-

ESCOLA POLITECNICA
DE PERNAMBUCO
1

Resumo

O método Extreme Programming (XP) caracteriza-se por ser um método incremental de
desenvolvimento de software, segmentando o processo de desenvolvimento em iteragfes. No
inicio destas iteracdes, o cliente explicita as funcionalidades, ou histdrias de usuério, desejadas
para o sistema. Estas histdrias servem como lembretes de funcionalidades e para criar estimativas
de tempo para suas implementacdes, aléem de servir como base para a criacdo de testes de
aceitacdo. Apos decidir a histéria a ser implementada durante a iteracdo, sdo realizadas
discussdes que detalham melhor a solicitacdo do cliente. Contudo, historias ndo séo utilizadas
para geracdo de um modelo abstrato que descreva as funcionalidades, o que poderia trazer
beneficios como aumento de produtividade e eficiéncia na comunicacdo com o cliente. Este
trabalho objetiva a criacdo de um protétipo de ferramenta que possibilite o registro dessas
historias e de seus detalhes, tornando possivel a geracdo automatica de um diagrama de classes
UML. A utilizacdo desta ferramenta, apesar de incluir mais documentacdo ao processo,
possibilita a utilizacdo do modelo gerado para analise e discussao com o cliente durante a fase de
codificacdo e a geracdo semi-automatica de codigo atraveés de uma ferramenta dirigida por
modelos (MDA). A utilizacdo de alguns elementos da notacdo Business Object Notation (BON) e
a estruturacdo da linguagem de descricdo dos detalhes das historias permite-nos distinguir as
classes, associacdes entre elas, atributos e métodos para a geracdo deste modelo abstrato que
descreve o sistema.

Sumario

Resumo

Sumario

Indice de Figuras

Indice de Tabelas

Tabela de Simbolos e Siglas

1 Introducéo

1.1 Objetivos
1.2 Justificativa
1.3 Estrutura do Trabalho

2 Fundamentacdo Tedrica

2.1 Métodos Ageis

211 Extreme Programming (XP)

2.1.2 Valores do XP

2.1.3 Préaticas do XP

214 Ciclo de Vida e Fases do Processo XP
2.2 Model Driven Architecture (MDA)

2.2.1 O processo MDA

2.2.2 Componentes de um framework MDA
2.3 Business Object Notation (BON)

2.3.1 Cartbes de Modelagem BON
2.4 XMI
25 XSLT

3 Uma Ferramenta para registro de historias

3.1 Visdo Geral do Processo de Desenvolvimento
3.2 A Ferramenta

3.2.1 Alimentacdo de Dados

3.2.2 Transformacdo dos Dados

3.2.3 LimitagBes do Prototipo

4 Prova de Conceito

4.1 Sistema de Gerenciamento de Conferéncia
4.2 Desenvolvimento

421 Histérias do Sistema

4.2.2 Importacdo do Modelo

4.2.3 Geracdo das Classes

5 Conclusoes e Trabalhos Futuros

5.1 Conclusoes
5.2 Trabalhos Futuros

-

ESCOLA POLITECNICA
DE PERNAMBUCO
1

Bibliografia

-

ESCOLA POLITECNICA
DE PERNAMBUCO
11

43

Figura 1:
Figura 2:
Figura 3:
Figura 4:
Figura 5:
Figura 6:
Figura 7:
Figura 8:
Figura 9:

Figura 10:
Figura 11:
Figura 12:
Figura 13:
Figura 14:
Figura 15:
Figura 16:

_nd

POoLE
ESCOLA POLITECNICA
DE PERNAMBU(_ZO
v
Indice de Figuras
Modelo de Cartdo de Historia 16
Jogo do Planejamento: Release 18
As etapas do processo MDA 21
Cartéo de classe para modelagem de classe Citizen 24
Exemplo de utilizagdo de XMI na modelagem de uma classe 25
Utilizacdo de XSL para transformar um documento XML 25
Tela principal e tela de cadastro de projetos 29
Tela de Registro de Historias 30
Tela de registro de detalhe da histéria 31
Estrutura de persisténcia gerada no Visual Studio 32
Arvore da estrutura intermediéaria para transformacéo 33
Especificagdo da classe “Usuario” 37
Especificacdo da classe “Grupo” 38
Especificagdo da classe “Lembrete” 38
Diagrama de classes gerado com ArgoUML a partir do XMI gerado 39
(a) Classe “Grupo” na linguagem C# , (b) Mesma classe em Java 40

j
POLE
ESCOLA POLITECNICA
DE PERNAMBUCO

v

Indice de Tabelas

Tabela 1. Informagdes de entrada e Saida do sistema de Gerenciamento de Conferéncia 37

Tabela de Simbolos e Siglas

XP — Extreme Programming

UML — Unified Modeling Language
MDA — Model Driven Architecture

RUP — Rational Unified Process

OCL — Object Constraint Rules

MOF — Meta Object Facility

CWW — Common Warehouse Metamodel
OMG - Object Managment Group

3GLs — Linguagem de Terceira Geracao
PIM — Platform Independent Model

PSM — Platform Specific Model

BON — Business Object Notation

XML - Extensible Markup Language
XSLT — XML StyleSheet Language Transformation
W3C — World Wide Web Consortium

j
ESCOLA POLITECNICA

DE PERNAMBUCO
Vi

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vil

Agradecimentos

Agradeco principalmente a Deus que me proporcionou oportunidades e me conduziu
desde o bergo até este momento magico onde passo a ser reconhecido como profissional. Posso
sintetizar tudo isso em uma das promessas de Jesus Cristo: “Buscai primeiro o reino de Deus e
tudo vos serd acrescentado”. Foi realmente isso o que aconteceu! Deus mostrava os caminho e eu
neles seguia, claro, com as lutas que eram necessarias.

Agradeco também a minha familia que sempre apoiou minhas decisdes e, em especial,
dedico esta vitoria a meu Pai Agenor, 0 maior incentivador dos meus estudos e um verdadeiro
guerreiro que, mesmo tendo passado momentos dificeis, nunca deixou que nos faltasse nada. Ao
seu lado, sempre estava minha mae Rosineide e juntos nos ouviam e aconselhavam, além de nos
ter transferido valores que valem mais que qualquer riqueza material: meus pais s&o um presente
de Deus.

Também agradeco a minha namorada Leila, que nesta correria contra o tempo, mostrou-se
compreensiva e sempre apoiou as minhas atividades profissionais mesmo tendo que abrir méo da
minha presenca em varios momentos. VVocé também é um presente para mim.

Muito obrigado também ao meu amigo Rodrigo Lobo que, acreditando em mim, abriu as
portas para uma oportunidade de estagio que me fez e faz aprender muito, contribuindo assim
com este trabalho de conclusdo de curso. Ao meu orientador Dr. Mércio Lopes Cornélio, também
meus agradecimentos. Este trabalho sé foi possivel gracas a sua criatividade e competéncia. Ah!
Sua paciéncia também foi valiosa...

N&o poderia deixar de agradecer a todos os professores do Departamento de Sistemas
Computacionais da UPE, em especial, o professor Dr. Fernando Buarque que sempre nos
provocou com questionamentos que me ajudaram a ser o profissional e 0 homem que sou hoje.

Por fim meu muito obrigado a todos os companheiros que fizeram parte da minha vida
nesses ultimos 5 anos. Aprendi um pouco com cada um e realmente sentirei falta da nossa
convivéncia diaria.

Deus abencoe a todos e muito obrigado!

-

ESCOLA POLITECNICA
DE PERNAMBUCO

8

Capitulo 1

Introducao

Processo de desenvolvimento de software é um termo referente a um conjunto de
atividades e resultados associados que produzem um produto de software[1]. Sua definicao
contempla procedimentos e métodos, ferramentas e equipamentos, comunicacdo e pessoas. Na
pratica, estabelece a organizacdo das atividades a fim de garantir o desenvolvimento do produto
de software e a sua qualidade.

A criacdo destes processos e posteriores melhorias surgiram ap6s o periodo conhecido
como a crise do software ocorrida na década de 1960, onde Vvarios projetos excediam a previsao
de cronograma e custos, além de apresentarem baixa qualidade.

O mais conhecido e antigo processo desta natureza é o processo linear e seqiencial de
desenvolvimento, também conhecido como cascata. Ele divide o desenvolvimento em quatro
grandes etapas realizadas seqiiencialmente: analise, projeto, codificacdo e testes. Este modelo
ainda é amplamente utilizado hoje[2].

A utilizacdo deste processo sequencial baseado na criacdo de artefatos em cada fase é
uma tentativa de disciplinar o desenvolvimento e buscar os niveis de previsibilidade desejados.
Contudo, freqiientemente se obtém apenas formalismos e ndo disciplina. Além disso, esse modelo
ndo prové mecanismos de feedback do cliente, o que aumenta o0s riscos de que o0 projeto entregue
ndo satisfaca as suas necessidades.

Em meados da década 80 foi proposto o modelo em espiral, que presume que 0 processo
de desenvolvimento ocorre em ciclos, cada um contendo fases de avaliagéo e planejamento, onde
a opcado de abordagem para a proxima fase (ou ciclo) é determinada, podendo acomodar
caracteristicas de outros modelos. O modelo original em espiral organiza o desenvolvimento
COmMOo um processo iterativo em que varios conjuntos de quatro fases se sucedem até se obter o
sistema final[2].

Ao longo do tempo, a industria de software criou mais alternativas para 0s processos de
desenvolvimento de software. O Rational Unified Process (RUP), criado na década de 90, é um

-

ESCOLA POLITECNICA
DE PERNAMBUCO

9
framework de processo bastante abrangente que, como tal, pode ser instanciado para atender as
necessidades dos mais diversos tipos de projetos de software[3].

O RUP sugere um conjunto de boas praticas derivadas a partir de projetos de
desenvolvimento bem-sucedidos e da anélise de erros em projetos mal-sucedidos. Além disso,
este modelo estabelece o desenvolvimento iterativo e incremental como forma de incorporar
feedback e aprendizado ao processo. Porém, ainda torna o desenvolvimento burocratico.

Na década de 1990, alguns profissionais da inddstria de software comecaram a propor
novos processos de desenvolvimento menos burocraticos e mais adequados para lidar com
aspectos humanos dos projetos de software. Em 2001, dezessete profissionais experientes se
reuniram nos Estados Unidos a fim de discutirem as bases comuns as suas propostas de
metodologia, o que ficou conhecido como manifesto agil[4].

O Programacdo Extrema (XP) é o método agil mais difundido. Ele sugere um conjunto de
valores, principios e préaticas que visam a satisfacdo do cliente. Adequacao a variagcdes no escopo
do projeto e ciclos de feedbacks sdo algumas das caracteristicas do XP, garantidas por
mecanismos de protecdo do projeto como a adogéo de iteragOes curtas e a presenca do cliente, ou
um de seus representantes, no ambiente de desenvolvimento[5].

O inicio de cada iteracdo XP é marcado pela escolha do cliente acerca de funcionalidades
desejadas, documentadas em cartdes conhecidos como cartBes de historia ou histdrias de
usuario[5], que contém breves descri¢des das funcionalidades. E realizado um trabalho conjunto
entre cliente e equipe de desenvolvimento para escolha de algumas delas, a fim de serem
implementadas durante a iteracdo atual.

Historias servem apenas como lembretes de funcionalidade e seus detalhes sdo melhor
entendidos no inicio da codificacdo quando o desenvolvedor, tendo acesso direto ao cliente, o
interroga sobre suas necessidades ao mesmo tempo em que aprende sobre o negdcio a que o
sistema esta relacionado.

Este trabalho visa a construcdo de um protétipo de ferramenta para cadastro e
gerenciamento de histdrias de usuério, utilizando-as para geracdo automatica de um diagrama de
classes definido pela Unified Modeling Language (UML)[6].

Neste capitulo apresentaremos os objetivos do trabalho e sua justificativa. No decorrer do
documento detalharemos como foi implementada a ferramenta proposta.

1.1 Objetivos

O objetivo geral deste trabalho é desenvolver um prototipo de ferramenta a ser utilizada
por equipes de desenvolvimento cujo processo de construcdo de software englobe praticas do
método agil XP, a fim de aumentar a produtividade e eficiéncia dessas equipes. Tal ferramenta
visa 0 registro de historias de usuario e seus detalhes para que, de forma automatica, possamos
construir um diagrama de classes. O modelo abstrato sempre contera as funcionalidades a serem
implementadas na corrente iteracdo do XP.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

10
Apresentaremos os detalhes de sua implementacdo, discutindo os aspectos técnicos e o
ponto de insercdo da ferramenta no processo de desenvolvimento.

Também objetivamos realizar uma prova de conceito onde aplicaremos a ferramenta
desenvolvida as iteragfes iniciais de um sistema,. Ap6s a obtencdo do modelo abstrato,
utilizaremos uma ferramenta de geracdo de codigo baseada em modelos[7], a exemplo do
BaseGen[8] ou ArgoUML[9], a fim de obtermos a implementacéo de algumas classes do sistema.

1.2 Justificativa

O XP, como um método agil de desenvolvimento, sugere uma série de praticas e valores a
serem adotados no processo de construgdo do software. Estes buscam, entre outros objetivos, a
satisfacdo do cliente e a diminuigéo de artefatos e documentacao gerados durante o processo[5].

Contudo, acreditamos que o registro das historias e seus detalhes, além de constituirem
uma documentacao Util ao longo do processo de desenvolvimento, permitird o aumento da
produtividade e eficiéncia das equipes que adotarem a ferramenta para o planejamento da iteracdo
no método XP. Isto porque o modelo abstrato gerado podera ser utilizado para construcdo de
classes de forma semi-automatica além de constituir um elemento util para a discussdo entre
cliente e desenvolvedores durante a fase de codificacéo.

Dentre outros beneficios, podemos citar a possibilidade de geracdo automaética de
documentacdo do sistema, uma vez que as informacdes de comportamento do mesmo estardo
registradas como detalhamento das historias. A geracdo automatica de classes de testes também
constitui um possivel beneficio de utilizacdo da ferramenta. Contudo, este trabalho ndo visa
implementar estas duas funcionalidades.

1.3 Estrutura do Trabalho

Este trabalho de conclusdo de curso esta estruturado de acordo com a seguinte lista de
capitulos:

e No Capitulo 2, abordaremos os conceitos de métodos &geis, focalizando nos
valores e principios do XP. Além disso, discutiremos aspectos relacionados a
geracdo de cddigo a partir de modelos e os aspectos da notacdo Business Object
Notation nas quais este trabalho foi inspirado. Os topicos restantes trazem
informacdes sobre a transformacdo de documentos XML com a utilizacdo de
XSLT e a representacdo de modelos UML com a utilizagdo de XMI.

e No Capitulo 3, descreveremos decisdes de projeto da ferramenta, mostrando 0s
passos necessarios para a geracdo do diagrama de classes, e 0s aspectos técnicos
de sua implementacdo. Além disso, dissertaremos sobre o ponto de inser¢do da
ferramenta no processo XP e abordaremos as limitagdes desta ferramenta.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

11
¢ No Capitulo 4, simularemos a primeira iteracdo XP para o desenvolvimento de um
sistema, a fim de realizarmos uma prova de conceito. Utilizaremos a ferramenta
para geracdo do diagrama de classes e importaremos o modelo gerado com uma
ferramenta de modelagem, a partir do qual geraremos codigo-fonte para o modelo.

e No Capitulo 5, concluiremos a pesquisa dissertando sobre as contribuicdes
alcancadas e dire¢des futuras de trabalhos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

12

Capitulo 2

Fundamentacao Tedrica

Este capitulo aborda o conceito de metodologia agil e uma breve comparagdo com
metodologias mais tradicionais como o RUP. O XP ¢é o método agil detalhado para exemplificar
0s conceitos, sobretudo porque é o método ao qual a contribuicdo apresentada neste trabalho se
aplica, mas também porque é o método agil mais popular.

O entendimento dos principios e valores do XP ¢é de fundamental importancia para
analisar o contexto em que se insere nossa contribuicdo e, a0 mesmo tempo, revela-se essencial
para entender os seus beneficios.

2.1 Meétodos Ageis

Existem muitos métodos de desenvolvimento de software nesta categoria de métodos,
como XP, SCRUM[10] e Crystal[11]. Mas a grande parte dos métodos ageis segmenta 0 processo
de desenvolvimento em iteracfes, a fim de desenvolver miniaturas do projeto ao invés de
manipula-lo como um todo. IteracBes sdo intervalos de tempo pré-definidos para realizacdo de
um subconjunto das tarefas do projeto e, ao final de cada uma dessas iteragdes, um projeto de
desenvolvimento agil visa implantar uma nova versdo do software. Para isso sdo realizadas
algumas tarefas no decorrer das mesmas: planejamento, andlise dos requisitos, projeto,
codificacdo, teste e documentacdo. Ainda no final de cada iteracdo, a equipe envolvida avalia 0s
pontos positivos e reavalia as prioridades do projeto.

Projetos ageis apresentam um conjunto de valores estabelecidos pelo manifesto agil,
citado no capitulo 1 deste trabalho:

¢ Individuos e IteracBes ao invés de processos e ferramentas
e Software funcionando ao invés de documentacdo abrangente
e Colaboragdo com o cliente ao invés de negociacao de contratos

¢ Responder as mudancas ao invés de seguir um plano

-

ESCOLA POLITECNICA
DE PERNAMBUCO

13
Os métodos ageis enfatizam comunicacdo em tempo real ao inves de documentos escritos.
Em termos praticos os componentes de uma equipe de desenvolvimento e o cliente dividem um
mesmo ambiente, ou seja, 0s desenvolvedores, gerentes, testadores, projetistas da iteracdo e o
cliente (ou um de seus representantes), comunicam-se diretamente assim que necessitarem.

O método adotado em um processo de desenvolvimento de software consiste em fator
importante na determinacgdo da probabilidade de sucesso do projeto[10]. Por isso, métodos ageis
vém sendo amplamente utilizados para guiar o processo de desenvolvimento de sistemas
computacionais, sobretudo porque aumentam a produtividade e reduzem o0s custos
organizacionais, mas principalmente porque provéem adaptabilidade as mudangas naturais no
escopo do projeto[12].

2.1.1 Extreme Programming (XP)

Esta subsecdo foi baseada no texto de Beck. Kent[5] e discute as principais caracteristicas
do método de desenvolvimento XP. Entre os métodos de desenvolvimento de natureza agil, este é
0 que mais se destaca. Ele apresenta uma série de praticas que objetivam principalmente a
satisfacdo do cliente.

XP esta estruturado sobre valores, a partir dos quais se criou principios, que por sua vez
direcionam as praticas do XP. A metodologia é flexivel e prevé liberdade de criacdo: se a equipe
necessita de praticas adicionais ndo previstas ainda, a propria equipe pode cria-las tendo por base
0s principios e valores.

Os principais fundamentos do XP tiveram origem nas tradi¢cdes do desenvolvimento em Smalltalk
e datam de meados da década de 80, quando Kent Beck e Ward Cunningham trabalhavam na
Tektronixs, Inc. Préticas, tais como, refactoring, programacdo em pares, mudancas rapidas,
feedback constante do cliente, desenvolvimento iterativo, testes automatizados, entre outras, séo
elementos centrais da cultura da comunidade Smalltalk. Olhando deste ponto de vista, XP pode
ser considerado o modo de agir deta comunidade generalizado para outros ambientes.

Segundo Kent Beck,[5] o XP difere de outras metodologias por[5]:

e Apresentar feedback (retornos) continuos e concretos em ciclos curtos;

e Abordar planejamento incremental, apresentando rapidamente um plano global, que
evolui durante o ciclo de vida do projeto;

e Ter habilidade flexivel de programar implementacdo de funcionalidade, respondendo as
mudancas das regras de negocio;

e Confiar nos testes automatizados escritos pelos programadores e clientes para monitorar o
progresso do desenvolvimento, permitindo a evolucdo do sistema e detectando
antecipadamente os problemas;

e Acreditar na comunicacdo oral, na colaboracao intima dos programadores, nos testes e no
cddigo fonte, definindo a estrutura do sistema e 0s objetivos;

e Confiar no processo de evolugédo do projeto, que dura tanto quanto o sistema;

e Acreditar nas praticas que trabalham tanto com as aptidées, em curto prazo, dos
programadores, quanto os interesses, em longo prazo, do projeto.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

14

2.1.2 Valores do XP

E de fundamental importancia ressaltar que o XP segue uma série de valores, principios e
regras basicas que visam alcancar eficiéncia e satisfacdo no processo de desenvolvimento de
software[5].

Os quatro valores do XP séo:

e Comunicagéo:

O desenvolvimento de software € uma tarefa que envolve, no minimo, duas pessoas: 0
usuario e o desenvolvedor. Projetos reais geralmente possuem mais pessoas envolvidas e a
comunicagéo constitui um valor essencial para o projeto.

Projetos XP procuram envolver ativamente seus usuarios (ou a0 menos um representante
dos mesmos), tornando-os integrantes da equipe de desenvolvimento. Mais especificamente,
equipe de desenvolvimento e o usuario (ou seu representante) trabalham no mesmo local,
possibilitando a equipe, acesso rapido a um especialista no dominio do negdcio. Isso acelera o
fluxo de informacdes e torna a comunicacao baseada principalmente em dialogos presenciais,
ao invés de telefonemas ou e-mails.

e Simplicidade:

Em métodos tradicionais o escopo do projeto é definido no inicio do mesmo e altera¢es
neste escopo sao evitadas ao longo do processo. A fim de evitar tais alteracGes indesejadas, a
equipe de desenvolvimento tenta antecipar possiveis solicitagdes futuras do usuério e criar
solucBes genéricas para “facilitar” possiveis alteragdes no escopo. Contudo, em diversos
projetos, estas atitudes da equipe causam um trabalho desnecessario, aumentando 0s custos e
provocando atrasos. O XP recomenda que as funcionalidades projetadas para cada iteracao
sejam implementadas com a maior qualidade possivel, mas focalizando apenas os aspectos
essenciais. O desenvolvedor deve procurar simplificar o sistema, e assim tornar mais facil
possiveis alteracdes futuras, ao invés de tentar prever funcionalidades que o usuério podera
solicitar.

e Feedback

Este valor estd intimamente ligado ao entendimento do sistema pela equipe de
desenvolvimento. As tarefas de transmitir as necessidades do usuério e de entendé-las sdo
muito criticas e importantes, pois determinam os demais esfor¢os na construcdo do software.
Na pratica, os usuarios nao tém como prever corretamente as funcionalidades que
necessitardo, motivo que torna fundamental a interagcdo com os desenvolvedores ao longo do
projeto. A compreensao das necessidades do usuario € um processo de aprendizado continuo
no qual os desenvolvedores aprendem sobre os problemas do negd6cio e 0s usuarios tomam
conhecimento das dificuldades e limitagdes técnicas.

e Coragem
O processo de desenvolvimento pode acarretar alguns temores para UsSuarios e
desenvolvedores [13]:
o Usuarios podem fazer solicitacOes erradas, ndo obter o que pediram, ter grandes
gastos por poucas coisas ou desconhecer o0s acontecimentos do projeto.
o Desenvolvedores podem ser solicitados a fazer mais do que sabem, receber
responsabilidades sem autoridade necessaria para honra-las, ndo obter informacgoes
claras e suficientes sobre o que precisa ser realizado, e terem que sacrificar a
qualidade em funcéo do prazo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

15

Coragem em XP refere-se a confianca nos mecanismos de seguranca utilizados para
proteger o projeto. Os temores citados séo reconhecidos nos projetos de XP como problemas
que irdo ocorrer, mas a utilizacdo desses mecanismos de protecdo ajuda a reduzir ou eliminar
as consequéncias desses problemas.

Algumas das caracteristicas do XP como a iteratividade, e a adocéo de iteragdes curtas e
fixas, ajuda na protecdo do cliente, por exemplo. Ao final de cada iteracdo, é possivel avaliar
se a equipe implementou o que foi solicitado e se o que foi solicitado realmente fazia sentido.

Ressaltamos, porém que a iteratividade ndo resolve o problema, mas permite seu
diagnostico de forma mais rapida, o que facilita eventuais correcdes e evita que a equipe
invista muitos recursos em funcionalidades incorretas, caso o cliente tenha errado ao solicita-
las[14].

2.1.3 Praticas do XP

Praticas do XP dizem respeito ao modo de agir das equipes de desenvolvimento. Na
verdade, estas préaticas sdo definidas sobre os valores e principios do método.

Cada pratica traz beneficios para o processo, contudo esses beneficios obtidos séo
extremamente maiores quando essas praticas sdo combinadas entre si[15]. Tais praticas sdo
divididas em dois grupos: praticas primarias e corolarias[15]. Estas ultimas ndo devem ser
adotadas até um bom dominio das praticas primarias. Todavia as praticas primarias sdo o
conjunto de préticas recomendadas que devem ser adotadas por qualquer equipe com
qualquer grau de experiéncia no método.

A seguir encontram-se algumas das principais praticas priméarias e corolarias sugeridas
pelo XP:

e Jogo do Planejamento (Planning Game): Planejamento em XP diz respeito aos
rumos que o projeto ird tomar ao invés de especificar exatamente o que sera
necessario e quanto levara para seu término. Basicamente duas questdes sdo
trabalhadas: (i) predizer o que sera realizado até determinada data e (ii) determinar
qual a proxima tarefa a ser executada. Existem dois passos chave em planejamento
XP, abordando essas duas questoes:

Planejamento de Versdo (Release Planning) é o passo onde o cliente
apresenta as funcionalidades desejadas para a iteracdo. Estas funcionalidades séo
escritas pelos clientes em cerca de trés linhas de texto sem termos técnicos e
servem apenas para criar estimativas de tempo para a funcionalidade além de
servir como base para a criacao de testes de aceitagéo.

Tais funcionalidades sdo dispostas em cartes e sdo chamadas de histérias de
usudrio ou cartdo de histdria. A Figura 1 exibe a estrutura de um cartéo de histéria.

Planejamento de Iteracdo (Iteration Planning) diz respeito ao planejamento
da proxima iteracdo. Dadas as funcionalidades requisitadas pelo cliente no
planejamento de versdo, os desenvolvedores as dividem em tarefas e as estimam
com um maior nivel de detalhe em relacdo a estimativa de planejamento de verséo.
Entdo, baseados no volume de trabalho realizado na iteragdo prévia, estimam o
tempo necessario para iteracao corrente.

_nd

ESCOLA POLITECNICA
DE PERNAMBUCO
16
Cartio de Hiztoria e Tarefa
Cata: _ /| Tipo de Athndade: Nova:_ Dificuldads: Valor:
Timseno da Histors: Prioridads: Tsuana: Temica:
Faferencia Anterior: Risco: Estimatva do Temica:
Descrigin da Tarefa:
Iiotas:
Arompachamento da Tarefa
Cara Estado Para Realizar | Comentano

Figura 1. Modelo de Cartdo de Historia (Adaptado de [5]).

Pequenas Versdes (Small Releases): Ao final de cada iteracdo, a equipe de
desenvolvimento disponibiliza um executavel do sistema com as funcionalidades
implementadas durante a iteracdo corrente. O cliente pode utilizar este software
para qualquer propdsito, tanto para avaliacdo, quanto para liberar para 0s usuarios
finais.

Projeto Simples: As iteracfes em XP geralmente sdo um intervalo de tempo entre
duas e trés semanas. Assim, torna-se necessario que a equipe de desenvolvimento
mantenha o sistema com um projeto suficientemente simples. IteracGes devem ser
oportunidades para que a arquitetura seja revisada e aprimorada caso necessario.

Teste: Os programadores primeiramente escrevem os testes de unidade e o cliente
escreve 0s testes de aceitacdo, de forma que a confianca na funcionalidade possa
se tornar parte do programa desenvolvido[5]. E importante ressaltar que os testes
séo escritos antes da implementag&o.

Refactoring: Processo continuo de melhoria de projeto para garantir que o
software estara bem projetado. Na pratica, refactoring € uma técnica empregada na
reestruturacdo do codigo, cujo principal propdsito é fazer com que programa fique
mais reutilizdvel e facil de entender, sem que haja mudanca de
comportamento[16].

Programacdo em Pares (Pair Programming): Esta € uma pratica que visa
melhorar a qualidade do cddigo e testes escritos através do trabalho conjunto de
dois desenvolvedores que se unem para implementar, juntos, as funcionalidades da
iteracdo. Esta técnica implementa uma das diversas redes de protecdo que 0S
projetos XP utilizam para reduzir os riscos de eventuais falhas.

Propriedade Coletiva (Colletive Ownership): O time XP como um todo é
responsavel por todo codigo escrito. Desta maneira, ndo é necessario pedir
autorizacdo para realizar alteracdes em qualquer programa no repositério. Esta
pratica também protege 0 projeto ajudando a tornar a equipe mais robusta, na
medida em que os desenvolvedores se habituam a trabalhar nas mais variadas
partes do sistema.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

17

e Cliente dedicado: O cliente deve ter papel ativo no processo de desenvolvimento,
sobretudo porque é um dos principais interessados no projeto, mas também porque
possui 0 conhecimento de negocio. Assim, o XP incorpora o cliente a equipe de
desenvolvimento, o que significa colocar o cliente fisicamente proximo aos
desenvolvedores ou mover os desenvolvedores para perto do cliente. A presenca
do cliente ao longo do desenvolvimento viabiliza o ciclo continuo de feedback
entre ele e os desenvolvedores. Este ciclo permite que pequenas mudancgas sejam
feitas ao longo do desenvolvimento, de forma rapida.

2.1.4 Ciclo de Vida e Fases do Processo XP

Um projeto XP ideal comega com um desenvolvimento curto de funcionalidades, seguido
de anos de producdo e refinamentos simultaneos até que o projeto ndo faca mais sentido e
finalmente acabe[5].

O ciclo de vida do XP costuma ser curto e esta abordagem faz sentido apenas em
ambientes onde as mudancas de requisitos do sistema sdo frequentes. A seguir detalhamos as
fases do processo XP:

2.1.4.1 Exploracao

Esta fase objetiva o entendimento sobre o que o sistema deve fazer, bem o suficiente para
que possa ser estimado. Para isso, 0 cliente escreve e administra cartdes de historias e o
programador as estima. Esta fase de exploracdo se encerra quando ha histérias suficientes
para a proxima fase.

Esta mesma fase deve proporcionar seguranca suficiente para que a equipe de
desenvolvimento acredite que tem conhecimento, ou que pode buscéa-lo, a fim de iniciar e
finalizar o projeto. Enfim, a equipe deve aprender a confiar em todos os membros do time
XPJ5].

Como explicado, esta fase se inicia com a escrita de histdrias que descrevem o que 0
sistema de fazer. Tais historias devem apresentar alguns atributos para que os objetivos de
sua existéncia, como a estimacdo, sejam alcancados. Uma historia deve ser[17]:
¢ Independente: Deve-se evitar a introducdo de dependéncias entre as historias, pois isto

causa problemas em suas priorizacdes e planejamento, além de tornar as estimativas mais

dificeis.

e Negociavel: Histérias ndo devem conter muita informacdo sobre o requisito, pois elas
servem como lembretes para que os detalhes relevantes sejam discutidos posteriormente.

e Valiosa para usuarios e clientes: Na maioria dos sistemas existe uma distingdo entre
usuario (aquele que utiliza o sistema) e clientes (aquele que compra o sistema). Histdrias
também devem ter valor para 0s usuarios.

e Estiméavel: Desenvolvedores devem poder estimar o tamanho das histérias ou a
quantidade de tempo necessaria para sua codificacdo. Entre os fatores que impedem isso,
destacam-se a falta de conhecimento de negdcio e técnico dos desenvolvedores, assim
como o tamanho da historia.

e Pequena: Historias devem ser suficientemente pequenas para que sirvam de lembrete
sobre a funcionalidade, sejam estimaveis e se possa projetar formas de testa-las. Uma
historia grande pode ser dividida em outras menores.

e Testavel: O XP enfatiza 0 projeto de testes antes mesmo da codificacdo. Desta forma,
historias devem conter informacBes que permitam a criacdo dos mesmos. Testes sdo a

-

ESCOLA POLITECNICA
DE PERNAMBUCO

18

forma de verificar se a funcionalidade foi corretamente implementada, dai sua
importancia.

Em paralelo com as historias, os desenvolvedores vdo explorando as possibilidades de
arquitetura para o sistema e verificam a tecnologia de implementacdo. A exploracdo de
arquitetura dura cerca de duas semanas e isso auxilia os desenvolvedores quando o usuario
apresentar seus cartdes de histérias[5].

2.1.4.2 Planejamento

Ap0s estimar as histdrias, da-se inicio a fase de planejamento que visa definir a menor
data e 0 maior conjunto de histdrias que serdo realizadas na primeira versdo[5].

O jogo do planejamento, como ja foi citado, € a melhor maneira de executar esta fase. O
cliente decide quais histdrias séo vitais e devem ser implementadas na primeira versdo. Desta
forma, elabora-se uma lista priorizada de historias.

Alguns passos, que também podem ser visualizados na Figura 2, sdo apresentados para
auxiliar a fase de release no jogo do planejamento[18]:

e O cliente seleciona historias baseados em seus valores: alto, médio ou baixo

e Os desenvolvedores classificam as histérias por risco (opcional): alto, médio ou baixo.

e Os desenvolvedores declaram a velocidade: calculada sobre a estimativa realizada sobre
as histdrias dos clientes. A velocidade é empiricamente determinada, ou seja, baseada na
experiéncia dos desenvolvedores.

e Cliente escolhe o escopo: escolhe historias para a proxima versao.

Escrever Histéria

(Cliente)
“muito grande” Estimar Histéria “ndo sabe como”
l (Desenvolvedor) i
Quebrar Historia Pontuar Historia
(Cliente) (Desenvolvedor)

Fase 1: Exploragdo

Fase 2: Planejamento . -
Selecionar Historia por

Valor e Risco
(Cliente e Desenvolvedor)

v

Declarar Velocidade
(Desenvolvedor)

v

Escolher Escopo
(Cliente)

Figura 2. Jogo do Planejamento: Release

-

ESCOLA POLITECNICA
DE PERNAMBUCO

19

No primeiro dia de cada iteracdo a equipe de desenvolvimento 1€ os cartdes de historias e
as quebra em pequenas tarefas (task cards) e entdo sdo definidas atribuicdes para cada
desenvolvedor.

2.1.4.3 Iteracdo para a primeira versao

Os compromissos sdo divididos para serem executados em iteragdes que duram de uma a
quatro semanas[5]. Para cada historia executada naquela iteracdo é produzido um conjunto de
testes funcionais.

A primeira iteracdo mostra como a arquitetura do sistema ira se comportar[5]. Entdo, as
historias devem ser escolhidas de forma que representem forca para criar todo o sistema. A
pergunta chave para ser trabalhada nesta fase é: qual a coisa de maior valor para o time para
ser trabalhada nesta iteracao?[5]

2.1.4.4 Producao

Alguns processos podem ser utilizados para avaliar se o software realmente esta pronto
para entrar em producéo[5]. Testes sdo freqiientemente aplicados nesta fase a fim de verificar
sua estabilidade.

2.1.45 Manutencao

Este é o estado normal de um projeto XP. Nele, deve-se simultaneamente produzir novas
funcionalidades, manter o sistema existente em produc&o, substituir membros do time que
partem e incorporar novos membros ao time[5].

Também nesta fase deve-se realizar atividades de refactoring, a fim de melhorar a
estrutura de cddigo e, se necessario, aumentar a sua manutenibilidade.

2.1.4.6 Fimdo Projeto

O fim do projeto ocorre com a falta de novas histérias. Este € 0 momento de escrever
algumas paginas sobre a funcionalidade do sistema, um documento que auxilie, no futuro, a
saber como realizar uma alteracdo no sistema. Uma boa razdo para finalizar o sistema é o
cliente estar satisfeito com o sistema e ndo ter mais nada que consiga prever para o futuro.

2.2 Model Driven Architecture (MDA)

Arquitetura dirigida por modelos (MDA)[7] ¢ uma abordagem para especificacdo de
sistemas que separa a especificacdo de funcionalidade da especificagédo da implementagéo desta
funcionalidade em uma plataforma especifica. Tal abordagem é proposta e financiada pela
Object Managment Group (OMG)[19].

A MDA e os padrdes que dao suporte a ela permitem que o mesmo modelo seja
concretizado em multiplas plataformas através de padrdes de mapeamento auxiliares, ou atraves
de mapeamentos para plataformas especificas, além de permitir que diferentes aplicacdes sejam
integradas ao relacionar explicitamente os seus modelos, garantindo assim integracdo e
interoperabilidade.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

20

Além desses beneficios, hd outro muito importante. No comeco dos anos 60 a industria
estava no meio de uma revolucdo. O uso de linguagens de montagem foi substituido pelo uso de
linguagens procedimentais, ou linguagens de terceira geracdo (3GLS) como eram chamadas.
Programas escritos em linguagens procedimentais eram compilados, ou transformados, para
programas escritos em assembly. Na época, os compiladores ndo estavam maduros o suficiente. O
codigo compilado apresentava muitas vezes perda de desempenho e eficiéncia com relacdo ao
codigo assembly. Contudo, as vantagens das linguagens de alto nivel se tornaram 6bvias fazendo
com que a sua utilizacdo se consolidasse com o tempo.

A MDA, atualmente, est& nos trazendo outra mudanca. A automacéo de software através
de modelos é um outro nivel de compilacdo. Isto é, modelos sdo compilados para 3GLs, que sdo
compilados para linguagens assembly. Os compiladores MDA (leia-se ferramentas de
transformacdo) ainda ndo estdo maduros. Contudo, a vantagem de trabalhar em um nivel mais
alto de abstragdo sera obvia da mesma forma que o uso de 3GLs foi. Esta mudanca, apesar de
demorar certo tempo para se concretizar, faz com que MDA possua um grande potencial para
melhorar de forma significativa o processo de desenvolvimento de software[20].

Os principais beneficios da MDA, de acordo com a OMG, sao[7]:

e Produtividade: Os desenvolvedores ndo precisam se preocupar com detalhes especificos
da plataforma-alvo. Detalhes técnicos especificos sdo implementados diretamente no
Platform Specific Model (PSM)[7], relacionado a plataforma. Além disso, a maior parte
do codigo também € gerada de forma automatica com a transformacdo do PSM em
cédigo-fonte.

e Portabilidade: A portabilidade se encontra no Platform Independent Model (PIM)[7] que
pode ser estendido para qualquer plataforma atraveés de um PSM que a represente.

e Interoperabilidade: A interoperabilidade a que o MDA se refere diz respeito a
possibilidade de utilizacdo de um PIM para comunicacdo entre PSMs.

e Manutencdo e Documentacdo: Com a ajuda de ferramentas MDA, ao se realizar alguma
alteracdo em um PSM, esta também se reflete sobre 0 PIM de origem, mantendo PIM,
PSM e documentac&o consistentes até o término do projeto.

Simplificadamente, MDA pode ser descrito como uma visdo de como o software pode ser
desenvolvido colocando o modelo UML[6] no centro do processo de desenvolvimento. A partir
de um modelo abstrato do sistema é gerado entdo um modelo mais concreto. A partir deste tltimo
modelo, o cédigo-fonte pode ser derivado. A idéia deste processo é automatizar ao maximo cada
etapa da geracdo. Esse conjunto de transformacdes faz parte do processo MDA, que detalharemos
mais adiante.

Como foi afirmado, o MDA consiste na utilizacdo de padrdes independentes de
plataforma. Entre esses padrdes destacamos:
e UML (Unified Modeling Language): Linguagem padrdo para descrever modelos
orientados a objeto[6].

e OCL (Object Constraint Language): Linguagem que torna os modelos UML mais
precisos, definindo restri¢cGes e tornando-os consistentes e ndo ambiguos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

21

e XMI (XML Metadata Interchange): Padrdo que define formato de dados para permitir
intercdmbio de modelos UML[21].

e MOF (Meta Object Facility): Padrdo que define como meta-modelos devem ser
estruturados.

e CWM (Common Warehouse Metamodel): Especificacdo que descreve intercambio de
metadados entre data warehousing, business intelligence, geréncia de conhecimento e
tecnologias de portal.

2.2.1 O processo MDA

O processo MDA consiste nos passos necessarios para através de um modelo abstrato do
sistema obtermos codigo em uma plataforma especifica através de algumas transformagdes.

O primeiro passo deste processo consiste na criacdo de um modelo independente de
plataforma (PIM ou Platform Independent Model). Entdo a partir deste PIM ¢é gerado um
modelo especifico de plataforma (PSM ou Platform Specific Model). Em termos praticos o
PSM ¢é parecido com o PIM, mas inclui anotacdes especiais dependentes da tecnologia
subjacente. Apds isso, 0 PSM deve ser transformado em codigo.

A separagdo entre 0 PIM e o0 PSM traz alguns importantes beneficios[20]:

e A validacdo e correcdo de um modelo PIM s&o simplificados ja que ele ndo contempla
aspectos semanticos da plataforma.

e A extensdo do modelo para uma nova plataforma, mantendo a mesma estrutura e
comportamento do sistema, é facilitada.

e A integracdo e interoperabilidade entre modelos sdo mais facilmente definidos sobre os
modelos PIM.

PIM (Platform Independent Model)

v

PSM (Platform Specific Model)
v

Cddigo-fonte gerado

Figura 3. As etapas do processo MDA

O PIM é o centro do framework MDA. Isto torna a modelagem, de fato, uma
programacdo em um nivel mais alto[8]. O PIM especifica o codigo que precisa ser produzido.
Havera bem menos codificagdo feita a mdo. Desta forma, o esforco de implementagdo se
resume a criacdo de um modelo completo do sistema que seja bem anotado, independente de
tecnologia e de alto nivel.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

22
2.2.2 Componentes de um framework MDA

Os componentes necessarios para a implementacao do processo MDA sdo os seguintes[8]:

e Um ou mais padrdes de linguagens, a exemplo de UML e OCL[22], para escrever
modelos de alto nivel.

¢ Modelos de alto nivel, escritos nas linguagens escolhidas, de forma consistente e
precisa, e que contenham informacdes suficientes sobre o sistema.

¢ Definicdo de como um PIM é transformado em um PSM especifico que possa ser
executado automaticamente.

e Uma linguagem para descrever as definicdes de transformacédo. Essa linguagem
deve ser utilizada pelas ferramentas de transformagé&o.

e Ferramentas que implementem a execucdo das definicGes de transformacédo (PIM
para PSM).

e Ferramentas que implementem a execucdo da transformacdo do PSM para o
cadigo.
Como afirmado anteriormente, o MDA coloca a responsabilidade do sistema no PIM. Por
isso, este modelo deve ser completo e ndo um simples diagrama e alguns textos. O PIM deve
ser mais formal, preciso, consistente, e conter o maximo de informacdes sobre o sistema.

2.3 Business Object Notation (BON)

Esta secdo apresenta uma breve descricdo dos principais conceitos da notacdo BON[23] e
foi baseada no texto de Walden, Kim e Nerson, J.[23]. Este trabalho apenas se inspira em
alguns dos conceito desta notacao.

BON pode ser visto como um método com um conjunto de regras e diretrizes utilizadas
para o desenvolvimento de modelos. Também inclui uma notacdo textual e uma notacao
grafica para modelagem de sistemas orientados a objetos. A notacdo prové mecanismos para
modelar heranca e relacdes entre classes, e tem uma pequena colecdo de técnicas para
expressar relacionamentos dinamicos.

Os primeiros passos no processo recomendado BON fazem uso da notacdo informal de
cartdes (CRC index cards) para documentar potencias classes, agrupamento de classes e
propriedades das classes. Passos intermediarios contam com as notagdes de modelagem
estatica e dinamica. Finalmente, o Gltimo passo consiste no mapeamento do modelo BON para
uma linguagem de programacao orientada a objetos[23].

2.3.1 Cartbes de Modelagem BON

Existem dois tipos de modelos na notagdo BON:

-

ESCOLA POLITECNICA
DE PERNAMBUCO

23
1. Estatico: Descricdo da estrutura do sistema: quais sdo 0s componentes e como eles se
relacionam. Eles s&o independentes do tempo ou representam um snapshot em um
certo momento.

2. Dinamico: Exibem o comportamento do sistema no tempo. Em um contexto orientado
a objetos, isto significa como 0s objetos interagem em tempo de execucao.

Os cartdes de modelagem sédo do tipo estatico. Estes modelos sdo utilizados no inicio do
processo para comunicar as idéias para pessoas sem conhecimento técnico como Usuarios
finais, consumidores e especialistas no dominio. Além disso, os modelos também podem ser
utilizados mais tarde como documentacdo em alto nivel do sistema e serem guardados com
descrices mais formais por uma ferramenta case. Existem trés tipos de cartbes de
modelagem no modelo estéatico:

2.3.1.1 Cartao de sistema

O cartdo de sistema (um por sistema) contém uma breve descricdo de cada cluster do
sistema em alto nivel. Em BON um sistema é constituido por um ou mais grupos ou clusters,
cada um contendo um numero de classes ou subclusters.

2.3.1.2 Cartao de cluster

Um cartdo de cluster contém uma breve descricdo de cada classe e subcluster pertencentes
ao cluster. Nomes de subclusters sdo colocados entre parénteses para distingui-los das
classes.

2.3.1.3 Cartao de classe

Este é o elemento da notacdo BON utilizado neste trabalho para modelagem das classes a
a partir das histdrias de usuario. Um cartdo de classe modela uma classe individualmente. As
classes sdo vistas como caixas pretas e as informacdes presentes nesses cartdes sdo as
respostas das seguintes perguntas:

¢ Que informacdes outras classes podem solicitar desta classe? Estas respostas sdo
traduzidas como consultas (queries) aplicaveis a esta classe.

e Que servicos outras classes podem solicitar desta classe? Estas respostas sao
traduzidas como comandos (commands) aplicaveis a esta classe.

e Quais regras devem ser obedecidas pela classe e seus dependentes? Estas respostas
séo traduzidas como restrigdes (constraints) da classe.

A Figura 4 mostra um exemplo de cartdo para modelar uma classe citizen (cidad&o), a
partir do mapeamento, das respostas das perguntas descritas anteriormente, para as consultas,
comandos e restricOes da classe.

_nd

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO
24
CLASS CITIZEN Part:1/1
TYPE OF OBJECT: INDEXING:
Person born or living in a country cluster: CIVIL_STATUS

created: 1993-03-15 jmn
revised: 1993-05-12 kw

Queries Name, Sex, Age, Single, Spouse, Children,Parents.
Commands Marry. Divorce.
Constraints Each citizen has two parents.

At most one spouse allowed.

May not marry children or parents or person of same sex.
Spouse’s spouse must be this person

All children, if any, must have this person among their parents.

Figura 4. Cartdo de classe para modelagem de classe Citizen (adaptado de [23]).

2.4 XMI

O XML metadata interchange (XMI)[21] é uma linguagem baseada em XML e seu
principal objetivo € facilitar o intercambio de metadados, termo genérico para qualquer dado
que de alguma forma descreve uma informacao entre ferramentas de modelagem baseadas na
UML e repositorio de metadados, baseados no Meta-Object Facility (MOF)[25], em um
ambiente distribuido e heterogéneo. O XMl integra trés padrdes da industria de software:

XML, um padrdo da W3C, que é uma linguagem de marcacdo extensivel.

e UML, um padrdo da OMG, que define uma linguagem de modelagem orientada a
objetos

e MOF, um padrdo da OMG, que é uma estrutura de definicdo de modelos de
metadados e fornece ferramentas para interfaces programaveis de armazenamento
e acesso a metadados em repositorios.

A integracdo destes trés modelos dentro do XMI permite o compartilhamento de objetos e
outros metadados, Vvisto que as ferramentas poderéo transferir, compreender e utilizar modelos
criados com outras ferramentas.

XMI é um padrdo de comunicacao entre ferramentas de modelagem, por isso, 0 protétipo
desenvolvido neste trabalho, utiliza esta linguagem para descrever o diagrama de classes
gerado a partir das historias.

A Figura 5 mostra a modelagem de uma classe hipotética (Classel) com a utilizacdo de
XMI.

Classel

Atributol

-

ESCOLA POLITECNICA
DE PERNAMBUCO

25

<XMI xmi.version="1.1" xmlns:UML="org.omg/standards/UML">
<XMI.header>
<XMI.metamodel name="UML" version="1.3" href="UML.xml"/>
<XMI.model name="example" version="1"
href="example.xml"/>
</XMI.header>
<XMI.content>
<UML:Class name="Classel">
<UML:Classifier.feature>
<UML:Attribute name="Atributol"
visibility="private"/>
</UML:Classifier.feature>
</UML:Class>
</XMI.content>
</XMI>

Figura 5. Exemplo de utilizagdo de XMI na modelagem de uma classe

2.5 XSLT

A Extensible Markup Language XML[24] é uma linguagem de descricdo de dados que se
concentra na estrutura da informacdo, e ndo na sua aparéncia. Assim, para visualizarmos
documentos XML precisamos formata-los ou estiliza-los. XML Stylesheet Language
Transformation (XSLT)[24] é a recomendacdo do World Wide Web Consortium (W3C) para
este fim, pois aceita a transformacdo do documento antes da exibicdo. A XSL normalmente é
utilizada para estilos avancados, como a criacdo de sumarios em documentos, por exemplo. Na
pratica, esta linguagem especifica a transformacdo de documentos XML. Ela recebe um
documento XML e o transforma em outro documento XML, conforme ilustrado na Figura 6.

Documento
Processador Resultante
XSL
XSLT
Style Sheet

Figura 6. Utilizacdo de XSL para transformar um documento XML

Como ja foi dito, a XSLT nédo estd limitada a atividades de estilo, visto que muitas
aplicacdes exigem a transformacdo de documentos. Assim, XSLT pode ser utilizada também

para:

e Incluir elementos especificamente para exibi¢cdo, como o logotipo ou o0 endereco
do emissor de uma fatura em XML.

o Criar conteudo a partir de outro existente, como ao criar 0 Sumario.

o Oferecer diferentes niveis de detalhes das informacdes de um documento XML
com a utilizagdo de vérias folhas de estilos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

26

e Transformar documentos XML para HTML, para torna-los compativeis com os
navegadores existentes.

Utilizaremos XSLT para gerar o arquivo XMI que descreve o o diagrama de classes, a
partir de outro documento XML gerado a partir das historias cadastradas.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

27

Capitulo 3

Uma Ferramenta para registro de
historias

Neste capitulo, descrevemos a implementacdo do protétipo desenvolvido neste trabalho de
conclusdo de curso, além de indicarmos o ponto de insercdo da ferramenta no processo de
desenvolvimento XP. Também serdo abordadas as vantagens que podem ser obtidas por equipes
de desenvolvimento ao adotarem a ferramenta em seu processo de construgéo de sistemas.

3.1 Visao Geral do Processo de Desenvolvimento

Como apresentado no Capitulo 2, 0 XP é um método iterativo e no inicio de cada iteracéo,
o cliente explicita funcionalidades, ou histérias de usuério, a fim de que os desenvolvedores as
implementem no decorrer desta mesma iteragéo.

Também foi apresentado que as historias de usuario servem apenas como lembretes sobre
as funcionalidades e que sdo estimadas pela equipe de desenvolvimento, além de serem criados
testes de aceitacdo para elas antes mesmo da codificacao.

A utilizacdo da ferramenta proposta acontece nesta fase de planejamento da iteracdo. O
registro das historias é realizado e com ele a estimativa da equipe. Também podem ser
armazenadas as descrigdes de testes para validacdo da implementacdo, contudo a ferramenta
apenas registra essas descricdes e cabe a equipe de desenvolvimento realizar os devidos testes.

Apds o jogo do planejamento[5] e a conseqliente escolha das historias priorizadas para a
iteracdo corrente, da-se inicio a codificacdo. Durante toda esta fase a equipe tem acesso direto a
um especialista de negocio e é ao decorrer desta mesma fase que os detalhes das funcionalidades
sdo entendidos por ela. Em outras palavras, é nesta fase que se intensifica a comunicacdo entre
cliente e desenvolvedor a fim de detalharem o problema e entéo desenvolver a solugéo.

A ferramenta proposta permite este aprofundamento nas histérias através de seus
detalhamentos. Cada detalhamento da historia corresponde a uma classe, como serad explicado

-

ESCOLA POLITECNICA
DE PERNAMBUCO

28
mais adiante. Com estes detalhamentos torna-se possivel a geracdo de um arquivo XMI pela
ferramenta proposta, que pode ser importado por uma ferramenta de modelagem, a exemplo do
ArgoUml[9].

O modelo gerado pode ser utilizado para as discussdes com o cliente sobre as
funcionalidades em questdo, uma vez que um diagrama de classes é descrito em uma linguagem
gréafica que pode ser facilmente entendida por pessoas sem conhecimento técnico[1].

Esta visualizacdo das entidades do sistema torna a comunicacdo entre cliente e
desenvolvedor mais eficiente, visto que a discussao pode ser refletida em algo mais concreto, o
que facilita o entendimento e analise.

Apos a concordancia parcial entre desenvolvedores e cliente sobre a definicéo inicial dos
aspectos discutidos da funcionalidade, a equipe pode utilizar uma ferramenta MDA para gerar, no
minimo, as classes iniciais do sistema. Ressaltamos, porém, que algumas ferramentas MDA,
como o BaseGen[8], geram ndo somente as classes, mas o banco de dados e interface gréfica[8].

Com a geracdo automatica das classes do sistema, a equipe continua com a codificacdo
relativa a parte de negocio e entdo realiza os testes, a0 mesmo tempo em que pode consultar o
cliente ou seu representante, e realizar modificacdes no diagrama de classes caso seja necessario.

Desta forma, as etapas subsequentes ao detalhamento das historias, devem ser as que ja
sdo praticadas por equipes de desenvolvimento que utilizam XP.

3.2 A Ferramenta

O protétipo foi desenvolvido na linguagem C#.net[26], sendo utilizado o Visual Studio
como ambiente de desenvolvimento.

Entre as vantagens da linguagem escolhida podemos citar a disponibilizagdo de uma
diversidade de bibliotecas de fungfes Uteis para este projeto, como as bibliotecas nativas de
manipulacdo de XML e XSLT. Além disso, contamos com vantagens possiveis através de um
desenvolvimento orientado a objetos, a exemplo de heranca e interface.

O Visual Studio também trouxe beneficios ao desenvolvimento. Entre outros, utilizamos
recursos como a edicdo gréafica de um esquema XML, utilizado no projeto para criar a estrutura
de persisténcia (DataSet) como arquivos XML. Esta estrutura de persisténcia serd apresentada
mais adiante.

Além disso, com o Visual Studio, foi facilitada a modificacdo de controles nativos por nos
através do mecanismo de heranca visual. Esta modificacdo de controles foi realizada para
modularizar o codigo de acesso aos dados armazenados. Ainda, utilizamos este ambiente para
geracdo/edicdo do arquivo XSLT utilizado no processo de transcri¢ao para o arquivo XMI.

A Figura 7 exibe a tela principal do protétipo e a tela de cadastro de projetos. Esta Ultima,
em particular, é a tela que permite a geragdo do arquivo XMI. Contudo, para que essa geracao
seja possivel, devem ser cadastrados o projeto, as historias associadas a ele e os detalhes de cada
uma destas historias. Ressaltamos que a geracdo do arquivo XM é realizada por projeto.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

29

Projetos _.—“—/J Histirias

Figura 7. Tela principal e tela de cadastro de projetos

Ap06s o cadastramento do projeto, podemos inserir as historias sugeridas pelo cliente.
Algumas destas historias cadastradas serdo escolhidas para serem implementadas na iteracéo
atual, mas todas elas devem ser estimadas pela equipe de desenvolvimento independentemente da
precisdo desta estimativa. A tela de cadastro de historias é exibida na Figura 8. As seguintes
informacgdes sdo armazenadas para cada historias:

Projeto: Informa o sistema ao qual esta histéria esta relacionada.

Histdria Pai: Caso as histdrias sugeridas pelo cliente sejam complexas a ponto de
dificultar a estimativa, as histérias podem ser decompostas em outras menores.
Este campo indica se uma histéria é decomposicao de outra.

Data de Criacdo: Data em que o cliente criou a historia.
Quantidade Dias: Estimativa, em dias, para implementacao da historia.
Status: Indica se a histéria ja comecou a ser implementada ou se ja foi finalizada.

Descricdo: Uma breve descri¢do informal sobre a funcionalidade requerida pelo
cliente. Podem também ser especificados testes a fim de validar a implementag&o.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

88 Registro de Historias ..._. =l <
Projetos | Histdrias

88 Histérias de Usuarios = D[?’\I

[Novo I " Editar]X Excluirl

Data Criag3o Descrigio E stimativa Status
22/10/2007 PADRAD 1 N3o Iniciado
» 2210/2007 Cadastro de Grupos & Usudrios. 1
5! Nova Histaria
Histéria
Projeto: [Sistema de Gerenciamento de Conferéncia |E]
HistéiaPai |PADRAD v]

Datade Criagdo: |22/10/2007 [v| Quantidade dias: = 3[3
Status: N3o Iniciado

Descrigdo: Reqistrar Contribuigdes de materiais

Figura 8. Tela de Registro de Histdrias

O detalhamento das historias € o proximo passo. Uma histdria pode possuir varios
detalhes e cada um destes sera mapeado para uma classe do sistema. As informacfes mantidas
pelo registro desses detalhes sdo inspiradas na notacdo BON apresentada no Capitulo 2. A Figura
9 exibe a tela de cadastro dos detalhes de uma historia e a seguir sera exibido como estes detalhes
foram modelados:

e Historia: Indica a histéria com a qual esse detalhe se relaciona

e Descrigdo: Contém uma tag com o nome da classe (<NomeClasse>) e uma
descri¢do informal deste detalhe. A ordem ndo é importante e a tag pode estar
incluida no texto de descricéo.

e Consultas: Indica as informacdes que a classe podera oferecer. Estas consultas
serdo mapedas em atributos da classe e 0s seus tipos ndo sao descritos.

e Comandos: Indica os servicos que esta classe prové para as outras. Estes
comandos sdo mapeados em métodos da classe.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

31

e Restricdes’: Indica as regras que devem ser obedecidas pela classe e seus
dependentes. Para uma classe “Grupo”, por exemplo, poderiamos estabelecer que

so fossem aceitas pessoas com idade superior a 21 anos.

- Registro de Historias

iProjetos _-fj Histdrias

o Historias de Usuarios =J 5B

[_ Novo " 7 Editar Hx _E»clui]

Data Ciiag3o Descrigdo Estimativa Status |
il ol Editando a Histéria

» 2n02
“ | Histéria| Detalhe Histéria

2107z
2102 | Nove | 7 Ediax Ix Enclli[
210z — =—

Detalhe

2210/

4 e Editando o Detalhe de Histria

Histdnia: Cadastro de Grupos e Llsuéarios

Descrigo:

4s contribuigBes cientificas.

id.idade, sexo,nome endereco

| Inserit Usuario,E ditar Usuatio Exchuir Usuatio

.UWGI:D pertence a um grupo
Usuario tem nome

<Usuario> Representa os usuanios do sistema: Aqueles que poderdo gerar & receber .
lembretes de evertos, além de acessar informagBes gerenciais, financeiras e relativas

Figura 9. Tela de registro de detalhe da histéria

Cadastradas as historias e seus detalhes, o desenvolvedor pode entdo gerar o modelo

3.2.1 Alimentacao de Dados

abstrato do sistema na tela de Projetos. Esta geracdo serd exemplificada no préximo capitulo
através de uma prova de conceito. A seguir, detalharemos os aspectos técnicos das principais
funcionalidades do prototipo, a saber, a alimentacdo de dados e a transformacdo destes para a
geragdo do XMl.

Foi apresentado como utilizar o sistema para cadastrar as informac@es relevantes. Nesta

subsecédo detalharemos a modelagem desses dados e como eles s&o persistidos.

1 As restrigdes ainda ndo s&o utilizadas na geracdo diagrama de classes. Apenas é possivel armazené-las.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

32
A estrutura de persisténcia foi criada com a utilizacdo do Visual Studio e pode ser
observada na Figura 10. Foi criado um esquema XML para descrever o modelo relacional entre
os dados, através do componente DataSet disponivel neste ambiente de desenvolvimento. Este
componente permite: (i)a criacdo de estruturas que modelam as tabelas, chamadas de DataTables,
e (i)a definicdo de relacionamentos entre estas, como em um modelo relacional de banco de
dados.

Além disso, este componente também prové servicos nativos de escrita e de leitura no
formato XML, o que nos permite armazenar os dados em arquivos neste formato. As informagdes
que persistem no protdtipo e suas respectivas tabelas sao descritas a seguir:

¢ Projetos, armazenados na tabela dtProject.
e Historias, armazenadas na tabela dtHistory.

e Detalhes das Historias, armazenadas na tabela dtHistoryDetail.

8

- =

7 id fid
Descricao Consultas
Estimativa 4 = Comandos
idPai Restricoes
Status descricao
DataCriacao idHistory
idProjeto

I

fid
denominacao

Figura 10. Estrutura de persisténcia gerada no Visual Studio

Como observado na Figura 10, um projeto pode conter varias historias. Estas, por sua vez,
podem se relacionar com outras. Isto é particularmente importante para garantir a qualidade das
historias escritas, discutida em detalhes no segundo capitulo. Este relacionamento serve apenas
para que histdrias possam ser decomposta em outras menores, mas facilmente estimaveis, por
exemplo.

Os detalhes séo utilizados para modelar as classes e, como uma historia pode requerer
mais de uma classe, o relacionamento entre historia e detalhes é de um para muitos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

33

3.2.2 Transformacao dos Dados

Detalharemos nesta subsecdo, como foi projetada a transformacdo dos dados, a fim de
gerar o arquivo XMI do modelo abstrato.

Foi necessario mapear os dados armazenados para um documento XML a fim de facilitar
a transformacdo. O esquema desta estrutura intermediaria pode ser visualizado na Figura 11. O
campo “Projeto” ¢ o mais externo no XML e é decomposto em classes e associa¢des entre elas. A
estrutura das classes por sua vez ¢ refletida nos contetidos dos campos “Nome”, “Atributo” e

“Método”.

Projeto

Associacao Classe

Classe Classe Nome Atributo Método
Origem Destino

Nome Parametro

Tipo Nome

Figura 11. Arvore da estrutura intermediéria para transformagao

Além da construcdo dessa estrutura intermediaria a partir dos detalhes das histérias,
também foi necessario definir uma folha de estilo XSLT para mapear esta estrutura no arquivo
XMl final. O arquivo xslGenerateXMl.xslt foi criado para isso e apesar de ndo definir possiveis
transformacdes para todos os elementos de um diagrama de classes, permite 0 mapeamento dos
atributos e métodos das classes e das associacGes entre elas.

A transformagdo acontece em dois passos. Primeiramente, o sistema percorre os detalhes
das historias associados ao projeto em questdo e monta a estrutura intermediaria na memaria. Em
seguida, utilizamos o processador XSLT definido no namespace System.Xml.Xsl de .net,
passando para ele a estrutura intermediaria e a folha de estilo XSLT. O resultado da
transformacdo XSLT é salvo no diretorio do executavel e ja pode ser importado por ferramentas
de modelagem.

A construcdo da estrutura intermediaria, no entanto, foi projetada sobre alguns pre-
requisitos descritos a seguir:

e As consultas e comandos das classes devem estar separados por virgula ou quebra
de linha.

e Cada comando é descrito em lingua natural. O nome do método serd o0 nome do
comando, substituindo os espagos em branco pelo caractere “ ”. O parametro do

-

ESCOLA POLITECNICA
DE PERNAMBUCO

34
método s6 é mapeado se 0 nome do comando contiver o nome da propria classe ou
de outra no mesmo projeto. O tipo de retorno sempre é void.

e A descricdo de cada detalne deve conter, em qualquer posi¢do, uma tag
informando o nome da classe. Para uma classe de nome “Animal”, por exemplo, a
tag seria <Animal> e esta poderia ser utilizada normalmente no texto de descri¢ao
da funcionalidade.

e Para associar classes, 0 campo de consulta da classe que referencia deve conter o
nome de outra classe definida no prototipo para 0 mesmo projeto.

3.2.3 Limitacgdes do Prototipo

O protétipo desenvolvido objetiva implementar a geracdo automatica de um diagrama de
classes com sua estrutura basica. Contudo, existem muitos aspectos importantes que precisariam
ser incorporados a ferramenta para obter um maior beneficio com a sua utilizacdo. Entre as
limitacGes deste protdtipo, destacamos:

e O cadastro de detalhes de historias € dificultado pelo fato de néo se prover uma
maneira de valida-lo a fim de permitir a geracdo correta da estrutura intermediaria.

e Na&o se tem um controle das iteragdes e do desenvolvimento das histdrias ao longo
das mesmas. Assim, ndo conseguimos relacionar historias e iteracdes, 0 que seria
uma informacao util ao longo do processo além de permitir alteraces em iteracdes
especificas.

e A ferramenta sempre gera o diagrama de classes completo e sobrescreve 0 XMl
gerado anteriormente. Assim, caso o diagrama tenha sido aperfeicoado com o
auxilio de uma ferramenta de modelagem, as alteracGes serdo perdidas.

e Ainda ndo é possivel descrever as restricbes da classe, 0 que seria realizado com
lingua natural controlada. Estas restricGes seriam entdo mapeadas para 0 modelo
abstrato.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

35

Capitulo 4

Prova de Conceito

Este capitulo aborda a utilizacdo do protétipo desenvolvido neste trabalho para a geracao
automatica de um diagrama de classes a partir das funcionalidades iniciais de um sistema de
gerenciamento de conferéncia. O modelo gerado sera importado por uma ferramenta MDA e as
classes iniciais serdo geradas.

4.1 Sistema de Gerenciamento de Conferéncia

Este sistema visa controlar aspectos essenciais para gerenciamento e controle de uma
conferéncia cientifica internacional. O sistema foi adaptado de um dos estudos de caso para
utilizacdo da notacdo BON na modelagem de sistemas orientados a objetos[23] e deve ajudar 0s
organizadores de uma conferéncia a lembrar de uma série de eventos durante a preparacdo do
programa técnico, além de gerenciar contribuicdes cientificas e inscri¢fes. Os objetivos gerais do
sistema sdo descritos a seguir:

e Monitorar os eventos agendados e garantir que todas as acGes necessarias Sao
realizadas a tempo.

e Automatizar o processo da maioria das tarefas da conferéncia evitando duplicidade
de esforco e produzindo avisos a fim de garantir o cumprimento dos prazos.

e Servir como repositorio de informacgdes Uteis para ambos, comités técnico e
organizacional.

Estas tarefas relativas a conferéncia podem ser divididas entre trés grupos razoavelmente
independentes:

e Comité de Programa: Grupo responsavel pelos assuntos técnicos. Entre outros
devem convidar pesquisadores e desenvolvedores interessados em contribuir com
material cientifico. Além disso, devem encaminhar 0s artigos para revisores,
selecionando contribui¢des para incluir no programa final e agrupa-las em secoes.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

36

Comité de Organizacdo: Grupo responsavel por politicas gerais e logisticas. Isto
inclui propagandas e e-mails em geral, decisfes de preco e capacidade, patrocinio,
lanches e almogos, reservas de acomodacdes e cartas de confirmacéo.

Departamento de Contabilidade: Grupo responsavel por questdes financeiras.
Isto inclui faturamento, realizar pagamentos e analisar estatisticas de vendas e

gastos.

A Tabela 1 relaciona as principais informacdes de entrada e saida do sistema.

Tabela 1. InformagGes de entrada e Saida do sistema de Gerenciamento de Conferéncia

ENTRADAS : SAIDAS |

internet.

e Registro de participantes realizado através da

e Realizacdo de pagamento através de cartdo de
crédito ou boleto.

e Cadastro de contribuinte e submissao de seus
artigos cientificos.

e Relatério de revisor de artigos.

Chamada de artigos, convites, material
promocional.

Cartas de confirmacéo, aceitacdo ou rejeigéo.
Tickets para inscritos.

Programa final.

Faturamento, lembretes.

Lista de inscritos, situacéo financeira.

4.2 Desenvolvimento

Abordaremos nesta secdo como foi utilizada a ferramenta proposta neste trabalho, para o
desenvolvimento de algumas funcionalidades iniciais do sistema de gerenciamento de
conferéncia citado.

4.2.1 Histoérias do Sistema

Baseados nas descricbes do sistema, criamos algumas historias de usuario a fim de
simular a primeira iteracdo do XP para a construcdo deste sistema. Entre as histdrias mais
essenciais destacamos:

Gerar lembretes de eventos
Registrar inscrigdes

Listar inscritos

Registrar contribuicdes de artigos

Listar situacao das contribuicGes

Listar situacdo de inscri¢Ges, informando necessidades como a de reserva de hotel

e proibicOes alimentares
Cadastro de Despesas

Faturamento

-

ESCOLA POLITECNICA
DE PERNAMBUCO

37

A histéria escolhida para testarmos o protétipo foi a de gerar lembretes de eventos.
Contudo, a fim de melhorarmos a precisdo das estimativas, subdividimos a mesma em outras
duas:

e Cadastrar Usuarios e Grupos do sistema

e Permitir cadastro de lembrete para usuario ou Grupo

O registro da histéria principal foi realizado com a utilizacdo da ferramenta. Em seguida
cadastramos as duas historias citadas, como sub-historias desta principal. Como apresentado
anteriormente, isto € possivel através do campo “Historia Pai” na tela de cadastro de historias.

Em seguida, cadastramos os detalhes da primeira sub-historia, modelando as classes
relacionadas a implementacdo desta funcionalidade. Na Figura 12 encontram-se as informagdes
cadastradas para a classe “Usuario”. No campo descrigdo encontra-se uma tag com o nome da
classe, seguida de uma descrigdo do que ela representa no mundo real. As consultas e comandos
também sdo descritos e encontram-se separados por virgula.

o5 Novo Detalhe de Histaria g@

Histdria:

Descrigio: | <Usuario>. Representa os usuanios do sistema: Aqueles que poderdo gerar e receber
lembretes de eventos, além de acessar infomagfes gerenciais, financeiras e relativas
&g contribuigBes cientificas.

Consultas: id.idade sex0,nome endereco

Comandos: Inserit Usuario,E ditar Usuario,Excluir Usuarid]

Restrigtes:

@ [@]

Figura 12. Especificacdo da classe “Usuario”

No momento da geracdo do arquivo XMI, o prototipo avalia se existem consultas
descritas para uma classe, que contenham o nome de outra classe pertencente a0 mesmo projeto.
Caso existam, estas consultas serdo mapeadas para associa¢des entre as devidas classes, ao invés
de um simples atributo. As associagdes sempre tém cardinalidade 1 para n, sendo n o nimero de
objetos, na associagéo, para a classe referenciada.

Um exemplo disso pode ser observado na classe “Grupo”que também foi modelada para
implementar a historia escolhida, tendo seu detalhamento exibido na Figura 13. A consulta

-

ESCOLA POLITECNICA
DE PERNAMBUCO

38
“usuarios” ¢ entendida como uma associa¢ao entre a classe “Grupo” ¢ a classe “Usuario”, sendo a
cardinalidade 1 para n, ou seja, um objeto do tipo “Grupo” se relaciona com zero ou varios
objetos do tipo “Usuario”. E importante observar ainda que os comandos estio separados por
quebra de linha, o que também ¢é suportado pelo gerador do XMI.

o2 Editando o Detalhe de Histdria M=%

Histdria:
Desciicdo: | <Grupo>. Agrupa usuérios em uma categoria especifica dando acesso a

funcionalidades ou negando-as. Também € utiizado para gerag3o de lembretes de
eventos para vaias pessoas de uma Unica vez.

Consultas: | id,usuatios,nome

Comandos: | Inserr Usuano (]
Exchur Usuano E
Insenr Grupo =
Editar Grupo [v‘

RestrigGes:

Figura 13. Especificacdo da classe “Grupo”

A segunda sub-historia foi detalhada conforme Figura 14. A classe “Lembrete” referencia
as classes “Usuario” e “Grupo”.

o) Editando o Detalhe de Historia M=%}

Histérnia:

Descigdo: Gerar <Lembrete> para usuanio ou gupo, a fim de ndo permiti que tarefas relativas &
conferéncia sejam esquecidas. Deve-se informar a data da tarefa a ser realizada e a
sua prionidade. Professores querem gerar lembietes uns para os outros e também para
outros giupos envolvidos na organizagdo.

Consultas: dataCriacao,datalembrete,usuario,grupo,descricao prioridade

Comandos: Gerar Lembrete

Editar Lembrete
Descartar Lembrete
Exibir Lembrete Usuario

Figura 14. Especificacdo da classe “Lembrete”

-

ESCOLA POLITECNICA
DE PERNAMBUCO

39

4.2.2 Importacao do Modelo

Cadastradas as historias desejadas e seus respectivos detalhes, utilizamos a funcionalidade
de geracdo de arquivo XMI disponibilizada na tela de Projetos. O arquivo “Sistema de
Gerenciamento de Conferéncia.xmi” foi entdo gerado no diretorio do prototipo.

Em seguida, utilizamos uma ferramenta MDA para importar o XMl gerado. O diagrama
de classes exibido na Figura 15 mostra o resultado desta importagéo realizada com o ArgoUML.
Os nomes de atributos e métodos foram gerados corretamente, assim como a relacdo entre as
classes. Contudo, podemos também observar as limitagdes do protdtipo, no que diz respeito, entre
outros, aos tipos de retorno dos métodos e aos tipos dos atributos que precisam ser modificados
no préprio modelo.

Usuario

Grupo

id
idade
sexo

id
nome

nome 0.* L T erir_Usuario{usuario : Usuario) : void
endereco Excluir_Usuariofusuario : Usuario) : void
Irserir_Grupo(grupo : Grupo) : veid
Editar_Grupo{grupo : Grupo) void
Excluir_Grupogrupo : Grupa) @ woid

Irs erir_Usuariofusuario : Usuario) : void
Editar_Usuarie{usuario : Usuario) : void
Exccluir_Usuariofus vario : Usuario) : void

Lembrete

dataC riacao
datal embsrete
descricao
prioridade

Gerar_Lembretelembrete : Lembrete) @ woid
Editar_Lembrete(lembrete : Lembrete) : woid
Descartar_Lembretellembrete | Lembrete) : woid
Exibir_Lembrete_Usuarioflembrete | Lembrete) : woid

Figura 15. Diagrama de classes gerado com ArgoUML a partir do XMI gerado

4.2.3 Geracao das Classes

Ap0s informarmos os tipos corretos dos atributos no ArgoUML, geramos as classes que
implementam este modelo abstrato gerado pela nossa ferramenta. A Figura 16 mostra o resultado
da geracdo de codigo realizada pelo ArgoUML sobre o modelo, para a classe “Grupo”. A geragao
foi feita em duas linguagens: Java e C#.

Observamos que a geracgéo da classe na linguagem Java ficou mais correta, uma vez que
em C#, a classe gerada importa uma biblioteca existente apenas na linguagem Java. Este € um
problema da ferramenta ArgoUML e provavelmente ndo ocorreria se outra ferramenta de
modelagem tivesse sido empregada.

_nd

POLI

ESCOLA POLITECNICA
DE PERNAMBUCO
Grupo.cs - X Grupo.java Grupo.cs v X
i :] Ll V] “3 Grupo v‘i] VJ
using java.lang; 71 import java.util.Vector; :‘1
Elpublic class Grupo] public class Grupo (
{
/7 Actributes public int id;
public inc id; public String nome;
public String nome;
£/ Associations public Vector myUsuario;
public Arraylist myUsuario; public Lembrete nmylLenbrete;

public Lembrete mylLembrete;
public void Inserir_Usuario(Usuario usuario} {
// Operations o3
public woid Inserir_Usuario(Usuaric usuario)
{ 3 public void Excluir_Usuario(Usuario usuario) (
H I }
public woid Excluir_Usuario(Usuaric usuario)
{ - public void Inserir Grupo(Grupo grupo) {
] I }
public woid Inserir_Grupo(Grupo grupo)
{ £ public void Editar_Grupo (Grupo grupo) {
] I }
public woid Editar_Grupo (Grupo grupo)
{ 7 public void Excluir_Grupo(Grupo grupo) {
) S
public woid Excluir_Grupo (Grupo grupo))
{
¥
“} /* end class Grupo */
| |

|l\
|~
[~
v

(@) (b)

Figura 16. (a) Classe “Grupo” na linguagem C# , (b) Mesma classe em Java

Ressaltamos que a geracdo de codigo pode ser realizada por qualquer ferramenta MDA
capaz de entender XMI, que é o padrdo utilizado para comunicacdo entre ferramentas de
modelagem.

Desta maneira, outras ferramentas como o BaseGen mostram-se interessantes para este
propdsito de geracdo semi-automatica de cddigo, uma vez que sua utilizacdo nos proporcionaria
ndo apenas as estruturas das classes, mas também cddigo de acesso a banco de dados e interface
grafica. A geracdo semi-automatica de codigo também se mostra interessante para manter
padrdes de codificacdo o que é uma das recomendacdes do XP.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

41

Capitulo 5

Conclusoes e Trabalhos Futuros

Este capitulo sumariza as contribuicBes deste trabalho, destacando as vantagens e
limitacdes da ferramenta de registro de histérias proposta, comentando os resultados obtidos com
sua utilizacdo na prova de conceito e indicando trabalhos futuros.

5.1 Conclusoes

Foi apresentado que o XP é um método agil amplamente utilizado na conducdo de
projetos de software e que sua utilizacdo, entre outros, torna o processo mais adaptavel a
mudangas no escopo a0 mesmo tempo em que diminui os riscos do produto ndo satisfazer as
necessidades do cliente. Ainda, o desenvolvimento XP é dividido em iteracdes e no inicio de cada
iteracdo o cliente explicita funcionalidades, ou histérias de usuério, a fim de que a equipe de
desenvolvimento as estime. Algumas histdrias sdo escolhidas para serem implementadas na
iteracdo atual.

Este trabalho objetivou a criacdo de um protétipo de ferramenta de registro de historias
XP, permitindo o gerenciamento das mesmas. Esta ferramenta também implementa a geragéo
automatica de um diagrama de classes a partir destas histdrias previamente cadastradas. Foram
apresentados detalhes técnicos sobre o projeto da ferramenta e sua implementacdo, ao longo do
trabalho. Além disso, discutimos, no Capitulo 3, as tecnologias utilizadas na sua construcao.

Discutimos o processo de desenvolvimento com a utilizacdo da ferramenta, ou seja,
analisamos o ponto de insercdo da ferramenta no processo XP. A importancia de sua utilizacdo no
planejamento e execucéo das iteracGes foi entdo abordada.

Uma prova de conceito foi realizada com a utilizacdo da ferramenta para um Sistema de
Gerenciamento de Conferéncia. Apds o cadastro das historias e seus detalhes, geramos o modelo
abstrato e o importamos com uma ferramenta de modelagem, a partir da qual, geramos c6digo em
C# e Java. Desta forma, mostramos que foi possivel mapearmos atributos, métodos e associa¢des

-

ESCOLA POLITECNICA
DE PERNAMBUCO

42
entre classes, apenas com o cadastro das historias e seus detalhes em linguagem natural, com a
utilizacdo de alguns artificios como tags e separadores.

Também citamos a possibilidade de importacdo do modelo gerado pelo prot6tipo, através
de ferramentas MDA, a exemplo do BaseGen, e discutimos as vantagens de sua utilizacao.

5.2 Trabalhos Futuros

O prototipo desenvolvido apresenta algumas limitagcGes, como discutido no capitulo 3.
Contudo, este protétipo pode ser expandido em vérias dire¢es. A seguir sdo sugeridos alguns
trabalhos futuros:

1. Utilizar lingua natural controlada para especificar as restricdes das classes,
utilizando OCL para inclui-las no modelo gerado. Isto seria um beneficio
extremamente importante obtido com a adocao da ferramenta.

2. Também utilizando lingua natural controlada, permitir a criacdo de classes de teste
a partir da descricdo das histdrias.

3. Criar interface grafica que possibilite a manipulacdo das histérias como cartbes
dispostos em uma mesa. Esta é a forma habitual de manipular histérias em XP.

4. Dar suporte a outros elementos de UML na criacdo do modelo. Apenas classes,
atributos, métodos e associacdes sdo gerados atualmente.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

43

Bibliografia

[1] SOMMERVILLE, lan. Software Engineering. 6.ed. Lancaster: Addison-Wesley, 2001.
720 p.

[2] PRESSMAN, Roger S. Software engineering: a practitioner's approach. 4.ed. New
York: McGraw-Hill, 1997. 885 p.

[3] JACOBSON, Ivar; BOOCH, Grady; RUMBAUGH, James. The Unified software
development process: the complete guide to the Unified Process from the original
designers. 1.ed. Reading, MA: Addison-Wesley, 1999. 463 p.

[4] MANIFESTO for Agile Software Development. Disponivel em
<http://www.agilemanifesto.org>. Acesso em 10.11.2007.

[5] BECK, Kent. Extreme Programming Explained: Embrace change. Reading,
Massachusetts: 1.ed. Addison-Wesley, 2000. 190 p.

[6] BOOCH, G.; RUMBAUGH J.; JACOBSON, Ivar. The Unified Modeling Language User
Guide: Addison-Wesley. 2005. 475 p. (Object Technology Series)

[7] OBJECT MANAGEMENT GROUP. Model Driven Architecture. 2007. Disponivel em:
<http://www.omqg.br/mda>. Acesso em 10.09.2007.

[8] SILVA, RODRIGO. BaseGen: Uma ferramenta baseada em MDA para construcdo Semi-
Automética de aplicacbes WEB. 2006. 178 p. Dissertacdo (Mestrado) — Universidade
Federal da Paraiba, Jodo Pessoa.

[9] COLLABNET. ArgoUML. Disponivel em <http://argouml.tigris.org/>. Acesso em
01.11.2007.

[10] SCHWABER, KEN. SCRUM Development Process — Advanced Development Methods,
1997. Disponivel em: <http://jeffsutherland.com/oopsla/schwapub.pdf>. Acesso em
01.09.2007.

[11] CRYSTAL. Crystal Methodologies. Disponivel em: <http://crystalmethodologies.org>
Acesso em 15.11.2007.

[12] ELSSAMADESY, AMR. Patterns of Agile Practices Adoption — The Technical Cluster,
2007.

[13] BECK, Kent; FOWLER, Martin. Planning Extreme Programming. 1.ed. Boston: Addison-
Wesley, 2001. 139 p.

[14] POPPENDIECK, Mary; POPPENDIECK, Tom. Lean software development: an agile
toolkit. 1.ed. Upper Saddle River, NJ: Addison-Wesley, 2003. 240 p.

[15] BECK, Kent; ANDRES, Cynthia. Extreme Programming Explained: Embrace Change.
2.ed. Addison Wesley Professional, 2004. 190 p.

[16] FOWLER, Martin. The New Methodology. Disponivel em:
<http://www.martinfowler.com/articles/newMethodology.html>. Acesso em: 01.11.2007.

[17] COHN, MIKE. User Histories Applied. 1.ed. Addison-Wesley, 2004, p. 17-28.

[18] WAKE, William C. Extreme Programming Explored. Reading, Massachusetts: Ed.
Addison-Wesley, 2002.

[19] OBJECT MANAGEMENT GROUP. The Object Management Group. Disponivel em
<http://www.omg.org>. Acesso em 03.11.2007.

[20] RAMLIJAKM D., et al. Building Enterprise Information System Using Model Driven
Architecture on J2ee Platform. Telecommunications, 2003. ConTel 2003. Proceeding of
the 7" International Conference em 13.11.2003.521—526vol.2 p.

http://www.omg.br/mda

-

ESCOLA POLITECNICA
DE PERNAMBUCO

44

[21] OBJECT MANAGEMENT GROUP. Xml Metadata Interchange. 2006. Disponivel em
<http://www.omg.org/docs/formal/05-09-01.pdf>>. Acesso em 03.11.2007.

[22] WARMER, Jos; KLEPPE, Anneke. The Object Constraint Language: Getting Your
Models Ready for MDA. Second Edition. Massachusetts: Ed.Addison Wesley, 2003. 240
p.

[23] WALDEN, Kim e NERSON, J. Seamless Object-Oriented Software Architecture —
Analysis and design of reliable systems. 1.ed. Prentice Hall, 1995. p. 3-30. (The Object-
Oriented Series).

[24] MARCHAL, Benoit. XML — Conceitos e Aplicacdes. Ed.Berkeley, 2000.

[25] OBJECT MANAGMENT GROUP. OMG’s MetaObject Facility. Disponivel em
<http://www.omg.org/mof>. Acesso em 10.11.2007.

[26] MICROSOFT. Microsoft Developer Network. Disponivel em
<http://msdn2.microsoft.com/pt-br/default.aspx >. Acesso em 02.11.2007.

