8. Alternativas: Esta secdo prove uma descricdo de alternativas a seqiiéncia principal
descrita anteriormente. E possivel haver mais de uma possibilidade de alternativa;

9. Pontos de variacdo: Esta secdo define os locais na descricio do caso de uso onde
funcionalidades diferentes podem ser introduzidas para membros distintos da linha de
produtos. No caso de pequenas variacdes, como a inser¢do de um campo em um
formulério, podemos identificar a(s) linha(s) da descricdo de caso de uso onde serdo
introduzidas as novas funcionalidades. No caso de variagcdes complexas, onde comegam
a surgir demasiadas alternativas a seqiiéncia principal, podemos modelar estes pontos
por meio de relacionamentos include e extend,

10. Pos-condicdo: Esta secdo identifica a condicdo que serd sempre verdadeira ao fim do
caso de uso, supondo que a seqiiéncia principal tenha ocorrido.

2.2.2 Analise

Durante esta fase, ¢ dada énfase ao entendimento do problema. Um objetivo importante ¢
identificar os objetos e a informacao trocada entre eles.
As atividades que compdem esta etapa sdo:

* Modelagem estatica: Nesta atividade, ¢ desenvolvido um modelo estatico que define
o relacionamento estrutural entre as classes de dominio do problema. Isto ¢ feito por
meio de um diagrama de classes entity. Durante esta atividade, também ¢ feita a
analise da dependéncia entre features e classes, onde, similar ao que acontece com
features e casos de uso, classificamos classes entre obrigatorias, opcionais ou
alternativas. Nesta andlise, definimos os pontos de variacdo das classes, que podem

-

ESCOLA POLITECNICA
DE PERNAMBUCO

19

ser modelados por meio de classes abstratas, ou parametriza¢cdo, onde uma classe
tem parametros de configuracdo, em que sdo assinalados diferentes valores de
acordo com o produto da linha;

* Modelagem dindmica: Durante esta atividade, os casos de uso sdo descritos por
meio de diagramas de seqiiéncia e comunicagdo. Com estes diagramas, ¢ possivel
demonstrar a interacdo entre objetos durante a execucdo de casos de uso. A
variabilidade ¢ modelada por meio de diagramas alternativos, onde ¢ dado destaque
a mudanca na seqiiéncia de mensagens entre os objetos.

2.2.3 Projeto e desenvolvimento

Na fase de projeto e desenvolvimento, o foco principal é em como sintetizar os artefatos descritos
nas fases anteriores em uma solu¢do. O modelo de anélise, que ilustra o problema, ¢ mapeado
para o projeto, que se concentra na solucéo.

Com base nos modelos criados, os componentes que compdem a linha de produto sdo
desenvolvidos, de forma incremental. A cada iteragdo, um subconjunto da linha de produtos ¢é
selecionado para ser implementado. A implementagdo inicia com os casos de uso obrigatorios,
seguidos pelos opcionais e alternativos, de acordo com a seqiiéncia estabelecida durante a fase de
analise. Esta implementacdo consiste do projeto, codificagdo e teste dos componentes.

Um dos pontos chave de uma LPS ¢ a variabilidade entre produtos. A representagao
explicita de variabilidade torna possivel a gerag¢do de produtos especificos de uma LPS. Podemos
identificar e categorizar a variabilidade de uma LPS por meio de modelos de features. Porém,
esta variabilidade precisa ser implementada em cddigo fonte. Diversos tipos de variabilidade
podem ocorrer em um programa, como a adicdo, remog¢do, substituicdo e mudanca de
funcionalidades.

A variabilidade pode ser interna, isto ¢, escondida do usudrio final, ou externa, visivel ao
usudrio final do produto gerado. Como exemplo de variabilidade interna, podemos citar a escolha
entre a utilizacdo um protocolo de comunicacgdo ao invés de outro ou a possibilidade de escolha
do sistema de gerenciamento de banco de dados. As variabilidades internas geralmente sio
questdes técnicas que ndo precisam ser consideradas pelo usuario final, como a alteragdo do
banco de dados utilizado pela aplicagao.

Existem diversas técnicas para a implementagdo de variabilidade em LPS [26]. Algumas
destas técnicas sdo:

* Agregacao/delegacio: Permite que objetos encaminhem (deleguem) requisigdes
que eles ndo conseguem satisfazer a objetos delegados. A variabilidade ¢ alcancada
colocando a funcionalidade obrigatoria no objeto que delega e a variacdo no objeto
delegado. E aplicavel a features opcionais, porém, ndo ¢é satisfatoria para features
alternativas, por conta da indire¢do em varios pontos de variacdo. Tipicamente
resolvida em tempo de compilagdo, porém, ¢ possivel resolver em tempo de
linkagem e até mesmo em tempo de execucdo, utilizando carga dindmica de classes
ou bibliotecas de ligacdes dindmicas (DLLs);

* Heranga: Esta técnica pode ser utilizada ao colocarmos fungdes bdsicas nas
superclasses e fungdes especializadas nas filhas. A técnica mostra-se problemadtica
com o crescimento na quantidade e tipos de variagdes, gerando arvores complexas
de heranca. Isso pode ser exacerbado em linguagens que implementam heranca
multipla, como C++ e Aspectl;

* Compilacio Condicional: Possibilita o controle sobre os segmentos de codigo a
serem incluidos ou excluidos da compilacdo de um programa. Diretivas marcam os

-

ESCOLA POLITECNICA
DE PERNAMBUCO

20

pontos de variacdo no cddigo. A funcionalidade desejada ¢ selecionada pela
definicdo dos simbolos condicionais apropriados. A compilacdo condicional ¢
resolvida antes da compilagdo;

* Parametrizacdo (Arquivos de configuracdo): A idéia ¢ representar software
reutilizdvel como bibliotecas de componentes parametrizados. O comportamento do
componente ¢ determinado pelos valores escolhidos para os parametros. Isto evita
duplicacdo de codigo, centralizando decisdes de projeto em um conjunto de
variaveis. Por exemplo, uma pilha, na qual o tipo dos elementos ¢ definido por um
parametro. A parametrizagdo pode melhorar o reuso em LPS, assim como facilitar o
rastreamento das decisdes de projeto. No entanto, centralizar cddigo apenas
definindo parametros ¢ uma tarefa dificil, se ndo impossivel, e a tarefa torna-se mais
complexa a medida que os sistemas crescem;

¢ Reflexdo: E a capacidade de um programa manipular como dados, elementos que
representam o proprio programa durante sua execugdo. Essa técnica estd relacionada
fortemente a meta-programacdo, onde objetos em altos niveis de abstragdo
representam entidades, como sistemas operacionais, processadores e linguagens de
programacao. Porém, cddigo escrito com esta técnica ¢ dificil de entender, depurar,
€ manter;

* Orientacdo a aspectos: A técnica de programacado orientada a aspectos ¢ descrita
na se¢do a seguir. A variabilidade pode ser alcancada com a implementacdo das
funcionalidades obrigatorias de maneira padrdo, enquanto as variagdes sao
encapsuladas em aspectos. Os beneficios sdo acumulados, pois combinagdes de
aspectos, bem como diferentes interpretagdes para um aspecto sdo facilmente
realizaveis.

Como detalhado acima, cada técnica tem vantagens e desvantagens, ndo existe uma técnica
que seja ideal em todos os casos possiveis de variabilidade. Portanto, ¢ interessante que se faca
combinagdes de técnicas, se possivel, para aproveitar os pontos fortes das técnicas utilizadas.

2.3 Tecnologias Empregadas

Nesta secdo apresentamos as tecnologias utilizadas para desenvolvimento da linha de produtos
Ligo. A linguagem de programacao escolhida para o desenvolvimento foi PHP. Esta escolha foi
baseada nos requisitos do programa, que definiam o seu uso em ambiente web. Para o
gerenciamento de variabilidade, utilizamos arquivos de configuracdo, na forma de classes
estaticas e descricoes XML, além de orientagdo a aspectos, para introduzir comportamentos de
acordo com a configuragdo de features de um produto da linha.

23.1 PHP

PHP, um acroénimo recursivo para "PHP: Hypertext Preprocessor”, ¢ uma linguagem de script de
codigo aberto embutida no HTML (Hypertext Markup Language) [27]. A inclusdo de codigo se
da por meio de tags especificas, conforme vemos na Figura 6. O exemplo da figura imprime a
string “Exemplo do TCC” entre as tags <h2> e </h2>. O objetivo da linguagem ¢ permitir o
desenvolvimento de aplicagdes Web de forma rapida.

PHP ¢ geralmente usado em conjunto com um servidor web, como o Apache [28]. As
requisi¢oes de scripts PHP sdo recebidas pelo servidor e sdo interpretadas pelo interpretador PHP.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

21

Os resultados desta execugao sdo retornados ao servidor Web que, por sua vez, os inclui no texto
da pagina HTML como substituicdo ao programa original PHP e transmite a resposta ao cliente.

Figura 6. Exemplo de codigo PHP embutido em um arquivo HTML

A linguagem ¢ fortemente baseada em C, Java e Perl, com algumas influéncias da
linguagem de processamento de texto awk, além de caracteristicas especificas da propria
linguagem. A linguagem inclui varidveis de varios tipos, arrays, funcdes, e dd suporte a
orientacdo a objetos, com a maior parte dos mecanismos comuns a este paradigma. As variaveis
de PHP sdo fracamente tipadas e sempre comegam com o simbolo $, além de ndo requererem
declaragdo, simplesmente passam a existir ao serem inicializadas. Ao ser inicializada, a varidvel
tem o valor “null” ou “zero”, até ser assinalada a um valor especifico. Também existem varidveis
de ambiente, que representam itens de dados cujo valor pode ser determinado pelo servidor, como
o endereco IP do cliente que fez a requisi¢do ou da parte dindmica da URL requisitada, como
valores enviados por meio de formularios HTML.

Um dos grandes pontos fortes de PHP é o mecanismo de extensdo, onde podemos incluir
rotinas a biblioteca PHP. Existem diversas extensdes escritas em C, embutidas na distribui¢ao
padrdo, que podem ser ativadas ou ndo, de acordo com a configuracdo de sua instalagdo. Como
exemplo, podemos citar o suporte nativo a diversos bancos de dados, por exemplo, MySQL [29],
manipula¢do de XML [30], processamento XSL [31]. Também ¢ possivel desenvolver extensdes
para otimizar o desempenho de execucao de certos algoritmos.

Atualmente, ¢ a linguagem de script mais popular dentre os servidores web, sendo utilizada
em mais de 20 milhdes de dominios [32].

2.3.2 Programacio orientada a aspectos

O conceito de programacgdo orientada a aspectos surgiu da necessidade de melhorar a
modularidade dos programas, promovendo uma melhor separagdo de interesses — do inglés
concerns, ¢ um termo geral que diz respeito a requisitos, funcionais ou ndo, que sdo uteis ou
precisam estar presentes nos sistemas [33]. O conceito de separag@o de interesses envolve quebrar
um programa em partes que se sobreponham em funcionalidade o minimo possivel. Os
paradigmas de programacdo oferecem mecanismos que dao suporte a separagdo e
encapsulamento de interesses. Como exemplo, citamos procedimentos, pacotes, classes, métodos.

Alguns interesses ndo se encaixam nas formas de encapsulamento providas por paradigmas
tradicionais, como o funcional ou orientagdo a objetos. Estes sdo os chamados interesses
transversais (crosscutting concerns), ou ortogonais, atravessam o programa, em pontos diversos.
Como exemplo destes interesses podemos citar logging, persisténcia, debugging, gerenciamento
de excecdes. Em alguns casos, uma por¢do consideravel de codigo de uma operagdo ou classe
ndo estd relacionada com o interesse da classe ou operacdo e sim com esses interesses
transversais. O codigo entdo se torna (i) disperso, pois interesses estdo espalhados por meio de
diversas partes do programa; (ii) entrelacado, pois uma parte do programa pode envolver diversos

-

ESCOLA POLITECNICA
DE PERNAMBUCO

22

interesses transversais e a modificacdo de codigo torna-se dificil, pois deve-se entender e levar
em conta todos estes interesses.

O paradigma de programagdo orientada a aspectos [34] (AOP — Aspect Oriented
Programming), assim como a primeira linguagem orientada a aspectos, Aspect] [35], surgiu para
complementar o paradigma de orientagdo a objetos. AOP prové os meios para separagdo de
codigo que contém interesses transversais, modularizando-o em aspectos, elementos principais da
linguagem. O termo interesse ¢ muitas vezes substituido por aspecto, na literatura da area. AOP
pode ser entendida como o desejo de fazer declaragdes quantificadas sobre o comportamento dos
programas e ter estas quantificacdes aplicadas a programas escritos por programadores alheios a
estas [36].

Existem alguns elementos especificos do paradigma que ¢ necessdrio entender, para
compreender o seu funcionamento:

* Join Points (pontos de juncdo): Pontos especificos da execu¢do de um programa.
Por exemplo, chamada a um método, execucdo de método, ou constru¢do de um
objeto. Sdo locais, no cdédigo, em que podemos alterar o comportamento do
programa, por meio dos aspectos. Compdem o elemento chave da AOP, pois as
modificacdes semanticas serdo baseadas nestes pontos;

* Pointcuts (conjuntos de pontos de jun¢do): Permitem a sele¢do de conjuntos de join
points de interesse. E possivel coletar o contexto destes pontos. A composigio ¢
dada por meio de operadores, como && (4nd), || (or) e ! (nof). Também podemos
utilizar wildcards, como *, que ¢ similar a fun¢do * de expressdes regulares, ou seja,
vai casar com zero ou mais caracteres, € +, que casa com todos os subtipos possiveis
de uma classe;

* Advice (adendos): Sdo elementos em que especificamos o comportamento que um
aspecto observard, ao encontrar um join point. Este adendo pode se dar antes
(before), depois (after) ou ao redor de (around) um ponto de jungao;

* [nter-type declarations (Declaragdes intertipos): Declaragdes de atributos e métodos
a serem inseridos em classes, no codigo resultante.

Estes elementos combinados, na maioria das abordagens, compdem um aspecto, cujo
objetivo ¢ encapsular todas as instrugdes relativas a um interesse. Podemos observar um exemplo
de aspecto na Figura 7, com o aspecto PointAssertions. Verificamos a presenca de infer-
type declarations, na introdu¢do de novos métodos na classe Point, que fazem verificagdes
(assertions) sobre valores passados como argumentos. Também ¢ possivel observar a presenca de
advice, interceptando o codigo nos join points de chamada dos métodos setX () e setY (). O
codigo presente dentro da declaracdo do advice, neste caso, serd executado antes do join point
definido. Ao observar o cddigo da fun¢do main () de Point, vemos que a execucdo de
p.setY (333) resulta na impressdo da mensagem de erro na tela.

Apo6s a identificagdio e decomposicdo dos interesses e implementacdo dos aspectos, €
necessario fazer a recomposicao aspectual. De alguma maneira, o comportamento do programa
final deve compreender o comportamento original combinado com o comportamento definido
nos aspectos. Este processo, chamado weaving, faz a combinacdo de codigo e pode ocorrer tanto
de forma estatica, quanto dinamica.

2.3.3

L

ESCOLA POLITECNICA
DE PERNAMBUCO
23
class Point {
int %, y;
public void setX(int x) { this.x = x; }
public void set¥(int y) { this.y = y; }
public static void main(String[] args) {
Point p = new Point();
p.setX(3); p.set¥Y(333):;
}
}
aspect PointAssertions { Inter-type declarations
private boolean Point.assertX(int x) {
return (x <= 100 && x >= 0);
}
private boolean Point.assertY¥ (int y) {
return (y <= 100 && y >= 0);
} Advices
before (Point p, int x): target(p) && args(x) && call(void setX(int)) {
if (!p.assertX(x)) {
System.out.println("Illegal value for x"); return;
) . Pointcut Join point
before (Point p, int y):Itarget(p] && args(y) &&|call (void setY(int)]lk
if (!p.assertY(y)) {
System.out.println("Illegal value for y"); return;
}
}

}
Figura 7. Implementagdo de uma classe Java e um aspecto em Aspect] [35]

phpAspect

phpAspect ¢ uma extensdo a linguagem PHP que implementa programacao orientada a aspectos
[37]. A sintaxe do interpretador PHP ¢ estendida, de maneira a introduzir uma nova entidade
chamada aspecto. Os aspectos devem ser escritos em arquivos com a extensao .aspect.php.

O compilador phpAspect insere o codigo especificado nos aspectos no codigo fonte PHP. O

processo de weaving ¢ estatico, acontecendo antes da execu¢do do cddigo no servidor, e se baseia
nos geradores de analisadores 1éxico (Lex) e sintatico (Yacc) [38] para gerar arvores sintaticas em
XML, para o cddigo PHP e os aspectos. Transformagdes XSL (Extensible Stylesheet Language)
[31] sdo usadas para realizar a transformacdo de codigo utilizando estas arvores em XML. O
cddigo PHP resultante pode ser executado com qualquer versdao de PHP 5. O processo de weaving
¢ ilustrado na Figura 8.

(Codigo PHP)

& - -_’s

Logica de negdcio ° ;;:'Etama Codl%::v;iset:,l)tante
Lex & Yacc
xsit L 2
Arvote Smtallca
Aspectos Folhas de estilo XSL

Folha de estilo XSL para aspectos

Figura 8. phpAspect weaving chain [37]

-

ESCOLA POLITECNICA
DE PERNAMBUCO

24

Os aspectos sdo entidades de primeira classe durante a execucdo do programa e sdo
representados por classes com atributos e métodos. Todos os aspectos sdo instanciados, com um
padrdo singleton quando o programa ¢ inicialmente executado.

A sintaxe de phpAspect é similar a de Aspect]. Contém os join points tradicionais, como
chamada e execugdo de método, construgdo de classes. Um exemplo de aspecto em phpAspect é
demonstrado na Figura 9. Este exemplo ¢ equivalente ao demonstrado na Figura 7, mas em
codigo phpAspect. O exemplo insere os métodos assertX e assertY a classe Point, além
de executar verificagdes antes da chamada dos métodos setX e setY. Em um arquivo
.aspect.php, qualquer c6digo localizado fora da declaragdo do aspecto serd ignorado.

<?php /
aspect PointiAssertions { Inter'type dECIal'atlons
private function Point::assertX($x) {
return ($x <= 100 && $x >= 0);
private function Point::assertY(Sy)
return ($y <= 100 && Sy >= 0);
Advices
before(): call (Point::setX(*)) {
if (!S$thisdJoinPoint->getTarget ()->assertX($thisJoinPoint->getArg(0))) {
echo "Illegal value for x";
exit;
Join point
before(]:Icall(Pc;:t::setY(*))l{
if (!$thisJoinPoint->getTarget ()->assertY ($thisJoinPoint->getArg(0))) {
echo "Illegal wvalue for y";
exit;

Figura 9. Exemplo utilizado na Figura 7 em sintaxe phpAspect

2.3.3.1 Contribuic¢des ao phpAspect

O projeto phpAspect, como a maior parte dos projetos em estagios iniciais de desenvolvimento,
ainda ndo ¢ estavel, e apresentou diversos problemas durante o desenvolvimento deste trabalho.
O elemento inter-type declarations protagonizou um dos problemas mais criticos encontrados.
Especificamente, a inser¢do de atributos e constantes ndo funcionava.

Para a solucdo deste problema foi necessario estudar a linguagem XSL, para maior
compreensdo do funcionamento das transformagdes XSLT. Posteriormente, as folhas de estilo
XSL referentes ao processamento dos elementos inter-type declarations foram alteradas,
possibilitando entdo, a inser¢do de atributos e constantes em classes. O weaver phpAspect foi
entdo alterado para acomodar estas modificacdes.

Outro problema encontrado foi com a utilizagdo de acentos. A extensdo Parse Tree [39],
responsavel pela montagem da arvore sintatica abstrata dos aspectos e codigos PHP, utiliza uma
codificagdo de XML UTFS, que gerava erros ao utilizarmos acentos nos cddigos fonte. Foi
necessario utilizar fungdes de codificacdo e decodificagdo UTF8 no processo de weaving para
contornar este problema. Outra solu¢do possivel seria alterar o cddigo fonte da extensdo e

-

ESCOLA POLITECNICA
DE PERNAMBUCO

25

recompila-la, mas a solu¢do acima mostrou-se funcional, portanto, para economizar tempo, foi
utilizada.

234 XML

Extensible Markup Language (XML) ¢ uma especificagdo de formato de texto derivada de
SGML desenvolvida pelo World Wide Web Consortium (W3C) [30]. Originalmente, sua
aplicagdo destinava-se a publicagdo eletronica. Atualmente, XML tem um papel importante,
sendo muitas vezes utilizado como padrao para a definicdo e comunicacdo de dados estruturados
entre servicos Web, assim como em aplicacdes offline.

A sintaxe de XML, conforme podemos observar na Figura 10, ¢ semelhante a de HTML
(Hypertext Markup Language). Porém, HTML ¢ uma linguagem de apresentagdo de documentos,
enquanto XML ¢ uma linguagem de descri¢do de dados. Outra diferenga ¢ relacionada ao uso de
tags. Embora ambas as linguagens fagam uso deste recurso, no HTML, s6 sdo relevantes as tags
ja existentes. Ja nos arquivos XML, € possivel definir as proprias tags, de acordo com a aplicagdo
do documento, assim como podemos especificar regras como a ordem em que aparecem, cOmo
devem ser processadas e apresentadas. Essa flexibilidade ¢ importante, pois torna XML uma
meta-linguagem. Como exemplo, podemos citar aplicagdes como RSS [40], Atom [41], MathML
[42], MusicXML [43]. E possivel definir regras de validagio (esquemas) em documentos no
formato XML. Um exemplo de linguagem XML utilizada para tal fim ¢ XML Schema [44].

O exemplo da Figura 10 descreve uma estrutura de dados para descricdo de features.
Podemos observar elementos como o nome e tipo da feature, assim como classes, aspectos e
arquivos relativos a feature em questao.

1<?xml version="1.0" encoding="UIF-8"?2>
2<feature>
S<name>familia</name>
4<type>opcional</type>
5<classes>
<class>Familia.php</class>
</classes>
2<aspects>
<aspect>familia.aspect.php</aspect>
</aspects>
1i<files>
<file>familias.php</file>
<file>adiciona_ familia.php</file>
<file>edita familia.php</file>
<file>pessoa familia.php</file>
16</files>
17</feature>

Figura 10. Exemplo de codigo XML

-

ESCOLA POLITECNICA
DE PERNAMBUCO

26

Capitulo 3

A linha de produtos Ligo

Neste capitulo ¢ apresentada a linha de produtos de software Ligo. Sdo discutidos alguns
conceitos relacionados ao dominio da aplicagdo e ¢ descrita a fase de modelagem de requisitos da
linha.

3.1 Consideracoes Iniciais

Conforme visto no capitulo 1, temos acompanhado a crescente utilizagdo de Tecnologia da
Informacao, buscando eficiéncia na realizacdo de tarefas, nos sctores da industria, comércio e
governo. Isto também tem ocorrido no dmbito das igrejas cristds. Observamos a utilizagdo da
tecnologia por lideres, para propdsitos espirituais, onde podemos destacar aconselhamento via e-
mail, pesquisa, e preparagdo e apresentacdo de mensagens [3].

Igrejas cristds podem ser caracterizadas como a reunido de pessoas que professam a mesma
fé e se retinem periodicamente, sob a lideranga de oficiais. No entanto, existem diferentes formas
de governo dentre as igrejas, de acordo com a sua denominagdo [4]. Denominagdo ¢ o nome que
se d4 a um subgrupo de uma religido que opera sob um nome comum, € um conjunto comum de
doutrinas e tradi¢des. Dentre as formas de governo possiveis, podemos destacar trés principais:

* Episcopal — Neste sistema, as igrejas sdo governadas por bispos, que tém autoridade
sobre dioceses. Os bispos podem estar sujeitos a autoridade de oficiais de maior
escaldo, como arcebispos, cardeais e patriarcas. Até a Reforma, era o sistema
predominante entre as igrejas cristds. Como exemplo de igrejas que utilizam esta
forma de governo, podemos citar as igrejas catolicas, anglicanas, episcopais, €
algumas luteranas e metodistas.

* Congregacional — Também chamado de independente, neste sistema, cada igreja
local, ou congregagdo, ¢ eclesiasticamente soberana, ou autonoma. Dentre as
principais igrejas protestantes que utilizam o sistema, podemos destacar as
congregacionais e batistas. Recentemente, tém-se observado um crescimento de
igrejas ndo-denominacionais, que nao se alinham formalmente a uma denominacao
estabelecida. Estas igrejas geralmente adotam esta forma de governo, por prover
maior independéncia.

* Presbiteriana — Este sistema ¢ caracterizado pelo governo por meio de assembléias
de presbiteros. Consiste numa ordem crescente de conselhos. O menor conselho € o

-

ESCOLA POLITECNICA
DE PERNAMBUCO

27

da igreja local, consistindo dos pastores (ministros docentes) e presbiteros
(ministros leigos) eleitos pelos membros da igreja. Acima dos conselhos locais, se
encontra o Presbitério, formado por representantes dos conselhos locais. O Sinodo,
instancia superior, ¢ formado por representantes dos Presbitérios, e finalmente, a
ultima instancia decisoria sobre a igreja ¢ o Supremo Concilio. Esta forma de
governo ¢ principalmente utilizada nas igrejas presbiterianas.

E certo afirmar que todas as formas de governo utilizadas pelas igrejas sdo variages destas
trés formas descritas acima. A forma de governo utilizada por uma igreja define a politica da
igreja e as regras, por exemplo, sobre quais serdo os cargos que os membros da igreja podem
assumir e os pré-requisitos para poder assumi-lo.

Além da forma de governo, existem outros fatores que influenciam a maneira como a igreja
se organiza, qual sua énfase ministerial principal e suas demais necessidades. Como exemplo,
podemos citar tamanho e localizacdo das igrejas. Portanto, verificamos que, apesar da
semelhanca na defini¢do, ha certa diversidade entre igrejas, por conta dos fatores acima
explicitados. Por exemplo, uma igreja com 500 membros tem, normalmente, mais atividades
durante a semana do que uma igreja com 100 membros.

Diversas aplicagdes tém surgido para solucionar problemas especificos do gerenciamento
de uma igreja, como o gerenciamento de grupos familiares [45], controle financeiro [46], cadastro
de sermoes e reflexdes [47], gestdo de ministério de musica [48], entre outros. Apesar de algumas
destas aplicagdes resolverem bem o problema a que se propdem, o uso de diversos sistemas em
separado gera novos problemas, como a inconsisténcia e dificuldade de compartilhamento de
dados entre as aplicagdes.

Faz-se necessdria, portanto, a utilizacdo de um sistema que integre os dados e processos
relativos ao gerenciamento da igreja. Tais sistemas sdo conhecidos como Church Management
Systems (ChMS). No Brasil, existem poucas op¢des de sistemas ChMS, onde destacamos os
produtos Church Tradicional [49] e SIGI [50] como principais expoentes do mercado.

A proposta da linha de produtos Ligo ¢ atender a estas demandas, gerando produtos
personalizados, visando satisfazer as necessidades individuais da igreja alvo, usudria final do
produto gerado.

3.2 Modelagem de Requisitos

Conforme visto no capitulo anterior, a fase de modelagem de requisitos consiste de trés
atividades principais: (i) Analise de escopo; (ii) Modelagem de features; (iii) Modelagem de
casos de uso. Esta etapa define os requisitos funcionais da linha, em particular, o que os produtos
terdo em comum, € 0 que sera variavel.

3.2.1 Analise de escopo

Durante esta atividade, foram realizadas as seguintes tarefas: (i) avaliagdes de ChMSs existentes,
procurando identificar possiveis funcionalidades, além de observar como algumas
funcionalidades foram implementadas; (ii) entrevistas com pastores e lideres de igrejas locais,
visando maior entendimento das necessidades destes que seriam os principais usudrios dos
produtos gerados pela linha. Foram entrevistadas pessoas ligadas a lideranca de igrejas
pertencentes a trés denominagdes que representam as formas de governo citadas na se¢do anterior
(Batista, Episcopal e Presbiteriana) e pertencentes a igrejas de tamanho e localiza¢do distintas
também; (iii) estudo sobre as formas de governo eclesiastico, procurando fazer a distingdo de

-

ESCOLA POLITECNICA
DE PERNAMBUCO

28

organizac¢do entre as diversas igrejas estudadas, e observar como isso se reflete nos requisitos da
linha de produto.

Esta atividade serviu para a solidificacdo do conhecimento sobre o dominio, criando um
maior entendimento das necessidades reais de utilizagdo do sistema. O resultado da atividade foi
a definicdo de que a linha compreenderd produtos para cada uma das denominagdes citadas,
assim como a possibilidade de personalizacdo de configuragdes. Esta personalizacdo faz-se
necessdaria, de acordo com a observacao de que igrejas constituem um dominio bastante variavel,
conforme explicado na se¢do anterior.

3.2.2 Modelagem de features

A atividade de modelagem de features tem como finalidade descrever os requisitos da LPS da
perspectiva do usuério final, por meio de um feature model. No modelo de features, foram
incluidos apenas os requisitos funcionais. No entanto, conforme visto no Capitulo 2, features
também podem representar requisitos ndo-funcionais.

Uma breve explicacdo de cada feature segue abaixo:

* Tipo Igreja (alternativa): Especifica se o produto ird gerenciar apenas uma igreja
(padrdo), ou um conjunto de igrejas;

* Denominacio (alternativa): Especifica a denominacdo da igreja utilizadora do
produto. Esta escolha se refletird na adaptacdo de alguns termos especificos a cada
denominacdo, bem como as configuracdes de classificacio de membros e cargos.
Também ¢ possivel personalizar estas configuracdes. De forma similar ao exemplo
da feature cor na linha de produtos de veiculos no Capitulo 2, esta feature ¢
alternativa, e ndo tem nenhuma selecio padrdo, porém, uma denominacdo deve ser
escolhida dentre as opgdes possiveis;

* Pessoas (obrigatoria): Agrupa as fungdes relacionadas ao gerenciamento das
informagoes relacionadas a uma pessoa ligada a igreja;

* Mala Direta (obrigatoria): Possibilita o envio de e-mail em massa para a base de
dados do produto. As configuracdes possiveis para envio de e-mails podem ser
alteradas de acordo com a selecdo de features opcionais. Por exemplo, ao
incluirmos a feature familias, podemos enviar e-mail para familias em especifico e
assim por diante;

* Relatorios (obrigatoria): Possibilita a geracdo de relatorios a partir da base de
dados do produto. Assim como a feature Mailing, a configuragdo de relatorios pode
ser alterada de acordo com a sele¢do de features opcionais.

* Familias (opcional): Agrupa as funcdes de gerenciamento das informacdes de
familias ligadas a igreja;

* Grupos (opcional): Agrupa as fungdes de gerenciamento das informagdes de
grupos pertencentes a igreja. Como exemplos de grupos podemos citar o grupo de
musica, pequenos grupos que se reunem em casas, grupos de jovens, entre outros. A
definicdo de um grupo envolve a escolha de um tipo e a criagdo de papéis possiveis
dentro de um grupo, bem como a possibilidade de definicio de propriedades
especificas para um grupo, no formato de campos adicionais. Esta definicdo foi
generalizada, mas podemos ter especializa¢des de grupos, como pequenos grupos, e
ministérios, com configuracdes especificas pré-definidas;

* Financas (opcional): Agrupa as funcdes de gerenciamento das informacdes de
movimentagdes financeiras ligadas a igreja. As movimenta¢cdes podem ou nao ser
associadas a uma pessoa;

-

ESCOLA POLITECNICA
DE PERNAMBUCO

29

* Website (opcional): Transforma o ChMS em um Content Management System
(CMS), onde torna-se possivel também gerenciar um website da igreja;

* Eventos (opcional): Agrupa as fungdes de gerenciamento das informagdes de
eventos da igreja. A feature filha opcional Registro online, possibilita o registro via
site em eventos da igreja, o que torna necessaria a presenca da feature website;

* Cursos (opcional): Agrupa as fungdes de gerenciamento das informagdes de cursos
ministrados por uma igreja. A feature filha opcional Aulas online, possibilita a
disponibilizagdo via site de material de aulas de um curso, o que torna necessaria a
presenca da feature website,

¢ Rede Ministerial (opcional): E um programa desenvolvido pela Network Ministries
International [51], que visa a descoberta dos dons e talentos dos participantes de
uma igreja, por meio de exercicios e questionarios.

O modelo de features gerado pode ser visto na Figura 11. Estas features compreendem uma
lista ndo-exaustiva de possibilidades para um sistema de gerenciamento de igrejas cristas.
Conforme ja citado acima, € possivel, a partir destas features, gerar outras especializadas em um
determinado foco. A evolugdo da LPS ocorre com a adigdo e remocgao de features, alteracdo da
logica e reclassificacdo de features ja existentes, possibilitando a inclusdo de novos produtos a
LPS, assim também como a eliminagdo de produtos que ndo atendam a demandas do mercado.

| ? Rede Ministeriall | &P Presbiteriana |
1] . ~ N 22

7 Registro online
\\ : / @) Requires: "Website

’F‘__’__,.Fr Culto Online
&% Standalone
Tipo Igreja <

w Humcﬂe

Cursos
\ ? Aulas online

@ Reguires: "Website

? Ministérios

Figura 11.Modelo de features da LPS Ligo gerado com o auxilio da ferramenta pure::variants

3.2.3

Modelagem de casos de uso

-

ESCOLA POLITECNICA
DE PERNAMBUCO

0

W

A modelagem de casos de uso, descrita no capitulo 2, consiste na descricdo e montagem dos
diagramas de casos de uso. Os casos de uso sdo classificados e categorizados com o auxilio de
esteredtipos, e foram divididos de acordo com os atores. Foram identificados 4 atores, que sdo
detalhados, com seus respectivos diagramas de casos de uso, a seguir.

O ator Secretaria modela a pessoa que ¢ responsavel pelas atividades administrativas de

uma igreja. Este ator tem acesso a maior parte dos casos de uso da LPS Ligo, conforme
visualizamos na Figura 12. Os casos de uso que o ator executa sdo referentes as features Pessoa,
Familias, Grupos, Eventos, Finangas, Tipo de Igreja, Mala Direta, Relatorios.

N
> << obrigatério >>
.- Adicionar Pessoa
<< opcional >> -
Associar Pessoa a Curso "
‘
)

<< opcional >>
Adicionar Movim entagio

<< opcional =>>
Editar Maovim entagio
<< opcional >
Remover Movimentagdo
<< opcional >>
Visualizar Movimentagdo
<< obrigatdrio >>
Visualizar Pessoa

<< obrigatdrio >>
Editar Pessoa
<< opcional >>

melade =

<< opcional >>
Adicionar Evento

1%

<< opcional >>
Remover Evento
<< opcional >

Editar Evento

<< opcional >>
Visualizar Evento

<< obrigatdrio >>
Enviar e-mail

<< opcional >>
Adicionar Grupo

<< opcional >>
Editar Grupo

<< opcional >>
Remover Grupo

<< opcional >3
Visualizar Grupo

<< opcional >
Visualizar Familia

<< opcional >

<< include >>

f
<< include >> r’

<< opcional >>
Associar Pessoa a Evento

<< obrigatério >>
Remover Pessoa

enciar Tipos de Curso

opcional >

Secretaa

'
1 << include ;’>>

1
', << include x>
1

'
il 4 /
|
4

<< obrigatério >>
Gerenciar Lista

<< opcional >>
Gerenciar Tipos de Everto

Adicionar Familia

<< opcional >>
Editar Familia

<< opcional >>
Remover Familia

DOHHOBEEN

<< opcional >3
Gerenciar Papéis Familiares

.

,' << includg s>
i’

Figura 12.Diagrama de casos de uso da LPS Ligo referente ao ator Secretéria

O ator Pastor modela a pessoa que ¢ responsavel pela lideranga e supervisao de uma igreja.
O papel de um pastor em grandes igrejas ¢ até comparavel ao de um CEO (Chief Executive
Officer) [52], pois lidera equipes, faz o acompanhamento de membros da igreja, planejamentos
anuais, direciona a visdo da igreja, dentre outras atividades. Este ator, portanto, estd associado aos
casos de uso relacionados a visualizacdo das informacgdes e ndo necessita realizar os casos de uso

-

ESCOLA POLITECNICA
DE PERNAMBUCO

31

operacionais, como adicionar/editar/remover elementos. A excecdo se faz aos casos relacionados
a feature Cursos, pois normalmente, o Pastor ¢ o responsavel pela concepgao e planejamento dos
cursos de uma igreja. Os casos de uso que o ator executa sdo referentes as features: Pessoa,
Familias, Grupos, Eventos, Cursos, Tipo de Igreja, Relatorios, Mailing.

=<obrigatorio==
Enviar e-mail

<<ohrigatério==
Visualizar igreja

<<opcional>=

<<opcional>=
AssociarPessoaa Curso

<<ppcional=>
Editar Curso

<<opcional=>
Visualizar Familia

<<opcional>=>
Remover Curso

<<opcional=>
Visualizar Grupo

<<opcional>>
Visualizar Curso

<<=obrigatério=>
Gerar Relatorios

=<ohrigatério==
Visualizar Pessoa

<<opcional==>
Visualizar Evento

Figura 13.Diagrama de casos de uso da LPS Ligo referente ao ator Pastor

O ator Tesoureiro modela a pessoa responsavel pelo gerenciamento de finangas de uma
igreja. O papel desta pessoa ¢ supervisionar e documentar as movimentagdes financeiras da
igreja. Este ator, portanto, estd associado apenas aos caso de usos relacionados a feature Finangas
e pode gerar relatdrios, mas apenas do tipo financeiro.

<<opcional=>
Editar Movimentacgdo

<<opcional>=
Adicionar Movimentagdo

<<opcional=>
Remover Movimentagdo

<<opcional=>
Visualizar Movimentagao

Tesoureiro

<<obrigatério==
Gerar Relatdrios

Figura 14.Diagrama de casos de uso da LPS Ligo referente ao ator Tesoureiro

O ator Membro modela a pessoa que ¢ envolvida em uma igreja e ndo se encaixa em uma
das defini¢des anteriores. Inicialmente, este ator pode apenas editar as informacdes relativas a sua

-

ESCOLA POLITECNICA
DE PERNAMBUCO

32

pessoa e realizar o questionario Rede Ministerial, caso esteja presente na configura¢do do
produto. No entanto, a este ator podem ser concedidas permissdes para executar outros casos de
uso. Por exemplo, um Membro pode ser lider de um grupo, portanto poderé editar informagdes

relacionadas aquele grupo especifico.

<<obrigatorio=>

Visualizar Pessoa

Membro

<<obrigatério==>
Editar Pessoa

<<opcional=>
Rede Ministerial

Figura 15. Diagrama de casos de uso da LPS Ligo referente ao ator Membro

A descricdo do caso de uso Adicionar Pessoa encontra-se no Apéndice A. Na descrigdo,
podemos observar o ponto de variagdo introduzido com a adi¢do da feature Familia.

3.2.4 Relac¢ao entre features e casos de uso

Podemos representar os relacionamentos entre features e casos de uso por meio de tabelas. As
Tabelas 2 e 3 informam a notacdo de simbolos utilizada para identificar features e casos de uso
na Tabela 4. Esta representa¢do ¢ importante para visualizacdo dos casos de uso que a selecdo de
uma feature introduz em um produto, bem como o impacto que esta feature tera nos casos de uso.

Como exemplo, podemos analisar a feature Grupos. Ao observarmos a tabela, verificamos
que esta feature impacta ndo apenas os casos de uso relacionados ao gerenciamento de grupos. A
adi¢do da feature tem impacto também nos casos de uso relacionados a pessoas, pois grupos sao
formados por pessoas, assim como os casos de uso de enviar e-mail e gerar relatérios. Podemos
analisar também o caso de uso Gerar Relatorios. Este caso de uso sofre impacto de diversas
features. Por exemplo, caso a feature Finangas esteja presente em um produto, poderemos gerar

relatorios financeiros.

Tabela 2. Notac¢do de simbolos de features utilizada na Tabela 4.

Simbolo

Feature

F 2

Mala Direta

F 3

Pessoas

F 4

Relatorios

F 5

Tipo Igreja

F 8

Denominagao

F 13

Eventos

14

Familias

15

Cursos

16

Grupos

17

Financas

=9l lesll lesll kool leo

19

Rede Ministerial

-

ESCOLA POLITECNICA
DE PERNAMBUCO

33

Tabela 3. Notacao de simbolos de casos de uso utilizada na Tabela 4.

Simbolo Caso de Uso

UC 1 Adicionar Pessoa

UC 2 Editar Pessoa

UC 3 Remover Pessoa

UC 4 Visualizar Pessoa

UC 5 Adicionar Grupo

UC 6 Editar Grupo

UcC 7 Remover Grupo

UC 8 Visualizar Grupo

UC 9 Adicionar Familia
UC 10 Editar Familia

UC 11 Remover Familia
UC 12 Visualizar Familia
UC 13 Adicionar Curso

UC 14 Editar Curso

UC 15 Remover Curso

UC 16 Visualizar Curso
UC 17 Adicionar Evento
UC 18 Editar Evento

UC 19 Remover Evento

UC 20 Visualizar Evento

UC 21 Adicionar Movimentagao
UC 22 Editar Movimentagao
UC 23 Remover Movimentagao
UC 24 Visualizar Movimentacao
UC 25 Enviar e-mail

UC 26 Associar Pessoa a Curso
UC 27 Associar Pessoa a Grupo
UC 28 Associar Pessoa a Evento
UC 29 Gerenciar Papéis Familiares
UC 30 Gerenciar Lista

UC 31 Gerenciar Tipos de Curso
UC 32 Gerenciar Tipos de Grupo
UC 33 Gerenciar Tipos de Evento
UC 34 Gerenciar Tipos de Movimentacdo
UC 35 Realizar Rede Ministerial
UC 36 Editar Configuragdes Denominacao

UC 37

Gerar Relatorios

-

ESCOLA POLITECNICA
DE PERNAMBUCO

34

Tabela 4. Representacao tabular de relacionamentos entre features e casos de uso

F 2

F 3

F 4

F 5

F_8

F_13

F

[y

4

F_15

F_16

F_17

F_19

uc_1

uc_2

uc_3

uc_a

X [X< ||

X [X X | X

UcC_5

UC_6

uc_7

uc_s

X [X [X | X | X [X |X

uc_9

uC_10

uc_11

uc_12

X [X X | X

uc_13

uc_14

uc_15

UC_16

X [X [XX

uc_17

ucC_18

uc_19

UC_20

X [X X | X

uc_21

uc_22

uc_23

uc_24

X [X [XX

uc_25

UC_26

uc_27

ucC_28

X [X |IX | X

uC_29

uc_30

uc_31

uc_32

uc_33

uC_34

uc_3s

uc_36

uc_37

-

ESCOLA POLITECNICA
DE PERNAMBUCO

35

Capitulo 4

Analise, Projeto e Desenvolvimento

Neste capitulo sdo descritas as fases de Analise, Projeto e Desenvolvimento da linha de produtos
de software Ligo, bem como os artefatos resultantes. Também ¢é descrito o processo de geragdo
de produto da LPS Ligo.

4.1 Analise

A etapa de andlise, conforme visto no Capitulo 2, enfatiza o entendimento do problema. Esta
etapa foi dividida em duas atividades, que sdo descritas nas segdes a seguir.

4.1.1 Modelagem estatica

A modelagem estatica descreve a estrutura estatica da LPS em desenvolvimento. O papel desta
atividade ¢ expressivo na modelagem de LPS, pois esta ¢ uma notacdo poderosa para capturar as
caracteristicas comuns e varidveis de uma LPS. O modelo estitico pode ser utilizado para
modelar as associacdes entre classes entity, que modelam entidades centradas em dados, similar
ao desenvolvimento de sistemas Unicos, assim como pode modelar as hierarquias utilizadas em
modelos de LPS para familias de sistemas. Esta modelagem de hierarquias utiliza classes
physical, que modelam dispositivos fisicos, e ¢ util para contextualizar o problema,
principalmente em casos de desenvolvimento de software embarcado. Por este ndo ser o caso da
LPS Ligo, o foco foi dado na modelagem de classes entity e suas dependéncia em relagdo as
features.

Assim como aconteceu com as features e casos de uso, as classes também sao classificadas
entre obrigatdrias, opcionais e alternativas. A estratégia utilizada para o desenvolvimento foi
similar a do desenvolvimento da LPS, forward evolutionary engineering. O modelo estatico das
classes obrigatorias a LPS foi desenvolvido e depois evoluido com a inclusdo de variagdes.

O modelo estatico de classes entity da LPS Ligo pode ser visto na Figura 16. Foram
utilizados estereotipos, assim como na modelagem de casos de uso, para classificacdo de reuso
das classes. O esteredtipo entity foi removido das classes para eliminar redundancia pois todas as
classes sdo entity. Pela aplicacdo ser centrada em dados, as classes demonstradas no modelo
representam os dados que estdo armazenados no banco de dados.

L

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO
36
<<obrigatdria>> <<opcional>>
Usuario Grupo <<opcional>>
€ um participa de | *) Curso
1 * assiste
<<opcional>> | 1 pertencea <<obrigatdria>>
Familia JE Pessoa .
Ci esta associada a . ey cets <<opcional>>
<<0.pu.|0nal 52 0.* pertence a Evento
Movimentacao 1
<<obrigatdria>>
Igreja

Figura 16. Diagrama de classes entity da LPS Ligo

E possivel observar que as classes obrigatorias estardo presentes em todos os produtos
gerados pela LPS, porém a presencga de alguns de seus atributos ou métodos dependera da escolha
das features. A modelagem destes casos ¢ feita através de parametrizacdo de classes. Esta
parametrizacdo pode ser implementada de diversas maneiras, e ¢ detalhada na secdo de
implementagdo de variabilidade. Com classes parametrizadas, uma classe da LPS terd parametros
de configuracdo, que tém diferentes valores, entre membros da LPS. A vantagem desta
abordagem ¢ a simplifica¢do, pois ao invés de gerarmos inumeras classes adicionais, temos
apenas uma classe parametrizada. Estes atributos e métodos serdo incluidos ou modificados
durante o processo de geragdo de um produto a partir dos ativos da LPS. Podemos observar os
atributos das classes obrigatérias na Figura 17 e das classes opcionais na Figura 18. Ao lado dos
atributos parametrizados, ¢ colocada a restricdo para que estes atributos estejam presentes. Neste
caso, a inclusdo da feature citada entre chaves.

<<obrigatoria=>
Pessoa

<<obrigatoria==
Igreja

-pes_id : int

-pes_ultimoMome : string

-pes_primeiroNome : string

-pes_email : string

-pes_foneCel : string

-pes_foneCasa : sring

-pes_sexo : char

-pes_nascimentoDia : int

-pes_nascimentoMes : int
-pes_nascimentoAno : int

-pes_escondeldade : char

-pes_familia : Familia {feature = familia}
-pes_familiaP apel : int {feature = familia }
-pes_igreja : lgreja {feature = igreja }
-pes_grupos: arrayGrupo) {feature = grupo}
-pes_cursos : array(Curso) {feature = curso}
-pes_eventos: array(Evento) {feature = evento}
-pes_movimentacoes : aray(Movimentacao) {feature = movimentacao}

-igr_id : int

-igr_nome : string

-igr_mae : lgreja
-igr_endereco : stiing
-igr_cidade : string
-igr_estado : string
-igr_latitude : double
-igr_longitude : double
-igr_membros : array(Pessoa)

<<obrigatoria==>
Usuario
-usr_pes_id : int
-usr_login : string
-usr_senha : stiing
-usr_nivel : string
-usr_permissoes: Lista

Figura 17.Classes entity obrigatorias da LPS Ligo

-

ESCOLA POLITECNICA
DE PERNAMBUCO

37

<<opcional==>
Familia

<<opcional>=
Movimentacao

<<opcional=>
Grupo

-fam_id : int

-fam_nome : string
-fam_endereco : string

-fam _cidade : string
-fam_estado : string
-fam_telefone : string
-fam_|atitude : double
-fam_longitude : double
-fam_email : string
-fam_membros : array(Pessoa)

-mov_id : int

-mov_tipo @ int
-mov_descricao : string
-mov_pessoa : Pessoa
-mov_dataMov : date
-mov_valor: double
-mov_modoPagamento : string

-gmp_id : int

-gip _nome : string

-gip _listaP apeis : Lida

-gip _papelPadrao : int

-gip _descricao : string

-gip _propriedades : Lista

-gip _listaP apeisID : int

-gip _integrantes : arrayPessoa)

<<opcional>=
Curso

-cur_id @ int

-cur_nome : string
-cur_professor : Pessoa
-cur_descricao : string
-cur_qtdMax: int
-cur_alunos : aray(P essoa)
-cuUr_inicio : date

-cur_fim : date

<<opcional==>
Evento

-evt_id: int

-evt_nome : string

-evt_descricao : string

-evt_inicio : date

-evt_fim : date

-evt_responsavel : Pessoa
-evt_participantes : array(Pessoa)

Figura 18. Classes entity opcionais da LPS Ligo

E importante ressaltar que as classes entity sdo apenas um dos tipos de classes da LPS. A
modelagem estatica utiliza este tipo de classe pois sdo elementos centrados em informagdo. Para
podermos realizar a atividade seguinte, modelagem dinamica, precisamos determinar que classes
e objetos serdo necessarios para realizar os casos de uso. A identificacdo de objetos de software
pode ser assistida por critérios de estruturacao de objetos, que provéem direcdo na estruturagdo da
aplicagdo em objetos. A idéia ¢ categorizar classes e objetos pelos papéis que desempenham na
aplicacdo. Os tipos de objetos que estardo presentes na LPS Ligo, foram divididos em:

* [Interfaces: Objetos que se comunicam com elementos externos ao sistema, como
interfaces com o usudrio, sistemas externos e dispositivos externos;

* Entities: Objetos persistentes que armazenam informagdo. Estes objetos sdo
instanciados de classes que seriam modeladas como entidades em modelos
entidade-relacionamento;

* Controle: Objetos que provéem coordenagdo de colecao de objetos em casos de uso;

* Logica de negocio: Objetos que contém detalhes da logica da aplicagdo. Estes
objetos sdo necessarios quando ¢ desejavel esconder a logica da aplicacdo
separadamente dos dados sendo manipulados.

Esteredtipos serdo utilizados para descrever o tipo de cada classe nos diagramas que
mostram a interagao entre objetos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

38

4.1.2 Modelagem dinimica

A modelagem dindmica prové uma visdo da LPS em que a seqiiéncia e controle de ag¢des sdo
considerados, seja em um objeto, por meio de maquinas de estado finito, seja entre objetos, pela
analise de interagoes entre os mesmos. Neste trabalho o foco foi mantido na interacdo entre
objetos. A modelagem ¢ baseada nos casos de uso desenvolvidos durante a modelagem de casos
de uso e pode ser feita por meio de diagramas de comunicagdo ou diagramas de seqiiéncia. Uma
descri¢do narrativa da interacdo entre objetos acompanha o modelo. Por serem baseados nos
casos de uso, os diagramas de interagdo sdo classificados em obrigatérios, opcionais ou
alternativos.

A estratégia de desenvolvimento dos diagramas de interagdo ¢ chamada evolucionaria e
inicia com o padrao kernel first approach. Os diagramas referentes aos casos de uso obrigatdrios
serdo inicialmente desenvolvidos, seguidos dos opcionais e alternativos. Adicionalmente, com
base na andlise da dependéncia entre features e casos de uso (ver Tabela 4), as possiveis
variagdes em um caso de uso sdo adicionadas ao diagrama.

A Figura 19 mostra o diagrama de seqiiéncia para o caso de uso Editar Pessoa. Podemos
observar a interagdo entre os diversos tipos de objetos descritos na se¢do anterior. O objeto
interfaceUsuario representa a tela disponibilizada no navegador para o usudrio, neste caso,
com uma lista de pessoas. Ao clicarmos em editar pessoa, para uma pessoa hipotética, o objeto
controlador handlerPessoa interage com os objetos form, responsavel pela montagem do
formulario HTML, e pessoa, objeto que representa a entidade Pessoa. Os dados da pessoa sdo
obtidos do banco de dados utilizando o objeto dbHandler, que retorna as informagdes relativas
a pessoa em questdo. Com estas informagdes, ¢ possivel montar o formulario, via mensagem
setForm, e gerar o codigo HTML do mesmo, com a mensagem toHTML. O formulério entdo ¢
apresentado ao usudrio no navegador.

O usudrio pode entdo adicionar e editar os dados que acha necessario e apds esta agao,
clicar no botdo salvar para efetivar as mudangas no banco de dados. O handler
handlerPessoa entdo faz a validagdo dos dados, de acordo com as regras estabelecidas
quando da geracdo do formulario, e caso ndo haja nenhum problema, o objeto pessoa ¢
atualizado com os novos valores. Apds a atualizacdo do objeto, os valores sdo armazenados no
banco de dados, e, na auséncia de erros, ¢ retornada a mensagem de sucesso ao usudrio.

Com a adicdo da feature Familias a um produto, o fluxo de mensagens ¢ alterado e ¢
necessario demonstrar esta mudanca no diagrama. As mudangas ocorrem (Figura 19.i) no
momento da obten¢do dos dados de uma pessoa, em que também obtemos as informagdes que
dizem respeito a familia da pessoa; (Figura 19.ii) no momento de configuracdo do formulario,
quando os campos relacionados com a feature Familia sdo adicionados — familia a que uma
pessoa pertence, € o papel desempenhado nesta; (Figura 19.iii) ao atualizarmos as informagdes
no objeto Pessoa, onde atualizamos os atributos da familia de uma pessoa; (Figura 19.iv)
finalmente, ao realizarmos a consulta de atualizacdo das informacdes no banco de dados,
atualizaremos também os campos da tabela de pessoas adicionados por conta da presenga da
feature Familia.

O diagrama de seqiiéncia alternativo do caso de uso Adicionar Pessoa, com a adi¢do da
feature Familia, ¢ demonstrado na Figura 20. As interacdes adicionais sdo destacadas com o seu
respectivo numero assinalado. A maneira como estas alteracdes sdo implementadas ¢ discutida na
secao a seguir.

L

ESCOLA POLITECNICA
DE PERNAMBUCO
39
<<interface>> <<interface=>> <<obrigatoria=> dbHandler: Database
interfacelUsuario form : P essoaF orm pessoa : Pessoa
Secretaria : hndll: handlerPessoa : : :
B |
clica em editar pessoa : | : : :
14 prepara | | | |
L newP essoaF orm | | |
| |
| |
newP essoalid) ! I select Pessoa from BD JI_
|
< | dados
setFom |
toHTML
displayForm
digita dados T
: | | L
i | I I
salvar | : : :
prepara : validaDados | | |
B | |
| |
<l— | |
| |
set Pessoa ! !
| update PessoaonBD |
4 |
q— | |
| |
Q—_ T T | |
L | | | | |

Figura 19.Diagrama de seqiiéncia do caso de uso Editar Pessoa

<<interface>> <<interface>> <<obrigatoria>> dbHandler: Database
interfaceU suario form : P essoaF om pessoa : Pessoa
Secretaria ! hndl: handlerPessoa : : !
M |
clicaem editar pessoa | | ! ! !
l prepara | ! ! !
1 newP essoaF orm : : :
| |
newP essoal(id) | I
Il DL select Pessoa do BD |
| L
! >
| 4 dados
|
: i select Familia da Pessoa do BD
. (0)
| dados
1 <t
I
q |
setForm |
T setForm (Familia) |
(i)
toHTML !
ol
! T L
displayForm <}— | |
o S
digita dados L : :
| L | |
| | |
salvar | | | |
repara |
ickti validaDados | | |
ul | |
| |
| |
! | |
| |
: setPessoa | : :
0 ! P |
(iii)lt} setPessoa(familia) | |
+ |
| : DE update Pessoa no BD |
|
L | |
| | ») | update Familia da Pessoa no BD
! ! (iv)
| | L—I
I | D<1
| T
| | |
i | | |
| | | |
I i | | |
U 1 1 ! 1

Figura 20. Diagrama de seqiiéncia do caso de uso Editar Pessoa com a adi¢do da feature Familia

-

ESCOLA POLITECNICA
DE PERNAMBUCO

40

4.2 Projeto e Desenvolvimento

O objetivo desta fase €, baseado nos modelos gerados nas etapas anteriores, sintetizar a solugdo
em cddigo. A linguagem utilizada para desenvolvimento da solu¢do foi PHP, conforme citado no
Capitulo 2.

A estratégia utilizada foi, assim como em situac¢des anteriores, desenvolver os casos de uso
obrigatdrios inicialmente. Adicionalmente, para dar suporte & decisdo de como implementar a
variabilidade nos casos de uso, foram desenvolvidos prototipos destes casos de uso, com as
variagdes implementadas manualmente. O objetivo destes prototipos foi a identificagdo dos
possiveis pontos de variacdo, assim como a maneira como se dé esta variagdo. A abordagem de
gerenciamento de variabilidade utilizada neste trabalho ¢ descrita na se¢do a seguir.

4.2.1 Gerenciamento e implementacio de variabilidade

Conforme visto no Capitulo 2, um dos pontos chave de uma LPS ¢ a variabilidade entre produtos.
Visualizamos na Figura 11 uma maneira de identificar e categorizar a variabilidade de uma LPS,
por meio de modelos de features. Porém, esta variabilidade precisa ser implementada em codigo
fonte. As features descritas no modelo de features da Figura 11 sdo exemplos de variabilidades
externas, pois a selecdo destas resultard em mudangas visiveis ao usuario de um produto gerado.

Na implementagdo de variabilidade da LPS Ligo, foram utilizadas as técnicas de heranca,
arquivos de configuragdo e orientacdo a aspectos. A escolha foi baseada em estudos sobre
técnicas que se mostram mais adequadas, e demonstram maior modularidade, de acordo com o
tipo da variabilidade [26][53]. A técnica de heranca foi utilizada em variacdes onde era
necessaria a alteracdo completa dos métodos (whole method). Arquivos de configuracdo foram
utilizados para substituicdo de valores constantes, e mudancgas na estrutura organizacional de uma
igreja. Programacdo orientada a aspectos foi utilizada para as variagdes acontecidas antes e
depois de métodos, de modo a separar os codigos das features. A aplicacdo das técnicas €
detalhada a seguir.

Heranca

O uso de heranca se deu principalmente na implementacdo das classes relacionadas ao
gerenciamento de banco de dados. Foram desenvolvidas classes abstratas de conexao ao banco de
dados, bem como classes abstratas de geragao de consultas SQL Update, Insert, Delete e Select.

A especializacdo para um banco de dados especifico se deu herdando destas classes
abstratas. Na classe filha, sdo especificados os métodos de acesso ao banco de dados, bem como a
geracdo de consultas na sintaxe do banco de dados escolhido. Desta forma, ¢ necessario apenas
especializar a classe abstrata para possibilitar o uso de um banco de dados especifico. Este ¢ um
caso de variabilidade interna, pois a escolha do banco de dados ¢ feita pela organizacao.

Por exemplo, conforme visualizamos na Figura 21, a classe abstrata Database declara
atributos e métodos comuns a qualquer implementacao de banco de dados. Para tornar possivel a
utilizagdo do banco de dados MySQL [29], por exemplo, a classe que implementara as fungdes
relacionadas ao banco ¢ declarada como filha de Database. Os métodos especificos de acesso ao
banco de dados sdo definidos na classe. A utilizacdo desta técnica em conjunto com o padrdo de
projeto Factory, que lida com o problema de criagdo de objetos sem a especificacdo da classe
exata, prové a modularidade necessaria para alterarmos o banco de dados utilizado sem grande
prejuizo ao restante do codigo dos ativos da LPS. Caso seja necessario alterar o banco de dados
utilizado, ¢ necessario apenas modificar o factory e criar uma nova classe com os métodos de
acesso especificos ao banco de dados desejado.

_ad

ESCOLA POLITECNICA
DE PERNAMBUCO
41
Database MySQL
-props: array -instance
#connection : fesolyee +__construct($dbHost, $dbName, $dbUser, $dbPass)
#hostname : St':'ng +getinstance($dbHost, $dbNam e, $dbUser, $dbPass)
#database : string +__set($name, $value)
#username : string + 3
<}——A+__get($name)
#password : string +Conneded()
#__construct($dbHost, $dbName, $dbUszr, $dbPass) +AffectedRows)
#__set($name, $value) +Open()
#_get(name) +Closz()
+gethNumRows($resutt)
+F etchArray($result)
BD Factoy = @ F------ >+FetchObject($resuIt)
+getingance($dbHost, $dbName, $dbUser, $dbPass) | <cqregtesss>

Figura 21.Implementacdo de variabilidade de banco de dados utilizando heranca.
Arquivos de Configuracao

A técnica de arquivos de configuracdo foi utilizada para gerenciar a variabilidade trazida
pela feature Denominagdo. Conforme foi visto no Capitulo 2, a denominagdo de uma igreja
reflete-se em mudancas ndo apenas na forma como a igreja se organiza, assim como na
nomenclatura de termos especificos do dominio.

Para cada denominagdo foram criados arquivos de configuracdo contendo os mapeamentos
de termos especificos relacionados a ela, assim como arquivos XML descrevendo a hierarquia de
organiza¢do. Durante o processo de geracdo de produto, que serd descrito na proéxima se¢do, de
acordo com a escolha da denominagdo, sdo carregados os arquivo de configurag¢do referentes a
denominacdo. No caso da escolha de personalizacdo de uma denominacao, ¢ possivel editar estes
termos, assim como configurar a hierarquia.

Orientacdo a Aspectos

As variabilidades das demais features foram implementadas utilizando programacao
orientada a aspectos (AOP). AOP mostra-se adequada a implementagdo das variagdes que
ocorrem antes e depois da chamadas de métodos, inserindo comportamento com os advice before
e after [53]. A andlise dos artefatos gerados nas etapas anteriores, permitiu a identifica¢do dos
possiveis pontos de variacdo nos casos de uso, de acordo com cada feature. Esta analise também
identifica features como interesses transversais, visto que a adicao de features impacta diversos
casos de uso do sistema.

Inicialmente, foram desenvolvidos protétipos dos casos de uso Adicionar Pessoa e Editar
Pessoa, para visualizacdo de como estas variagdes ocorrem no codigo. Posteriormente, foi
estudado como estas variagdes poderiam ser separadas em aspectos. Com base neste estudo
preliminar, foram desenvolvidos aspectos para cada feature. O desenvolvimento dos casos de uso
também levou em conta os possiveis join points em que o aspecto deve interceptar o programa,
inserindo comportamento.

Um exemplo do aspecto relacionado a feature Familias pode ser visto na Figura 22. Este
aspecto insere atributos e métodos de gerenciamento da Familia a classe Pessoa. Intercepta as
inser¢oes, atualizagoes e consultas da classe Pessoa ao banco de dados, inserindo, atualizando e
obtendo os valores relacionados a familia. Também adiciona campos na geragdo do formulario
HTML de adicdo e edicdo de Pessoas. Esta abordagem permitiu a manter o codigo das features
separado, evitando problemas de cddigo entrelacado e disperso, além de permitir a facil
combinagdo de aspectos, ao selecionarmos diversas features opcionais.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

42

<?php

aspect Familiaf{
private Pessoa::Spes_familia;
private Pessoa::Spes_familiaPapel;

public function Pessca::get_fam;l;a()
1ig->pes_familia;

return

public function Pessoa::get_familiaPapel ()

return $this->pes_familiaPapel; EE— Inter-type declarations

public function Pessoa::set_fam;l;a(sval) {
$this->pes familia = $val;

public function Pessoa::set_fami iaPapel ($val)
§this->pes_familiaPapel = $§val;

pointcut updateANDinsert:exec (public Pessoa::update(*)) || exec(public Pessoa::insert(*)):
pointcut formInterception:exec (public PessoaForm::getAllData(*)) || exec(public PessoaForm::toHTML(*)):
before(): formInterception {

intercepta geracdo de formuldrio e a captura dos dados digitados

after(): updateZNDinsert {

apos a inser¢do ou atualizacdo no banco de dados, atualiza os campos de familia na tabela

after(): exec(public Pessoa::select(¥*)) {
apos a consulta de dados de uma pessoa no banco de dados, obtém os campos de familia

Figura 22.Implementacdo do aspecto relacionado a feature Familia.

4.3 Engenharia da Aplicacao

A atividade de Engenharia da Aplicacdo consiste em desenvolver os produtos membros da linha.
O desenvolvimento de um produto nao ¢ feito do zero, mas, ¢ baseado nos ativos gerados durante
o desenvolvimento da linha. A arquitetura da LPS ¢ utilizada como base e ¢ adaptada e
personalizada de acordo com as necessidades especificas do produto. Por estas razdes, o
desenvolvimento de um produto em uma LPS ¢é também chamado de geracdo ou derivagdo de
produtos.

Durante esta atividade, novos requisitos para um produto podem surgir. Neste caso, ¢
necessario fazer uma nova iteragdo de desenvolvimento da linha, para que estes novos requisitos
sejam inclusos nos modelos da linha. Esta nova iterag¢@o inicia com a inclusdo das novas features,
adi¢do de novos casos de uso ou adaptagdo dos ja existentes. Os modelos estaticos e dindmicos
sao adaptados, o que se reflete na alteragdo da arquitetura da LPS, se necessario, e em seguida os
novos requisitos sdo implementados. Desta forma, os novos requisitos sdo incorporados a LPS,
possibilitando inclusive a utilizagdo destes por outros produtos da linha. E importante ressaltar
que a abordagem utilizada para evolucao da linha varia de acordo com a estratégia utilizada pela
organizag¢do que a utiliza.

Para a LPS Ligo, foi desenvolvido um gerador de produtos, que guia o processo de
derivagdo de membros da LPS. As atividades do processo de geragdo sdo descritas a seguir, €
podem ser visualizadas na Figura 23.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

43

1. Escolher denominagdo: Esta atividade ¢ definida como a atividade inicial de geracao
de produtos, pois, desde o processo de geracdo, ja utilizaremos termos especificos
de acordo com a selecao feita;

2. Personalizagdo: Caso seja escolhida

3. Escolher Tipo de Igreja: De acordo com a feature Tipo de Igreja, ¢ feita a escolha
do tipo da igreja utilizadora;

4. Configuracdo da igreja: Nesta etapa, sdo adicionadas as informagdes iniciais
relacionadas a igreja, como nome, endereco e, no caso da selecdo do tipo como
multi-site, esta etapa ¢ repetida para cada uma das igrejas que sera gerenciada;

5. Selecdo de features: As demais features sdo selecionadas e a sele¢do passa por um
processo de validagdo pois, conforme vimos no Capitulo 2, existem features que
podem ser mutuamente inclusivas ou exclusivas;

6. Escolher diretorio de destino: O diretdrio alvo, onde serdo colocados os arquivos
gerados referentes ao produto € escolhido;

7. Gerar produto: A atividade final consiste em, baseado nas escolhas anteriores,
realizar o processo de weaving dos aspectos com o codigo fonte.

H(E scolher Denominagio

usar pré-definida

personalizar?

Personalizar configuragées)

Escolher tipo de igreja

igrejas m ulti-site

selegdo invalida

Configurarigreja

(Selegdo de features H

selegdo valida

(Esoolher diretorio de destino Gerar P roduto O

Figura 23. Diagrama de atividades que ilustra o processo de geragao de um produto.

As features sdao descritas por meio de arquivos XML, que contém uma estrutura descritiva
dos componentes de codigo participantes em uma feature, como classes, aspectos, folhas de estilo
CSS (Cascading Style Sheets) [54], bibliotecas javascript [55], templates de paginas. Estas
informacdes sdo utilizadas pelo gerador durante o processo de geragdo de produto. Um exemplo
de descri¢do de features € visto na Figura 24. Neste exemplo, ¢ possivel observar a estrutura de
descri¢do na propria figura, por meio das fags. O exemplo da figura ilustra a descri¢do da feature
opcional Familia. Sdo descritas as classes e aspectos participantes da feature, neste caso, apenas
Familia.php e familia.aspect.php, respectivamente. Arquivos auxiliares também sdo descritos
para inclusdo durante o processo de geragao do produto.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

44

1<?xml version="1.0" encoding="UIF-8"?2>
2<feature>
S<name>familia</name>
4<type>opcional</type>
5<classes>
<class>Familia.php</class>
</classes>
2<aspects>
<aspect>familia.aspect.php</aspect>
</aspects>
1i<files>
<file>familias.php</file>
<file>adiciona_ familia.php</file>
<file>edita familia.php</file>
15 <file>pessoa familia.php</file>
16</files>
17</feature>

Figura 24.Exemplo de descricio XML da feature Familia

O processo de geragdo de produtos ¢ ilustrado com telas no Apéndice B.

4.3.1 Avaliacao

Durante a fase de desenvolvimento da LPS, diversas igrejas foram consultadas para avaliagdo das
features providas pela linha. Essa interacdo foi importante, pois ja durante a fase de
desenvolvimento foram identificadas novas features, como Rede Ministerial, assim como outras
features foram rearranjadas, como se v€ no agrupamento das features Pequenos Grupos e
Ministérios sob a feature Grupos e na divisao de tipos de igrejas.

Como forma de validagdo, um produto gerado esta sendo atualmente implantado na igreja
presbiteriana Comunidade Memorial [56], situada na Lagoa do Araga, Recife — PE. O produto
gerado consiste da selegdo de features opcionais Familia, Finangas, Cursos e Grupos, que
refletem a necessidade atual da igreja, ndo foram necessarias alteragdes ou desenvolvimento de
novas features.

Um outro produto foi gerado de acordo com as necessidades da Igreja Episcopal
Carismatica Pardquia da Reconciliagdo [57], situada em Boa Viagem, Recife — PE. Este produto
consiste da selecdo das features Familia, Financas, Grupos, Website e Eventos. Foi observado
que a feature Eventos precisa ser especializada para lidar com eventos especificos. Um exemplo ¢
a realizagdo de Cursilhos, pequenos retiros durante o final de semana, onde homens ou mulheres
passam este tempo convivendo e estudando a Biblia. Este tipo de evento, caracteristico da igreja
Episcopal, leva em conta ndo apenas o agendamento do evento, mas também o registro das
pessoas participantes, registro das pessoas que irdo trabalhar, controle das finangas, entre outras
necessidades especificas.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

45

Capitulo 5

Conclusoes e Trabalhos Futuros

O desenvolvimento de software ¢ uma atividade que muitas vezes torna-se repetitiva, pois poucos
sistemas sdo de fato unicos. Reuso de software ¢ uma preocupagdo constante dos
desenvolvedores € vem mostrando-se como algo essencial a organizagdes desenvolvedoras de
software. Diversas organizagdes desenvolvem produtos similares em dominios especificos. Faz-
se necessario adotar metodologias para tirar proveito das caracteristicas comuns a estes produtos,
e procurar otimizar o reuso de software nestas situagdes. Linhas de produtos de software ¢ uma
abordagem que se propde a tirar vantagem desta situacdo e melhorar a produtividade do
desenvolvimento de software.

Este trabalho propds o desenvolvimento de uma linha de produtos de software para
gerenciamento de igrejas cristds. O dominio de aplicagio mostrou-se adequado ao
desenvolvimento de uma LPS. Igrejas cristds compartilham muitas semelhangas, porém vimos
que aspectos como denominag¢do, tamanho e localizacdo afetam a organizagao de uma igreja.

Este capitulo apresenta as principais contribui¢des dadas por este trabalho, dificuldades
encontradas, bem como possiveis trabalhos futuros.

5.1 Contribuicoes

A principal contribui¢do do trabalho ¢ a LPS Ligo, que agrupa aspectos essenciais do
gerenciamento de igrejas cristds. Algumas outras contribuicdes estdo listadas a seguir:

* Instanciagdo de um processo de desenvolvimento de LPS;

* Estudo e implementacdo de técnicas de variabilidade de acordo com o tipo de
variabilidade. As técnicas utilizadas foram: Heranca, Arquivos de Configuragdo e
Programacdo Orientada a Aspectos;

* Modificacdo do weaver do phpAspect, visando a correcdo de inter-type declarations para
insercdo de atributos e constantes e a possibilidade de poder trabalhar com acentos;

* Desenvolvimento de um gerador de produtos de LPS parametrizavel, que pode ser
utilizado em outras LPS;

* Geragdo de um produto especifico para a igreja Comunidade Memorial [56], situada na
Lagoa do Aragd, Recife — PE. O produto se mostrou apropriado as necessidades desta
igreja, e estd atualmente sendo implantado.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

46
* Geragdo de um produto para a igreja Pardquia da Reconciliagdo [57], situada em Boa
Viagem, Recife — PE. Este produto ainda precisa de algumas modificacdes para se
adequar as necessidades desta igreja.

5.2 Dificuldades encontradas

Por ser uma técnica com que ndo tinha experiéncia prévia, houve dificuldade em passar da etapa
de requisitos e projeto para o codigo fonte. Existem poucas ferramentas disponiveis a
comunidade académica, que dao suporte ao desenvolvimento de LPS como um todo. Por
exemplo, a ferramenta pure::variants auxilia no processo de desenvolvimento do modelo de
features, porém ndo ¢ 1til para modelagem de casos de uso, modelagem estatica, entre outros.
Algumas ferramentas comerciais ndo permitem o seu uso em ambiente académico. Na literatura
da area, existe bastante material relacionado aos aspectos de requisitos, analise e projeto, porém,
pouca informacao relacionada a implementagao de LPS.

O phpAspect, como toda ferramenta em desenvolvimento, ainda possui alguns problemas, e
ndo estd completa. A comunicagdo com o principal desenvolvedor do projeto foi escassa, so foi
possivel obter um retorno do mesmo ao fim do projeto. A base de usudrios também ainda nao ¢
vasta. Desta forma, alguns destes problemas foram solucionados durante o decorrer deste
trabalho.

5.3 Trabalhos futuros

Como trabalhos futuros, podemos citar a evolugdo da LPS Ligo, incluindo novas features,
refinando e especializando algumas ja existentes, procurando atender as necessidades dos
usudrios finais, como visto no caso da igreja Episcopal, com a feature Eventos. Outra possivel
adicdo ao trabalho ¢ a integragdo da LPS a uma distribui¢do Linux, gerando uma distribui¢ao
direcionada a igrejas, visando minimizar o problema de uso de software ilegal.

Para melhorar o processo de desenvolvimento da LPS, sugere-se que, ao invés de
descricdes XML escritas manualmente pelos desenvolvedores da LPS, sejam incluidas anotagdes,
na forma de comentarios, detalhando a relagdo do componente de codigo com uma feature. O
gerador entdo ficaria responsavel por ler estas anotagdes e gerar as descri¢des a partir delas.

Conforme visto na se¢do anterior, ha uma falta de ferramentas que déem suporte a LPS
como um todo, auxiliando em todas as fases do desenvolvimento. O desenvolvimento de uma
ferramenta que, baseada em uma metodologia de desenvolvimento de LPS, dé suporte as fases
desta metodologia, ¢ um potencial trabalho futuro. A propria ferramenta pode ser desenvolvida
como uma LPS, em que cada produto seria a instdncia de uma determinada metodologia de
desenvolvimento de LPS.

Assim como visto na se¢do anterior, apenas proximo a conclusio do trabalho, foi possivel
estabelecer contato com o principal desenvolvedor do phpAspect. Este contato no entanto, se
mostrou importante para possiveis trabalhos futuros, neste caso, especificos para o phpAspect. A
inclusdo de join points especificos relacionados a linguagem PHP e ambiente web ¢ um dos
principais. Também podemos citar o auxilio no desenvolvimento do plugin APDT (4spect PHP
Development Tools) [58], que visa o suporte ao desenvolvimento orientado a aspectos com a
linguagem phpAspect no ambiente Eclipse [24].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

47

Bibliografia

[1] CLEMENTS, Paul, NORTHROP, Linda. Sofiware Product Lines: Practices and Patterns.
3. ed. Boston: Addison-Wesley, 2002. 608 p.

[2] LAUDON, Kenneth, LAUDON, Jane. Management Information Systems: Managing the
Digital Firm. 10. ed. New Jersey: Prentice Hall, 2006. 736 p.

[3] WYCHE, Susan, et al. Technology in Spiritual Formation: An Exploratory Study of
Computer Mediated Religious Communications. In: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work CSCW '06, 2006,
Alberta. p.199-208.

[4] AKIN, Daniel, GARRETT Jr., James, REYMOND, Robert, WHITE, James, ZAHL, Paul.
Perspectives on Church Government: Five Views of Church Polity. 1. ed. Nashville: B&H
Publishing Group, 2004. 353 p.

[5] MILI, Hafedh, MILI, Ali, YACOUB, Sherif, ADDY, Edward. Reuse-Based Software
Engineering: Techniques, Organizations, and Controls. 1. ed. New York: Wiley-
Interscience, 2001. 650 p.

[6] GREENFIELD, Jack, SHORT, Keith, COOK, Steve, KENT, Stuart. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. 1 ed. New York:
Wiley, 2004. 500 p.

[7] DAVIS, Stanley. Future Perfect. 1. ed. New York: Perseus Book Group, 1997. 255 p.

[8] WEISS, David. LAIL Robert. Software Product-Line Engineering. A Family-Based
Software Development Process. 1. Ed. Boston: Addison-Wesley Professional, 1999. 448
p.

[9] GRISS, Martin. Product-line architectures. In G. T. Heineman and W. T. Councill,
editors, Component-Based Software Engineering, cap.22 p. 405-420. Addison Wesley,
2001

[10] POHL, Klaus, BOCKLE, Giinter, VAN DER LINDEN, Frank. Sofiware Product Line
Engineering: Foundations, Principles, and Techniques. 1. ed. New York: Springer, 2005.
468 p.

[11] KRUEGER, Charles. “Introduction to the Emerging Practice of Sofiware Product Line
Development”, In: Methods and Tools, vol 14, nr. 3, pp 3-15, Fall 2006.

[12] RINE, D.C., SONNEMANN, R.M. “Investments in reusable software. A study of software
reuse investment success factors”, In: The journal of systems and software, nr. 41, pp 17-
32, Elsevier, 1998.

[13] RINE, D.C.,, NADA, N. An empirical study of a software reuse reference model. in
Information and Software Technology, nr 42, pp. 47-65, Elsevier, 2000.

[14] BASS, Len, CLEMENTS, Paul, KAZMAN, Rick. Software Architecture in Practice. 2.
Ed. Boston: Addison-Wesley Professional, 2003. 560 p.

[15] DAGER, J.C. Cummin’s Experience in Developing a Software Product Line Architecture
for Real-Time Embedded Diesel Engine Controls. In: Proc. Ist Software Product Line
Conf. (SPLCI), Kluwer, Dordrecht, Netherlands, 2000, pp. 23—46.

[16] BUHRDORF, Ross, CHURCHETT, Dale, KRUEGER, Charles. Salion’s Experience with
a Reactive Software Product Line Approach. In: Proceeding of the 5th International

-

ESCOLA POLITECNICA
DE PERNAMBUCO

48

Workshop on Product Family Engineering. Nov 2003. Siena, Italy. Springer-Verlag
LNCS 3014, p 315.

[17] HETRICK, William, KRUEGER, Charles, MOORE, Joseph. Incremental Return on
Incremental Investment: Engenio’s Transition to Software Product Line Practice. In:
OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA. ACM 1-59593-491-
X/06/0010.

[18] VERLAGE, Martin, KIESGEN, Thomas. Five Years of Product Line Engineering in a
Small Company. In: ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA. Copyright
2005 ACM 1-58 113-963-2/05/0005

[19] GOMAA, Hassan. Designing Sofiware Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. 1. ed. Boston: Addison-Wesley Professional, 2004.
736 p.

[20] JACOBSON, Ivar, BOOCH, Grady, RUMBAUGH, James. The Unified Software
Development Process. 1. ed. Reading, MA: Addison-Wesley Professional, 1999. 463 p.

[21] BOEHM, Barry. A Spiral Model of Software Development and Enhancement. IEEE
Computer v.21, Issue 5: p.61-72, 1998.

[22] CZARNECKI, Krzysztof, EISENECKER, Ulrich. Generative Programming: Methods,
Tools, and Applications. 1. ed. Boston: Addison-Wesley Professional, 2000. 864 p.

[23] pure-systems: pure::variants. Disponivel em: <http://www.pure-systems.com/Community
_Edition.55.0.html> Acesso em: 17 de Novembro de 2007.

[24] Eclipse Foundation: Eclipse. Disponivel em: <http://www.eclipse.org> Acesso em: 17 de
Novembro de 2007.

[25] RUMBAUGH, James, BOOCH, Grady, JACOBSON, lIvar. The Unified Modeling
Language Reference Manual, 2 ed. Boston: Addison-Wesley, 2005. 576p.

[26] ANASTASOPOULOS, Michalis, GACEK, Cristina. Implementing Product Line
Variabilities. In: SSR’01, May 18-20, 2001, Toronto, Ontario, Canada. Copyright 2001
ACM 1-58113-358-8/01/0005.

[27] PHP. Disponivel em: <http://www.php.net/> Acesso em: 17 de Novembro de 2007.

[28] Apache Foundation: HTTP Server. Disponivel em: <http://httpd.apache.org/> Acesso em:
17 de Novembro de 2007.

[29] MySQL AB: MySQL. Disponivel em: <http://www.mysql.org/> Acesso em: 17 de
Novembro de 2007.

[30] W3C: Extensible Markup Language. Disponivel em: <http://www.w3.org/XML/> Acesso
em: 19 de Novembro de 2007.

[31] W3C: XSL Transformations. Disponivel em: <http://www.w3.org/TR/xslt> Acesso em:
17 de Novembro de 2007.

[32] Netcraft: Web Server Survey. Disponivel em: <http://www.netcraft.com/Survey/> Acesso
em: 17 de Novembro de 2007.

[33] ELRAD, T., AKSIT, M, KICZALES, G, LIEBERHERR, K, OSSHER, H. Discussing
Aspects of AOP. In: Communications of the ACM 44(10),pp.33-38, October 2001b.

[34] KICZALES, Gregor, LAMPING, John, MENDHEKAR, Anurag, MAEDA, Chris,
LOPES, Cristina, Jean-Marc, IRWIN, John. Aspect-Oriented Programming. In: European
Conference on Object-Oriented Programming, ECOOP’97, LNCS 1241, p. 220-242,
Finland, June 1997. Springer-Verlag.

[35] Aspect]. Disponivel em: <http://www.eclipse.org/aspectj/> Acesso em: 17 de Novembro
de 2007.

[36] FILMAN, Robert, FRIEDMAN, Daniel. Aspect-Oriented Programming is Quantification
and Obliviousness. In: Workshop on Advanced Separation of Concerns, OOPSLA’2000,
p. 220-242, Minnesota, October 2000.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

49

[37] phpAspect. Disponivel em: <http://phpaspect.org/> Acesso em: 17 de Novembro de 2007.

[38] The Lex & Yacc Page. Disponivel em: <http://dinosaur.compilertools.net/> Acesso em:
17 de Novembro de 2007.

[39] PECL: Parse Tree. Disponivel em: <http://pecl.php.net/package/Parse Tree> Acesso em:
17 de Novembro de 2007.

[40] RSS Advisory Board: RSS 2.0 Specification. Disponivel em: <http://www.
rssboard.org/rss-specification> Acesso em: 19 de Novembro de 2007.

[41] AtomEnabled: Afom. Disponivel em: <http://www.atomenabled.org/> Acesso em: 19 de
Novembro de 2007.

[42] W3C: MathML. Disponivel em: <http://www.w3.org/Math/> Acesso em: 19 de
Novembro de 2007.

[43] Recordare: MusicXML. Disponivel em: <http://www.musicxml.org/xml.html> Acesso
em: 19 de Novembro de 2007.

[44] W3C: XML Schema. Disponivel em: <http://www.w3.org/ XML/Schema> Acesso em: 19
de Novembro de 2007.

[45] G-Cell 2.0. Disponivel em: <http://www.celulas.com.br/ferral.htm> Acesso em: 17 de
Novembro de 2007.

[46] Ativo Sistemas: abcFinance. Disponivel em: <http://www.ativosistemas.com.br/
abcFinance.htm> Acesso em: 17 de Novembro de 2007.

[47] Ativo Sistemas: Reflex. Disponivel em: <http://www.ativosistemas.com.br/Reflex.htm>
Acesso em: 17 de Novembro de 2007.

[48] Wisys: LOUVADEUS. Disponivel em: <http://www.wisys.com.br/Louvadeus/> Acesso
em: 17 de Novembro de 2007.

[49] DMI0: Church Tradicional. Disponivel em: <http:/www.dm10.com.br/> Acesso em: 17
de Novembro de 2007.

[50] SN Systems: SIGI. Disponivel em: <http://www.soareseneves.com.br/> Acesso em: 17 de
Novembro de 2007.

[51] BUGBEE, Bruce, COUSINS, Don, SEIDMAN, Wendy. Network Participant's Guide:
The Right People, in the Right Places, for the Right Reasons, at the Right Time. 2 ed.
Grand Rapids: Zondervan, 2005. 192 p.

[52] The Economist: Jesus, CEQ: Churches as Businesses. The Economist (Dec 20, 2005).
2005. http://www.economist.com/world/na/displaystory.cfm?story 1d=5323597&no _jw
tran=5323591&no_na tran=5323591.

[53] RIBEIRO, Marcio, MATOS JR., Pedro, BORBA, Paulo, CARDIM, Ivan. On the
Modularity of Aspect-Oriented and Other Techniques for Implementing Product Lines
Variabilities. In: I Latin American Workshop on Aspect-Oriented Software Development
- LA-WASP'2007, affiliated with SBES'07, Jodao Pessoa-PB, Brazil, October 2007.

[54] W3C: Cascading Style Sheets. Disponivel em: <http://www.w3.org/Style/CSS/> Acesso
em: 17 de Novembro de 2007.

[55] Mozilla Developer Center: Javascript. Disponivel em: <http://developer.mozilla.org/
en/docs/JavaScript/> Acesso em: 17 de Novembro de 2007.

[56] Comunidade Memorial. Disponivel em: <http://www.comunidadememorial.com/> Acesso
em: 17 de Novembro de 2007.

[57] Paroquia da Reconciliagdo. Disponivel em: <http://www.reconciliacao.org/> Acesso em:
17 de Novembro de 2007.

[58] Google Code: APDT: Aspect PHP Development Tools. Disponivel em:
<http://code.google.com/p/apdt/> Acesso em: 17 de Novembro de 2007.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

50

Apéndice A

Caso de uso Adicionar Pessoa (UC 1)

Categoria Reuso

Obrigatorio

Sumario

Este caso de uso permite a adi¢do de pessoas ao banco de dados

Atores

Secretaria

Pré-Condigoes

Usuario precisa estar logado no sistema.

Descricao

Usudrio clica em Adicionar Pessoa

O formulério de cadastro de pessoa € apresentado ao usudario

O usudrio digita os dados da pessoa a ser adicionada e clica em salvar

O sistema faz a validagao dos dados

O sistema adiciona a nova pessoa ao banco de dados

A relacdo de pessoas atualizada ¢ apresentada ao usuario, encerra caso de uso

SN E W=

Alternativas

AO01 — Cancelar cadastro
1. O usuario pode, a qualquer momento, clicar em cancelar e encerrar o caso de uso.

Pontos de variacao

V01 — Familias
* Tipo: opcional
¢ Linhas: 24,5
¢ Descri¢ao: Campos relacionados a feature familia sdo adicionados, na apresentagéo
do formulario. As informagdes destes campos sdo também validadas e adicionadas ao
banco de dados.

Po6s-Condicao

Cadastro de pessoas atualizado

-

ESCOLA POLITECNICA
DE PERNAMBUCO

51

Apéndice B

Telas da LPS Ligo

Apresentaremos aqui as telas referentes ao processo de geracdo do produto para implantagdo na
igreja Comunidade Memorial, conforme descrito no texto da monografia. Ao final, ¢ apresentada
uma tela do sistema em execucao.

LIGO

Passo 1 :: Escolher Denominagdo

" Batista

" Episcopal
& Presbiteriana
< outra

Proximo

LIGO

Passo 2 :: Definir Tipo da Igreja

(%) Standalone
" Multi-Site

Proximo

LIGO

Passo 3 :: Configurar Igreja

* Nome: IComunidade Memorial
Endereco: |ay, Pinheiros, 1110
Cidade: IRecife
Estado: I Pernambuco =l
CEP: 55000-000

:

* E-mail: finfo@comunidadememorial.com
Telefone: 3428-3666

:
:

L09"’“5""33‘I/Users/ibook/Desktop/ Browse...
Préximo

‘ !

o

Passo 4 :: Selecionar Features

Features comuns: Mailing,Pessoas,Relatérios, Tipo Igreja,Denominagdo

estas features est3o presentes em todos os produtos

Selecione as Features: | Eyentos
[¥ Familias
Iv cursos
I¥ Grupos
[¥ Financas
I website
I Rede Ministerial

Proximo

-

ESCOLA POLITECNICA
DE PERNAMBUCO

52

ESCOLA POLITECNICA
DE PERNAMBUCO
53
Passo 5 :: Selecionar Diretério Alvo
* Diretério: |/var/www/comunidade/
Préximo
Passo 6 :: Produto Gerado
O produto gerado encontra-se no diretério /var/www/comunidade/
Cligue aqui para proceder com a instalacdo do banco de dados para este
produto
Tela do produto em execucao, caso de uso Editar Pessoa:
MEIMEOI\R!RAEI;?!ICIQRIMA NA jo BRASI L
uma IGRE] A do s LIGO

PESSOAS Busca |

1 ?
Editar Pessoa ? November, 2007
* <v Today > n
wk [Sun Mon Tue Wed Thu Fri Sat

Editar Pessoa Pessoa Notas Cursos Grupos
1 2
S 6 7 8 910
Dados Importantes 12 13 14 15 16 17
* Primeiro nome: Leopoldo| 19 20 21 22 23 24

s 5 26 !a 28 29 30
* Ultimo nome: Teixeira :
Select date

Associar Pessoa a Grupo

Associar Pessoa a Familia

Associar Pessoa a Curso

* E-mail: leopoldomt@gmail.com

Sexo: @ Masculino Feminino
Data Nascimento: 28/03/1985
dia/més/ano (Ex.:12/10/1984)
Esconder idade?
Telefone Fixo: 33417383
XXXX-XXXX
Telefone Celular: 91057103
XXXX-XXXX
[Editar |
Familia
Familia: Teixeira [+
Papel: | Filho(a) [~]

réalvar |

[eopoldo teixeira 2007]

