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Resumo 

Com a popularização da Internet e o desenvolvimento de redes de computadores de alta 

velocidade, sistemas computacionais passaram a ser usados em diversas novas áreas de aplicação. 

Varias dessas aplicações demandam um alto grau de confiabilidade, de modo a garantir que: (i) o 

sistema se comporta de acordo com sua especificação; (ii) falhas não resultam em eventos 

catastróficos como perdas de vidas humanas ou grandes perdas financeiras. Tolerância a falhas é 

uma das abordagens empregadas para garantir que sistemas distribuídos atinjam o grau esperado 

de confiabilidade. É uma técnica que visa garantir que o sistema se comporta de acordo com sua 

especificação mesmo na manifestação de falhas. Neste trabalho, apresentamos um estudo sobre 

tolerância a falhas e sobre os mecanismo de detecção e recuperação de defeitos, que são técnicas 

importantes para que um sistema mascare as falhas de seus componentes. A detecção de defeitos 

serve para descobrir a ocorrência de defeitos no sistema. Após a detecção dos defeitos, são usadas 

técnicas de recuperação de defeitos para guiar o sistema a um estado consistente. Em nosso 

trabalho selecionamos um conjunto de infra-estruturas de middleware composto por infra-

estruturas desenvolvidas tanto no âmbito comercial quanto no âmbito acadêmico, sendo elas 

JBoss, Horus, Sprint, ICE, Tao. Este trabalho visa fornecer uma visão geral dessas infra-

estruturas de middleware, com ênfase nos mecanismos de tolerância a falhas disponiveis em cada 

uma delas. Tambem analisamos as técnicas de detecção e recuperação de defeitos implementadas 

por cada uma e fazemos uma comparação para dar suporte aos desenvolvedores na escolha da 

infra-estrutura ideal para o desenvolvimento de um sistema de software tolerante a falhas. 
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Abstract 

With the popularization of the Internet and the development of high speed computer networks , 

computational systems had started to be used in several new areas of application. You vary of 

these applications demand one high degree of reliability, in order to guarantee that: (i) the system 

if holds its specification in accordance with; (II) faults do not result in catastrophic events as 

losses of lives human beings or great financial losses. Fault Tolerance is one of the used 

approaches to guarantee that distributed systems reach the waited degree of reliability. It is one 

technique that it aims at to guarantee that the system if in accordance with holds its same 

specification in the manifestation of faults. In this work, we present a study on fault tolerance and 

the mechanism of failure detection and failure recovery, that are important techniques so that a 

system masks the ifailuress of its components. The failures detection serves to discover the 

occurrence of failure in the system. After the failure detection, techniques of failure recovery are 

used to guide the system to a consistent state. In our work we in such a way select a set of 

infrastructures of middleware composed for infrastructures developed in the commercial scope 

how much in the academic scope, being they JBoss, Horus, Sprint, TAO and ICE, So. This work 

aims at to supply a general vision of these infrastructures of middleware, with emphasis in the 

tolerance mechanisms the available imperfections in each one of them. Also we analyze the 

techniques of failure detection and failure recovery implemented for each one and make a 

comparison to give has supported to the developers in the choice of the ideal infrastructure for the 

development of a system of fault tolerant software. 
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1  

 

Introdução 

Com a popularização da Internet e o desenvolvimento de redes de computadores de alta 
velocidade, sistemas computacionais passaram a ser usados em diversas novas áreas de aplicação. 
Varias dessas aplicações demandam um alto grau de confiabilidade, de modo a garantir que: (i) o 
sistema se comporta de acordo com sua especificação; (ii) falhas não resultam em eventos 
catastróficos como perdas de vidas humanas ou grandes perdas financeiras. Confiabilidade e 
disponibilidade são cada vez mais desejáveis e necessários em sistemas de computação, pois a 
cada dia aumenta a dependência da sociedade de sistemas automatizados e informatizados. Por 
exemplo, uma transação bancaria é uma operação que necessita alta confiabilidade, pois se ocorre 
uma falha enquanto é feita uma atualização no banco de dados após uma transferência, haverá 
uma inconsistência nos dados após essa atualização, com potenciais perdas financeiras para as 
partes interessadas. 
Tolerância a falhas é uma das abordagens empregadas para garantir que sistemas distribuídos 
atingem o grau esperado de confiabilidade. Para desenvolvedores de software ou projetistas de 
hardware, o domínio das técnicas de tolerância a falhas torna-se essencial na seleção de 
tecnologias e especificação de sistemas. Com a disseminação de computadores e o aumento da 
complexidade dos sistemas computacionais na atualidade, a possibilidade de ocorrência de falhas 
é cada vez maior. Preservar a integridade e a disponibilidade implica em medidas extras de 
segurança na forma de verificação de consistência e redundância. Redundância é a chave para a 
tolerância a falhas. Todas as técnicas de tolerância a falhas envolvem alguma forma de 
redundância. Um sistema implementa redundância se inclui dados, módulos de software e/ou 
hardware, unidades de processamento ou realiza ações que não seriam necessários para ele prover 
sua funcionalidade, conforme definida por sua especificação, na ausência de falhas. 
Duas funcionalidades de um sistema fundamentais para prover tolerância a falhas são a detecção 
e a recuperação de defeitos. A detecção de defeitos visa identificar os elementos do sistema que 
falharam enquanto a recuperação de defeitos leva o sistema para um estado válido. Recuperação 
de defeitos ocorre depois da detecção do defeito, e seu objetivo é fazer uma troca do estado atual 
incorreto por um novo estado livre de erros. 
Há vários mecanismos que podem ser utilizados na detecção e na recuperação de defeitos. Esses 
mecanismos podem ser usados nos sistemas para garantir a confiabilidade da operação, mas isso 
causaria um alto custo computacional, de hardware ou de software. As infra-estruturas de 
middleware existentes implementam diversos mecanismos de detecção de defeitos e recuperação 
de defeitos. Por isso, fica difícil para os desenvolvedores estabelecer qual a infra-estrutura mais 
apropriada para o desenvolvimento de uma aplicação distribuída tolerante a falhas. O sucesso de 
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um sistema tolerante a falhas depende da eficiência da detecção e recuperação de defeitos na 
ocorrência de falhas. É importante o estudo  da detecção de defeitos por ela ser a fase inicial e de 
extrema importância para que um sistema tolere falhas e a recuperação de defeitos para que os 
defeitos sejam recuperados e o sistema não pare de funcionar, o que pode causar diversos danos a 
sistemas criticos. 

1.1.1 Motivação 

Este trabalho visa estudar os serviços oferecidos (ou não) por um conjunto de infra-estruturas de 
middleware existentes. Sua principal motivação é fornecer para os desenvolvedores uma base de 
informações para auxiliar na escolha de uma infra-estrutura que seja mais compatível com os 
requisitos de cada aplicação. Para a construção desta base de informações selecionamos um sub-
conjunto que consideramos representativo das infra-estruturas de middleware existentes, 
composto por infra-estruturas comerciais e infra-estruturas desenvolvidas no âmbito acadêmico. 
Sendo elas, Sprint, Horus, TAO, ICE e JBoss. Estas informações são organizadas em termos dos 
mecanismos de tolerância a falhas providos por cada infra-estrutura. Tais mecanismos são 
divididos em detecção e recuperação de defeitos, pois essas duas funcionalidades são essenciais à 
construção de sistemas distribuídos tolerantes a falhas. A organização dos resultados de acordo 
com os quesitos detecção e recuperação de defeitos facilitará o entendimento da comparação e 
permitirá que desenvolvedores avaliem esses critérios de forma separada. 
 

1.1.2 Organização do Trabalho 

Esta monografia está organizada de seguinte maneira. O capítulo 2 apresenta uma descrição de 
tolerância a falhas, dos tipos de falhas existentes, do que acontece com os sistemas na ocorrência 
destas falhas e suas conseqüências. Apresetamos uma breve apresentação dos mecanismos de 
tolerância a falhas e uma melhor explicação dos mecanismos que servirão de base para a análise 
proposta por este trabalho e por fim alguns exemplos de aplicações. O capítulo 3 descreve as 
infra-estruturas de middleware escolhidas para análise focalizando os mecanismos de tolerância a 
falhas providos por cada uma delas, além de uma comparação entre o que cada infra-estrutura 
fornece e quais as diferenças ou variações. Assim forneceremos uma conclusão das utilizações 
das infra-estruturas estudas de acordo com os mecanismos de detecção e recuperação de defeitos. 
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2  

Visão Geral de Tolerância a Falhas 

Neste capítulo são descritos os conceitos principais de tolerância a falhas necessário para o 
entendimento deste trabalho. Apesar da existencia de técnicas diferentes de tolerância a falhas, 
este trabalho tem como foco principal o estudo dos mecanismos de detecção e recuperação de 
defeitos. 

2.1 Sistemas Distribuídos  
De acordo com Tanembaum e Steen, um sistema distribuído é “um conjunto de computadores 
independentes que se apresenta a seus usuários como um sistema único e coerente” [1]. 
Um sistema distribuído oculta dos usuários a comunicação entre os vários computadores que o 
compõem. Um sistema distribuído deve estar continuamente disponível mesmo que alguma parte 
esteja indisponível temporariamente, pois os usuários podem perceber quando uma parte esta 
avariada ou esta sendo adicionada.  
Os sistemas distribuídos costumam ser organizados por meio de uma camada de software, que é 
situada logicamente entre uma camada de nível mais alto, composta de usuários e aplicações, e 
uma camada subjacente, que consiste em sistemas operacionais e facilidades básicas de 
comunicação. Devido a sua localização, essa camada de software é chamada de middleware[1] 
(Figura 1). O middleware é utilizado para esconder a heterogeneidade e para mascarar a 
complexidade dos mecanismos de redes e dos computadores em um sistema distribuído. 

 
Figura 1. Sistema Distribuído Organizado com Middleware[1]. 
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Um atributo importante no desenvolvimento de um sistema distribuído é a transparência. Um 
sistema transparente deve ocultar dos usuários e programas o fato de seus processos e recursos 
estarem distribuídos por vários computadores[1]. Alguns tipos de transparência são descritos na 
Tabela 1. A transparência de acesso trata de ocultar diferenças em representação de dados e o 
modo como os recursos podem ser acessados por um usuário, com isso podemos chegar a um 
acordo de como os dados devem ser tratados por máquinas e sistemas operacionais diferentes. A 
transparência de migração diz-se dos sistemas distribuídos nos quais os recursos podem ser 
movimentados sem afetar o modo como podem ser acessados, assim os recursos podem ser 
relocados enquanto estão sendo usados. 
 

Tabela 1 Diferentes Formas de Transparencia em um Sistema Distribuido 
Transparência  Descrição  

Acesso Oculta diferenças na representação de dados e no modo de acesso a um recurso 
Localização  Oculta o lugar em que um recurso esta localizado 
Migração Oculta que um recurso pode ser movido para outra localização  
Relocação Oculta que um recurso pode ser movido para outra localização enquanto em uso 
Replicação  Oculta que um recurso é replicado 
Concorrência Oculta que um recurso pode ser compartilhado por diversos usuários concorrentes 
Falha  Oculta a falha e a recuperação de um recurso 

 

2.1.1 Propriedades de sistemas distribuídos 

As propriedades de um sistema distribuído são estabelecidas pela sua execução. Lamport define 
que há duas classes importantes  de propriedades para se descrever problemas em sistemas 
distribuídos: safety e liveness[2]. As Propriedades de safety especificam que o sistema nunca 
alcançará alguns estados indesejáveis. Por exemplo, uma atualização em um banco de dados 
réplicado sempre terminará com todas as réplicas consistentes. As propriedades de liveness, por 
sua vez, especificam que certos estados válidos considerados desejáveis ocorrerão em algum 
momento da execução do sistema. Por exemplo, quando se envia uma mensagem entre duas 
aplicações, adiante o destinatário receberá a mensagem correta do remetente. Idealmente um 
sistema distribuído tolerante a falhas deve satisfazer todas as suas propriedades de safety e 
liveness. Existem quatro combinações possíveis entre estas propriedades que também podem 
favorecer tolerância a falhas.  
Sistemas que fornecem safety e liveness são denominados de mascarados(Do inglês: masking) e 
são mais caros, mais rigorosos e mais desejáveis para implementação, pois fornecem maior 
transparência a falhas. Sistemas que garantem safety, mas não liveness são chamados fail-safe. 
Tais sistemas garantem a consistência das operações, embora não forneçam garantias de 
progresso. No exemplo do carro esperando num semáforo, se o semáforo nunca saísse do 
vermelho, o sistema seria fail-safe, já que, apesar de não fazer progresso, ele evitaria a ocorrência 
de acidentes. 

2.2 Falha, Erro e Defeito 
Na terminologia de tolerância a falhas, os termos “falha”, “erro” e “defeito” têm significados 
distinto e bem definidos[3]. Um defeito (failure) ocorre quando o comportamento externamente 
observável do sistema se desvia de suas especificações iniciais. Um estado errôneo de um sistema 
é um estado interno que pode levá-lo a um defeito a partir de uma seqüência de transições 
validas. O erro (error) é parte de um estado errôneo que constitui uma diferença de um estado 
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valido. Falhas (fault) são causas, físicas ou algorítmicas, de um erro. Conforme a Figura 2, um 
erro é uma manifestação de uma falha num sistema e um defeito é a manifestação do erro num 
sistema. No entanto, uma falha não necessariamente provocará um erro, pois a falha pode estar 
presente no sistema, mas o erro não se manifesta porque o componente da falha não foi utilizado. 
Analogamente, um erro não necessariamente conduz a um defeito. 
 

 
Figura 2. Relação entre falha, erro e defeito 

 
A Figura 3 mostra uma esquematização para os conceitos de falha, erro e defeito propostos por 
Johnson[4] denominada Modelo dos Três Universos. De acordo com este modelo, as falhas estão 
associadas ao universo físico, erros ao universo da informação e defeitos ao universo do usuário. 
Por exemplo: um chip de memória que apresenta uma falha do tipo preso-em-zero (stuck-at-zero) 
em um de seus bits (falha no universo físico) pode provocar uma interpretação errada da 
informação armazenada em uma estrutura de dados (erro no universo da informação) e como 
resultado o sistema exibe um valor incorreto para o usuário num determinado dia(erro no 
universo do usuário). Vale ressaltar que falhas também podem estar no universo da informação, 
por exemplo, um bug em um programa normalmente é visto com uma falha de projeto[3]. 
 

 
Figura 3. Modelo de 3 Universos: falha, erro e defeito[5]. 

 
Existem duas abordagens, como mostrado na Figura 4, que são usadas para garantir a 
confiabilidade de um sistema: Prevenção de Falhas(Fault Prevention), que visa assegurar que 
todas as possibilidades de ocorrência de falha foram removidas do sistema durante o 
desenvolvimento[3], e Tolerância de Falhas (Fault Tolerance) que supõe que a implementação de 
um sistema não é perfeita e visa tornar o sistema capaz de lidar com falhas  em tempo de 
execução, a fim para garantir um certo grau de confiabilidade[3]. A prevenção de falhas ainda é 
dividida em dois aspectos: Previsão de Falhas (Fault Avoidance), onde são selecionadas técnicas 
e tecnologias para evitar a introdução de falhas durante a construção do sistema, e Remoção de 
Falhas (Fault Removal), que se preocupa em checar a implementação do sistema e remover a 
falhas latentes no sistema. Após a remoção das falhas, o sistema pode ser posto em operação[3]. 
Na fase de prevenção de falhas, os defeitos são corrigidos durante o desenvolvimento do 
sistemas. A previsão de falhas utiliza técnicas para previnir que falhas não seram introduzidas no 
sistema durante a fase de implementação, mas como é difícil detectar todos os defeitos de forma 
precisa, depois da implementação utiliza-se a remoção de falhas para que defeitos encontrados 
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depois da fase de implementação sejam removidas. Depois de executada essas duas técnicas de 
prevenção o sistema pode ser utilizado. Na fase de tolerância de falhas são usadas técnicas para 
que os defeitos existentes, durante a execução do sistema, sejam detectados e recuperados sem 
que seja afetada sua execução.  

 
Figura 4. Abordagens de confiabilidade[3]. 

2.3 Tolerância a Falhas 
A tolerância a falhas é uma técnica que visa garantir que o sistema se comporta de acordo com 
sua especificação mesmo quando falhas se manifestam, através de técnicas de prevenção e 
remoção de erros. 
Um sistema distribuído fornece o serviço de tolerância a falhas quando, no evento de um 
problema, se recupera de forma automática, mascarando a falha e evitando que o usuário perceba 
a sua ocorrência. Certas falhas ocorridas no sistema são mascaradas de forma que o usuário não 
perceba que um recurso deixou de funcionar bem e que o próprio sistema já se recuperou da 
falha.  
O objetivo de tolerância a falhas é alcançar dependabilidade (dependability), que indica a 
qualidade do serviço fornecido por um dado sistema e a confiança depositada no serviço 
fornecido[5]. A tolerância a falhas está intimamente ligada à confiabilidade (reliability), 
capacidade de atender a especificação, dentro de condições definidas, durante certo período de 
funcionamento e condicionado a estar operacional no inicio do período[5] e o controle de falhas. 
Em um sistema distribuído, confiabilidade envolve alguns atributos adicionais: 

• Disponibilidade (availability): probabilidade de um sistema estar operacional em um 
dado intervalo de tempo[5];  

• Segurança contra acidentes (safety): probabilidade do sistema ou estar operacional e 
executar sua função corretamente ou descontinuar suas funções de forma a não provocar 
dano a outros sistemas ou pessoas que dependam dele[5];  

• Facilidade de manutenção: facilidade com que um sistema que falhou pode ser 
consertado [1]. 
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2.3.1 Modelo de falhas  

Segundo Schneider[6] um modelo de falhas é uma coleção de atributos e um conjunto de regras 
que governam a interação entre componentes que falham. Como os sistemas distribuídos são, 
geralmente, desenvolvidos baseados na comunicação Cliente/Servidor, se essa comunicação não 
está fornecendo o serviço corretamente, isso significa que o servidor, o canal de comunicação, ou 
ambos não estão executando da maneira esperada. Porém, nem sempre as falhas ocorrem pelo 
mau funcionamento do servidor. Se tal servidor depender de outros servidores para prestar seus 
serviços adequadamente, pode ser que a causa do problema tenha de ser procurada em algum 
outro lugar[1]. Por este motivo foram criadas algumas formas de classificação das falhas. O 
modelo clássico de falhas em sistemas distribuídos (Figura 5) é baseado no esquema de 
Cristian[7]:  
 

 
Figura 5. Modelo de falhas em sistemas distribuídos[5]. 

 
As diversas classes de falhas nesse modelo indicam o comportamento dos componentes falhos do 
sistema, quando as falhas ocorrem. 

• Falha por Queda(crash fault): o processo pára de funcionar, mas estava funcionando 
corretamente até parar. É impossível saber se o processo falhou ou se simplesmente está 
muito lento[8] 

• Falha por Omissão(omission fault): o processo não consegue responder a requisições que 
chegam. 

• Falha de Temporização(timing fault): a resposta do processo se encontra fora do 
intervalo de tempo(adiantada ou atrasada). 

• Falha de Resposta: a resposta do servidor do processo está incorreta. Podendo a resposta 
ser um valor errado do servidor ao que lhe foi requisitado, ou um desvio do estado correto 
devido a uma requisição que não pôde ser reconhecida pelo servidor[1]. 

• Falha Arbitrária ou Bizantina(byzantine fault): um processo pode produzir respostas 
arbitrárias em momentos arbitrários. Um servidor produz saídas que nunca deveria ter 
produzido, mas que não podem ser detectadas como incorretas. Porém, o servidor pode 
estar intencionalmente trabalhando maliciosamente com outros servidores para produzir 
respostas erradas. 

 
Schneider desenvolveu uma extensão do modelo de Cristian, onde ele adiciona o modelo fail-stop 
e desmembra a falha por omissão em omissão de envio e omissão de recebimento. 
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• Fail-stop: o processo pode parar de funcionar, mas isso pode facilmente ser percebido 
pelos processos vizinho[8]. 

• Omissão de Envio: o processo não consegue enviar mensagens. 
• Omissão de Recebimento: o processo não consegue receber mensagens que chegam. 

Os dois modelo refletem falhas que afetam as trocas de mensagens entre os nós de comunicação. 

2.3.2 Escopo de falhas 

As falhas ainda podem ser classificadas de acordo com o seu escopo. Considera-se que há três 
escopos possíveis para uma falha: falhas físicas(physical faults), falhas de interação(interaction 
faults) e falhas de projeto(design faults)[9,10]. Podem ainda ser classificadas em termos de 
Extensão, Valor e Duração. A extensão(Extent) de uma falha é dita local se os erros gerados por 
uma falha afetam somente componentes de uma única variável lógica em um módulo. Falhas são 
ditas distribuídas, se afetam duas ou mais variáveis lógicas ou subsistemas. O valor(Value) de 
uma falha transforma as variáveis em um valor determinado ou indeterminado. Do ponto de vista 
de duração(Duration), uma falha é dita transiente se ocorre somente em um período de tempo( 
menor que um limiar determinado), depois desaparece e não ocorre novamente se a operação for 
repetida. Se a falha continua a existir após o limiar até que o componente faltoso seja substituído, 
ela é dita permanente[10]. 

• Falhas Físicas estão relacionadas aos componentes físicos do sistema, devido a mal-
funcionamento de hardware, fadiga de componentes físicos, perturbações 
externas(temperatura, radiação,...). 

• Falhas de Projeto acontecem devido a erros cometidos na fase de projeto. São causados 
principalmente por especificações erradas, ambíguas ou incompletas e podem ocorrer 
tanto em nível de hardware, que são difíceis de ser eliminadas, quanto em nível de 
software, que podem ser corrigidas. Por exemplo, em 1971 na França, durante um 
experimento metereológico, de 141 balões atmosféricos, 72 explodiram devido a uma 
falha no software que controlava o experimento[9].  

• Falhas de Interação são causadas por usos indevidos do operador durante a operação e 
manutenção do sistema. Podem ser classificadas em Não-Maliciosas, quando o operador 
viola um procedimento da operação sem ter consciência das possíveis conseqüências de 
seu ato, e Maliciosas, quando pessoas não-autorizadas e mal-intencionadas levam o 
sistema a falhar, por exemplo, devido ao efeito de Cavalos de Tróia (Trojan-Horse), Vírus 
ou Worms[9]. 

A combinação entre falhas de interação e falhas de projeto resulta nas chamadas Falhas 
Humanas[5]. 

2.3.3 Conseqüência de falhas 

Em geral, a manifestação de falhas tem como conseqüência problemas econômicos. Em alguns 
casos, a manifestação de falhas pode provocar eventos catastróficos, até mesmo com perda de 
vidas humanas. A Tabela 2 apresenta exemplos de defeitos desastrosos nas décadas de 80 e 
90[10]. Os exemplos estão relacionados às causas das falhas e defeitos e à dependabilidade do 
sistema. 
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Tabela 2   Exemplos de defeitos desastrosos 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Para exemplicar alguns do acontecimentos citados na Tabela 2 temos que, na Guerra do Golfo em 
fevereiro de 1991 foram noticiados vários relatos de falhas em mísseis. Em junho de 1993, 
durante dois dias, não foi autorizada nenhuma operação de cartão de créditos em toda a França. 
Varias missões da NASA e Marte terminaram em fracasso total ou parcial. 

2.3.4 Fases da Tolerância a Falhas 

A classificação de técnicas de tolerância a falhas mais comum é composta por 4 fases: detecção 
de erros, confinamento e avaliação de danos, recuperação de erros e tratamento de falhas. Não é 
necessário o uso de todas as técnicas ao mesmo tempo. A combinação das técnicas depende do 
uso no serviço fornecido pelo sistema, pois em alguns casos o sistema pode se tornar caro demais 
se todas as fases forem empregadas. 

• Detecção de erros(Error Detection): para o sucesso de um sistema tolerante a falhas, esta 
técnica deve ser a primeira a ser executada, pois a manifestação de uma falha em um 
sistema pode gerar um erro e um erro, diferentemente de uma falha pode ser detectado por 
um mecanismo de detecção(ex: duplicação e comparação)[3]. Na literatura de sistemas 
distribuídos, normalmente usa-se o termo detecção de defeitos(e recuperação de defeitos), 
já que a detecção de um problema envolve um ou mais componentes do sistema 
manifestando um defeito que pode ser observado pelos outros componentes(ex: o 
componente faltoso está rodando num computador que pára de funcionar. 

• Confinamento e avaliação de Danos(Damage Confinement and Assessment): depois da 
detecção de um erro, devido ao intervalo entre a manifestação e a detecção, alguns estados 
podem propagar  informações erradas dentro do sistema, conduzindo os próximos estados 
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Junho 1980: Falsos alertas da Defesa 
Aérea Norte Americana (NORAD) X   X  X  

Abril 1981: Adiamento do primeiro 
lançamento da espaçonave Shuttle  X  X  X  

Junho 1985 – Janeiro 1987: Doses 
excessivas de Radioterapia(Therac-25)  X  X   X 

Novembro 1988: Internet Worm  X X   X  
15 de Janeiro de 1990: Telefonemas de 
longa distancia fora do ar por 9 horas 

nos Estados Unidos. 
 X   X X  

Fevereiro 1991: Mísseis Scud(Guerra 
do Golfo)  X X X  X X 

Novembro 1992: Colapso no sistema 
de comunicação do serviço de 

ambulâncias em Londres 
 X X  X X X 

26 e 27 de Junho 1993: Autorizações 
não permitidas nas operações de cartão 

de credito na França 
X X   X X  
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ao erro[3]. Em consequencia disso, um sistema tolerante a falhas deve ser capaz de 
impedir essa propagação. 

• Recuperação de Erros(Error Recovery): a recuperação de erro visa transformar o estado 
errôneo  atual em um estado livre de erros para que a operação normal do sistema 
continue. A recuperação pode ser de duas formas: por retrocesso(backward error 
recovery) e por avanço (forward error recovery). 

• Tratamento de Falhas(Fault Treatment ): o tratamento de falhas consiste em 2 etapas. 
Primeiro é localizado a origem da falha, em seguida a falha é reparada ou o restante do 
sistema é recuperado para evitar a transiência da falha[3]. 

2.3.5 Redundância 

Redundância é a chave para a tolerância a falhas. Todas as técnicas de tolerância a falhas 
envolvem alguma forma de redundância. Um significado usualmente sugerido de redundância é 
que o sistema inclui componentes que, durante sua operação normal, não são utilizados porque 
existe outra parte de sistema que faz o mesmo serviço[8]. Se o sistema nunca falhar, seus 
componentes nunca serão usados. Redundância pode aparecer de 3 formas diferentes: 

• Redundância de Informação: bits ou sinais extras são armazenados ou transmitidos 
junto ao dado, sem que contenham qualquer informação útil[5]. Estes bits servem para 
detectar erros e mascarar falhas. Exemplos incluem checksums(adiciona informações 
extras a um bloco de informação para possibilitar detecção de erros), paridade(adiciona 
bit(s) para manter nos bits armazenados uma quantidade par, ou ímpar dependendo da 
paridade implementada, de bits com o valor 1). 

• Redundância de Tempo: re-executa computações com as mesmas entradas. Utilizada 
para indicar se a falha é transiente ou permanente. Usada em sistemas onde o tempo não é 
critico, ou que possuem processadores parcialmente ociosos[5].  

• Redundância Física: são adicionados equipamentos(redundância de hardware) ou 
componentes de software extras(redundância de software) para possibilitar que o sistema 
tolere a perda ou o mau funcionamento de alguns componentes[1]. Na redundância de 
hardware são replicados componentes, unidades de memória, fontes de alimentação, 
dentre outros, com a finalidade de detecção de erros ou reparo do sistema transferindo as 
tarefas de um componente falho para outro redundante. Na redundância de software, 
ocorre a utilização de versões distintas do mesmo software, desenvolvidas a partir da 
mesma especificação, porém implementadas utilizando abordagens e equipes de 
programação distintos.  

Apesar de redundância ser um recurso indispensável para tolerância a falhas, o seu uso, em 
qualquer projeto, deve ser bem ponderado para não haver o aumento de falhas no sistema e 
desviar de sua dependabilidade. Além disso, redundância pode implicar em um aumento 
significativo no custo do desenvolvimento do software. 
 

2.3.6 Replicação 

Replicação é um caso particular da redundância, onde apenas uma porção do sistema em 
execução será distríbuido entre as cópias do sistema. A forma mais comum de se fornecer 
tolerância a falhas em sistemas é por meio de réplicação das funcionalidades. A replicação 
consiste em manter cópias de um mesmo objeto em dispositivos diferentes para utilizar na 
recuperação do sistema em caso de falha de algum dispositivo durante a execução do sistema. A 
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motivação para o uso de réplicação estão no melhoramento de serviços de desempenho, elevar a 
disponobilidade, ou criar tolerância a falha.  
Quando um dado é réplicado uma exigência comum é a transparência da réplicação, ou seja, o 
cliente normalmente pode não estar ciente de que existem múltiplas cópias físicas do dado.os 
dados são organizados como objetos lógicos individuais e os clientes identificam apenas um item 
em cada caso quando uma requisitam uma operação para ser desempenhada. As operações podem 
ser executadas em mais de uma cópia física, porém o cliente recebera apenas um único conjunto 
de valores. 
A réplicação pode ser dividida principalmente de duas formas: réplicação ativa e réplicação 
passiva. 

• Réplicação ativa: todas as réplicas têm o mesmo papel, sem existir uma réplica 
centralizadora. 

• Réplicação Passiva: usa um servidor primário. Os outros servem apenas como uma cópia 
de backup, e não interagem com o cliente. 

 
Existem cinco tipos de replicação: stateless, cold passive, warm passive, active e active with 
voting. 

• Stateless(sem estado): não utiliza nenhum mecanismo de tolerância a falhas adicional, 
pois é usada apenas para leitura de dados. 

• Cold passive(passiva fria): apenas os objetos primários recebem as requisições do cliente, 
enquanto os outros funcionam como um backup. Um deles será nomeado como primário 
na ocorrência de alguma falha. A cada intervalo de checkpoint o objeto registra seu estado 
no log que é disseminado para os demais objetos. Desse modo, defeitos do objeto 
primário podem ser recuperados através da eleição de um novo objeto primário. 

• Warm passive(passiva quente): o recebimento das mensagens e o funcionamento dos 
mecanismos de checkpoint e logging são similares ao da passiva fria, porém os objetos 
backup atualizam o estado do objeto imediatamente após o checkpoint  pelo seu 
mecanismo de recuperação, independente da ocorrência de falhas. 

• Active(ativa): tipo mais seguro e caro de réplicação. Não utiliza mecanismos de logging e 
recuperação porque todos os objetos recebem as requisições do cliente e as processam 
imediatamente. 

• Active with voting(ativação com votação): funciona de forma similar à ativa, porém, as 
respostas passam por uma votação e a que é considerada mais correta é enviada ao cliente. 

2.3.7 Transações  

O objetivo das transações é de garantir que todos os objetos gerenciados pelo servidor 
permaneçam num estado consistente quando são acessadas por múltiplas transações e na presença 
de servidores falhos. Uma transação distribuída envolve um ou mais hospedeiros da rede. 
Transações devem garantir a integridade dos dados e a consistência dos objetos, pois transações 
distribuídas devem alterar os estados de vários processos em máquinas diferentes. Transações 
distribuídas, como qualquer outra transação, deve dar suporte às propriedades ACID 
(Atomicidade, Consistência, Isolamento e Durabilidade). Todas as mudanças resultante de uma 
transação são aplicados por inteiro ou não são aplicados(atomicidade); transações bem-sucessidas 
não levam um banco de dados de um estado correto para um estado incorreto(consistência); 
execuções concorrentes são equivalentes a execuções seriais das mesmas transações usando uma 
única cópia do banco de dados(isolamento ou serialização de uma cópia); os efeitos das 
transações sobrevivem a defeitos de banco de dados(durabilidade). 
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Uma transação termina com sucesso ou aborta em uma das duas formas ou o cliente aborta ou o 
servidor aborta. Se um processo do servidor falha inesperadamente, ele será substituido por um 
novo. Este novo servidor aborta qualquer transação que não tenha obtido sucesso e utiliza 
procedimentos de recuperação para restaurar os valores dos objetos pelos valores produzidos pela 
mais recente transação de sucesso.para lidar com falhas dos clientes durante a transação, 
servidores podem fornecer ao cliente um limite de tempo para que transações que não foram 
completadas sejam abortadas. Se um servidor falha enquanto uma transação está em progresso, o 
cliente ficará ciente disto quando uma das operações retornar uma exceção após o termino do 
limite de tempo. Se um servidor falha mas se recupera durante o progresso da transação, esta 
transação não será válida por muito tempo então o cliente será informado por uma exceção pela 
próxima operação. 

2.3.8 Modelos computacionais 

Sistemas distribuídos não possuem memória compartilhada nem relógio global. Toda interação 
entre processos deve ser realizada por troca de mensagens. Assim, os sistemas distribuídos são 
classificados como síncrono ou assíncrono. Num sistema síncrono existe um limite de tempo para 
transmissão de mensagens e respostas dos processos[8]. Se essas características não são 
satisfeitas, o sistema é denominado de assíncrono. O modelo assíncrono é mais fraco já que não é 
imposto nenhum limite de tempo arbitrário para a entrega das mensagens, os procesos podem ter 
atrasos diferentes, e a comunicação é o único mecanismo para sincronização de processos no 
sistema, por isso qualquer algoritmo que funcione no modelo assíncrono também funciona em 
outros modelos. Entretanto, sistemas síncronos são mais propensos a comportamentos incorretos 
caso sua implementação viole a condição de tempo. Sendo assim, os sistemas assíncronos são 
maioria em aplicações distribuídas. Adicionalmente, o modelo assíncrono representa de forma 
mais fidedigna o comportamento de redes de computadores de grande escala, como a Internet. 

2.3.9 Detecção de defeitos(failure detection) 

A detecção é a primeira atividade que deve ser realizada para se prover tolerância a falhas, pois 
ela identifica a parte do sistema onde a falha se manifestou. Em um sistema distribuídos, a 
ocorrência de um defeito pode afetar a seqüência da execução do sistemas, o que pode causar 
efeitos catastróficos. Por isso, defeitos devem ser detectados pelo sistema tão cedo quanto 
possivel. Em principio, quanto mais técnicas de detecção de defeitos forem usadas, maior será a 
confiabilidade do sistema. A principal limitação na escolha de diferentes técnicas de detecção de 
defeitos é o seu custo, tanto do ponto de vista computacional quanto em termos de  recursos de 
hardware e software redundantes[3]. Existem diversas técnicas de detecção de defeitos, mas aqui 
apresentaremos apenas as técnicas estudadas para nossa comparação: 

• Consenso: considerando um conjunto de processos onde cada um possui um valor inicial, 
eles decidem sobre um dos valores iniciais propostos por um subconjunto deles. Consenso 
é uma forma de acordo. O objetivo geral de algoritmos de consenso é que processos sem 
falhas cheguem a um acordo sobre uma questão, por exemplo, eleição de líder ou se um 
processo falhou ou não. O acordo na presença de falhas arbitrarias em sistemas síncronos 
é conhecido como Acordo Bizantino. O acordo sobre um vetor de valores é chamado de 
Consistência Interativa.  

• Broadcast Atômico: permite aos processos o envio de mensagens confiáveis em 
broadcast. Todos os processos envolvidos devem concordar sobre as mensagens enviadas 
e a ordem em que foram enviadas. O broadcast atômico deve garantir uma semântica 
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“tudo ou nada”, ou todos as mensagens sao entregues e na mesma ordem ou nenhuma é 
entregue. 

• Detecção de defeitos não-confiável: é proposto um módulo de programa que atua como 
um oráculo de estados funcionais dos processos vizinho. Um módulo detector de defeitos 
local é executado por cada processo. Esse módulo irá monitorar uma parte dos processos 
do sistema e manterá uma lista dos processos suspeitos de falhas. Os módulos podem 
cometer erros na adição de processos corretos na lista de suspeitos. Assim, cada módulo 
pode repetidamente adicionar e remover processos da lista de suspeitos. Duas 
propriedades para este tipo de detector de defeitos são completeness quando um detector 
de defeitos suspeita que um processo falhou, se algum módulo detector de defeitos local 
suspeitar que o processo está falho, e accuracy quando o detector de defeitos não 
suspeitará que um processo correto tenha falhado. Basicamente nos detectores de defeitos 
não-confiavéis todos os processos enviam mensagens “estou vivo” uns aos outros. Se um 
processo ultrapassar o time-out ele será adicionado à lista de suspeitos, caso seja recebida 
a mensagem “estou vivo” deste processo, ele será removido da lista de suspeitos e 
aumenta o time-out do processo para que evitar nova suspeita errônea. Mensagens de 
heartbeat, membros do grupo de gerentes mandam periodicamente mensagens de 
heartbeat entre eles e agentes enviam periodicamente heartbeats para o gerente do grupo, 
heartbeats tem por conseqüência uma minimização de alarmes falsos e de overhead. 
Funciona com o envio periódico de mensagens de heartbeat para todos os demais 
módulos do sistema. Para cada mensagem de heartbeat é calculado um timeout, tempo de 
atraso para a transferência de mensagens. Caso o tempo decorrido desde o envio da 
mensagem de heartbeat exceda o timeout, o processo é classificado como suspeito. Caso 
o tempo decorrido esteja dentro do timeout, o processo é classificado como ativo. Esta 
classificação é efetuada e atualizada por cada módulo detector de defeitos.  

 

2.3.10  Recuperação de erros(error recovery) 

Recuperação transforma o estado do sistema que contém um ou mais erros em um estado sem 
erros detectáveis e falhas que podem ser ativadas novamente[10]. A recuperação pode ser de duas 
formas: recuperação por retorno(backward error recovery) e recuperação por avanço(forward 
error recovery) 
 

• Recuperação por Retorno: o sistema retorna ao estado correto anterior à detecção do 
erro e se reconfigura realocando processos(Figura 6-A) e escolhendo caminhos 
alternativos de comunicação entre os processos. Este estado salvo é chamado de ponto de 
recuperação(checkpoint)[10] e corresponde a um estado global consistente. As técnicas de 
recuperação por retorno não utilizam tanta redundância, os processos salvam seus estados 
independentemente. A técnica de recuperação por retorno não é utilizada em uma vasta 
gama de sistema de tempo real usado em controle de processos contínuos devido à 
impossibilidade de retornar(rollback) a um estado seguro armazenado pelo sistema. A 
recuperação por retorno pode causar no sistema um efeito dominó. Ao desfazer a 
computação, um processo pode deixar mensagens órfãs(perdidas) na rede. Para que isso 
não aconteça é necessário que os processos, ao desfazerem a computação, dissemínem as  
informações para que os outros processos também desfaçam suas computações. Esse 
efeito pode no pior caso, fazer o sistema retornar ao início, por isso são necessárias 
restrições à comunicação entre os processos. 
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• Recuperação por Avanço: o sistema avança para um novo estado ainda não ocorrido 
desde a última manifestação de erro[5] (Figura 6-B). O sistema desfaz toda a computação 
realizada após a falha, para refazê-la sem repetir a falha(com mesmo software ou por uma 
outra versão do software escrito com a mesma especificação). 

 
Figura 6. Recuperação por retorno e por avanço[5]. 

2.4 Aplicações de Sistemas Tolerantes a Falhas 
Como apresentado nas seções anteriores, existem várias técnicas para a implementação de 
sistemas tolerantes a falha. A utilização de todas elas na construção de um sistema, embora 
desejável, é inviável pois pode elevar o custo do projeto de forma excessiva. Por isso, a escolha 
da especificação do projeto de acordo com a sua aplicação e sua exigência de dependabilidade 
devem ser bem exploradas. Nesta seção mostramos algumas aplicações que tradicionalmente 
exigem a implementação de um ou mais mecanismos de tolerância a falhas. 
As áreas tradicionais onde são empregadas sistemas tolerantes a falhas são: 

• Aplicações críticas de sistemas em tempo real, como medicina, controle de processos e 
transporte aéreo; 

• Aplicações seguras de tempo real, como transporte urbano; 
• Aplicações em sistemas de tempo real de longo período de duração sem manutenção, 

como viagens espaciais, satélites e sondas; 
• Telefonia e telecomunicações; 
• Aplicações comerciais de alta disponibilidade como sistemas de processamento de 

transações e servidores de redes. 
Exigências de disponibilidade e confiabilidade são encontradas em todas as áreas, mas os 
sistemas tolerantes a falha são caros e portanto empregados apenas em situações em que a sua  
não-utilização acarretaria prejuízos irrecuperáveis[5]. 
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2.4.1 Sistemas de tempo real 

Sistemas de computação de tempo real são empregadas em aplicações de controle, de supervisão 
e de comunicação. Condições para aplicações desses sistemas são:  

• Disponibilidade de curto intervalo de tempo para reconhecimento de erros que não 
prejudiquem o processamento do sistema; 

• Impossibilidade de uso de recuperação por retorno já que eventos passados são 
descartados; 

• Exigência de redundância passiva  para garantir a continuidade do processamento em caso 
de falhas. 

Exemplos de sistemas em tempo real tolerantes a falhas são os sistemas FTMP(Fault Tolerant 
Multiprocessor) e SIFT(Software Implemente Fault Tolerance)[3]. 
 

2.4.2 Sistemas digitais de telefonia 

Sistemas para telefonia empregam técnicas de tolerância a falhas por apresentar requisitos estritos 
de disponibilidade e alta qualidade e longa vida ao uso dos componentes. Requisitos para 
aplicações nessa área são: 

• Detecção e localização automática de erros(em software e hardware); 
• Tratamento automáticos de erros(reconfiguração do sistema); 
• Substituição de componentes faltosos durante o período de operação normal do sistema. 

A principal técnica de tolerância a falhas empregada na construção deste tipo de sistema é a 
duplicação de componentes de hardware. Um exemplo de sistemas de telefonia tolerante a falhas 
são os sistemas ESS 1A[3]. 
 

2.4.3 Sistemas de Processamento de Transações  

Sistemas de processamento de transações necessitam da existência de uma base comum de dados 
usada interativamente e concorrentemente com vários usuários em maquinas diferentes. Como 
estes sistemas são muito usados em transações financeiras, alguns requisitos para essas aplicações 
são: 

• Integridade e garantia dos dados em sua base de dados; 
• Alta disponibilidade para processamento contínuo; 
• Tratamento de erros sem interrupção do sistema. 

 
Integridade e consistência dos dados são os requisitos mais importantes para este tipo de 
aplicação(propriedades de safety), por isso suas operações são baseadas no modelo fail-stop. Caso 
ocorra um erro, o sistema pára sem propagar este erro. Os sistemas Tandem e Stratus são dois 
exemplos de sistemas comerciais de transação tolerantes a falhas[5].  
Tandem foi o primeiro sistema tolerante a falhas proposto para o uso geral para aplicações 
comerciais. O Tandem é um sistema contínuo (non stop) para aplicações on-line de transações em 
banco de dados. Tandem adotou a estratégia de “pares de processos”, onde cada processo 
executando em um programa pode ter um processo de backup que é executado em um separado 
módulo de processamento.  
Stratus foi construído para competir com o Tandem na tolerância a falhas em processamento de 
transações on-line. Cada modulo compara resultados fornecidos por elementos duplicados do 
sistema, quando a comparação indica erro, nenhum resultado é fornecido como saída. 
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3 

Infra-estruturas de Middleware 

Neste capítulo são descritos os conceitos das infra-estruturas de middleware escolhidas, 
enfatizando os mecanismos de tolerância a falhas disponíveis em cada uma. Por fim, faremos 
uma comparação entre os mecanismos igualmente fornecidos pelas infra-estruturas e suas 
variações de mecanismos. 

3.1 Sprint 

3.1.1 Introdução  
 
Sprint é uma infra-estrutura de middleware para alto desempenho e alta disponibilidade de gestão 
de dados, pois ele fornece a funcionalidade de um banco de dados em memória principal (IMDB 
– in-memory database) que geralmente são limitados pela capacidade de memória da máquina 
que executa o IMDB[12]. Sprint não necessita de uma forte detecção de defeitos para garantir 
consistência, e permitir uma reação rápida a falhas, pois experimentos realizados em um cluster 
usando TPC-C e um micro-benchmark mostrou que Sprint fornece um bom desempenho e 
escalabilidade. Projetado para arquiteturas de middleware onde as transações são pré-definidas e 
parametrizadas antes da execução. Sua arquitetura é divida em servidores físicos (physical 
servers), parte da infra-estrutura de hardware, e servidores lógicos (logical servers), componentes 
de software que compõem o sistema. Há três tipos de servidores lógicos: servidores de borda (ES-
Edge Servers), servidores de dados (DS-Data Servers) e servidores de durabilidade (XS-
Durability Servers). O servidor físico pode solicitar qualquer quantidade de servidores lógicos. 
Por exemplo, apenas um DS, um DS e um XS ou duas instâncias diferentes de DS. 
DS operam um IMDB locais e executam transações sem acesso ao disco. XS garantem a 
persistência das transações e a recuperação de defeitos. 
Sprint garante as propriedades ACID (atomicidade, consistência, isolamento e durabilidade) para 
transações: todas as mudanças resultante de uma transação são aplicados por inteiro ou não são 
aplicados (atomicidade); transações bem-sucessidas não levam um banco de dados de um estado 
correto para um estado incorreto (consistência); execuções concorrentes são equivalentes a 
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execuções seriais das mesmas transações usando uma única cópia do banco de dados (isolamento 
ou serialização de uma cópia); os efeitos das transações sobrevivem a defeitos de banco de dados 
(durabilidade). 
 

3.1.2 Arquitetura Sprint 

A Figura 7 ilustra a arquitetura Sprint. ES permitem que clientes iniciem transações. Solicitações 
provindas de uma mesma transação podem ser operadas por um mesmo ES. Novas transações 
podem ser iniciadas em ES diferentes. ES são iniciados e desligados de acordo com a quantidade 
de carga ou exigências de tolerância a falhas. 
Tabelas de banco de dados são particionadas entre os DS. Tarefas realizadas no banco de dados 
para DS e o mapeamento de DS para servidores físicos são chamados de configuração de banco 
de dados (database configuration). Para permitir a execução paralela de operações de leitura, os 
dados são réplicados para múltiplos DS. Isso prejudica as operações de escrita, pois precisam 
modificar todas as réplicas de forma consistente, por isso as declarações vindas dos clientes são 
divididas em sub-declarações de acordo com a configuração do banco de dados. A configuração 
de banco de dados muda na ocorrência de qualquer defeito, então uma nova instância é criada em 
um servidor diferente. 
Todos os estados permanentes são gravados pelo servidor de durabilidade (durability servers-
XS), incluindo o estado do banco de dados e a configuração de banco de dados. O componente 
Log manager informa ao ES e ao execution manager sobre os estados de terminação de transação 
de atualização (update). A recuperação de defeitos é feita pelo Recovery Manager, que reconstrói 
o estado de um servidor de dados defeituoso a partir de um registro (log) aramazenado no Log 
Manager. 

 
Figura 7. Arquitetura Sprint[12]. 

3.1.3 Transações  

• Execução de Transações 
ES mantém duas estruturas de dados, server e status, para cada transação executada. Estas 
estruturas de dados são mantidas por toda a execução da transação e são descartadas (garbage 
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collected) assim que a transação é abortada ou sucedida. A estrutura server mantêm uma lista dos 
servidores de dados (DS) acessado pela transação e a estrutura status registra o tipo atual das 
transações, locais ou globais. 
Na execução de transações locais, declarações SQL recebidas do cliente são passadas ao DS 
correspondente para serem processadas e a resposta ser repassada ao cliente. Uma transação 
torna-se global se ela executa uma operação mapeada para mais de um DS ou para um DS 
diferente do que foi utilizado em uma operação anterior. Transações globais utilizam multicast 
totalmente ordenado para sincronizar suas execuções, evitando deadlocks. Cada transação global 
é utiliza multicast apenas uma vez para enviar a identificação da transação, quando o ES percebe 
que a transação é global, as próximas requisições são enviadas para os DS ustilizando 
comunicação ponto-a-ponto. 
Diz-se que duas transações globais entram em conflito (conflict) se elas acessam dados em um 
mesmo DS e ao menos uma delas altera o dado. Um DS recebe transações T quando recebe pela 
primeira vez uma operação de T.  
A execução das transações globais é ordenada por uma seqüência de números. A serialização é 
garantida por um escalonador local em cada DS e pela certeza de que dois DS diferentes não 
ordenam a mesma transação com uma seqüência de números diferentes. Deadlocks locais são 
solucionados pela execução da transação pelo IMDB. Deadlocks distribuídos são resolvidos 
evitando ciclos nos escalonadores das transações. caso o IMDB detecte deadlock entre duas 
transações, uma delas será abortada para que se execute apenas uma delas.  
 

• Terminação de Transações 
Transações apenas de leitura terminam com sucesso (commit) com mensagens do ES para os DS 
envolvidos na transação. A transação é terminada quando ES recebe um reconhecimento de cada 
DS. Se o DS falha e não pode enviar o reconhecimento, o ES irá suspeitar de um DS defeituoso 
então abortar a transação. Reconhecimentos são necessários para assegurar a corretude, apesar de 
DS defeituosos. 
Terminação de transações que modificam o banco de dados (update) é mais complexa, pois o 
sucesso de transações de atualização envolve XS para garantir a sobrevivência de estados da 
execução em caso de defeitos no servidor. As terminações de transações de atualização são 
baseadas em multicast totalmente ordenado para prover aos servidores de dados uma maneira 
simples de manter seus estados persistentes (no XS). 

• Terminação com Suspeita de Defeito 

A complexidade da terminação de transações com suspeita de defeito se deve à possibilidade de 
suspeitas erradas na participação de DS. Para assegurar que todos os servidores envolvidos irão 
encaminhar a mesma resposta após o termino de transações update, o procedimento de 
terminação é conduzido da seguinte maneira: se o ES suspeita do defeito de um DS durante a 
terminação da transação, via multicast são enviados votos de aborto em relação ao DS. Os votos a 
ser considerados são os primeiros votos enviados por cada DS. Para DS não suspeitos apenas, um 
voto será entregue, enquanto para DS suspeitos haverá a possibilidade de vários votos. O 
multicast totalmente ordenado garante que todos os servidores destino entregarão os votos de 
transação na mesma ordem e, conseqüentemente, chegarão a uma mesma decisão. 
 
 



 

 

 

28 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

3.1.4 Tolerância a Falhas 

• Detecção de Defeitos 
Servidores físicos se comunicam apenas por troca de mensagens, isto é, não existe memória 
compartilhada. Servidores lógicos podem usar comunicação ponto-a-ponto e multicast totalmente 
ordenado. 
Servidores físicos podem falhar por queda (crash) mas não por comportamento malicioso 
(defeitos bizantino). O servidor pode se recuperar após um defeito mas todas as informações 
contidas na memória principal, antes da queda, serão perdidas. Defeitos nos servidores físicos 
implicam em defeitos no servidores lógicos. 
Sprint utiliza detecção de defeitos não-confiável; um servidor defeituoso possivelmente será 
detectado por servidores operacionais, mas o servidor operacional pode erroneamente suspeitar 
que o sistema esta defeituoso caso ele esteja apenas atrasado. 

• Recuperação de defeitos 

A recuperação de defeitos no Sprint é feita individualmente por cada servidor lógico. 
 
- Edge Server 
Se ocorrer um defeito em um ES durante a execução de uma transação, os DS envolvidos 
conseguirão detectar o defeito e abortar a transação. Se a falha ocorre durante a execução do 
protocolo de terminação, a transação finaliza com sucesso ou aborta, dependendo de quando o 
defeito ocorreu. Se a requisição de um ES para terminar uma transação alcançar todos os DS 
participantes, eles estão pronto para terminar a transação com sucesso, e seus votos serem 
entregues, então a resposta será finalizada. 
Uma nova instância de ES será, imediatamente, criada em qualquer servidor físico. Durante a 
inicialização, o ES manda mensagens para um dos XS, perguntando pela configuração atual do 
banco de dados. O ES estará pronto para processar requisições assim que for recebida a 
configuração do banco de dados. 
 
- Data Server 
Recuperação de DS defeituosos é simples pois é apenas necessário criar uma outra instância do 
servidor em um servidor físico operacional. Com um DS configurado para evitar acesso ao disco, 
não existe imagem de banco de dados para ser restabelecida de um disco local após a queda. Em 
conseqüência disso, uma nova cópia do DS defeituoso será implantada em um servidor físico 
usando o estado armazenado por um XS. 

• Evitando Inconsistências no Processo de Recuperação 
Sprint evita inconsistências para assegurar que transações só podem ser executadas se os DS 
acessados não são substituídos durante a execução. O middleware garante essa propriedade 
usando incarnation numbers e incarnation numbers vector. 
Incarnation numbers são identificadores únicos para cada instância de um DS. Eles podem ser  
implementados por uma contagem simples de quantas vezes o DS foi substituído ou “encarnado”. 
Incarnation number vectors contém um incarnation number por DS no sistema. No momento da 
terminação, o incarnation number de cada DS envolvido na transação é comparada com o vetor 
para checar se a transação pode executar. 
Quando uma transação é iniciada, é nomeado um vetor com o máximo de dados de incarnation 
numbers percebidos pelo ES. O ES hospeda este vetor e o nomeia como a visão atual do vetor de 
transações. O vetor designado pela transição será enviada pelo ES como parte do procedimento 
de terminação da transação. 
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Quando da suspeita de um DS defeituoso, o ES envia mensagens multicast de mudança de 
DS(change-DS) para todos os servidores junto com o identificador de um servidor físico onde a 
nova instância de DS estará localizada. Após a entrega dessa mensagens, todos os servidores 
consistentemente aumentam o incarnation number de um DS particular e atualizam a 
configuração do banco de dados. 
Mensagens de reconhecimento são enviadas aos DS como parte da execução de uma transição 
read-only global retornando o valor atual do incarnation number do DS. O reconhecimento 
permite ao ES identificar possíveis estados inconsistentes.  

• Reconstruindo o estado de DS defeituosos 
Caso um DS seja replicado, é possível recuperar seu estado caso ele esteja defeituoso. Mas de 
qualquer forma o estado do banco de dados do DS pode ser recuperado por registros mantidos 
pelo XS. Assim o DS recuperado necessita da imagem inicial do banco de dados obtido no XS e 
as atualizações perdidas para se atualizar a imagem. Após esta recuperação as entradas de dados 
podem ser armazenadas localmente.  
A recuperação rápida do DS defeituoso é importante para a disponibilidade, pois as transações 
que requisitam dados armazenados em um DS defeituoso não podem ser executadas até que o 
servidor seja substituído. Os DS são réplicados se for exigido uma alta disponibilidade. 
Transações de atualização falharão apenas se todas as réplicas que estiverem disponíveis para a 
transação falharem. 
 
- Durability Server(XS) 
A entrega de mensagens perdidas para a recuperação do XS podem ser feita por um XS 
operacional. XS também implementam regras para recuperação de DS defeituosos. Cada XS cria, 
periodicamente, uma imagem no disco, do estado atual do banco de dados. Esse estado é 
construído a partir das mensagens entregues pelos XS, como parte do protocolo de terminação 
das transações de atualização. 

3.2 Horus 
Horus é um sistema que oferece um extenso e flexível modelo de comunicação de grupos. A 
necessidade de um ambiente de grupos de processo (conjunto de processos que se comunicam 
utilizando um mesmo endereço de grupo) para computação distribuída representa um grande 
passo para robustez em aplicações distribuídas com eventos críticos (como perdas financeiras ou 
de vidas humanas). Grupos de processos podem ser usados para dar suporte a domínios de 
segurança de alta disponibilidade e uma boa execução de mecanismos de grupo na criação de 
uma rede inteligente. O sistema Horus fornece um flexível modelo de comunicação de grupos. 
Essa flexibilidade aplica-se às interfaces do sistema, às propriedades fornecidas pelo protocolo de 
pilha (camadas de protocolos que podem ser empilhadas um sobre a outra de formas variadas 
durante a execução) e à própria configuração do Horus, que pode rodar em um espaço de usuário, 
em um kernel de sistema operacional ou microkernel, ou ser dividido entre eles. Horus pode ser 
utilizado por diversas interfaces de aplicações, até mesmos as que possuem oculta 
funcionalidades de grupos por trás de sistemas de comunicação UNIX.  
Horus fornece suporte eficiente para modelos de execução virtualmente síncronos (virtually 
synchronous), esse modelo cria a ilusão à aplicação de que ela está executando em um ambiente 
onde cada processo falho será detectado, e se algum processo for suspeito de falha, então 
certamente esse processo falhou. Seu funcionamento baseia-se em grupos de processos (group 
membership) com mecanismos de entrada en grupo e obtenção de estado, saída de grupo (um 
processo falho é automaticamente retirado do grupo a que ele pertencia), e comunicação com 
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grupo usando multicast ordenado. Essas funções primitivas são usadas para dar suporte a 
ferramentas de tolerância a falhas, tais como execução de requisições de carga balanceada, 
computação tolerante a falhas, dados replicados coerentes e segurança. Propriedades como 
sincronização virtual podem, em certos momentos, ser indesejadas, por introduzir overheads 
desnecessários ou conflitos com outros objetos, como para garantia de tempo-real (real-time). 
Além disso a implementação ideal em um ambiente inseguro pode aceitar overhead de dados 
criptografados, mas irá evitar esse custo quando executado dentro de um firewall.  
Na arquitetura do Horus, protocolos de suporte de grupos podem variar, durante a execução, para 
corresponder com a especificação requisitada pela aplicação ou ambiente. Mas substituições em 
comunicação ponto-a-ponto com grupos de comunicação são uma abstração essencial.   
 

3.2.1 Arquitetura Horus  

Arquitetura Horus é baseada em camadas de grupos de processos similarmente a uma caixa de 
blocos Lego. Horus possui uma arquitetura de comunicação que trata protocolo como instancias 
de um tipo de dado abstrato fazendo com que os desenvolvedores particionem protocolos 
complexos em microprotocolos simples. Cada bloco implementa um microprotocolo (Figura 8) 
que fornece características diferentes de comunicação. Para fornecer a combinação desses blocos 
dentro de macroprotocolos com propriedades desejáveis, os blocos foram padronizados em 
interfaces top e bottom que os permite ser empilhados uns sobre os outros para serem executados 
de modos variados. Na prática,  algumas combinações de blocos não fazem sentido, por exemplo, 
a camada de comunicação com protocolos de transporte receber chamadas da camada de entrega 
de mensagens totalmente ordenada. Apesar disso, valor conceitual da arquitetura é que, se 
permitido, seja simples criar novos protocolos empilhamento com o arranjo dos blocos existentes.  
Cada bloco do protocolo é um módulo de software com um conjunto de pontos de entrada para 
chamadas de procedimentos (camada acima ou abaixo). Por exemplo, existem chamadas para 
camadas mais abaixo para envio de mensagens e para camadas mais acima para receber 
mensagens. Cada camada é identificada por um nome ASCII e registra todas as chamadas 
ocorridas entre as camadas no momento da inicialização[13]. 
 

 
Figura 8. Arquitetura Horus em camadas de grupos de protocolo[13] 
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A camada mais acima é a única que se desvia da interface padrão do Horus: ela converte a 
abstração do protocolo do Horus em uma que combina com as necessidades e expectativas do 
usuário. Assim quando Horus é utilizada em uma interface socket, a camada mais acima converte 
as operações sendto e recvfrom do socket para o paradigma Horus. 
As camadas especifícas atualmente suportadas pelo Horus resolve problemas como a interface do 
sistema para vários mecanismos comunicações da camada de transporte, superação de pacotes 
perdidos, criptografia e descriptografia, fluxo de controle, etc. Algumas das mais importantes 
camadas são descritas a seguir. 
A Arquitetura Horus implementa os seguintes microprotocolos: 

•••• COM: fornece aos grupos uma interface para protocolos de baixo nível, como IP, UDP e 
algumas interfaces ATM.  

•••• NAK: implementa protocolos de reconhecimento negativo baseado em mensagens de 
retransmissão.  

•••• CYCLE: disseminação de mensagens multimídia  
•••• PARCLD: disseminação de mensagens hierárquicas.  
•••• FRAG: fragmentação/remontagem  
•••• MBRSHIP: cada membro com uma lista de pontos finais(endpoints) que pode ser 

acessado. Então ele executa um protocolo de consenso para fornecer aos usuários um 
modelo de sincronização virtual. 

•••• FC: controle de fluxo  
•••• TOTAL: entrega de mensagens totalmente ordenadas 
•••• STABLE: detecta quando a mensagem foi entregue para todos os destinatários finais e 

descartadas(garbage colleccted). 
•••• CRYPT: criptografia/descriptografia 
•••• MERGE: localização e agrupamento de instâncias de grupos múltiplos 

3.2.2 Tolerância a Falhas 

Cada pilha lida com outros 3 tipos de objetos: ponto finais(endpoints), grupos(groups) e 
mensagens(message).  
O objeto endpoint modela a entidade de comunicação. Possuem um endereço e enviam e recebem 
mensagens. Mensagens não possuem endereços para endpoints, mas para grupos. O endereço do 
endpoint é usado na associação. O objeto grupo  é usado para manter o estado do protocolo local 
no endpoint. Um processo pode ter múltiplos endpoints, cada um com sua pilha  de protocolo. 
Um objeto grupo possui ainda um endereço de grupo(group adress), onde cada mensagem é 
enviada e uma visão(view), que é uma lista de endereços dos destinatários finais que possam ser 
membros acessíveis do grupo. O objeto mensagem é uma estrutura local armazenada que possui 
operações de inclusão(push) e retirada(pop) de cabeçalhos de protocolos[13]. 
Horus permite que diferentes endpoints tenham diferentes visões de um mesmo grupo. Um 
endpoint pode possuir múltiplos grupos de objeto, permitindo que ele se comunique com 
diferentes grupos e visões. O usuário pode instalar diferentes novas visões quando os processos 
caem ou recupera-se e usa um dos vários protocolos de associação para atingir alguma forma de 
acordo de visões entre múltiplos objetos grupo de um mesmo grupos[13].  
As mensagens que chegam na pilha de protocolos entram pela camada mais alta, que invoca a 
função da camada mais abaixo e pode adicionar um cabeçalho. Isto acontecem em todas as 
camadas até que se chegue à camada mais baixa da pilha, que então chama o dispositivo 
específico para realmente mandar executar a ação. 
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• Detecção de Defeitos 
Quando se cria um endpoint, o processo descreve quais protocolos de pilha são necessários, e a 
base de endpoint para que ela seja construída. É permitido a um processo colocar múltiplos 
endpoints em uma única base de endpoint. Dado um endpoint e um endereço de grupo, um 
processo pode entrar em um grupo de endpoints. Isso resulta em uma chamada de uma visão que 
descreva o conjunto de endpoints com que os processos podem se comunicar. No caso da camada 
MBRSHIP pertencer a pilha, cada endpoint na visão estará garantido de ter sido enviado a mesma 
visão. 
Tais camadas especificadas resolvem diversos problemas como produzir uma interface para um 
sistema com vários protocolos de comunicação de transporte, tolerar pacotes perdidos, 
criptografar e descriptografar, gerenciar grupos de processos, ajudar processos que entraram no 
grupo a obter o seu estado atual, agrupar grupos que foram particionados, controlar fluxo de 
dados, etc. Horus também adiciona ferramentas para ajudar no desenvolvimento e depuração de 
novas camadas[13]. 
O protocolo de associação, MBRSHIP, simula um ambiente para os membros de um grupo de 
comunicação onde um membro pode apenas falhar(não pode estar lento ou desconectado) e as 
mensagens não podem ser perdidas. Cada membro tem noção da visão(view) atual, a qual possui 
uma lista ordenada dos membros. Cada membro na visão atual é garantido pela aceitação da 
mesma visão ou será removido da visão atual[15]. Mensagens enviadas na visão atual são 
entregues aos membros sobreviventes da visão atual, e as mensagens recebidas na visão atual são 
recebidas por todos os membros sobreviventes da visão. A camada TOTAL fornece apenas um 
tempo de entrega para os membros sobreviventes da visão, e a camada fornece informações de 
defeitos a partir das atualizações das visões. Isso é chamado sincronização virtual(virtual 
synchrony) porque todos os membros que aparecem na comunicação enxergam  defeitos no 
mesmo instante lógico, reduzindo significantemente o número de cenários de defeitos[15]. 
Sincronização virtual é melhor entendido como uma simulação do comportamento fail-stop 
(membros excluídos de uma visão ainda podem estar vivos). Quando a comunicação é 
restabelecida, visões podem se juntar à comunicação chamando o protocolo MERGE. Apenas se 
MBRSHIP foi usado como um detector de defeitos perfeito essa simulação pode ser “exata”[15]. 
A camada NAK coloca uma sequencia de numeros em cada mensagem enviada que é analisada 
pelo receptor, se o receptor detectar mensagens perdidas é enviado uma mensagem de 
reconhecimento negativo (nak), para que a camada NAK retransmita a mensagem se ela ainda 
estiver armazenada. Se não estiver armazenada, cada endpoint enviará via multicast seu estado 
para que mensagens armazenadas possam ser descartadas(flush). 
 

• Recuperação de Defeitos 
Na camada MBRSHIP, o protocolo principal é o protocolo flush que é executado quando é 
detectado a queda de um dos membros ou uma visão se junta a comunicação[15].  
Um dos membros é denominado de coordenador do flush. O coordenador transmiti mensagens 
flush aos membros sobreviventes da visão. Primeiro todos os membros retornam as mensagens 
dos membros falhos que não se sabia que foram entregues. Essas chamadas são chamadas 
instáveis(unstable). Por fim, cada membro envia uma mensagem de resposta flush_ok. Então, os 
membros irão ignorar as mensagens enviadas pelos supostos membros defeituosos, e esperam por 
uma nova instalação da visão[15]. 
Assim que recebido todas as mensagens flush_ok, o coordenador transmite as mensagens do 
membro defeituoso que ainda estão instáveis. Neste ponto uma nova visão será instalada. Quando 
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todas as mensagens estabilizarem, flush estará completada. Se algum processo falhar durante este 
processo,uma nova rodada do protocolo flush poderá ser iniciada imediatamente[15]. 
Cada pilha de blocos são cuidadosamente protegido por outras pilhas. Elas possuem suas próprias 
threads priorizadas e controlam o acesso de memória disponível com um mecanismo chamado 
canal de memória(memory channel). Horus possui um escalonador de memória que especifica 
dinamicamente a taxa que cada pilha pode acessar a memória, dependendo da disponibilidade e 
prioridade, então não há possibilidade de uma pilha monopolizar a disponibilidade da memória. 
 Quando múltiplas mensagens chegam simultaneamente, é importante impor um ordenamento na 
entrega das mensagens. Horus numera as mensagens e usa variáveis de sincronização event count 
para reconstruir a ordem quando necessário. 

3.2.3 Protocolos de pilhas 

A arquitetura de microprotocolos do Horus não seria de grande valor se não fosse pela variedade 
de classes de protocolos de grupos de processos que se pode suportar como, bom desempenho, 
compartilhamento significativo de funcionalidades e simplificação pela implementação de pilhas 
em camadas. Na Figura 9 mostramos todas as ferramentas de grupos de processos virtualmente 
síncronos. 
A pilha 1 fornece totalmente ordenado, comunicação de controle de fluxo sobre a abstração dos 
grupos de associação. As camadas FRAG, NAK e COM fornecem respectivamente quebra de 
mensagens muito extensas em mensagens menores, suporte a perda de pacotes usando 
reconhecimento negativo, e interface Horus para protocolos básicos de transporte. A pilha 2 é 
bem parecida, mas fornece fraca ordenação e inclui uma camada para suportar estado de 
conexão(state transfer) para processos que entram em um grupo ou grupo que se juntam após 
uma partição da rede. A pilha 3 suporta subida por toda a estrutura hierárquica onde cada 
processo “pai” é responsável por um conjunto de processos “filho”. A pilha dividida mostrado 
neste caso representa uma característica na qual a mensagem pode ser roteada para diferentes 
pilhas, dependendo do tipo de processamento exigido. 

 
Figura 9. Protocolos de pilhas[13] 

 



 

 

 

34 

ESCOLA POLITÉCNICA 
DE PERNAMBUCO 

 

HCPI(Horus Common Interface Protocol) fornece uma extensa interface que suporta todas as 
operações comuns em um sistema de comunicação de grupo, indo além das funcionalidades do 
sistemas em camadas. HCPI é projetado para multiprocessamento e é completamente assíncrono 
e reincidente. 
Geralmente, interfaces HCPI recaem em 2 categorias: as do primeiro grupo que se preocupam 
com o envio e o recebimento de mensagens e com a estabilidade das mensagens, quando o 
processamento foi completo e as informações associadas podem ser descartadas(garbage 
collected). E as do segundo grupo que se preocupam com a associação dos membros. De cima 
para baixo, que permite as aplicações ou a camada controlar o grupo de associação usada pela 
camada abaixo, de baixo para cima, relatam as mudanças de associação, problemas de 
comunicação e outros eventos relacionados a aplicações. 
Com o suporte de um mesmo HCPI, cada camada Horus executa um protocolo diferente. Embora 
seja possível que as camadas sejam empilhadas em qualquer ordem, muitas das camadas impõem 
certas semânticas para as camadas abaixo dela, impondo uma ordem parcial de empilhamento. 
Essas restrições podem ser tabeladas, fornecendo informações sobre as propriedades fornecida 
pela aplicação, às vezes é possível gerar automaticamente um protocolo de pilha mínimo que  
consiga as propriedades desejáveis. 

3.3  TAO(The ACE ORB) 
ADAPTIVE Communication Environment(ACE) é um kit de ferramentas orientado a objetos 
usado por desenvolvedores em serviços de comunicação de alto desempenho. ACE automatiza 
configurações e reconfigurações por serviços dinamicamente conectados em aplicações em tempo 
de execução e executa esses serviços em um ou mais processos ou threads[16]. 
TAO(The ACE ORB) foi desenvolvido com o padrão e os componentes do framework ACE. 
TAO é um ORB(Object Request Brokers) de alto desempenho para sistemas de tempo real 
baseado no padrão CORBA(Common  Object Request Broker Architecture) que permite a 
clientes invocar operações de objetos distribuídos sem se preocupar com a localização do objeto, 
linguagem de programação, sistemas operacionais, protocolos de comunicação e interconexões e 
hardware.  
Vários domínios de aplicação, como comando e controle de sistemas, telecomunicações, serviços 
financeiros e simulações interativas distribuídas exigem garantias de tempo real para redes 
básicas, sistemas operacionais e componentes de middleware para satisfazer seus requisitos de 
Qualidade de Serviço(QoS)[16]. 
As garantias de QoS às quais TAO da suporte podem ser divididas em determinísticas, como 
aplicações em tempo real de controle de avião, onde decisões criticas são cruciais e estatísticas, 
como aplicações de teleconferência, onde pequenas flutuações de entrega e garantia de 
confiabilidade são toleráveis. 
 

3.3.1 Arquitetura TAO 

Como TAO é uma implementação de tempo real de CORBA, sua arquitetura é baseada na 
arquitetura CORBA que será apresentada a seguir. 
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• Componentes do Modelo CORBA 

Um modelo de objetos é um conjunto de definições sobre propriedades das entidades 
computacionais, tal qual os tipos disponíveis e suas semânticas, regras para compatibilidade de 
tipos, comportamento em caso de erros, etc. Os modelos de plataformas de middleware são muito 
similares, porém os detalhes em suas diferenças são fatores que tem maior impacto no projeto e 
desempenho do sistema. 
Para um melhor entendimento dos modelo de ORB, apresentaremos, na Figura 10, os 
componentes do modelo CORBA, que dá suporte a vários níveis de transparência e permite aos 
clientes invocar operações nos objetos-alvo sem se preocupar onde estão os objetos, em que 
linguagens de programação estão escritos, em que plataformas de hardware/sistema operacional 
eles rodam ou que protocolos de comunicação e de rede são usados para interconectar os objetos. 
 

 
Figura 10. Componentes no modelo de referência CORBA[16]. 

 
Os componentes do modelo de referência CORBA são os seguintes: 
• Implementação dos Objetos (Object Implementation): definem operações que implementam 

uma interface especificada usando CORBA Interface Definition Language(IDL). 
• Cliente (Client): entidade que invoca uma operação em uma implementação de objeto. O 

acesso aos serviços do objeto remoto podem ser transparentes, pois o cliente não conhece os 
detalhes da implementação dos objetos, somente a interface IDL. 

• Núcleo do ORB (ORB Core): responsável por achar o objeto de implementação, entregando a 
requisição ao objeto e retornando ao cliente uma resposta, se existir. O Protocolo Geral Inter-
ORB(GIOP) define a seqüência de mensagens do protocolo que implementa comunicação 
inter-ORB, isto é, ele é utilizado para transportar os dados entre ORBs distintos. Protocolo de 
Internet Inter-ORB(IIOP) é um mapeamento de GIOP para os protocolos TCP/IP. IIOP nasceu 
do protocolo de comunicação básica (cliente/servidor) para computação de objetos 
distribuídos sobre a Internet.  

• Interface do ORB (ORB Interface): interface abstrata para ocultar das aplicações detalhes de 
implementação. É a única interface que possui uma interação direta com ORB e por isso, é 
compartilhada pelo lado cliente e pelo lado servidor.  

• IDL Stubs e Skeletons: servem como intermediários entre aplicações cliente e servidor, 
respectivamente, e ORB. São interfaces estáticas geradas a partir da compilação da interface 
IDL. A interface IDL contém as interfaces dos objetos e dos métodos implementados no 
cliente e no servidor, stub e skeleton respectivamente. A transformação entre a definição IDL e 
a linguagem de programação alvo é automática devido oa compilador IDL, o que reduz o 
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potencial de inconsistências entre clientes stub e servidores skeleton e aumenta a otimização 
das implementações stub e do skeleton. 

• Interface de invocação dinâmica (DII): permite aos clientes acesso direto aos mecanismos 
básicos de requisição fornecidas pela ORB. Invocação dinâmica só ocorre quando em tempo 
de execução um cliente chama um método de um objeto que não possui uma interface 
conhecida.  

• Interface skeleton dinâmica (DSI): é a parte do servidor análoga ao DII no cliente. Ela 
permite a ORB entregar requisições a implementações de objetos cujo o tipo a ORB não 
conhece em tempo de execução. 

• Adaptadores de objetos (Object Adapters): possibilitam que a implementação dos objetos 
acesse o máximo possível de funções do ORB. Ajuda ORB com as requisições de 
demultiplexação para os objetos-alvo e enviando operações de chamadas do objeto. Esses 
objetos associam as implementação de objetos ao ORB. Basic Object Adapters(BOA) 
possuem acesso a diversas funções, como invocação, ativação e desativação de métodos, 
geração e  interpretação de referências para objetos. Alem disso, o modelo CORBA define um 
adaptador de objetos portátil(POA – Portable Object Adapter), que permite maior 
flexibilidade na interação entre objetos do lado servidor e os ORBs de diversos 
desenvolvedores. 

• Componentes do modelo TAO 

TAO é um ORB de tempo-real e alto desempenho que tem por finalidade dar suporte à 
construção de aplicações com exigências de QoS determinísticas e estatísticas. O ORB TAO 
contém uma interface de rede, Sistema Operacional, protocolo de comunicação e componentes e 
serviços CORBA concordantes[17]. Na Figura 11 apresentamos os componentes no modelo 
TAO. 

 
Figura 11. Componentes do modelo TAO[17] 

• IDL stub e skeleton otimizadas: IDL stub e skeleton realizam marshaling e demarshaling nos 
parâmetros de aplicação da operação, respectivamente. O compilador IDL do TAO gera 
stubs/skeletons que podem seletivamente usar compilações altamente otimizadas e/ou 
interpretativo (de)marslhing. Essa flexibilidade permite aos desenvolvedores de aplicação 
seletivamente diminuir tempo e espaço, o que é crucial para alto desempenho de sistemas em 
tempo-real. 
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• Adaptadores de objeto de tempo real: no TAO, esses objetos utilizam perfeitamente hashing 
e otimização de demultiplexação ativa para envio de operações criadas em tempo constante, 
independente do número de conexões ativas criadas e operações definidas na interface IDL. 

• Escalonador de tempo real: mapeia requisições QoS de aplicações, tais como latência fim-a-
fim, reunindo periodicamente deadlines de escalonamento, para recursos de um sistema 
final/rede ORB, como CPU, memória, conexões de rede e dispositivos de armazenamento. 
TAO dá suporte a escalonadores de tempo real estáticos e dinâmicos. 

• Núcleo do ORB de tempo real: entrega a requisição do cliente ao objeto adaptador e retorna 
uma resposta ao cliente, se houver alguma. O núcleo do ORB do TAO permite que protocolos 
customizados possam ser ligados ao ORB sem afetar o modelo de programação padrão das 
aplicações CORBA. 

• Interface de rede de alta velocidade: no núcleo o subsistema de I/O do TAO, há uma 
interface de rede “daisy-chained” que consiste em um ou mais chips APIC(ATM Port 
Interconnect Controller). APIC foi desenvolvido para suportar uma taxa bidirecional agregada 
de 2.4 Gbps.  

• Componente interno: TAO é desenvolvido usando um middleware de baixo-nível 
denominado ACE, que implementa núcleos concorrentes e padrões distribuídos para 
comunicações de software. ACE fornece componentes que dão suporte a requisições de QoS 
para alto desempenho, aplicações em tempo real e middlewares de alto nível, como TAO. 

3.3.2 Tolerância a Falhas 

 
TAO fornece tolerância a falhas a objetos CORBA utilizando três componentes da especificação 
FTCORBA, Detector de falhas(monitora processos e hospedeiros), Notificador de falhas(recebe 
relatórios do detector de falhas) e Gerenciador de Réplicas(gerencia grupos de objeto), junto com 
o DOORS, serviço de tolerância a falhas para entrega de aplicações, e a adição de replicações 
semi-ativas. 
  

• Detecção de Defeitos 

• FTCORBA 

FT CORBA é uma especificação que define serviços e estratégias para aumentar a confiabilidade 
das aplicações CORBA. Os mecanismos de tolerância a falhas usados pelo FT CORBA para 
detecção e recuperação de defeitos são baseados na redundância de entidades(entity 
redundancy)[18]. Para introduzir tolerância a falhas nos padrões CORBA foram definidas 
algumas especificações com um conjunto de serviços essenciais para o desenvolvimento de 
aplicações confiáveis.  
• Gerenciador de Réplicas: serviços de tolerância a falhas interagem com o gerenciador de 

réplicas para criar, gerenciar propriedades e controlar associação em grupos de objetos. O 
gerenciador de réplicas também é responsável pela criação e manutenção de um referência de 
interoperabilidade entre grupos de objeto(IOGR– Interoperable Object Group Reference). As 
operações do gerenciador de réplicas são divididas em três interfaces separadas:  
o Gerenciador de propriedades: define operações para as configurações de propriedades. 
o Gerenciador de grupos de objeto: define operações de entrada e saída de membros de 

grupos de objeto, especifica ou descobre a localização dos membros do grupo de objetos 
e descobre o valor atual da referência do grupo de objeto e do identificador do grupo de 
objeto. 
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o Fábrica genérica: define operações para criar ou remover objetos. O objeto fábrica 
genérica negocia com os objetos Fábrica Local para criar ou remover réplicas de grupos 
de objetos. No processo de criação de réplicas são utilizados serviços de logging e 
checkpoint. 

• Gerenciador de Falhas: responsável pela detecção, notificação, análise e diagnóstico de 
falhas em objetos. O detector de falhas(fault detector) periodicamente emite requisições 
CORBA para objetos monitorados e relata falhas sobre objetos que falharam em resposta. 
Detectores de falha são criados por fábricas de detectores de falhas e são criados nos mesmos 
processos que as fábricas de detectores de falhas. Notificador de falhas(fault notifier) reúne 
relatórios de falhas dos detectores de falha, aplicações ou plataformas especificas de detecção 
de falhas. 

• Domínios de tolerância a falhas: geralmente possuem vários hosts e grupos de objeto, e um 
único host pode suportar vários domínios de tolerância a falhas. A existência de políticas de 
segurança e mecanismos pode ser mantida pela certeza de que um domínio de tolerância a 
falhas está totalmente contido em um único domínio de segurança. Todos os grupos de 
objetos de um domínio de tolerância a falhas são criados e gerenciados por um único 
gerenciador de réplicas, mas eles podem invocar e ser invocados por objetos de outros 
domínios de tolerância a falhas. 

• Gerenciamento de recuperação e logging: responsável pela consistência de estados das 
réplicas. O mecanismo de logging é responsável pela registro do estado atual do objeto 
primário nos objetos secundários em cada intervalo de checkpoint definido no gerenciador de 
propriedades. O mecanismo de recuperação é responsável pela recuperação de réplicas, do 
objeto ou do grupo após a ocorrência de falhas. 

Na Figura 12, mostramos uma representação da arquitetura do FTCORBA, de como acontece um 
gerenciamento de tolerância a falhas em um único domínio de tolerância a falhas. Na figura  
temos um host, um cliente, o ORB cliente, dois host cada um com uma réplica do objeto servidor, 
uma fábrica, um detector de falhas, um ORB servidor e, em cada ORB, um mecanismo logging e 
um mecanismo de recuperação. 
 

 
Figura 12. Arquitetura FTCORBA 
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Uma falha é detectada por objetos do Detector de Falhas, que está localizado em cada servidor 
host e pode ser supervisionado por um objeto adicional do Detector de Falhas. Quando a falha for 
detectada, ela será transmitida pelo Notificador de Falhas aos consumidores da falha, por 
exemplo, o gerenciador de replicas. Cada servidor possui o seu próprio mecanismo de 
recuperação e logging para se recuperar de falhas. 
FTCORBA utiliza todas as modalidades disponíveis de replicação, no caso stateless, cold 
passive, warm passive, active e active with voting. 

•  DOORS 

DOORS(Distributed Object-Oriented Reliable System) é um serviço de estratégia do CORBA 
para tolerar falhas que fornece serviços de políticas e mecanismos tolerantes a falhas para 
entregas de aplicações e foi incorporado ao padrão FT-CORBA em Janeiro de 2000. 
A Figura 13 mostra a interação de protocolos entre os componentes do framework DOORS 
quando as aplicações usam o esquema de réplicação warm passive. 

 
Figura 13. Interação de componentes FTCORBA[18] 

 
1. O gerenciador de aplicações requisita ao gerenciador de réplicas que crie um grupo de réplicas 
usando a operação ()create_object da interface fábrica genérica do FTCORBA e passa um 
conjunto de propriedades de tolerância a falhas para o grupo de réplicas. 
2. O gerenciador de réplicas permite ao task a criação de réplicas individuais para a fábrica de 
objetos local baseado na propriedade de localização de objeto. As fábricas locais retornam 
referências individuais de objetos criados pelo gerenciador de réplicas. 
3. Neste ponto, o gerenciador de réplicas informa ao detector de falhas para iniciar o 
monitoramento das réplicas. 
4. O gerenciador de réplicas coleta todos os IORs das réplicas individuais, cria um IOGR para o 
grupo, e estabelece uma das réplicas como primária. No esquema de réplicação ativa, todas as 
réplicas são primárias. 
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5. Então o gerenciador de réplicas registra o IOGR com o serviço de nomes, o qual publica o 
registro em outras aplicações e serviços CORBA. 
6. O gerenciador de réplicas recupera o ponto dos IOGR e outros estados. 
7. O cliente interessado no serviço contata o serviço de nomeação(serviço que fornece um 
mapeamento de nomes, organizados hierarquicamente, para o IOR). 
8. O serviço de nomeação responde com o IOGR. 
9. Finalmente, o cliente faz a requisição e o cliente ORB garante que a requisição será entregue a 
réplica primaria.  
Dependendo do estilo de monitoração escolhido(heartbeat, polling), o detector de falhas 
continuará monitorando as réplicas nos períodos de intervalo depois que o grupo de réplicas está 
estabelecido. O detector de falhas e o gerenciador de réplicas enviam mensagens de heartbeat ao 
“super” detector de falhas primário nos períodos de intervalo. Como o FTCORBA não permite 
ponto único de falhas, o “super” detector de falhas também é réplicado e as réplicas enviam umas 
às outras mensagens de heartbeat no período de intervalos. Uma das réplicas é denominada de 
primária e as outras servem como backup. Se a primária falha, as backups elegem uma nova 
réplica primária. 
 
TAO dá suporte a especificação FTCORBA. Porém, um grupo de desenvolvedores do Instituto 
para Sistemas Intensivo de Software(ISIS), projetou e implementou melhorias no núcleo ORB do 
TAO para dar melhor suporte à introdução de tolerância a falhas em aplicações, incluindo a 
implementação de características a nível do componente núcleo do ORB definidas na 
especificação FTCORBA. Algumas dessas melhorias foram: 
- adição de replicação semi_ativa(semi_active). 
- separando interfaces e tipos de definição comuns as especificações múltiplas em módulo de 
grupo portátil(Portable Group). 
- adição de registração de fábricas e interfaces de fábricas de detecctor de falhas. 

• Replicação semi-ativa 

A abordagem de replicação semi-ativa foi projetada com a evoluição da réplicação ativa e da 
réplicação passiva para dar suporte à execução previsível de programas sem acrescentar 
overhead, imprevisibilidade e não-determinismo a estratégia padrão do FTCORBA. A replicação 
semi-ativa tenta combinar a velocidade das propriedades de recuperação de defeitos da replicação 
ativa com a habilidade de replicar aplicações com comportamento de não-determinismo da 
replicação passiva. Estende a noção de líder e seguidor, enquanto o processamento da requisição 
está sendo realizada em todas as replicas, é responsabilidade do líder realizar as partes não-
determinisicas do procesamento e informar a resposta aos seguidores. Em caso de defeito no 
líder, uma eleição deve ser realizada para a escolha de um novo líder. A Figura 16 ilustra como as 
réplicas estão arrumadas para tolerar falhas na replicação semi-ativa. É criada uma lista com 
todas as réplicas que, exceto o objeto primário, são interligadas por conexões em nível de 
transporte orientado a conexão a cabeça da fila e adicionadas a uma fila onde a réplica que estiver 
na cabeça da fila será nomeada como objeto primário na ocorrência de falhas. Em caso de falha 
no objeto primário, o defeito é detectado pela próxima réplica da lista quando a conexão em nível 
de transporte for fechada. O termino da conexão é usado para detectar defeitos, isso é feito 
fazendo com que os objetos secundários esperem a abertura de conexões usando mecanismos de 
demultiplexação.  
Réplicas consistentes podem ser mantidas por mensagens de sincronização de estados em 
multicast confiável para todas as réplicas. O protocolo multicast utilizado para invocação de 
requisições ou transferência de estados precisa forçar um ordenamento das mensagens. Para isso, 
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são passadas ao cliente uma lista ordenada de referências o qual garante a ordem da lista. Não são 
usados threads adicionais no envio de mensagens de heartbeat ou monitoramento dos objetos 
servidores. 
Replicação semi-ativa soluciona diversas questões existentes nas demais replicações(ativa e 
passiva), como: uma eficiente e previsível detecção de defeitos que garante um tempo de 
recuperação mais rápido e previsível comparado as replicações passiva fria e passiva quente. 
Reduziu mensagens de heartbeat e de votação(polling) na rede desde que não são mais usadas na 
detecção de defeitos. Utilizam mais facilmente mecanismo RTCORBA (Real-Time CORBA) e de 
policiamento. A replicação semi-ativa distribui o overhead de detecção de defeitos e de 
recuperação de erros entre as réplicas. 

 
Figura 14. Arquitetura da replicação semi-ativa 

 
 

• Recuperação de Defeitos 
• Gerenciamento de recuperação e logging:  

responsável pela consistência de estados das réplicas. O mecanismo de logging é 
responsável pela registro do estado atual do objeto primário nos objetos secundários em 
cada intervalo de checkpoint definido no gerenciador de propriedades. O mecanismo de 
recuperação é responsável pela recuperação de réplicas, do objeto ou do grupo após a 
ocorrência de falhas. 

3.4 Internet Communications Engine(ICE) 
Internet Communications Engine(ICE) é uma plataforma de middleware orientada a objetos. Isso 
significa que ela fornece ferrementas, API e bibliotecas para a construção de aplicações 
cliente/servidor orientadas a objetos.  Suas aplicações são apropriadas para o uso em ambientes 
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heterogêneos[19]. ICE representa uma nova abordagem de middleware que desenvolve os pontos 
fortes do CORBA, sem cometer seus erros. Clientes e servidores podem ser escritos em diferentes 
linguagens de programação e rodar em diferentes sistemas operacionais e mesmo assim podem se 
comunicar utilizando várias tecnologias de rede[20]. 
ICE fornece um modelo de objetos que é ao mesmo tempo simples e poderoso. Os principais 
objetivos de seu desenvolvimento foram[19]: (i) fornecer um middleware orientado a objetos 
apropriado para o uso em ambientes heterogêneos, um conjunto completo de características que 
dêem suporte ao desenvolvimento de aplicações distribuídas realistas; (ii) evitar complexidades 
desnecessárias criando uma plataforma de fácil aprendizado, fornecendo uma implementação 
eficiente em largura de banda da rede, uso de memória e overhead de CPU; e (iii) fornecer uma 
implementação de desenvolvimento seguro. 
ICE atualmente é compatível com diversas linguagens de programação que podem ser 
empregadas na construção de aplicações como, Java, C++, Visual Basic, Ruby, Python, C# e 
PHP[19]. 

3.4.1 Arquitetura ICE  

A arquitetura baseada em modelos de objetos do ICE melhora o modelo de objetos de CORBA, 
por isso os componentes da arquitetura ICE são compatíveis com os componentes do modelo 
CORBA.  
 

• Clientes e Servidores 
Clientes são entidades ativas. Eles emitem requisições para serviços dos servidores. Servidores 
são entidades reativas. Eles fornecem serviços solicitados pelos clientes. Geralmente os 
servidores não trabalham somente recebendo requisições e podem também trabalhar como 
clientes enviando requisições para outros servidores. Neste caso, porém, com a finalidade de 
responder a requisição do cliente inicial[19]. 

• Objeto ICE 
Objetos ICE são entidades de espaço de endereço local ou remoto que respondem a requisições 
de clientes. Um Objeto ICE único pode ser instânciado em um único servidor, ou 
redundantemente, em servidores múltiplos. Objetos ICE possuem um ou mais interfaces(coleção 
de operações implementadas pelo objeto). Uma operação possui um ou mais parâmetros assim 
como valores de retorno. Parâmetros e valores de retorno possuem um tipo específico. Objetos 
ICE possuem uma interface distinta conhecida como interface principal(main interface), além de 
poder fornecer uma ou mais interfaces alternativas, conhecidas como facets. Cada objeto ICE 
possui uma única identidade de objeto(object identity, valor de identificação que distingue o 
objeto de todos os outros objetos). O modelo de objetos do ICE assume que a identidade do 
objeto é globalmente única, ou seja, dois objetos em um mesmo domínio de comunicação ICE 
não podem ter a mesma identidade[19]. 

• Proxies 
Proxies são tratados por objetos remotos, fornecendo conhecimento sobre a máquina e o número 
da porta onde o servidor está rodando e conhecimento sobre a identidade do objeto ao cliente[20]. 
Clientes utilizam proxies para conseguir se comunicar com os objetos ICE. O proxy atua como 
um representante local para o objeto ICE, quando os clientes invocam uma operação. Um proxy 
contém[19]: informações de endereçamento que permitem que o lado cliente contate o servidor 
correto; um objeto identidade que identifica no servidor qual é o objeto destino; e um 
identificador facet opcional que determina que interface facet particular de um objeto o proxy 
referencia. Aplicações podem comparar os proxies por igualdade e igualdade de proxies equivale 
a igualdade de objetos 
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ICE fornece não só uma herança de interfaces, como também uma agregação de interfaces. 
Clientes podem perguntar ao proxy por uma interface diferente da qual o objeto está 
representando. Embora um objeto forneça múltiplas interfaces, existe apenas um único objeto e 
conseqüentemente uma única identidade de objeto. Interfaces de agregação resolvem os 
problemas das versões, pois um único objeto pode ter múltiplas interfaces não relacionadas 
enquanto possui apenas uma identidade objeto. Desenvolvedores podem então adicionar novas 
interfaces a objetos pré-existentes sem violar o contrato cliente-servidor. Isso faz com que os 
desenvolvedores adicionem novas versões aos sistemas existentes sem impacto aos clientes 
implantados[20]. 

• Slice 
Tal como o IDL CORBA, ICE fornece uma linguagem de especificação. Slice(Specification 
Language for ICE) é um mecanismo de abstração fundamental para separar as interfaces dos 
objetos de suas implementações[19]. Slice estabelece contrato entre o cliente e o servidor e 
descreve os tipos e as interfaces de objeto utilizadas na aplicação, independente das linguagens de 
programação em que o cliente e o servidor foram implementados. Slice fornece um número 
mínimo de tipos primitivos internos(short, int, long, float, double, byte, string, object e bool). 
Além disso, dá suporte a vários tipos definidos pelos usuários, como constantes, listas, 
seqüências, estruturas e modelos, e ainda fornece novos construtores. A definição do Slice é 
focada nas interfaces de objetos, nas operações fornecidas por estas interfaces e pelas exceções 
que podem surgir por destas operações. 
 

3.4.2 Réplicações 

As replicações fazem com que os adaptadores de objeto(e seus objetos) fiquem disponíveis em 
múltiplos endereços. O objetivo da réplicação é de prover redundância pela execução de um 
mesmo servidor em computadores diferentes. Se ocorrer a falha em algum computador, o 
servidor continuará disponível em outros computadores. Um cliente pode acessar um objeto via 
um endereço e obter a mesma resposta como se fosse de qualquer outro endereço. Esses objetos 
não possuem estado, ou seja, sua implementação é projetada para sincronizar com o banco de 
dados ao invés de manter uma visão consistente de cada estado do objeto. Se compararmos essa 
estratégia com os que são implementados por FT-CORBA, pode-se dizer que o ICE usa apenas a 
primeira, replicação sem estado. 
ICE fornece uma forma limitada de réplicação quando o proxy especifica endereços múltiplos 
para um objeto. A execução do ICE escolhe aleatoriamente um dos endereços para iniciar a 
tentativa de conexão e continua tentando em todos eles no caso de um defeito.  
ICE fornece uma forma mais útil de réplicação conhecida como réplicação de grupos que exige o 
uso de um serviço de localização. Um grupo réplicado possui um identificador único e consiste 
em um valor qualquer de adaptadores de objeto[19]. O adaptador de objeto deve ser membro de 
no máximo um grupo réplicado. O grupo réplicado é tratado por um serviço de localização como 
um “adaptador de objetos virtual”. O comportamento de um serviço de localização quando 
resolvendo um proxy indireto contendo o identificador do grupo réplicado é apenas um detalhe de 
implementação. Por exemplo, o serviço de localização pode decidir retornar os endereços de 
todos os adaptadores de objeto do grupo, assim o cliente pode selecionar aleatoriamente um dos 
endereços e implementar novos serviços sobre mecanismo de replicação fornecido pelo ICE. 
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3.4.3 Transações 

• Modelos de Invocação  

ICE suporta, como o CORBA, invocações com limite de tempo, para configurações globais ou 
invocações individuais, onde as operações que não terminaram a execução no tempo especificado 
retornam com uma exceção de limite de tempo. ICE fornece invocações síncronas e assíncronas, 
além de datagramas e capacidade de executar requisições em lote(batching capability). CORBA 
também oferece time outs por thread, mas ICE não fornece devido ao alto custo ao acesso 
específico de threads armazenados. Então, o ICE fornece apenas um esquema simples de time out 
como forma de detecção de defeitos. 
Requisições ICE possuem semântica at-most-once: a infra-estrutura de tempo de execução do 
ICE faz o melhor para entregar a requisição ao destino correto e, dependendo das exatas 
circunstancias, pode reenviar a requisições falhas. ICE garante que a requisição será entregue. Se 
não for possível entregar a requisição, informa ao cliente com um a exceção especifica. 
Requisições têm semântica at-most-once, o que garante que operações que não são idempotent 
sejam usadas com segurança.  
Sem semântica at-most-once, podem ser construídos sistemas distribuídos que são mais robustos 
na presença de defeitos na rede. Sistemas realístas exigem operações não idempotentes, o que 
exige a semântica at-most-once, tornando o sistema menos robusto na presença de defeitos na 
rede. ICE permite o desenvolvedor marcar operações como idempotent. Para essas operações a 
execução ICE utiliza mecanismos mais rigorosos de recuperação de erros do que as operações 
não idempotent[19]. 
 

• Invocações Sincronas 
Para invocações síncronas ICE fornece a semântica at-most-once, que exige um tratamento de 
erros conservador. Caso ocorra uma falha de invocação enquanto a resposta para a requisição está 
pendente, o lado cliente não tem outra alternativa a não ser propagar o defeito para a aplicação. A 
semântica at-most-once do ICE é complementada pelos modificadores de operações nonmutating 
e idempotent. O primeiro indica que uma operação não modifica estado e o segundo fixa o estado 
em um valor definido independente do estado anterior para onde a execução possa reenviar com 
segurança mensagens na presença de um defeito na rede. Isso torna a execução de ICE 
transparentemente recuperável com relação a falhas da rede[20]. 

• Invocações Dinâmicas 
Nas aplicaçoes ICE, é mais comum o uso do modelo de invocação estática, onde a aplicação 
invoca uma operação Slice chamando uma função membro de uma classe gerada no proxy. No 
servidor, o modelo de envio estático comporta-se como de forma análoga: a requisição é enviada 
ao empregado como uma chamada do tipo estática a uma função membro no proxy. As execuções 
do ICE no cliente e no servidor trocam sequencias de bytes que representam o código dos 
argumentos e respostas da requisição(Figura 15). 
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Figura 15. Interações na Invocação Estática[19]. 

 
1. O cliente inicia a chamada com a operação Slice add chamando a função add do membro 

no proxy. 
2. A classe proxy gerada codifica os argumentos em uma sequencia de bytes para ser 

transmitida ao servidor.  
3. No servidor, a classe empregado gerada decodifica os argumentos e chama a funcao add 

na subclasse.  
4. O empregado codifica os resultados e transmiti-os para o cliente. 
5. O proxy cliente decodificaos resultados e retorna-os ao chamador original da requição. 

 
A aplicação é totalmente inconsciente desta negociação de baixo-nível, e na maioria das vezes 
isto é bastante vantagoso. No entanto, em algumas situações a aplicação pode utilizar esse tipo de 
negociação para conseguir tarefas que não seriam possíveis num ambiente do tipo estático. ICE 
da suporte a serviços de envio e invocação dinamica para essas situações, permitindo aplicações 
enviar e receber requisições como sequencia de códigos ao invés de utilizar argumento do tipo 
estático. No ICE as sequencias de bytes podem ser enviadas sem a necessidade de codificar e 
decodificar os argumentos. Além de ser mais eficiente que o implementação do tipo estático, ele 
permite aos serviços intermediarios desconhecer o tipo Slice usados pelos destinatários e 
remetentes.  

A utilização de invocacão dinamica deve ser realizada com cuidado devido aos riscos e a 
complexidade. Por exemplo, uma aplicação que utiliza interfaces streaming estão exposto a um 
alto risco de defeitos em codificar e decodificar argumentos de requisições manualmente a 
assinatura do argumento de uma operação se mudar. Ao contrario, esse risco é altamente reduzido 
se usado o modelo de envio e invocação estática porque os erros em linguagens de tipo forte são 
encontrados cedo, durante a compilação. Por isso, só reconmendavel utilizar invocações 
dinamicas se as vantagens superarem de forma significativa os riscos. 
 

3.4.4 Protocolos e Transporte 

Protocolo ICE pode ser rodado em uma variedade de protocolos de transporte. ICE dá suporte a 
TCP/IP, SSL e UDP. Para transporte orientado a conexão, ICE oferece uma característica 
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opcional  de controle de conexão ativa que automaticamente recupera conexões que tenham sido 
perdidas após um espaço tempo pré-estabelecido. 
 

3.4.5 Tolerância a Falhas 

• Detecção de Defeitos  
ICE suporta, como o CORBA, invocações com limite de tempo, para configurações globais ou 
invocações individuais, onde as operações que não terminaram a execução no tempo especificado 
retornam com uma exceção de limite de tempo. 
ICE não possui compromisso com as características das aplicações: com ICE podemos conseguir 
o mesmo que podemos conseguir com CORBA com menos esforço, menos código e menor 
complexidade. 
 

• Recuperação de Defeitos 
Slice fornece duas qualidades de operações, nonmutating e idempotent. Nonmutating indica que a 
implementação de uma operação não modifica o estado do objeto final. Idempotent indica que o 
efeito de duas ou mais invocações sucessivas de operações, é igual a uma única invocação. Com 
operações idempotent, se a primeira tentativa de invocar uma operação falhar, o lado cliente tenta 
reestabelecer a conexão com o servidor e com segurança enviar a requisição falha uma segunda 
vez. Se o servidor puder ser alcançado na segunda tentativa, o sistema continua normalmente e 
nunca anunciará um defeito(temporário). Apenas se houver falha na segunda tentativa é que à 
execução informa um retorno de erro a aplicação. Idempotent ajusta o estado a um valor 
definido(independente do estado anterior) pra que a execução possa enviar mensagens novamente 
com segurança após a presença das falhas de rede. [20]. Estas operações fornecem uma poderosa 
ferramenta de recuperação de erros porque, para as operações, a repetição após um erro nunca 
deve violar a semântica at-most-once(semântica do melhor esforço para entrega de requisões aos 
destinatários corretos). 
 

3.5 JBoss 
JBoss é um servidor, open-source, de aplicações compatível com Java EE(Java Enterprise 
Edition). Por ser open-source, é possível que desenvolvedores ampliem os serviços de 
middleware implementando dinamicamente novos componentes para o servidor. Possui suporte a 
serviços web Java EE, arquitetura orientada a serviços e modelo de programação orientada a 
aspectos para o desenvolvimento de soluções middlewares[21]. JBoss possui diversos aspectos 
pré-empacotados dar suporte a segurança, transações e threads assíncronos. Essa orientação a 
aspectos é um diferenciador que habilita os desenvolvedores a adicionar comportamento e 
competência a qualquer objeto. Essa tecnologia oferece uma ótima flexibilidade para customizar 
comportamento de servidores de aplicação específicos implantados em ambientes de requisição. 
JBoss é um microkernel com um framework  orientado a aspectos que usa essa base para criar 
servidores de aplicação Java EE com um conjunto completo de APIs. 

3.5.1 Arquitetura JBoss 

A arquitetura de servidores de aplicação JBoss é dividida em quatro camadas principais(Figura 
16): camada microkernel, camada de serviços, camada de aspectos e camada de aplicação. 
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Figura 16. Arquitetura de servidores de aplicação Jboss 

 

• Camada microkernel: no seu núcleo tem um servidor baseado em microkernel. Utilizando 
JMX(Java Management Extensions), o microkernel entrega um modelo de componente leve 
mas que oferece avançadas características de carregamento de classes e uma forte introdução 
(reintrodução) de aplicações sem precisar reiniciar as aplicações para serem atualizadas e  em 
todo gerenciamento do ciclo de vida. Essa é a base para a implantação flexível de 
componentes e a arquitetura orientada a aspectos. 

• Camada de serviço: acima da camada microkernel existe a camada de serviço que consiste 
em uma série de serviços onde cada um é cuidadosamente empacotado e fortemente 
introduzido. Serviços de implantação no JBoss podem alcançar qualquer lugar, desde 
transações e serviço de mensagens até serviços de segurança. Cada serviço é empacotado em 
um arquivo de serviços(SAR) onde cada SAR é individualmente implantado, facilitando a 
extensão do JBoss. Assim, os desenvolvedores podem facilmente incluir/remover serviços ou 
construir seus próprios serviços e implantá-los como SARs dentro de um servidor de 
aplicação JBoss. 

• Camada de aspectos: baseada no modelo de programação orientada a aspectos(AOP). JBoss 
utiliza o conceito de interceptores, que permitem ao sistema adicionar transparentemente o 
comportamento fornecido pelos serviços em todos os objetos. Desenvolvedores podem 
adicionar ou remover interceptadores de acordo com as suas especificações. É a camada de 
aspectos que permite aos desenvolvedores acrescentar capacidades como transações ou 
serviços de aglomerados. 

• Camada de aplicação: é nesta camada onde as aplicações são hospedadas. As aplicações 
elevam as capacidades da infra-estrutura JBoss caso utilizem diretamente o serviço de 
container ou se empregam a camada de aspectos e etiquetam os aspectos para adicionar 
comportamentos aos objetos. 
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3.5.2 Transações 

ArjunaCore é um sistema de programação orientado a objeto que fornece um conjunto de 
ferramentas para a construção de aplicações tolerantes a falha usando objetos e transações.  
ArjunaCore é utilizado apenas para transações locais, quando são necessárias transações 
distribuídas o ArjunaCore fornece o gancho necessário para que a informação seja transmitida. 
Por isso, é JBoss utiliza o JBossTS para transações distribuídas tendo o ArjunaCore como nucléo 
para o serviço de transações. 

• Arquitetura ArjunaCore 

ArjunaCore foi projetado e implementado para fornecer uma forma de construir aplicações 
distribuídas tolerantes a falhas. Para isso foram levadas em consideração três propriedades de 
sistemas consideradas de extrema importância: 

• Modularidade: o sistema deve ser fácil de se instalar e executar. Ou seja, é possível 
substituir um componente do ArjunCore por um já existente na base do sistema. 

• Integração de mecanismos: um sistema tolerante a falhas precisa de uma variedade de 
funções para controle de concorrência, detecção de defeitos, recuperação de erros, etc. 
Estes mecanismos podem ser fornecidos de uma maneira integrada para que seu uso seja 
fácil e natural. 

• Flexibilidade: os mecanismos devem ser flexíveis, permitindo às aplicações especificar 
características que melhor se adequam aos seus objetivos, por exemplo, tipo específico de 
concorrência e controle de recuperação.  

 
- Objetos e Transações  
Consideramos um modelo de computação onde cada programa de aplicação manipula objetos 
persistentes sob o controle de transações atômicas. As operações de um objeto têm acesso a 
instâncias de variáveis e podem modificar o estado deste objeto. Todas as operações de invocação 
são controladas pelo uso de transações atômicas que fornecem as propriedades ACID. 
Os modelos de objetos e transações fornecem um arcabouço natural para o desenvolvimento de 
sistemas tolerantes a falhas com objetos persistentes. Quando não se usa objetos persistentes, se 
assume estar em um estado passivo em um objeto de armazenamento(object store) e ativado por 
demanda pelo carregamento dos estados e métodos de um armazenador de objeto persistente para 
um armazenador não-estavel(volátil), e associando-o com um objeto containner. 
 
- Arquitetura do Sistema 
ArjunaCore possui dois módulos principais para dar suporte a objetos persistentes: módulo de 
transações atômicas e módulo de armazenamento de objetos. 
 

• Módulo de transações atômicas: fornece suporte de transações atômicas aos programas de 
aplicação na forma de operações para inicializaçãoo, sucesso(commit), e cancelamento de 
transações. 

• Módulo de armazenamento de objetos: fornece um repositório de armazenamento 
estável. Esses objetos são registrados com um identificador únicos(UID) para seu 
nomeamento. 

 
A estrutura ArjunaCore é altamente modular: pelo encapsulamento de propriedades persistente, 
recuperabilidade, compartilhamento, seqüenciabilidade nos módulos de transações  atômicas, 
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interfaces bem definidas para o suporte a ambientes, ArjunaCore consegue um decrescimento 
significativo de modularidade além da portabilidade. 
 
Serviços de Armazenamento de Objetos 

• Salvando estados de objetos: ArjunaCore possui a capacidade de lembrar do estado do 
objeto, por vários motivos: inclusão de recuperação (o estado representa algum estado 
passado do objeto), persistente (o estado representa o estado final do objeto em uma 
aplicação de terminação), e para propósito de distribuição (o estado representa o estado 
atual de um objeto que deve ser levado ao local remoto).  

• Armazenador de objetos (Object Store): fornece uma interface bastante restrita que pode 
ser implementada de vários maneiras. Por exemplo, armazenadores de objetos são 
implementados em memória compartilhada. Quando um objeto transacional está 
finalizando com sucesso (commiting), é necessário para ele tornar persistentes algumas 
mudanças de estado para que possa recuperar na ocorrência de um defeito e continuar com 
a finalização da transação, ou fazer um rollback. Para garantir as propriedades ACID, essas 
mudanças de estado podem ser descartadas (flushed) pela implementação do estado 
persistente antes da transação proceder com a ação de sucesso. Senão a aplicação pode 
presumir que a transação foi um sucesso quando de fato a mudança de estado pode ainda 
residir dentro da cache do sistema operacional e pode ser perdida por um subseqüente 
defeito da maquina. Como padrão, ArjunaCore garante que tais mudanças de estados 
sempre serão descartadas. 

 
Serviços de Transações Atômicas 
Recuperação e Persistência: fornece a ativação e desativação de objetos, recuperação de objetos 
e também mantém o nome dos objetos (na forma de objetos UID). Os objetos são divididos em 
três tipos. Objetos recuperáveis são geradas e mantidas informações de recuperação apropriadas 
do objeto. Estes objetos possuem um tempo de vida que não ultrapassa o programa de aplicação 
que o criou. Objetos recuperáveis e persistentes, por sua vez, têm tempo de vida maior. Por fim, 
objetos podem não possuir nenhum dos tipos citados. Neste caso, nenhuma informação de 
recuperação é mantida. O objeto não pode ganhar ou perder capacidade de recuperação em um 
ponto qualquer durante seu tempo de vida.  

• JBossTS 

JBossTS (JBoss Transaction Service) é a solução de middleware que dá suporte a aplicações 
criticas em ambientes de computação distribuída. ArjunaCore é o núcleo para o JBossTS. 
JBossTS é uma extensão dos serviços de transação do ArjunaCore fornecendo alto desmpenho, 
alta confiabilidade nos processos de transação e fornece JTA (Java Transactions API), JTS (Java 
Transaction Service) e o padrão dos serviços Web. JBossTS desempenha um papel crítico na 
construção confiável de aplicações sofisticadas de e-business, garantindo absoluta conclusão e 
exatidão dos processos de negócios. 
Há diversos participantes em uma transação distribuída JBossTS, incluindo: 

• Gerenciador de transação: está distribuído no sistema de transações. Gerencia e ordena o 
trabalho envolvido na transação. 

• Gerenciador de contexto: identifica uma transação particular. 
• Cliente transacional: um cliente transacional pode invocar operações de um ou mais 

objetos transacionais em uma única transação. O cliente transacional que iniciou a 
transação é chamado de originador de transação.  
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• Objeto transacional: objeto cujo comportamento é afetado por operações ocorridas dentro 
de um contexto transacional. Um objeto transacional também pode ser um cliente 
transacional. 

• Recurso recuperável: um recurso recuperável é um objeto transacional cujo estado é salvo 
em um armazenamento estável se a transação for bem-sucedida e cujo estado pode ser 
reajustado para o que era no começo da transação se a transação é restaurada a um ponto de 
recuperação. 

3.5.3 Tolerância a Falhas 

• Detecção de Defeitos 

JBoss utiliza o JBoss Remoting para detectar defeitos entre o lado cliente e o lado servidor da 
aplicação. JBoss Remoting fornece uma única API para a maioria da redes cliente/servidor 
baseadas em invocações e serviços que usam inclusão de protocolos de transporte e codificação 
de dados. A API JBoss Remoting fornece a capacidade de fazer chamadas remotas síncronas e 
assíncronas, envio e recepção de mensagens callback, e descoberta automática de servidores 
remotos. A intenção é permitir o uso de diferentes protocolos de transportes para servir para 
diferentes propósitos, mantendo a mesma API para fazer invocações remotas e apenas precisando 
de mudanças de configuração sem mudanças de código.  
 
Algumas características disponíveis no JBoss Remoting são:  

• Identificação de servidor: um identificador simples baseado em uma URL que permite os 
servidores remotos serem identificados e chamados. Isso é feito via InvokerLocator, que 
pode ser representado por uma simples string com um formato baseado em URL. Isso é 
tudo que se precisa para criar um servidor remoto ou fazer uma chamada a um servidor 
remoto.  

• Codificação de dados conectável: diferentes codificadores e decodificadores de dados 
podem ser usados para converter  a carga útil invocadas  no formato de dados desejável 
para a linha de transferência. 

• Descoberta automática: descobrir servidores remotos enquanto estão on/off line. Multicast 
ou JNDI. 

• Grupos de servidores: capacidade de agrupar servidores em domínios lógicos, portanto a 
comunicação entre servidores só se dará dentro de um domínio especifico. 

• Callbacks: pode receber e enviar callbacks pelos modelos push/pull. O modelo push 
permite armazenamento persistente e gerenciamento de memória. 

• Notificação de conexões falhas: notificação se o cliente ou o servidor falhou 
• Compressão de dados: pode se usar compressão (de)marshaling para a compressão de 

grandes cargas úteis. 
 
Detecção Automática 
Para adicionar detecção automática, o detector remoting precisará habilitar os lados cliente e 
servidor assim como o registro de rede(NetworkRegistry) no lado cliente(Figura 18). 
Quando o detector no lado servidor é criado e iniciado, ele irá periodicamente por em 
InvokerRegistry todos os invocadores servidor que foram criados. O detector irá usar a 
informação para publicar  
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Figura 17. Inclusão de detecção automática 

 
uma mensagem de detecção contendo o localizador e o subsistema suportado por cada invocador 
servidor. Um subsistema é um identificador de que camada superior do sistema o suportador de 
invocações está associado. A publicação da mensagem de detecção será enviada via mensagens 
multicast ou ligadas a um servidor JNDI. No lado cliente, o detector receberá as mensagens ou a 
poll do servidor JNDI para detecção de mensagens, se o detector determinar que a mensagem de 
detecção é para um servidor remoto que está online ele o registrará em NetworkRegistry. 
NetworkRegistry passará a informação de detecção para todos os servidores remotos descobertos. 
A mudança no NetworkRegistry também pode ser feita quando o detector descobre que o servidor 
remoto não está muito disponível e remove-o do registro. 

• Recuperação de Defeitos 

A Figura 19 mostra a arquitetura principal dos componentes dentro da recuperação de defeitos. 

 
Figura 18. Arquitetura da recuperação de defeitos[21]. 
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O gerenciador de recuperação(recovery manager) é o processo central responsável pela 
realização da recuperação de defeitos. Apenas um gerenciador de recuperação é executado por 
nó. O armazenador de objetos fornece armazenamento persistente de dados para transações de 
registro de dados. Durante o processamento de transação normal, cada transação registrará os 
dados persistentes necessários para que ela possa ser finalizada com sucesso(commit). Na 
caracterização do sucesso da transação, os dados são removidos. Porém se a transação falhar, os 
dados permanecem no armazenador de objeto. 
As funções do gerenciador de recuperação são: 
- Procurar periodicamente no armazenador de objetos por transações que possam ter falhado. 
Transições falhas são indicadas pela presença de registro de dados depois do período de tempo 
que a transação normalmente já deveria ter terminado. 
- Verificar junto ao processo de aplicação que originou a transação se a transação ainda está em 
andamento ou não. 
- Recuperar a transação pela reativação da transação e então repetir a fase 2 do protocolo de 
sucesso(commit). 

3.6 Comparação de Mecanismos 
A comparação feita neste trabalho é baseada nos mecanismos de detecção e recuperação de 
defeitos conhecidos na literatura de tolerância a falhas. Neste trabalho estudamos os mecanismos 
de mensagens de heartbeat, consenso, detecção de defeitos não confiavéis e multicast totalmente 
ordenado como mecanismos de detecção de defeitos e os mecanismos de recuperação por retorno 
e recuperação por avanço como mecanismos de recuperação de defeitos. As infra-estruturas 
escolhidas para tal estudo foram desenvolvidas tanto no meio acadêmico quanto no meio 
comercial. Sendo elas Sprint, Horus, TAO, ICE e JBoss. 

3.6.1 Sprint  

XS(Durability Server) são replicados para uma alta disponibilidade. Se houver a queda de XS, 
DS(Data Servers) não precisam esperar o XS se recuperar para o sucesso de suas transações de 
atualização. DS são replicados para melhor desempenho e disponibilidade. Quando há a queda de 
um DS, outra instância é iniciada em um servidor físico operacional. A nova instância estará 
pronta para processar trasnsações após receber ao dados do banco de dados que estão 
armazenados no XS. 
Servidores fisicos podem falhar por queda(crash) mas não comportam-se maliciosamente(falhas 
Bizantinas). O servidor pode se recuperar após um defeito, mas perde toda a informação 
armazenada na memória principal antes da queda. Cada servidor tem acesso ao armazenador 
estável local(i.e. disco) cujo conteúdo sobrevive a quedas. O defeito em um servidor físico 
implica no defeito de todos os servidores locais nele hospedados. 
O sistema aplica detecção de defeitos não-confiavel: (a) servidores falhos serão detectados por 
servidores operacionais, mas (b) um servidor operacional pode suspeitar erroneamente que um 
servidor tenha falhado, caso ele esteja muito lento. 
Nos ES, Se um defeito ocorre durante a execução do protocolo de terminação, a transação 
finaliza com sucesso ou aborta, dependendo de quando o defeito ocorrer. Se a requisição do ES 
para a terminação da transação alcançar todos os DS participantes, eles estarão prontos para dar 
sucesso à transação, e seus votos entregues antes de qualquer outro voto para a transação, então a 
resposta será de sucesso. 
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Uma nova instância de ES será, imediatamente, criada em qualquer servidor físico. Durante a 
inicialização, o ES manda mensagens para um dos XS, perguntando pela configuração atual do 
banco de dados. O ES estará pronto para processar requisições assim que for recebida a 
configuração do banco de dados. 
Nos DS a recuperação de servidores defeituosos é simples, pois é necessário apenas criar uma 
outra instância do servidor em um servidor físico operacional. Com um DS configurado para 
evitar acesso ao disco, não existe imagem de banco de dados para ser restabelecida de um disco 
local após a queda. Em conseqüência, uma nova cópia do DS defeituoso será implantada em um 
servidor físico usando o estado armazenado pelo servidor de durabilidade. São necessários alguns 
cuidados para evitar inconsistência das estratégias de recuperação. 
Nos XS’s mensagens entregues perdidas pela recuperação do XS podem ser recuperadas por um 
XS operacional. Cada XS cria, periodicamente, uma imagem no disco, do estado atual do banco 
de dados. Esse estado é construído a partir das mensagens entregues pelos XS, como parte do 
protocolo de terminação das transações de atualização. 
Assim, concluimos que no Sprint os servidores físicos utilizam detectores de defeitos não-
confiáveis. Isto se aplica também aos  servidores lógicos. Já na recuperação de defeitos cada 
servidor cria uma nova instância do servidor falho e se reconfigura a partir de um ponto de 
recuperação que é uma imagem de banco de dados armazenada no servidor de durabilidade(XS), 
que se auto-recupera com a utilização de replicação. 

3.6.2 Horus 

Horus fornece suporte eficiente para o modelo de execução virtualmente síncrono. Este modelo é 
baseado em grupos de processos e primitivas de comunicação e dá suporte a uma variedade de 
ferramentas de tolerância a falhas, por exemplo, para execução de requisições com o 
balanceamento de cargas, computação tolerante a falhas, dados replicados coerentemente e 
segurança. Horus não fornece operações de controle de propósito geral, e possui apenas um 
formato de endereçamento. Protocolos de camadas distintas podem ser misturados e conectados 
livremente. 
Horus tolera falhas do tipo fail-stop, pois a utilização do modelo de sincronização virtual os 
processos garante que é possível distinguir um processo falho de um que está lento. 
adicionalmente os membros de um mesma visão tomam conhecimento do defeito em um mesmo 
instante lógico. A camada TOTAL fornece entrega totalmente ordenada para mensagens 
multicast dentro de um grupo. A camada TOTAL fornece um tempo de entrega para as visões 
sobreviventes. A camada NAK fornece uma sequencia de numeros que são analisados pelo 
receptor como forma de detectar pacotes perdidos. Os defeitos são detectados pelos endpoints. 
Visões(views) são utilizados para recuperação de defeitos. Um endereço de grupo está associado 
a um objeto grupo que mantem o estado do protocolo local. Um endpoint pode possuir múltiplos 
objetos e diferentes visões de um mesmo grupo. Então quando um processo falha, será criada 
uma nova visão em um mesmo grupo para recuperação e serão utilizados protocolos de 
associação para alcançar alguma concordância de visões entre múltiplos objetos grupo de um 
mesmo grupo. 

3.6.3 TAO 

TAO é uma infra-estrutura que estende o padrão e os componentes do framework ACE e que foi 
desenvolvido para prover um alto desempenho no padrão CORBA às aplicações de tempo real. 
Sua arquitetura é baseada em uma melhoria dos componentes da arquitetura CORBA, 
principalmente no protocolo IIOP. As classes de falhas toleradas pelo TAO são falhas por 
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temporizacao, pois suas aplicações possuem um time-out de duração decidida pelo cliente e 
controlado em tempo de execução pelo objeto servidor. 
TAO usa replicação como mecanismo de tolerância a falhas. Utilizam mensagens de heartbeat 
como mecanismo de detecção de defeitos pela extensão do protocolo DOORS do CORBA. TAO 
também utiliza mecanismos de polling(votação) como mecanismos de detecção de defeitos. Esses 
mecanismos são utilizados apenas nas aplicações que usam replicação ativa ou passiva. TAO 
inclui também um tipo de replicação híbrida denominada replicação semi-ativa onde as 
mensagens de heartbeat e de polling não são mais utilizadas para fornecer uma diminuição do 
overhead no sistema. Na replicação semi-ativa, são usadas mensagens confiável de multicast para 
a detecção de defeitos. As mensagens são enviadas por multicast, mas sua ordenação é forçada 
pelo envio de uma lista ordenada de referências do lado cliente. 
A recuperação de erros é feita a partir de arquivos log que registram o estado atual do objeto 
primário, para que sejam recuperados na ocorrência de alguma falha. O mecanismo de 
recuperação de erros no TAO é baseado na redundância das entidades; um dos objetos é definido 
como primário e, caso este objeto falhe, um dos objetos redundantes será eleito o novo  primário 
e o sistema continuará sendo executado com o registro arquivado em log do último estado ideal 
do objeto primário falho. TAO também pode usar uma forma simples de consenso baseado no 
modelo de replicação ativa com votação de FT-CORBA. 

3.6.4 ICE 

ICE detecta defeitos usando temporizadores, pois as operações que não terminaram a execução 
no tempo especificado lançam  uma exceção de limite de tempo. ICE não possui compromisso 
com as características das aplicações: com ICE podemos conseguir o mesmo que podemos 
conseguir com CORBA com menos esforço, menos código e menor complexidade.  
A literatura sobre ICE não especifica os mecanismos de detecção de defeitos usados para gerar a 
exceções, porém ICE foi criado para utilizar alguns mecanismos do padrão CORBA, por 
exemplo, replicação e temporizadores. 
A linguagem Slice fornece duas qualificações(idempotente e nonmutating) para operações como 
garantia de utilização da semântica at-most-once. Assim, ele fornece um recuperação de erros de 
redes falhas porque com essas qualificações o reenvio após um erro não pode violar a semântica 
at-most-once. A utilização das operações idempotent e nonmutating na recuperação de defeitos é 
garantida pelo retorno ao ultimo ponto livre de falhas. Pois a operação idempotent garante o 
melhor esforço para a entrega da requisição e a operação nonmutating garante que o estado final 
não será modificado. A operação idempotent ajusta o estado a um valor definido para que a infra-
estrutura de tempo de execução do ICE possa enviar mensagens novamente na presença das 
falhas de rede.  

3.6.5 JBoss 

JBoss é um middleware  com uma arquitetura em camadas. Entre essas camadas, especificamente 
na camada de microkernel, existe uma extensão que serve como integração entre os componentes 
do JBoss e os serviços da aplicação. 
As transações no JBoss são monitoradas por um componente chamado JBossTS, que utiliza 
mecanismos de rollback na recuperação de transações falhas de acordo com um ponto de 
recuperação armazenado em um dos componentes da transação denominado recovery resources. 
O JBoss Remoting fornece serviços de chamadas remotas síncronas e assíncronas, chamadas 
callback e multicast confiável para detectar se um objeto e está ativo, inativo ou falhou. Além de 
um detector automático que envia mensagens periódicas aos clientes/servidores e armazenam a 
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informação de seu estado em um log(NetworkRegistry) para descobrir  quando algum 
cliente/servidor falhou. 
Além disso, existe uma arquitetura denominada ArjunaCore que foi desenvolvida para fornecer 
melhores mecanimos de tolerância a falhas às  aplicações do JBoss, introduzindo objetos 
persistentes e transações atômicas. Combinados esses armazenar os estados dos objetos e persistir 
esses estados, de modo que eles possam ser recuperados no evento de uma falha.  

3.6.6 Serviços Fornecidos pelas Infra-Estruturas de Middleware 

Com base no que foi discutido sobre as infra-estruturas estudadas, apresentamos na Tabela 3 uma 
comparação dos mecanismo de tolerância a falhas e os serviços fornecidos em cada infra-
estrutura. 
 
Tabela 3. Comparação dos mecanismos de tolerância a falhas e as infra-estruturas de middleware 

estudados 
Infra-Estrutura de Middleware 

 Sprint Horus TAO ICE JBoss 
Mensagens de heartbeat  X X  X 

Multicast Confiável X X X  X 

Consenso X   X  

D
et

ec
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o 
de

 D
ef

ei
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Detecção de Defeitos 
Não-Confiavel 

X     

Recuperação por Retorno X  X X X 

R
ec

up
er

aç
ão

 
de

 D
ef

ei
to

s 

Recuperação por Avanço  X X X  

 
 
Como podemos observar na tabela 3, o Sprint e o TAO fornecem detecção de defeito não 
confiáveis, onde no Sprint os defeitos serão detectados por servidores que estejam operando 
enquanto que no TAO serão detectados por réplicas ativas devido o termino de time-outs. Já no 
Estas duas infra-estruturas também coincidem no mecanismo de recuperação que junto com o 
JBoss implementam recuperação por retorno. O TAO, e também o Jboss, armazena as 
informações em um arquivo log, já o Sprint armazena periodicamente a imagem do banco de 
dados no servidor de durabilidade(XS), assim ele recupera todo o banco de dados e precisa 
apenas atualizar as informações perdidas após o defeito. 
Horus, TAO e JBoss utilizam multicast confiável como detecção de defeitos. A camada TOTAL 
do Horus garante a ordenação total na entrega de mensagens multicast em um grupo e a camada 
MBRSHIP detecta os defeitos pelos membros vizinhos. No TAO o a ordenação do multicast é 
forçado, para isso é necessário o envio ao cliente de uma lista ordenada de referencias, já o JBoss 
utiliza multicast para detectar o estado dos objetos e descobrir se eles estão vivos. 
Apenas a infra-estrutura TAO utiliza mensagens comuns de heartbeat, essas mensagens são 
enviadas periodicamente ao detector de falhas e entre as replicas a fim de se detectar algum  
elemento falho. O Horus, o ICE e o Jboss utilizam temporizadores de mensagens como 
mecanismo de detecção. 
Horus e Ice utilizam recuperação de erros por avanço. Ice utiliza a operação idempotent(que 
garante a semântica at-most-once) pois ele ajusta o estado a um valor definido, independente do 
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estado anterior, para que o tempo de execução possa enviar novamente com segurança, na 
presença de falhas da rede. No Horus, depois da utilização do protocolo flush, é criado uma nova 
instância da visão, assim que estiver pronta as mensagens instáveis do membro defeituoso são 
enviadas e o sistema está pronto para continuar com sua execução. 

3.6.7 Análise dos Mecanismos 

As mensagens por multicast confiavél devem ser utilizadas para aumentar a garantia ao usúario 
de entregas confiavéis aos receptores. Como sistemas distribuídos trabalham com um numero 
grande de receptores e clientes, esse tipo de mecanismo deve ser empregado em sistemas que não 
suportem perdas de pacotes. Por exemplo, nas transações bancarias os processos não podem 
falhar durante as transações, ou o processo se completa ou é cancelado. 
Mecanismos de consenso, os nós participantes não precisam saber o resultado final decido pelos 
membros, apenas o membro líder conhece a decisão final da votação. Consenso pode ser 
empregado em sistemas que possuam falhas arbitrárias (ou bizantinas), para que mensagens 
maliciosas enviadas por membros da votação não influenciem na consistencia dos resultados. 
Detectores de defeitos não-confiável é utilizado por serviços que têm a necessidade de saber 
quem está falho ou não no sistema. O detector de defeitos não-confiavél pode gerar informações 
incorretas, isto é, ele pode marcar que uma entidade está falha, quando na realidade ela está ativa 
e vice-versa, o que pode acarretar em gastos computacionais já que as entidades podem ser 
marcadas e desmarcadas como falho variás vezes durante a execução do sistema. A análise de 
falhas nas entidades se dá pelo envio periódico de mensagens aos participantes, sistemas que não 
tenham compromissos com tempo podem utilizar esse mecanismo, por exemplo, sistemas que 
necessitem de implementações de Qualidade de Serviço(QoS). 
Recuperação por retorno o sistema deve guardar informações de estados consistentes por um 
determinado intervalo e tempo, para em caso de defeitos no sistema está informação sirva como 
ponto de retorno. Essa técnica deve ser usada por sistemas que necessitem de uma execução 
completa da aplicação para que o estado final esteja livre de falhas. Recuperação por retorno é 
comumente utilizada em sistemas seguros, sistemas em que a seguança é mais importante que a 
disponibilidade e devem apresentar comportamentos fail-safe. Por exemplo, sistemas de 
transporte urbanos utilizados na Europa para evitar colisões de trens, bondes. 
Recuperação por avanço o sistema passa a um novo estado ainda não ocorrido após a ocorrencia 
de uma falha para continuar operando normalmente. Essa técnica é usada quando não há tempo 
de voltar para o estado anterior para retomar a execução, ou quando as ações podem ser desfeitas, 
por exemplo, sistemas em tempo real. 
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4  

Conclusões e Trabalhos Futuros 

Este trabalho procurou abordar uma visão geral de tolerância a falhas em middleware e seus 
mecanismos de detecção de defeitos e recuperação de erros, as infra-estruturas de middleware 
bastante conhecidas e de diferentes ambientes já que foram abordadas infra-estruturas tanto do 
âmbito acadêmico como do âmbito comercial. A tolerância a falhas fornece uma abstração ao 
usuário dos problemas ocorridos no sistema. A tolerância a falhas é um atributo importante para 
diversas aplicações na atualidade devido ao grande uso de aplicações via Internet e pelo alto grau 
de complexidade e de utilização de algumas aplicações, onde uma falha pode causar eventos 
catastróficos com perda de vidas humanas ou grandes perdas financeiras. 

4.1 Contribuições 
Com o objetivo de analisar as infra-estruturas de middleware existentes, este trabalho apresentou 
os mecanismos de detecção (mensagens de heartbeat, consenso, detectores de defeitos não-
confiavéis e multicast confiavel) e recuperação de defeitos (recuperação por retorno e 
recuperação por avanço) e as infra-estruturas (Sprint, Horus, TAO, ICE e JBoss) que foram 
escolhidas para nossa análise. A comparação se deu com base nos mecanismos apresentados e 
nos serviços apresentados pelas infra-estrturas para o desenvolvimento de aplicações. 
O objetivo da comparação entre os mecanismos de tolerância a falhas e infra-estruturas de 
middleware é bastante importante para que os desenvolvedores possuam alguma base prévia de 
informação quando da escolha de uma infra-estrutura para o desenvolvimento de sua aplicação. 
Assim evita-se um desperdício econômico caso uma aplicação seja desenvolvida em um ambiente 
impróprio ou uma grande catástrofe se o sistema desenvolvido não tolerar as falhas da forma 
esperada pelo desenvolvedor devido a infra-estrutura utilizada. 
A organização dos resultados de acordo com os quesitos de detecção e recuperação facilitará o 
entendimento da comparação e permitirá que os desenvolvedores avaliem esses critérios de forma 
separada. Pois, essas duas funcionalidades são essenciais a construção de sistemas distribuídos 
tolerantes a falha. 
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4.2 Trabalhos Futuros 
Este trabalho foi apenas um primeiro passo na análise dos mecanismos de tolerância a falhas e 
das infra-estruturas de middleware da literatura. Para que haja uma quantidade maior de 
informações aos desenvolvedores é necessário que as abordagens deste trabalho sejam ampliadas.  
Os mecanismos de detecção de defeitos e recuperação de erros são muito importantes no 
desenvolvimento de sistemas distribuídos, porém existem outros mecanismos de tolerância a 
falhas que podem ser estudados. Além disso, existem outras maneiras de se detectar defeitos que 
podem ser analisadas e adicionadas a este estudo. São conhecidas na literatura uma gama de 
infra-estrutras de middleware, por isso, este estudo pode ser ampliado a um numero maior de 
infra-estruturas. 
Para uma melhor avaliação dos desenvolvedores, seria necessário um estudo que envolve um 
número maior de mecanismos de tolerância a falhas, detecção de defeitos, recuperação de erros e 
de infra-estruturas de middleware. Assim seria feita uma analise minuciosa dos requisitos da 
aplicação e de qual infra-estrutura de middleware a ser utilizada. 
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