-

ESCOLA POLITECNICA
DE PERNAMBUCO
i

Resumo

Com a popularizagdo da Internet e o desenvolvimento de redes de computadores de alta
velocidade, sistemas computacionais passaram a ser usados em diversas novas areas de aplicacao.
Varias dessas aplicagdes demandam um alto grau de confiabilidade, de modo a garantir que: (i) o
sistema se comporta de acordo com sua especificacdo; (i) falhas ndo resultam em eventos
catastroficos como perdas de vidas humanas ou grandes perdas financeiras. Tolerancia a falhas ¢
uma das abordagens empregadas para garantir que sistemas distribuidos atinjam o grau esperado
de confiabilidade. E uma técnica que visa garantir que o sistema se comporta de acordo com sua
especificagdo mesmo na manifestagdo de falhas. Neste trabalho, apresentamos um estudo sobre
tolerancia a falhas e sobre os mecanismo de detec¢do e recuperagdo de defeitos, que sdo técnicas
importantes para que um sistema mascare as falhas de seus componentes. A detecg¢do de defeitos
serve para descobrir a ocorréncia de defeitos no sistema. Apos a deteccdo dos defeitos, sdo usadas
técnicas de recuperacdo de defeitos para guiar o sistema a um estado consistente. Em nosso
trabalho selecionamos um conjunto de infra-estruturas de middleware composto por infra-
estruturas desenvolvidas tanto no ambito comercial quanto no dmbito académico, sendo elas
JBoss, Horus, Sprint, ICE, Tao. Este trabalho visa fornecer uma visdo geral dessas infra-
estruturas de middleware, com énfase nos mecanismos de tolerancia a falhas disponiveis em cada
uma delas. Tambem analisamos as técnicas de detec¢do e recuperacdo de defeitos implementadas
por cada uma e fazemos uma comparacdo para dar suporte aos desenvolvedores na escolha da

infra-estrutura ideal para o desenvolvimento de um sistema de software tolerante a falhas.

-

ESCOLA POLITECNICA
DE PERNAMBUCO
ii

Abstract

With the popularization of the Internet and the development of high speed computer networks ,
computational systems had started to be used in several new areas of application. You vary of
these applications demand one high degree of reliability, in order to guarantee that: (i) the system
if holds its specification in accordance with; (II) faults do not result in catastrophic events as
losses of lives human beings or great financial losses. Fault Tolerance is one of the used
approaches to guarantee that distributed systems reach the waited degree of reliability. It is one
technique that it aims at to guarantee that the system if in accordance with holds its same
specification in the manifestation of faults. In this work, we present a study on fault tolerance and
the mechanism of failure detection and failure recovery, that are important techniques so that a
system masks the ifailuress of its components. The failures detection serves to discover the
occurrence of failure in the system. After the failure detection, techniques of failure recovery are
used to guide the system to a consistent state. In our work we in such a way select a set of
infrastructures of middleware composed for infrastructures developed in the commercial scope
how much in the academic scope, being they JBoss, Horus, Sprint, TAO and ICE, So. This work
aims at to supply a general vision of these infrastructures of middleware, with emphasis in the
tolerance mechanisms the available imperfections in each one of them. Also we analyze the
techniques of failure detection and failure recovery implemented for each one and make a
comparison to give has supported to the developers in the choice of the ideal infrastructure for the

development of a system of fault tolerant software.

Sumario

Indice de Figuras
Indice de Tabelas
Tabela de Simbolos e Siglas

1 Introducio

1.1.1 Motivagao
1.1.2 Organizagdo do Trabalho
2 Visao Geral de Tolerancia a Falhas

2.1 Sistemas Distribuidos

2.1.1 Propriedades de sistemas distribuidos
2.2 Falha, Erro e Defeito
2.3 Tolerancia a Falhas

2.3.1 Modelo de falhas

232 Escopo de falhas

233 Conseqiiéncia de falhas

234 Fases da Tolerancia a Falhas

235 Redundéncia

2.3.6 Replicagdo

2.3.7 Transagoes

2.3.8 Modelos computacionais

239 Deteccdo de defeitos(failure detection)

2.3.10 Recuperacdo de erros(error recovery)
2.4 Aplicagdes de Sistemas Tolerantes a Falhas

241 Sistemas de tempo real
242 Sistemas digitais de telefonia
243 Sistemas de Processamento de Transagoes

3 Infra-estruturas de Middleware

3.1 Sprint
3.1.1 Introdugdo
3.1.2 Arquitetura Sprint

3.1.3 Transagoes
e Terminagdo com Suspeita de Defeito
3.14 Tolerancia a Falhas
e Recuperagdo de defeitos
32 Horus
3.2.1 Arquitetura Horus
322 Tolerancia a Falhas

323 Protocolos de pilhas
3.3 TAO(The ACE ORB)
3.3.1 Arquitetura TAO
e Componentes do Modelo CORBA

-

ESCOLA POLITECNICA
DE PERNAMBUCO
iii

el

POLE

ESCOLA POLITECNICA
DE PERNAMBUCO

v

e Componentes do modelo TAO 36
332 Tolerancia a Falhas 37

e FTCORBA 37

e DOORS 39

e Replicagdo semi-ativa 40
34 Internet Communications Engine(ICE) 41
34.1 Arquitetura ICE 42
342 Réplicagoes 43
343 Transagoes 44

e Modelos de Invocagao 44
344 Protocolos e Transporte 45
345 Tolerancia a Falhas 46
35 JBoss 46
3.5.1 Arquitetura JBoss 46
352 Transagoes 48

e Arquitetura ArjunaCore 48

e JBossTS 49
353 Tolerancia a Falhas 50

e Deteccdo de Defeitos 50

e Recuperagio de Defeitos 51
3.6 Comparagdo de Mecanismos 52
3.6.1 Sprint 52
3.6.2 Horus 53
3.63 TAO 53
3.64 ICE 54
3.6.5 JBoss 54
3.6.6 Servigos Fornecidos pelas Infra-Estruturas de Middleware 55
3.6.7 Analise dos Mecanismos 56

4 Conclusées e Trabalhos Futuros 57
4.1 Contribui¢des 57

42 Trabalhos Futuros 58

Indice de Figuras

Figura 1. Sistema distribuido organizado com Middleware
Figura 2.Relagdo entre falha, erro e defeito.

Figura 3.Modelo de trés universos: falha, erro e defeito.
Figura 4.Abordagens de confiabilidade

Figura 5.Modelo de falhas em sistemas distribuidos
Figura 6.Recuperacao por retorno e por avango

Figura 7.Arquitetura Sprint

Figura 8.Arquitetura Horus em camadas de grupos de protocolo
Figura 9.Protocolos de pilhas

Figura 10.Componentes do modelo de referéncia CORBA
Figura 11.Componentes do modelo TAO

Figura 12.Arquitetura FTCORBA

Figura 13.Interagdo de componentes FTCORBA

Figura 14.Arquitetura da replica¢do semi-ativa

Figura 15.Intera¢des na invocagao estatica

Figura 16. Arquitetura de servidores de aplicagao Jboss
Figura 17. Inclusdo de detec¢ao automatica

Figura 18.Arquitetura da recuperagdo de defeitos

-

ESCOLA POLITECNICA
DE PERNAMBUCO
A%

12
14
14
15
16
23
26
30
33
35
36
38
39
41
45
47
51
51

el

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO
Vi
4 o

Indice de Tabelas
Tabela 1. Diferentes Formas de Transparéncia em um Sistema Distribuido. 13
Tabela 2. Exemplos de defeitos desastrosos 18
Tabela 3. Comparagdo dos mecanismos de tolerancia a falhas e as infra-estruturas de 55

Middleware estudadas

-

ESCOLA POLITECNICA
DE PERNAMBUCO
Vil

Tabela de Simbolos e Siglas

(Dispostos por ordem de apari¢ao no texto)

TAO — The ACE ORB

ICE — Internet Communications Engine

NORAD — North American Aerospace Defense Command
NASA — National Aeronautics and Space Administration
ACID — Atomicity, Consistency, Isolation, Durability
FTMP — Fault tolerant multiprocessor

SIFT — Software Implemente Fault Tolerance

ESS — Electronic switching system

IMDB — in-memory Database

ES — Edge Server

DS — Data Server

XS — Durability Server

SQL — Structured Query Language

ASCII — American Standard Code for Information Interchange
[P — Internet Protocol

UDP — User Datagram Protocol

ATM — Asynchronous Transfer Protocol

HCPI — Horus Common Protocol Interface

ACE — ADAPTIVE Communication Environment

ORB — Object Request Broker

CORBA — Common Object Request Broker Architecture
QoS — Quality of Service

IDL —Interface Definition Language

GIOP — General inter-ORB Protocol

IIOP — Internet inter-ORB Protocol

TCP — Transmission Control Protocol

DII — Dynamic Invocation Interface

DSI — Dynamic Skeleton Interface

BOA — Basic Object Adapter

POA — Portable Object Adapter

CPU — Central Processing Unit

I/O — In/Out

CDR — Common Data Representation

APIC — ATM Port Interconnect Controller

FT CORBA — Fault-Tolerant CORBA

IOGR — Interoperable Object Group Reference

DOORS — Distributed Object-Oriented Reliable System
IOR — Interoperable Object Reference

ISIS — Institute for Software Integrated Systems
RTCORBA — Real-Time CORBA

-

ESCOLA POLITECNICA
DE PERNAMBUCO

Vil
API — Application Programming Interface
SSL — Secure Sockets Layer
IMX — Java Management Extensions
SAR — Service Archives
AOP — Aspect-Oriented Programming
JBossTS — JBoss Transaction Service
UID — Unique Identifier
JTA —Java Transactions APl
JTS —Java Transactions Service
URL — Uniform Resource Locator
JNDI — Java Naming and Directory Interface

-

ESCOLA POLITECNICA
DE PERNAMBUCO
ix

Agradecimentos

Agradego a meus pais, que com muito sacrificio, me deram a oportunidade de me tornar o que
sou hoje. Pelo apoio nesse momento importante da minha vida e pelo esfor¢o empregado para
que este trabalho fosse concluido.

Agradeco a todos da minha familia, meus irmaos, primos, tios, tias, avos que desde o comego
sempre torceram pelo meu sucesso. Principalmente ao meu avd Pedro Coelho e minha tia Célia
Frazdo, que mesmo ndo estando mais entre nds, sei que sempre torceram por mim.

Agradeco a todos os meus amigos de faculdade, principalemente, nosso grupo denominado Mafia
Poli, que sempre enfretamos as dificuldades com muito bom humor e companheirismo.

Agradeco a todos os meus amigos, que entenderam a minha falta de tempo e me apoiaram para
terminar este trabalho. Meus amigos do Senac, onde fago o curso de inglés. Meus velhos, e
eternos, amigos com quem eu aprendi muitas coisas nesta vida e que a distancia ndo conseguiu
nos separar.

Agradeco ao Professor Fernando Castor, por ter acreditado na minha capacidade em concluir este
trabalho, e pelo tempo disponibilizado por ele para que esse trabalho saisse da melhor forma
possivel.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

10

Capitulo 1

Introducao

Com a popularizagdo da Internet e o desenvolvimento de redes de computadores de alta
velocidade, sistemas computacionais passaram a ser usados em diversas novas areas de aplicacao.
Varias dessas aplicagdes demandam um alto grau de confiabilidade, de modo a garantir que: (i) o
sistema se comporta de acordo com sua especificacdo; (i) falhas ndo resultam em eventos
catastroficos como perdas de vidas humanas ou grandes perdas financeiras. Confiabilidade e
disponibilidade sdo cada vez mais desejaveis e necessarios em sistemas de computagdo, pois a
cada dia aumenta a dependéncia da sociedade de sistemas automatizados e¢ informatizados. Por
exemplo, uma transagao bancaria ¢ uma operagao que necessita alta confiabilidade, pois se ocorre
uma falha enquanto ¢ feita uma atualizagcdo no banco de dados apds uma transferéncia, havera
uma inconsisténcia nos dados apos essa atualizagao, com potenciais perdas financeiras para as
partes interessadas.

Tolerancia a falhas ¢ uma das abordagens empregadas para garantir que sistemas distribuidos
atingem o grau esperado de confiabilidade. Para desenvolvedores de software ou projetistas de
hardware, o dominio das técnicas de tolerancia a falhas torna-se essencial na sclecao de
tecnologias e especificagdo de sistemas. Com a disseminagdo de computadores ¢ o aumento da
complexidade dos sistemas computacionais na atualidade, a possibilidade de ocorréncia de falhas
¢ cada vez maior. Preservar a integridade e a disponibilidade implica em medidas extras de
segurang¢a na forma de verificacdo de consisténcia e redundancia. Redundéncia ¢ a chave para a
tolerancia a falhas. Todas as técnicas de tolerancia a falhas envolvem alguma forma de
redundancia. Um sistema implementa redundancia se inclui dados, modulos de software e/ou
hardware, unidades de processamento ou realiza acdes que ndo seriam necessarios para ele prover
sua funcionalidade, conforme definida por sua especificagcdo, na auséncia de falhas.

Duas funcionalidades de um sistema fundamentais para prover tolerancia a falhas sdo a detec¢ao
e a recuperacdo de defeitos. A detec¢do de defeitos visa identificar os elementos do sistema que
falharam enquanto a recuperacio de defeitos leva o sistema para um estado valido. Recuperagao
de defeitos ocorre depois da detec¢dao do defeito, e seu objetivo € fazer uma troca do estado atual
incorreto por um novo estado livre de erros.

Ha varios mecanismos que podem ser utilizados na detec¢@o e na recuperagdo de defeitos. Esses
mecanismos podem ser usados nos sistemas para garantir a confiabilidade da operacdo, mas isso
causaria um alto custo computacional, de hardware ou de software. As infra-estruturas de
middleware existentes implementam diversos mecanismos de detec¢cdo de defeitos e recuperagao
de defeitos. Por isso, fica dificil para os desenvolvedores estabelecer qual a infra-estrutura mais
apropriada para o desenvolvimento de uma aplicacao distribuida tolerante a falhas. O sucesso de

-

ESCOLA POLITECNICA
DE PERNAMBUCO

11

um sistema tolerante a falhas depende da eficiéncia da deteccdo e recuperacdo de defeitos na
ocorréncia de falhas. E importante o estudo da detecgdo de defeitos por ela ser a fase inicial e de
extrema importancia para que um sistema tolere falhas e a recuperacdo de defeitos para que os
defeitos sejam recuperados e o sistema ndo pare de funcionar, o que pode causar diversos danos a
sistemas criticos.

1.1.1 Motivaciao

Este trabalho visa estudar os servi¢os oferecidos (ou ndo) por um conjunto de infra-estruturas de
middleware existentes. Sua principal motivagdo ¢ fornecer para os desenvolvedores uma base de
informagdes para auxiliar na escolha de uma infra-estrutura que seja mais compativel com os
requisitos de cada aplicacao. Para a construgdo desta base de informagdes selecionamos um sub-
conjunto que consideramos representativo das infra-estruturas de middleware existentes,
composto por infra-estruturas comerciais e infra-estruturas desenvolvidas no ambito académico.
Sendo elas, Sprint, Horus, TAO, ICE e JBoss. Estas informagdes sdo organizadas em termos dos
mecanismos de tolerancia a falhas providos por cada infra-estrutura. Tais mecanismos sao
divididos em detec¢do e recuperacdo de defeitos, pois essas duas funcionalidades sdo essenciais a
construg¢do de sistemas distribuidos tolerantes a falhas. A organizagao dos resultados de acordo
com os quesitos deteccdo e recuperaciao de defeitos facilitara o entendimento da comparagao e
permitird que desenvolvedores avaliem esses critérios de forma separada.

1.1.2 Organizacio do Trabalho

Esta monografia estd organizada de seguinte maneira. O capitulo 2 apresenta uma descri¢ao de
tolerancia a falhas, dos tipos de falhas existentes, do que acontece com os sistemas na ocorréncia
destas falhas e suas conseqiiéncias. Apresetamos uma breve apresentacdo dos mecanismos de
tolerancia a falhas e uma melhor explicacao dos mecanismos que servirdo de base para a analise
proposta por este trabalho e por fim alguns exemplos de aplicagdes. O capitulo 3 descreve as
infra-estruturas de middleware escolhidas para analise focalizando os mecanismos de tolerancia a
falhas providos por cada uma delas, além de uma comparacdo entre o que cada infra-estrutura
fornece e quais as diferencas ou variagdes. Assim forneceremos uma conclusao das utilizagdes
das infra-estruturas estudas de acordo com os mecanismos de deteccdo e recuperagdo de defeitos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

12

Capitulo 2

Visao Geral de Tolerancia a Falhas

Neste capitulo sdo descritos os conceitos principais de tolerancia a falhas necessario para o
entendimento deste trabalho. Apesar da existencia de técnicas diferentes de tolerancia a falhas,
este trabalho tem como foco principal o estudo dos mecanismos de deteccdo e recuperacao de
defeitos.

2.1 Sistemas Distribuidos

De acordo com Tanembaum e Steen, um sistema distribuido é “um conjunto de computadores
independentes que se apresenta a seus usudrios como um sistema unico e coerente” [1].

Um sistema distribuido oculta dos usudrios a comunicacdo entre os varios computadores que o
compdem. Um sistema distribuido deve estar continuamente disponivel mesmo que alguma parte
esteja indisponivel temporariamente, pois os usuarios podem perceber quando uma parte esta
avariada ou esta sendo adicionada.

Os sistemas distribuidos costumam ser organizados por meio de uma camada de software, que ¢
situada logicamente entre uma camada de nivel mais alto, composta de usuarios e aplicagdes, e
uma camada subjacente, que consiste em sistemas operacionais e facilidades basicas de
comunicag¢do. Devido a sua localizagdo, essa camada de software ¢ chamada de middleware[1]
(Figura 1). O middleware ¢ utilizado para esconder a heterogeneidade e para mascarar a
complexidade dos mecanismos de redes e dos computadores em um sistema distribuido.

Computador 1 Computador 2 Computador 3 Computador 4
e

Aplicacao B

Apl. A Apl. C

I T_ E
Camada do sisteama distribuido (middleware)

SO Local 1]| ||SO Local 2 | |SO Local 3] | | [SO Local 4|

B SR | IR (i i (i

Figura 1. Sistema Distribuido Organizado com Middleware[1].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

13

Um atributo importante no desenvolvimento de um sistema distribuido € a transparéncia. Um
sistema transparente deve ocultar dos usudrios e programas o fato de seus processos e recursos
estarem distribuidos por varios computadores|[1]. Alguns tipos de transparéncia sao descritos na
Tabela 1. A transparéncia de acesso trata de ocultar diferencas em representacao de dados e o
modo como os recursos podem ser acessados por um usuario, com isso podemos chegar a um
acordo de como os dados devem ser tratados por maquinas e sistemas operacionais diferentes. A
transparéncia de migragao diz-se dos sistemas distribuidos nos quais os recursos podem ser
movimentados sem afetar o modo como podem ser acessados, assim 0s recursos podem ser
relocados enquanto estdo sendo usados.

Tabela 1 Diferentes Formas de Transparencia em um Sistema Distribuido

Transparéncia Descricao

Acesso Oculta diferencas na representaciao de dados € no modo de acesso a um recurso
Localizacao Oculta o lugar em que um recurso esta localizado

Migracao Oculta que um recurso pode ser movido para outra localizagdo

Relocagao Oculta que um recurso pode ser movido para outra localizagdo enquanto em uso
Replicagdo Oculta que um recurso ¢ replicado

Concorréncia Oculta que um recurso pode ser compartilhado por diversos usuarios concorrentes
Falha Oculta a falha e a recuperag@o de um recurso

2.1.1 Propriedades de sistemas distribuidos

As propriedades de um sistema distribuido sdo estabelecidas pela sua execug¢do. Lamport define
que ha duas classes importantes de propriedades para se descrever problemas em sistemas
distribuidos: safety e liveness[2]. As Propriedades de safety especificam que o sistema nunca
alcancara alguns estados indesejaveis. Por exemplo, uma atualizagdo em um banco de dados
réplicado sempre terminara com todas as réplicas consistentes. As propriedades de /iveness, por
sua vez, especificam que certos estados validos considerados desejaveis ocorrerdao em algum
momento da execugdo do sistema. Por exemplo, quando se envia uma mensagem entre duas
aplicagOes, adiante o destinatario recebera a mensagem correta do remetente. Idealmente um
sistema distribuido tolerante a falhas deve satisfazer todas as suas propriedades de safety e
liveness. Existem quatro combinagdes possiveis entre estas propriedades que também podem
favorecer tolerancia a falhas.

Sistemas que fornecem safety e liveness sao denominados de mascarados(Do inglés: masking) e
sdo mais caros, mais rigorosos ¢ mais desejaveis para implementagdo, pois fornecem maior
transparéncia a falhas. Sistemas que garantem safety, mas nao liveness sdo chamados fail-safe.
Tais sistemas garantem a consisténcia das operagdes, embora ndo fornecam garantias de
progresso. No exemplo do carro esperando num semdaforo, se o semaforo nunca saisse do
vermelho, o sistema seria fail-safe, ja que, apesar de ndo fazer progresso, ele evitaria a ocorréncia
de acidentes.

2.2 Falha, Erro e Defeito

Na terminologia de tolerancia a falhas, os termos “falha”, “erro” e “defeito” tém significados
distinto e bem definidos[3]. Um defeito (failure) ocorre quando o comportamento externamente
observavel do sistema se desvia de suas especificagdes iniciais. Um estado erroneo de um sistema
¢ um estado interno que pode leva-lo a um defeito a partir de uma seqiiéncia de transi¢des
validas. O erro (error) é parte de um estado erroneo que constitui uma diferenca de um estado

-

ESCOLA POLITECNICA
DE PERNAMBUCO

14

valido. Falhas (fault) sao causas, fisicas ou algoritmicas, de um erro. Conforme a Figura 2, um
erro ¢ uma manifestacdo de uma falha num sistema e um defeito ¢ a manifestagdo do erro num
sistema. No entanto, uma falha ndo necessariamente provocara um erro, pois a falha pode estar
presente no sistema, mas o erro ndo se manifesta porque o componente da falha nao foi utilizado.
Analogamente, um erro ndo necessariamente conduz a um defeito.

Falha ——— Erro — Defeito
Figura 2. Relagdo entre falha, erro e defeito

A Figura 3 mostra uma esquematiza¢ao para os conceitos de falha, erro e defeito propostos por
Johnson[4] denominada Modelo dos Trés Universos. De acordo com este modelo, as falhas estao
associadas ao universo fisico, erros ao universo da informagao ¢ defeitos ao universo do usuario.
Por exemplo: um chip de memoria que apresenta uma falha do tipo preso-em-zero (stuck-at-zero)
em um de seus bits (falha no universo fisico) pode provocar uma interpretacdo errada da
informacao armazenada em uma estrutura de dados (erro no universo da informagdo) e como
resultado o sistema exibe um valor incorreto para o usuario num determinado dia(erro no
universo do usuario). Vale ressaltar que falhas também podem estar no universo da informagao,
por exemplo, um bug em um programa normalmente ¢ visto com uma falha de projeto[3].

—

processamento
posterior pode levar a
defeito

universo da mformacao

universo fisico
falha

€rro

desvio da
especificacio

universo do usuario

Figura 3. Modelo de 3 Universos: falha, erro e defeito[5].

Existem duas abordagens, como mostrado na Figura 4, que sdo usadas para garantir a
confiabilidade de um sistema: Prevencdo de Falhas(Fault Prevention), que visa assegurar que
todas as possibilidades de ocorréncia de falha foram removidas do sistema durante o
desenvolvimento[3], e Tolerancia de Falhas (Fault Tolerance) que supde que a implementagao de
um sistema ndo ¢ perfeita e visa tornar o sistema capaz de lidar com falhas em tempo de
execuc¢ao, a fim para garantir um certo grau de confiabilidade[3]. A prevencao de falhas ainda ¢
dividida em dois aspectos: Previsdo de Falhas (Fault Avoidance), onde sdo selecionadas técnicas
e tecnologias para evitar a introdu¢do de falhas durante a construgao do sistema, ¢ Remocao de
Falhas (Fault Removal), que se preocupa em checar a implementacdo do sistema e remover a
falhas latentes no sistema. Apos a remocgao das falhas, o sistema pode ser posto em operagao[3].

Na fase de prevencdo de falhas, os defeitos sdo corrigidos durante o desenvolvimento do
sistemas. A previsao de falhas utiliza técnicas para previnir que falhas ndo seram introduzidas no
sistema durante a fase de implementacdo, mas como ¢ dificil detectar todos os defeitos de forma
precisa, depois da implementacao utiliza-se a remogao de falhas para que defeitos encontrados

-

ESCOLA POLITECNICA
DE PERNAMBUCO

15
depois da fase de implementacdo sejam removidas. Depois de executada essas duas técnicas de
preven¢do o sistema pode ser utilizado. Na fase de tolerancia de falhas sdo usadas técnicas para
que os defeitos existentes, durante a execucao do sistema, sejam detectados e recuperados sem
que seja afetada sua execugdo.

System
into
service
Phase in 4
System :
‘1.?{ : Design and :' Test and
Lifetime Implement 1 Debug In-service
; >
Reliahili Fault Fault time
SuRGEy Avoidance | Removal
Strategy '
Fault P’revention Fault Tolerance
QR —— E i »

Figura 4. Abordagens de confiabilidade[3].

2.3 Tolerancia a Falhas

A tolerancia a falhas ¢ uma técnica que visa garantir que o sistema se comporta de acordo com
sua especificagdo mesmo quando falhas se manifestam, através de técnicas de prevengdo e
remocao de erros.

Um sistema distribuido fornece o servico de tolerancia a falhas quando, no evento de um
problema, se recupera de forma automatica, mascarando a falha e evitando que o usuario perceba
a sua ocorréncia. Certas falhas ocorridas no sistema sdo mascaradas de forma que o usuario ndo
perceba que um recurso deixou de funcionar bem e que o proprio sistema ja se recuperou da
falha.

O objetivo de tolerancia a falhas ¢ alcangar dependabilidade (dependability), que indica a
qualidade do servigo fornecido por um dado sistema e a confianga depositada no servigo
fornecido[5]. A tolerancia a falhas estd intimamente ligada a confiabilidade (reliability),
capacidade de atender a especificagdo, dentro de condi¢des definidas, durante certo periodo de
funcionamento e condicionado a estar operacional no inicio do periodo[5] e o controle de falhas.
Em um sistema distribuido, confiabilidade envolve alguns atributos adicionais:

¢ Disponibilidade (availability): probabilidade de um sistema estar operacional em um
dado intervalo de tempo[5];

e Seguranca contra acidentes (safety): probabilidade do sistema ou estar operacional e
executar sua fungdo corretamente ou descontinuar suas fungdes de forma a nao provocar
dano a outros sistemas ou pessoas que dependam dele[5];

o Facilidade de manutencio: facilidade com que um sistema que falhou pode ser
consertado [1].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

16

2.3.1 Modelo de falhas

Segundo Schneider[6] um modelo de falhas ¢ uma coleg¢do de atributos e um conjunto de regras
que governam a interagdo entre componentes que falham. Como os sistemas distribuidos sdo,
geralmente, desenvolvidos baseados na comunicagdo Cliente/Servidor, se essa comunicagdo nao
esta fornecendo o servigo corretamente, isso significa que o servidor, o canal de comunicagdo, ou
ambos nao estdo executando da maneira esperada. Porém, nem sempre as falhas ocorrem pelo
mau funcionamento do servidor. Se tal servidor depender de outros servidores para prestar seus
servicos adequadamente, pode ser que a causa do problema tenha de ser procurada em algum
outro lugar[1]. Por este motivo foram criadas algumas formas de classificacdo das falhas. O
modelo classico de falhas em sistemas distribuidos (Figura 5) ¢ baseado no esquema de
Cristian[7]:

I.-"r : \\5___ /J umlssau/ : -

| ~— 1'e~;puitﬂ '
.-'

Figura 5. Modelo de falhas em sistemas distribuidos[5].

As diversas classes de falhas nesse modelo indicam o comportamento dos componentes falhos do
sistema, quando as falhas ocorrem.

e Falha por Queda(crash fault): o processo para de funcionar, mas estava funcionando
corretamente até parar. E impossivel saber se o processo falhou ou se simplesmente esta
muito lento[8]

e Falha por Omissao(omission fault): o processo nao consegue responder a requisigdes que
chegam.

e Falha de Temporizacao(timing faulf): a resposta do processo se encontra fora do
intervalo de tempo(adiantada ou atrasada).

e Falha de Resposta: a resposta do servidor do processo estd incorreta. Podendo a resposta
ser um valor errado do servidor ao que lhe foi requisitado, ou um desvio do estado correto
devido a uma requisi¢cdo que nao pode ser reconhecida pelo servidor[1].

e Falha Arbitraria ou Bizantina(byzantine fault): um processo pode produzir respostas
arbitrarias em momentos arbitrarios. Um servidor produz saidas que nunca deveria ter
produzido, mas que ndo podem ser detectadas como incorretas. Porém, o servidor pode
estar intencionalmente trabalhando maliciosamente com outros servidores para produzir
respostas erradas.

Schneider desenvolveu uma extensdo do modelo de Cristian, onde ele adiciona o modelo fail-stop
e desmembra a falha por omissdo em omissdo de envio e omissdo de recebimento.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

17
e Fail-stop: o processo pode parar de funcionar, mas isso pode facilmente ser percebido
pelos processos vizinho[8].
¢ Omissao de Envio: o processo ndo consegue enviar mensagens.

e Omissao de Recebimento: o processo ndo consegue receber mensagens que chegam.
Os dois modelo refletem falhas que afetam as trocas de mensagens entre os nds de comunicagao.

2.3.2 Escopo de falhas

As falhas ainda podem ser classificadas de acordo com o seu escopo. Considera-se que ha trés
escopos possiveis para uma falha: falhas fisicas(physical faults), falhas de interacdo(interaction
faults) e falhas de projeto(design faults)[9,10]. Podem ainda ser classificadas em termos de
Extensao, Valor e Duragdo. A extensao(Extent) de uma falha ¢ dita local se os erros gerados por
uma falha afetam somente componentes de uma tnica variavel 16gica em um modulo. Falhas sdo
ditas distribuidas, se afetam duas ou mais variaveis logicas ou subsistemas. O valor(Value) de
uma falha transforma as varidveis em um valor determinado ou indeterminado. Do ponto de vista
de duracao(Duration), uma falha ¢ dita transiente se ocorre somente em um periodo de tempo(
menor que um limiar determinado), depois desaparece e ndo ocorre novamente se a operagao for
repetida. Se a falha continua a existir apds o limiar até que o componente faltoso seja substituido,
ela ¢ dita permanente[10].

e Falhas Fisicas estdo relacionadas aos componentes fisicos do sistema, devido a mal-
funcionamento de hardware, fadiga de componentes fisicos, perturbacdes
externas(temperatura, radiagao,...).

e Falhas de Projeto acontecem devido a erros cometidos na fase de projeto. Sdo causados
principalmente por especificacdes erradas, ambiguas ou incompletas e podem ocorrer
tanto em nivel de hardware, que sdo dificeis de ser eliminadas, quanto em nivel de
software, que podem ser corrigidas. Por exemplo, em 1971 na Franga, durante um
experimento metereoldgico, de 141 baldes atmosféricos, 72 explodiram devido a uma
falha no software que controlava o experimento[9].

e Falhas de Interacdo sdo causadas por usos indevidos do operador durante a operacao e
manuten¢do do sistema. Podem ser classificadas em Nao-Maliciosas, quando o operador
viola um procedimento da operagdo sem ter consciéncia das possiveis conseqiiéncias de
seu ato, e Maliciosas, quando pessoas nao-autorizadas e mal-intencionadas levam o
sistema a falhar, por exemplo, devido ao efeito de Cavalos de Troia (Trojan-Horse), Virus
ou Worms[9].

A combinacdo entre falhas de interacdo e falhas de projeto resulta nas chamadas Falhas
Humanas|[5].

2.3.3 Conseqiiéncia de falhas

Em geral, a manifestagdo de falhas tem como conseqiiéncia problemas econdmicos. Em alguns
casos, a manifestacdo de falhas pode provocar eventos catastroficos, até mesmo com perda de
vidas humanas. A Tabela 2 apresenta exemplos de defeitos desastrosos nas décadas de 80 e
90[10]. Os exemplos estio relacionados as causas das falhas e defeitos e a dependabilidade do
sistema.

el

POLI
ESCOLA POLITECNICA
DE PERNAMBUCO
18
Tabela 2 Exemplos de defeitos desastrosos
Escopo Extensdo
© s ’g
g =3 =
< g Q
. |2823 | 8%
S |8 | g 3 2 ETET 52
z2 | g | 5 g T | 2352 | E5
— & = — R7Z) 238 &0 2
= a | R @# 3
Junho 1980: Falsos alertas da Defesa X X
Aérea Norte Americana (NORAD)
Abril 1981: Adiamento do primeiro e
lancamento da espagonave Shuttle
Junho 1985 — Janeiro 1987: Doses X X
excessivas de Radioterapia(Therac-25)
Novembro 1988: Internet Worm X X
15 de Janeiro de 1990: Telefonemas de
longa distancia fora do ar por 9 horas X X
nos Estados Unidos.
Fevereiro 1991: Misseis Scud(Guerra X X X X X
do Golfo)
Novembro 1992: Colapso no sistema
de comunicagio do servigo de X X X X X
ambulancias em Londres
26 ¢ 27 de Junho 1993: Autorizagoes
ndo permitidas nas operagdes de cartdo | X X X X
de credito na Franga

Para exemplicar alguns do acontecimentos citados na Tabela 2 temos que, na Guerra do Golfo em
fevereiro de 1991 foram noticiados varios relatos de falhas em misseis. Em junho de 1993,
durante dois dias, ndo foi autorizada nenhuma operagao de cartdo de créditos em toda a Franca.
Varias missdes da NASA e Marte terminaram em fracasso total ou parcial.

2.3.4 Fases da Tolerancia a Falhas

A classificagcdo de técnicas de tolerancia a falhas mais comum ¢ composta por 4 fases: deteccao
de erros, confinamento e avaliacdo de danos, recuperacao de erros e tratamento de falhas. Nao ¢
necessario o uso de todas as técnicas ao mesmo tempo. A combinacao das técnicas depende do
uso no servigo fornecido pelo sistema, pois em alguns casos o sistema pode se tornar caro demais
se todas as fases forem empregadas.
Deteccaio de erros(Error Detection): para o sucesso de um sistema tolerante a falhas, esta
técnica deve ser a primeira a ser executada, pois a manifestacio de uma falha em um
sistema pode gerar um erro e um erro, diferentemente de uma falha pode ser detectado por
um mecanismo de deteccdo(ex: duplicacdo e comparagdo)[3]. Na literatura de sistemas
distribuidos, normalmente usa-se o termo deteccao de defeitos(e recuperagdo de defeitos),
j& que a detec¢do de um problema envolve um ou mais componentes do sistema
manifestando um defeito que pode ser observado pelos outros componentes(ex: o
componente faltoso esta rodando num computador que péara de funcionar.
Confinamento e avaliacdo de Danos(Damage Confinement and Assessment): depois da
deteccao de um erro, devido ao intervalo entre a manifestacao e a detec¢do, alguns estados
podem propagar informagdes erradas dentro do sistema, conduzindo os proximos estados

-

ESCOLA POLITECNICA
DE PERNAMBUCO

19

ao erro[3]. Em consequencia disso, um sistema tolerante a falhas deve ser capaz de
impedir essa propagac¢ao.

¢ Recuperaciao de Erros(Error Recovery): a recuperagao de erro visa transformar o estado
errobneo atual em um estado livre de erros para que a operagdo normal do sistema
continue. A recuperagdo pode ser de duas formas: por retrocesso(backward error
recovery) e por avango (forward error recovery).

¢ Tratamento de Falhas(Fault Treatment): o tratamento de falhas consiste em 2 etapas.
Primeiro ¢ localizado a origem da falha, em seguida a falha ¢ reparada ou o restante do
sistema € recuperado para evitar a transiéncia da falha[3].

2.3.5 Redundancia

Redundancia ¢ a chave para a tolerancia a falhas. Todas as técnicas de tolerancia a falhas
envolvem alguma forma de redundancia. Um significado usualmente sugerido de redundancia ¢
que o sistema inclui componentes que, durante sua operacao normal, ndo sdo utilizados porque
existe outra parte de sistema que faz o mesmo servigo[8]. Se o sistema nunca falhar, seus
componentes nunca serdo usados. Redundancia pode aparecer de 3 formas diferentes:
¢ Redundancia de Informacao: bits ou sinais extras sdo armazenados ou transmitidos
junto ao dado, sem que contenham qualquer informacgdo util[5]. Estes bits servem para
detectar erros e mascarar falhas. Exemplos incluem checksums(adiciona informagdes
extras a um bloco de informagdo para possibilitar deteccao de erros), paridade(adiciona
bit(s) para manter nos bits armazenados uma quantidade par, ou impar dependendo da
paridade implementada, de bits com o valor 1).
¢ Redundancia de Tempo: re-executa computagdes com as mesmas entradas. Utilizada
para indicar se a falha € transiente ou permanente. Usada em sistemas onde o tempo nao ¢
critico, ou que possuem processadores parcialmente ociosos[5].
¢ Redundancia Fisica: s3o adicionados equipamentos(redundancia de hardware) ou
componentes de software extras(redundancia de software) para possibilitar que o sistema
tolere a perda ou o mau funcionamento de alguns componentes[1]. Na redundancia de
hardware sdo replicados componentes, unidades de memoria, fontes de alimentagdo,
dentre outros, com a finalidade de deteccdo de erros ou reparo do sistema transferindo as
tarefas de um componente falho para outro redundante. Na redundancia de software,
ocorre a utilizacdo de versdes distintas do mesmo software, desenvolvidas a partir da
mesma especificacdo, porém implementadas utilizando abordagens e equipes de
programacao distintos.
Apesar de redundancia ser um recurso indispensavel para tolerdncia a falhas, o seu uso, em
qualquer projeto, deve ser bem ponderado para ndo haver o aumento de falhas no sistema e
desviar de sua dependabilidade. Além disso, redundancia pode implicar em um aumento
significativo no custo do desenvolvimento do software.

2.3.6 Replicacao

r

Replicagdo ¢ um caso particular da redundancia, onde apenas uma por¢ao do sistema em
execucdo sera distribuido entre as copias do sistema. A forma mais comum de se fornecer
tolerancia a falhas em sistemas é por meio de réplicagdo das funcionalidades. A replicagdo
consiste em manter copias de um mesmo objeto em dispositivos diferentes para utilizar na
recuperagdo do sistema em caso de falha de algum dispositivo durante a execugdo do sistema. A

-

ESCOLA POLITECNICA
DE PERNAMBUCO

20
motivacao para o uso de réplicacdo estao no melhoramento de servicos de desempenho, elevar a
disponobilidade, ou criar tolerancia a falha.
Quando um dado ¢ réplicado uma exigéncia comum ¢ a transparéncia da réplicagdo, ou seja, o
cliente normalmente pode ndo estar ciente de que existem multiplas copias fisicas do dado.os
dados sdo organizados como objetos 16gicos individuais e os clientes identificam apenas um item
em cada caso quando uma requisitam uma operacgdo para ser desempenhada. As operacdes podem
ser executadas em mais de uma copia fisica, porém o cliente recebera apenas um nico conjunto
de valores.
A réplicagao pode ser dividida principalmente de duas formas: réplicagdo ativa e réplicagao
passiva.
e Réplicacdo ativa: todas as réplicas t€ém o mesmo papel, sem existir uma réplica
centralizadora.
e Réplicacdo Passiva: usa um servidor primario. Os outros servem apenas como uma copia
de backup, e ndo interagem com o cliente.

Existem cinco tipos de replicacdo: stateless, cold passive, warm passive, active e active with
voting.

e Stateless(sem estado): ndo utiliza nenhum mecanismo de tolerdncia a falhas adicional,
pois € usada apenas para leitura de dados.

e (Cold passive(passiva fria): apenas os objetos primarios recebem as requisigdes do cliente,
enquanto os outros funcionam como um backup. Um deles serd nomeado como primario
na ocorréncia de alguma falha. A cada intervalo de checkpoint o objeto registra seu estado
no log que ¢ disseminado para os demais objetos. Desse modo, defeitos do objeto
primario podem ser recuperados através da elei¢do de um novo objeto primario.

e Warm passive(passiva quente): o recebimento das mensagens ¢ o funcionamento dos
mecanismos de checkpoint e logging sdo similares ao da passiva fria, porém os objetos
backup atualizam o estado do objeto imediatamente apds o checkpoint pelo seu
mecanismo de recuperagdo, independente da ocorréncia de falhas.

® Active(ativa): tipo mais seguro e caro de réplicagdo. Nao utiliza mecanismos de logging e
recuperagdo porque todos os objetos recebem as requisicdes do cliente e as processam
imediatamente.

® Active with voting(ativagdo com votacdo): funciona de forma similar a ativa, porém, as
respostas passam por uma votagao e a que ¢ considerada mais correta ¢ enviada ao cliente.

2.3.7 Transacoes

O objetivo das transagdes ¢ de garantir que todos os objetos gerenciados pelo servidor
permanegam num estado consistente quando sao acessadas por multiplas transagdes e na presenga
de servidores falhos. Uma transacdo distribuida envolve um ou mais hospedeiros da rede.
Transacdes devem garantir a integridade dos dados e a consisténcia dos objetos, pois transacoes
distribuidas devem alterar os estados de varios processos em maquinas diferentes. Transagdes
distribuidas, como qualquer outra transacdo, deve dar suporte as propriedades ACID
(Atomicidade, Consisténcia, Isolamento e Durabilidade). Todas as mudancas resultante de uma
transagdo sao aplicados por inteiro ou ndo sao aplicados(atomicidade); transagdes bem-sucessidas
ndo levam um banco de dados de um estado correto para um estado incorreto(consisténcia);
execugdes concorrentes sao equivalentes a execugdes seriais das mesmas transagdes usando uma
unica copia do banco de dados(isolamento ou serializacdo de uma cdpia); os efeitos das
transagdes sobrevivem a defeitos de banco de dados(durabilidade).

-

ESCOLA POLITECNICA
DE PERNAMBUCO

21

Uma transacao termina com sucesso ou aborta em uma das duas formas ou o cliente aborta ou o
servidor aborta. Se um processo do servidor falha inesperadamente, ele sera substituido por um
novo. Este novo servidor aborta qualquer transagdo que nao tenha obtido sucesso e utiliza
procedimentos de recuperagao para restaurar os valores dos objetos pelos valores produzidos pela
mais recente transagdo de sucesso.para lidar com falhas dos clientes durante a transacgao,
servidores podem fornecer ao cliente um limite de tempo para que transagdes que ndo foram
completadas sejam abortadas. Se um servidor falha enquanto uma transagao esta em progresso, o
cliente ficard ciente disto quando uma das operagdes retornar uma exce¢ao apos o termino do
limite de tempo. Se um servidor falha mas se recupera durante o progresso da transagdo, esta
transacdo ndo serd valida por muito tempo entdo o cliente serd informado por uma exce¢ao pela
proxima operagao.

2.3.8 Modelos computacionais

Sistemas distribuidos ndo possuem memoria compartilhada nem reldgio global. Toda interagdo
entre processos deve ser realizada por troca de mensagens. Assim, os sistemas distribuidos sao
classificados como sincrono ou assincrono. Num sistema sincrono existe um limite de tempo para
transmissao de mensagens e respostas dos processos[8]. Se essas caracteristicas nao sao
satisfeitas, o sistema ¢ denominado de assincrono. O modelo assincrono € mais fraco ja que ndo ¢
imposto nenhum limite de tempo arbitrario para a entrega das mensagens, os procesos podem ter
atrasos diferentes, e a comunicacdo ¢ o Unico mecanismo para sincroniza¢do de processos no
sistema, por isso qualquer algoritmo que funcione no modelo assincrono também funciona em
outros modelos. Entretanto, sistemas sincronos sao mais propensos a comportamentos incorretos
caso sua implementagdo viole a condi¢do de tempo. Sendo assim, os sistemas assincronos sao
maioria em aplicacdes distribuidas. Adicionalmente, o modelo assincrono representa de forma
mais fidedigna o comportamento de redes de computadores de grande escala, como a Internet.

2.3.9 Deteccao de defeitos(failure detection)

A deteccdo ¢ a primeira atividade que deve ser realizada para se prover tolerancia a falhas, pois
ela identifica a parte do sistema onde a falha se manifestou. Em um sistema distribuidos, a
ocorréncia de um defeito pode afetar a seqiiéncia da execugdo do sistemas, o que pode causar
efeitos catastroficos. Por isso, defeitos devem ser detectados pelo sistema tdo cedo quanto
possivel. Em principio, quanto mais técnicas de deteccao de defeitos forem usadas, maior sera a
confiabilidade do sistema. A principal limitagao na escolha de diferentes técnicas de deteccio de
defeitos € o seu custo, tanto do ponto de vista computacional quanto em termos de recursos de
hardware e software redundantes[3]. Existem diversas técnicas de deteccdo de defeitos, mas aqui
apresentaremos apenas as técnicas estudadas para nossa comparagao:
¢ Consenso: considerando um conjunto de processos onde cada um possui um valor inicial,
eles decidem sobre um dos valores iniciais propostos por um subconjunto deles. Consenso
¢ uma forma de acordo. O objetivo geral de algoritmos de consenso ¢ que processos sem
falhas cheguem a um acordo sobre uma questao, por exemplo, elei¢ao de lider ou se um
processo falhou ou ndo. O acordo na presenca de falhas arbitrarias em sistemas sincronos
¢ conhecido como Acordo Bizantino. O acordo sobre um vetor de valores ¢ chamado de
Consisténcia Interativa.
¢ Broadcast Atémico: permite aos processos o envio de mensagens confidveis em
broadcast. Todos os processos envolvidos devem concordar sobre as mensagens enviadas
e a ordem em que foram enviadas. O broadcast atdmico deve garantir uma semantica

-

ESCOLA POLITECNICA
DE PERNAMBUCO

22

“tudo ou nada”, ou todos as mensagens sao entregues € na mesma ordem ou nenhuma ¢
entregue.

e Deteccio de defeitos nao-confiavel: ¢ proposto um modulo de programa que atua como
um oraculo de estados funcionais dos processos vizinho. Um modulo detector de defeitos
local ¢ executado por cada processo. Esse modulo ird monitorar uma parte dos processos
do sistema e manterd uma lista dos processos suspeitos de falhas. Os médulos podem
cometer erros na adicao de processos corretos na lista de suspeitos. Assim, cada modulo
pode repetidamente adicionar e remover processos da lista de suspeitos. Duas
propriedades para este tipo de detector de defeitos sdo completeness quando um detector
de defeitos suspeita que um processo falhou, se algum moédulo detector de defeitos local
suspeitar que o processo esta falho, e accuracy quando o detector de defeitos ndo
suspeitard que um processo correto tenha falhado. Basicamente nos detectores de defeitos
nao-confiavéis todos 0s processos enviam mensagens “estou vivo” uns aos outros. Se um
processo ultrapassar o time-out ele sera adicionado a lista de suspeitos, caso seja recebida
a mensagem “estou vivo” deste processo, ele serda removido da lista de suspeitos e
aumenta o time-out do processo para que evitar nova suspeita erronea. Mensagens de
heartbeat, membros do grupo de gerentes mandam periodicamente mensagens de
heartbeat entre eles e agentes enviam periodicamente heartbeats para o gerente do grupo,
heartbeats tem por conseqiiéncia uma minimizacdo de alarmes falsos e de overhead.
Funciona com o envio periddico de mensagens de heartbeat para todos os demais
modulos do sistema. Para cada mensagem de heartbeat ¢ calculado um timeout, tempo de
atraso para a transferéncia de mensagens. Caso o tempo decorrido desde o envio da
mensagem de heartbeat exceda o timeout, o processo ¢ classificado como suspeito. Caso
o tempo decorrido esteja dentro do timeout, o processo ¢ classificado como ativo. Esta
classificagdo ¢ efetuada e atualizada por cada mddulo detector de defeitos.

2.3.10 Recuperacao de erros(error recovery)

Recuperagdo transforma o estado do sistema que contém um ou mais erros em um estado sem
erros detectaveis e falhas que podem ser ativadas novamente[10]. A recuperagao pode ser de duas
formas: recuperagdo por retorno(backward error recovery) e recuperagdo por avanco(forward
error recovery)

e Recuperacio por Retorno: o sistema retorna ao estado correto anterior a deteccdo do
erro ¢ se reconfigura realocando processos(Figura 6-A) e escolhendo caminhos
alternativos de comunicagdo entre os processos. Este estado salvo ¢ chamado de ponto de
recuperagao(checkpoint)[10] e corresponde a um estado global consistente. As técnicas de
recuperagao por retorno nao utilizam tanta redundancia, os processos salvam seus estados
independentemente. A técnica de recuperagdo por retorno ndo ¢ utilizada em uma vasta
gama de sistema de tempo real usado em controle de processos continuos devido a
impossibilidade de retornar(rollback) a um estado seguro armazenado pelo sistema. A
recuperagdo por retorno pode causar no sistema um efeito domind. Ao desfazer a
computagdo, um processo pode deixar mensagens Orfas(perdidas) na rede. Para que isso
ndo acontega € necessario que os processos, ao desfazerem a computagdo, disseminem as
informagdes para que os outros processos também desfacam suas computacdes. Esse
efeito pode no pior caso, fazer o sistema retornar ao inicio, por isso sdo necessarias
restrigdes a comunicagdo entre 0s processos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

23

e Recuperagcdo por Avang¢o: o sistema avanca para um novo estado ainda ndo ocorrido
desde a ultima manifestagao de erro[5] (Figura 6-B). O sistema desfaz toda a computagao
realizada apés a falha, para refazé-la sem repetir a falha(com mesmo software ou por uma
outra versao do software escrito com a mesma especificacao).

ponto de
recuperacio

P (A)
ﬁ' falha
k rollback

novo estado

(B}

avanco

Figura 6. Recuperacao por retorno e por avango[5].

2.4 Aplicacoes de Sistemas Tolerantes a Falhas

Como apresentado nas segdes anteriores, existem varias técnicas para a implementacdo de
sistemas tolerantes a falha. A utilizacdo de todas clas na construcdo de um sistema, embora
desejavel, ¢ inviavel pois pode elevar o custo do projeto de forma excessiva. Por isso, a escolha
da especificacdo do projeto de acordo com a sua aplicagdo e sua exigéncia de dependabilidade
devem ser bem exploradas. Nesta se¢do mostramos algumas aplicagdes que tradicionalmente
exigem a implementacdo de um ou mais mecanismos de tolerancia a falhas.
As areas tradicionais onde sdo empregadas sistemas tolerantes a falhas sdo:
e Aplicagdes criticas de sistemas em tempo real, como medicina, controle de processos e
transporte aéreo;
e Aplicagdes seguras de tempo real, como transporte urbano;
e Aplicagdes em sistemas de tempo real de longo periodo de duragdo sem manutencgao,
como viagens espaciais, satélites e sondas;
e Telefonia e telecomunicacoes;
e Aplicagdes comerciais de alta disponibilidade como sistemas de processamento de
transagoes e servidores de redes.
Exigéncias de disponibilidade e confiabilidade sdo encontradas em todas as &reas, mas os
sistemas tolerantes a falha sdo caros e portanto empregados apenas em situacdes em que a sua
ndo-utilizacdo acarretaria prejuizos irrecuperaveis[5].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

24

2.4.1 Sistemas de tempo real

Sistemas de computacdo de tempo real sao empregadas em aplicagdes de controle, de supervisao
e de comunicag¢do. Condigdes para aplicagdes desses sistemas sao:
¢ Disponibilidade de curto intervalo de tempo para reconhecimento de erros que ndo
prejudiquem o processamento do sistema;
¢ Impossibilidade de uso de recuperacdo por retorno ja que eventos passados sdo
descartados;
e Exigéncia de redundancia passiva para garantir a continuidade do processamento em caso
de falhas.
Exemplos de sistemas em tempo real tolerantes a falhas sdo os sistemas FTMP(Fault Tolerant
Multiprocessor) e SIFT(Software Implemente Fault Tolerance)[3].

2.4.2 Sistemas digitais de telefonia

Sistemas para telefonia empregam técnicas de tolerancia a falhas por apresentar requisitos estritos
de disponibilidade e alta qualidade e longa vida ao uso dos componentes. Requisitos para
aplicagdes nessa area sdo:

¢ Detecgdo e localizacao automatica de erros(em software e hardware);

e Tratamento automaticos de erros(reconfiguragao do sistema);

e Substituicdo de componentes faltosos durante o periodo de operagdo normal do sistema.
A principal técnica de tolerancia a falhas empregada na construcido deste tipo de sistema ¢ a
duplicacdo de componentes de hardware. Um exemplo de sistemas de telefonia tolerante a falhas
sdo os sistemas ESS 1A[3].

2.4.3 Sistemas de Processamento de Transacoes

Sistemas de processamento de transagdes necessitam da existéncia de uma base comum de dados
usada interativamente e concorrentemente com varios usudrios em maquinas diferentes. Como
estes sistemas s3o muito usados em transagoes financeiras, alguns requisitos para essas aplicagdes
sdo:

¢ Integridade e garantia dos dados em sua base de dados;

e Alta disponibilidade para processamento continuo;

e Tratamento de erros sem interrupc¢ao do sistema.

Integridade e consisténcia dos dados sdo os requisitos mais importantes para este tipo de
aplicacdo(propriedades de safety), por isso suas operagdes sao baseadas no modelo fail-stop. Caso
ocorra um erro, o sistema para sem propagar este erro. Os sistemas Tandem e Stratus sdo dois
exemplos de sistemas comerciais de transagao tolerantes a falhas[5].

Tandem foi o primeiro sistema tolerante a falhas proposto para o uso geral para aplicagdes
comerciais. O Tandem ¢ um sistema continuo (non stop) para aplicacdes on-line de transagdoes em
banco de dados. Tandem adotou a estratégia de “pares de processos”, onde cada processo
executando em um programa pode ter um processo de backup que ¢ executado em um separado
moédulo de processamento.

Stratus foi construido para competir com o Tandem na tolerancia a falhas em processamento de
transacdes on-line. Cada modulo compara resultados fornecidos por elementos duplicados do
sistema, quando a comparagao indica erro, nenhum resultado ¢ fornecido como saida.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

25

Capitulo 3

Infra-estruturas de Middleware

Neste capitulo sao descritos os conceitos das infra-estruturas de middleware escolhidas,
enfatizando os mecanismos de tolerancia a falhas disponiveis em cada uma. Por fim, faremos
uma comparagao entre os mecanismos igualmente fornecidos pelas infra-estruturas e suas
variagdes de mecanismos.

3.1 Sprint

3.1.1 Introducao

Sprint ¢ uma infra-estrutura de middleware para alto desempenho e alta disponibilidade de gestao
de dados, pois ele fornece a funcionalidade de um banco de dados em memdria principal (IMDB
— in-memory database) que geralmente sdo limitados pela capacidade de memoria da maquina
que executa o IMDBJ[12]. Sprint ndo necessita de uma forte detec¢do de defeitos para garantir
consisténcia, e permitir uma reacao rapida a falhas, pois experimentos realizados em um cluster
usando TPC-C e um micro-benchmark mostrou que Sprint fornece um bom desempenho e
escalabilidade. Projetado para arquiteturas de middleware onde as transacdes sao pré-definidas e
parametrizadas antes da execu¢do. Sua arquitetura ¢ divida em servidores fisicos (physical
servers), parte da infra-estrutura de hardware, e servidores logicos (logical servers), componentes
de software que compdem o sistema. Ha trés tipos de servidores 16gicos: servidores de borda (ES-
Edge Servers), servidores de dados (DS-Data Servers) e servidores de durabilidade (XS-
Durability Servers). O servidor fisico pode solicitar qualquer quantidade de servidores 16gicos.
Por exemplo, apenas um DS, um DS e um XS ou duas instancias diferentes de DS.

DS operam um IMDB locais e executam transa¢des sem acesso ao disco. XS garantem a
persisténcia das transacdes e a recuperagao de defeitos.

Sprint garante as propriedades ACID (atomicidade, consisténcia, isolamento e durabilidade) para
transagdes: todas as mudancgas resultante de uma transacao sao aplicados por inteiro ou nao sao
aplicados (atomicidade); transagcdes bem-sucessidas ndo levam um banco de dados de um estado
correto para um estado incorreto (consisténcia); execucdes concorrentes sao equivalentes a

-

ESCOLA POLITECNICA
DE PERNAMBUCO

26

execugoes seriais das mesmas transagdes usando uma unica copia do banco de dados (isolamento

ou serializacdo de uma copia); os efeitos das transagdes sobrevivem a defeitos de banco de dados
(durabilidade).

3.1.2 Arquitetura Sprint

A Figura 7 ilustra a arquitetura Sprint. ES permitem que clientes iniciem transag¢des. Solicitagdes
provindas de uma mesma transacdo podem ser operadas por um mesmo ES. Novas transacdes
podem ser iniciadas em ES diferentes. ES sdo iniciados e desligados de acordo com a quantidade
de carga ou exigéncias de tolerancia a falhas.

Tabelas de banco de dados sdo particionadas entre os DS. Tarefas realizadas no banco de dados
para DS e o mapeamento de DS para servidores fisicos sdo chamados de configuracdo de banco
de dados (database configuration). Para permitir a execucdo paralela de operagdes de leitura, os
dados sdo réplicados para multiplos DS. Isso prejudica as operagdes de escrita, pois precisam
modificar todas as réplicas de forma consistente, por isso as declara¢des vindas dos clientes sao
divididas em sub-declaragdes de acordo com a configuracao do banco de dados. A configuragao
de banco de dados muda na ocorréncia de qualquer defeito, entdo uma nova instancia ¢ criada em
um servidor diferente.

Todos os estados permanentes sdo gravados pelo servidor de durabilidade (durability servers-
XS), incluindo o estado do banco de dados e a configuragdo de banco de dados. O componente
Log manager informa ao ES e ao execution manager sobre os estados de terminagao de transagdo
de atualizagdo (update). A recuperagdo de defeitos ¢ feita pelo Recovery Manager, que reconstroi
o estado de um servidor de dados defeituoso a partir de um registro (/og) aramazenado no Log
Manager.

Figura 7. Arquitetura Sprint[12].

3.1.3 Transacoes

e Execucao de Transagoes
ES mantém duas estruturas de dados, server e status, para cada transacdo executada. Estas
estruturas de dados sdo mantidas por toda a execugdo da transacdo e sdao descartadas (garbage

-

ESCOLA POLITECNICA
DE PERNAMBUCO

27

collected) assim que a transacao ¢ abortada ou sucedida. A estrutura server mantém uma lista dos
servidores de dados (DS) acessado pela transacdo e a estrutura status registra o tipo atual das
transagdes, locais ou globais.

Na execucdo de transagdes locais, declaragdes SQL recebidas do cliente sdo passadas ao DS
correspondente para serem processadas e a resposta ser repassada ao cliente. Uma transacao
torna-se global se ela executa uma operacdo mapeada para mais de um DS ou para um DS
diferente do que foi utilizado em uma operagao anterior. Transagdes globais utilizam multicast
totalmente ordenado para sincronizar suas execugdes, evitando deadlocks. Cada transagdo global
¢ utiliza multicast apenas uma vez para enviar a identificagdo da transagdo, quando o ES percebe
que a transacdo ¢ global, as proximas requisi¢des sdo enviadas para os DS ustilizando
comunicagdo ponto-a-ponto.

Diz-se que duas transagdes globais entram em conflito (conflict) se elas acessam dados em um
mesmo DS e ao menos uma delas altera o dado. Um DS recebe transacoes T quando recebe pela
primeira vez uma operagao de T.

A execucdo das transagdes globais ¢ ordenada por uma seqiiéncia de nimeros. A serializacao ¢
garantida por um escalonador local em cada DS e pela certeza de que dois DS diferentes ndo
ordenam a mesma transagdo com uma seqiiéncia de nimeros diferentes. Deadlocks locais sdao
solucionados pela execucdo da transa¢do pelo IMDB. Deadlocks distribuidos sdo resolvidos
evitando ciclos nos escalonadores das transagdes. caso o IMDB detecte deadlock entre duas
transacdes, uma delas sera abortada para que se execute apenas uma delas.

¢ Terminacio de Transacoes

Transagdes apenas de leitura terminam com sucesso (commit) com mensagens do ES para os DS
envolvidos na transagdo. A transagdo ¢ terminada quando ES recebe um reconhecimento de cada
DS. Se o DS falha e ndo pode enviar o reconhecimento, o ES ird suspeitar de um DS defeituoso
entdo abortar a transacdo. Reconhecimentos sao necessarios para assegurar a corretude, apesar de
DS defeituosos.

Terminagdo de transagdes que modificam o banco de dados (update) € mais complexa, pois o
sucesso de transacdes de atualizagdo envolve XS para garantir a sobrevivéncia de estados da
execucdo em caso de defeitos no servidor. As terminagoes de transacdes de atualizacdo sao
baseadas em multicast totalmente ordenado para prover aos servidores de dados uma maneira
simples de manter seus estados persistentes (no XS).

¢ Terminacio com Suspeita de Defeito

A complexidade da terminagdo de transa¢des com suspeita de defeito se deve a possibilidade de
suspeitas erradas na participacdo de DS. Para assegurar que todos os servidores envolvidos irdo
encaminhar a mesma resposta apos o termino de transacdes update, o procedimento de
terminacao ¢ conduzido da seguinte maneira: se o ES suspeita do defeito de um DS durante a
terminac¢do da transagdo, via multicast sdo enviados votos de aborto em relacdo ao DS. Os votos a
ser considerados sdao os primeiros votos enviados por cada DS. Para DS ndo suspeitos apenas, um
voto serd entregue, enquanto para DS suspeitos havera a possibilidade de varios votos. O
multicast totalmente ordenado garante que todos os servidores destino entregardo os votos de
transacdo na mesma ordem e, conseqiientemente, chegardo a uma mesma decisao.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

28

3.1.4 Tolerancia a Falhas

* Deteccio de Defeitos

Servidores fisicos se comunicam apenas por troca de mensagens, isto €, ndo existe memoria
compartilhada. Servidores 16gicos podem usar comunicagao ponto-a-ponto e multicast totalmente
ordenado.

Servidores fisicos podem falhar por queda (crash) mas nao por comportamento malicioso
(defeitos bizantino). O servidor pode se recuperar apos um defeito mas todas as informacdes
contidas na memoria principal, antes da queda, serdo perdidas. Defeitos nos servidores fisicos
implicam em defeitos no servidores ldgicos.

Sprint utiliza detec¢ao de defeitos nao-confiavel; um servidor defeituoso possivelmente sera
detectado por servidores operacionais, mas o servidor operacional pode erroneamente suspeitar
que o sistema esta defeituoso caso ele esteja apenas atrasado.

* Recuperacao de defeitos

A recuperagdo de defeitos no Sprint € feita individualmente por cada servidor logico.

- Edge Server

Se ocorrer um defeito em um ES durante a execug¢do de uma transa¢do, os DS envolvidos
conseguirdo detectar o defeito e abortar a transa¢do. Se a falha ocorre durante a execucdo do
protocolo de terminagdo, a transagdo finaliza com sucesso ou aborta, dependendo de quando o
defeito ocorreu. Se a requisicdo de um ES para terminar uma transac¢ao alcancar todos os DS
participantes, eles estdo pronto para terminar a transacdo com sucesso, € seus votos serem
entregues, entdo a resposta sera finalizada.

Uma nova instancia de ES serd, imediatamente, criada em qualquer servidor fisico. Durante a
inicializagdo, o ES manda mensagens para um dos XS, perguntando pela configuragao atual do
banco de dados. O ES estara pronto para processar requisicdes assim que for recebida a
configuracdo do banco de dados.

- Data Server
Recuperagdo de DS defeituosos ¢ simples pois € apenas necessario criar uma outra instancia do
servidor em um servidor fisico operacional. Com um DS configurado para evitar acesso ao disco,
ndo existe imagem de banco de dados para ser restabelecida de um disco local ap6és a queda. Em
conseqliéncia disso, uma nova copia do DS defeituoso serd implantada em um servidor fisico
usando o estado armazenado por um XS.

e Evitando Inconsisténcias no Processo de Recuperacao
Sprint evita inconsisténcias para assegurar que transacdes sO podem ser executadas se os DS
acessados nao sdo substituidos durante a execugdo. O middleware garante essa propriedade
usando incarnation numbers € incarnation numbers vector.
Incarnation numbers sao identificadores inicos para cada instancia de um DS. Eles podem ser
implementados por uma contagem simples de quantas vezes o DS foi substituido ou “encarnado”.
Incarnation number vectors contém um incarnation number por DS no sistema. No momento da
terminacao, o incarnation number de cada DS envolvido na transagao ¢ comparada com o vetor
para checar se a transag¢do pode executar.
Quando uma transacao ¢ iniciada, ¢ nomeado um vetor com o maximo de dados de incarnation
numbers percebidos pelo ES. O ES hospeda este vetor e 0 nomeia como a visao atual do vetor de
transacdes. O vetor designado pela transicdo serd enviada pelo ES como parte do procedimento
de terminagao da transagao.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

29

Quando da suspeita de um DS defeituoso, o ES envia mensagens multicast de mudanca de
DS(change-DS) para todos os servidores junto com o identificador de um servidor fisico onde a
nova instancia de DS estara localizada. Apds a entrega dessa mensagens, todos os servidores
consistentemente aumentam o incarnation number de um DS particular e atualizam a
configuragdo do banco de dados.
Mensagens de reconhecimento sdo enviadas aos DS como parte da execuc¢do de uma transi¢ao
read-only global retornando o valor atual do incarnation number do DS. O reconhecimento
permite ao ES identificar possiveis estados inconsistentes.

¢ Reconstruindo o estado de DS defeituosos
Caso um DS seja replicado, € possivel recuperar seu estado caso ele esteja defeituoso. Mas de
qualquer forma o estado do banco de dados do DS pode ser recuperado por registros mantidos
pelo XS. Assim o DS recuperado necessita da imagem inicial do banco de dados obtido no XS e
as atualizagdes perdidas para se atualizar a imagem. Ap0s esta recuperagdo as entradas de dados
podem ser armazenadas localmente.
A recuperagdo rapida do DS defeituoso ¢ importante para a disponibilidade, pois as transagdes
que requisitam dados armazenados em um DS defeituoso ndo podem ser executadas até que o
servidor seja substituido. Os DS sdo réplicados se for exigido uma alta disponibilidade.
Transacoes de atualizagdo falhardo apenas se todas as réplicas que estiverem disponiveis para a
transacao falharem.

- Durability Server(XS)

A entrega de mensagens perdidas para a recuperagdo do XS podem ser feita por um XS
operacional. XS também implementam regras para recuperagao de DS defeituosos. Cada XS cria,
periodicamente, uma imagem no disco, do estado atual do banco de dados. Esse estado ¢
construido a partir das mensagens entregues pelos XS, como parte do protocolo de terminagao
das transacoes de atualizacao.

3.2 Horus

Horus ¢ um sistema que oferece um extenso e flexivel modelo de comunicacdo de grupos. A
necessidade de um ambiente de grupos de processo (conjunto de processos que se comunicam
utilizando um mesmo enderego de grupo) para computagdo distribuida representa um grande
passo para robustez em aplica¢des distribuidas com eventos criticos (como perdas financeiras ou
de vidas humanas). Grupos de processos podem ser usados para dar suporte a dominios de
seguranga de alta disponibilidade e uma boa execugdo de mecanismos de grupo na criagao de
uma rede inteligente. O sistema Horus fornece um flexivel modelo de comunicagdo de grupos.
Essa flexibilidade aplica-se as interfaces do sistema, as propriedades fornecidas pelo protocolo de
pilha (camadas de protocolos que podem ser empilhadas um sobre a outra de formas variadas
durante a execucdo) e a propria configuragdo do Horus, que pode rodar em um espago de usuario,
em um kernel de sistema operacional ou microkernel, ou ser dividido entre eles. Horus pode ser
utilizado por diversas interfaces de aplicagdes, at¢ mesmos as que possuem oculta
funcionalidades de grupos por trds de sistemas de comunicagdao UNIX.

Horus fornece suporte eficiente para modelos de execucdo virtualmente sincronos (virtually
synchronous), esse modelo cria a ilusdo a aplicagdo de que ela esta executando em um ambiente
onde cada processo falho sera detectado, e se algum processo for suspeito de falha, entdo
certamente esse processo falhou. Seu funcionamento baseia-se em grupos de processos (group
membership) com mecanismos de entrada en grupo e obtencdo de estado, saida de grupo (um
processo falho ¢ automaticamente retirado do grupo a que ele pertencia), € comunicagdo com

-

ESCOLA POLITECNICA
DE PERNAMBUCO

30

grupo usando multicast ordenado. Essas fun¢des primitivas sdo usadas para dar suporte a
ferramentas de tolerancia a falhas, tais como execu¢do de requisicdes de carga balanceada,
computacdo tolerante a falhas, dados replicados coerentes e seguranga. Propriedades como
sincroniza¢do virtual podem, em certos momentos, ser indesejadas, por introduzir overheads
desnecessarios ou conflitos com outros objetos, como para garantia de tempo-real (real-time).
Além disso a implementa¢do ideal em um ambiente inseguro pode aceitar overhead de dados
criptografados, mas ird evitar esse custo quando executado dentro de um firewall.

Na arquitetura do Horus, protocolos de suporte de grupos podem variar, durante a execucao, para
corresponder com a especificagdo requisitada pela aplicagdo ou ambiente. Mas substituigdes em
comunicagdo ponto-a-ponto com grupos de comunicagdo sdo uma abstracdo essencial.

3.2.1 Arquitetura Horus

Arquitetura Horus é baseada em camadas de grupos de processos similarmente a uma caixa de
blocos Lego. Horus possui uma arquitetura de comunicagdo que trata protocolo como instancias
de um tipo de dado abstrato fazendo com que os desenvolvedores particionem protocolos
complexos em microprotocolos simples. Cada bloco implementa um microprotocolo (Figura 8)
que fornece caracteristicas diferentes de comunicacdo. Para fornecer a combinacao desses blocos
dentro de macroprotocolos com propriedades desejaveis, os blocos foram padronizados em
interfaces top e bottom que os permite ser empilhados uns sobre os outros para serem executados
de modos variados. Na pratica, algumas combinag¢des de blocos ndo fazem sentido, por exemplo,
a camada de comunicagdo com protocolos de transporte receber chamadas da camada de entrega
de mensagens totalmente ordenada. Apesar disso, valor conceitual da arquitetura ¢ que, se
permitido, seja simples criar novos protocolos empilhamento com o arranjo dos blocos existentes.
Cada bloco do protocolo ¢ um mddulo de software com um conjunto de pontos de entrada para
chamadas de procedimentos (camada acima ou abaixo). Por exemplo, existem chamadas para
camadas mais abaixo para envio de mensagens e para camadas mais acima para receber
mensagens. Cada camada ¢ identificada por um nome ASCII e registra todas as chamadas
ocorridas entre as camadas no momento da inicializagao[13].

Application {group)

[= . ®
“\p?ﬁuauoﬂ Programmer f”ri.‘r'f'«t(.{.
I L

FC .
MBRSHIP | - S B

FRAG | -

NAK . ==

com | STABLE | -

Figura 8. Arquitetura Horus em camadas de grupos de protocolo[13]

-

ESCOLA POLITECNICA
DE PERNAMBUCO

31

A camada mais acima ¢ a Unica que se desvia da interface padrdo do Horus: ela converte a
abstracdo do protocolo do Horus em uma que combina com as necessidades e expectativas do
usuario. Assim quando Horus ¢ utilizada em uma interface socket, a camada mais acima converte
as operagdes sendto e recvfrom do socket para o paradigma Horus.
As camadas especificas atualmente suportadas pelo Horus resolve problemas como a interface do
sistema para varios mecanismos comunicacdes da camada de transporte, superacao de pacotes
perdidos, criptografia e descriptografia, fluxo de controle, etc. Algumas das mais importantes
camadas sao descritas a seguir.
A Arquitetura Horus implementa os seguintes microprotocolos:

e (COM: fornece aos grupos uma interface para protocolos de baixo nivel, como IP, UDP e

algumas interfaces ATM.

e NAK: implementa protocolos de reconhecimento negativo baseado em mensagens de
retransmissao.
CYCLE: disseminacdo de mensagens multimidia
PARCLD: dissemina¢do de mensagens hierarquicas.
FRAG: fragmentagcdo/remontagem
MBRSHIP: cada membro com uma lista de pontos finais(endpoints) que pode ser
acessado. Entdo ele executa um protocolo de consenso para fornecer aos usudrios um
modelo de sincronizagao virtual.
FC: controle de fluxo
TOTAL: entrega de mensagens totalmente ordenadas
STABLE: detecta quando a mensagem foi entregue para todos os destinatarios finais e
descartadas(garbage colleccted).
CRYPT: criptografia/descriptografia
MERGE: localizagao e agrupamento de instancias de grupos multiplos

3.2.2 Tolerancia a Falhas

Cada pilha lida com outros 3 tipos de objetos: ponto finais(endpoints), grupos(groups) e
mensagens(message).

O objeto endpoint modela a entidade de comunicag@o. Possuem um enderego e enviam e recebem
mensagens. Mensagens nao possuem enderecos para endpoints, mas para grupos. O enderego do
endpoint ¢ usado na associa¢do. O objeto grupo ¢ usado para manter o estado do protocolo local
no endpoint. Um processo pode ter multiplos endpoints, cada um com sua pilha de protocolo.
Um objeto grupo possui ainda um endereco de grupo(group adress), onde cada mensagem ¢
enviada e uma visao(view), que ¢ uma lista de enderecos dos destinatarios finais que possam ser
membros acessiveis do grupo. O objeto mensagem € uma estrutura local armazenada que possui
operacdes de inclusdo(push) e retirada(pop) de cabegalhos de protocolos[13].

Horus permite que diferentes endpoints tenham diferentes visdes de um mesmo grupo. Um
endpoint pode possuir multiplos grupos de objeto, permitindo que ele se comunique com
diferentes grupos e visdes. O usuério pode instalar diferentes novas visdes quando os processos
caem ou recupera-se € usa um dos varios protocolos de associacdo para atingir alguma forma de
acordo de visdes entre multiplos objetos grupo de um mesmo grupos[13].

As mensagens que chegam na pilha de protocolos entram pela camada mais alta, que invoca a
funcdo da camada mais abaixo e pode adicionar um cabegalho. Isto acontecem em todas as
camadas até que se chegue a camada mais baixa da pilha, que entdo chama o dispositivo
especifico para realmente mandar executar a agao.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

32

¢ Deteccio de Defeitos

Quando se cria um endpoint, o processo descreve quais protocolos de pilha sdo necessarios, e a
base de endpoint para que ela seja construida. E permitido a um processo colocar multiplos
endpoints em uma Unica base de endpoint. Dado um endpoint e um endereco de grupo, um
processo pode entrar em um grupo de endpoints. Isso resulta em uma chamada de uma visdo que
descreva o conjunto de endpoints com que os processos podem se comunicar. No caso da camada
MBRSHIP pertencer a pilha, cada endpoint na visdo estard garantido de ter sido enviado a mesma
visdo.

Tais camadas especificadas resolvem diversos problemas como produzir uma interface para um
sistema com varios protocolos de comunicagdo de transporte, tolerar pacotes perdidos,
criptografar e descriptografar, gerenciar grupos de processos, ajudar processos que entraram no
grupo a obter o seu estado atual, agrupar grupos que foram particionados, controlar fluxo de
dados, etc. Horus também adiciona ferramentas para ajudar no desenvolvimento e depurag¢do de
novas camadas|13].

O protocolo de associagdo, MBRSHIP, simula um ambiente para os membros de um grupo de
comunicagdo onde um membro pode apenas falhar(ndo pode estar lento ou desconectado) e as
mensagens nao podem ser perdidas. Cada membro tem nogdo da visdo(view) atual, a qual possui
uma lista ordenada dos membros. Cada membro na visdo atual é garantido pela aceitagdo da
mesma visdo ou serd removido da visdo atual[15]. Mensagens enviadas na visdo atual sdo
entregues aos membros sobreviventes da visao atual, e as mensagens recebidas na visdo atual sdao
recebidas por todos os membros sobreviventes da visdo. A camada TOTAL fornece apenas um
tempo de entrega para os membros sobreviventes da visdo, e a camada fornece informagdes de
defeitos a partir das atualizagdes das visdes. Isso ¢ chamado sincronizagdo virtual(virtual
synchrony) porque todos os membros que aparecem na comunicacdo enxergam defeitos no
mesmo instante logico, reduzindo significantemente o nimero de cenarios de defeitos[15].
Sincronizagdo virtual ¢ melhor entendido como uma simulacdo do comportamento fail-stop
(membros excluidos de uma visdao ainda podem estar vivos). Quando a comunicagdo ¢
restabelecida, visdes podem se juntar a comunicagdo chamando o protocolo MERGE. Apenas se
MBRSHIP foi usado como um detector de defeitos perfeito essa simulacao pode ser “exata”[15].
A camada NAK coloca uma sequencia de numeros em cada mensagem enviada que ¢ analisada
pelo receptor, se o receptor detectar mensagens perdidas ¢ enviado uma mensagem de
reconhecimento negativo (nak), para que a camada NAK retransmita a mensagem se ela ainda
estiver armazenada. Se ndo estiver armazenada, cada endpoint enviard via multicast seu estado
para que mensagens armazenadas possam ser descartadas(f7ush).

® Recuperacio de Defeitos

Na camada MBRSHIP, o protocolo principal é o protocolo flush que ¢ executado quando ¢
detectado a queda de um dos membros ou uma visao se junta a comunicagao[15].

Um dos membros ¢ denominado de coordenador do flush. O coordenador transmiti mensagens
flush aos membros sobreviventes da visdo. Primeiro todos os membros retornam as mensagens
dos membros falhos que ndo se sabia que foram entregues. Essas chamadas sdo chamadas
instaveis(unstable). Por fim, cada membro envia uma mensagem de resposta flush_ok. Entdo, os
membros irdo ignorar as mensagens enviadas pelos supostos membros defeituosos, € esperam por
uma nova instalagcdo da visao[15].

Assim que recebido todas as mensagens flush ok, o coordenador transmite as mensagens do
membro defeituoso que ainda estao instaveis. Neste ponto uma nova visao sera instalada. Quando

-

ESCOLA POLITECNICA
DE PERNAMBUCO

33

todas as mensagens estabilizarem, flush estara completada. Se algum processo falhar durante este
processo,uma nova rodada do protocolo flush podera ser iniciada imediatamente[15].

Cada pilha de blocos sdao cuidadosamente protegido por outras pilhas. Elas possuem suas proprias
threads priorizadas e controlam o acesso de memoria disponivel com um mecanismo chamado
canal de memoria(memory channel). Horus possui um escalonador de memoria que especifica
dinamicamente a taxa que cada pilha pode acessar a memoria, dependendo da disponibilidade e
prioridade, entdo nao ha possibilidade de uma pilha monopolizar a disponibilidade da memoria.
Quando multiplas mensagens chegam simultaneamente, ¢ importante impor um ordenamento na
entrega das mensagens. Horus numera as mensagens e usa variaveis de sincronizagao event count
para reconstruir a ordem quando necessario.

3.2.3 Protocolos de pilhas

A arquitetura de microprotocolos do Horus ndo seria de grande valor se nao fosse pela variedade
de classes de protocolos de grupos de processos que se pode suportar como, bom desempenho,
compartilhamento significativo de funcionalidades e simplificacao pela implementacao de pilhas
em camadas. Na Figura 9 mostramos todas as ferramentas de grupos de processos virtualmente
sincronos.

A pilha 1 fornece totalmente ordenado, comunicacdo de controle de fluxo sobre a abstra¢do dos
grupos de associagdo. As camadas FRAG, NAK e COM fornecem respectivamente quebra de
mensagens muito extensas em mensagens menores, suporte a perda de pacotes usando
reconhecimento negativo, e interface Horus para protocolos basicos de transporte. A pilha 2 ¢
bem parecida, mas fornece fraca ordenacdo e inclui uma camada para suportar estado de
conexao(state transfer) para processos que entram em um grupo ou grupo que se juntam apos
uma particdo da rede. A pilha 3 suporta subida por toda a estrutura hierarquica onde cada
processo “pai” € responsavel por um conjunto de processos “filho”. A pilha dividida mostrado
neste caso representa uma caracteristica na qual a mensagem pode ser roteada para diferentes
pilhas, dependendo do tipo de processamento exigido.

thread mMemory
scheduler

scheduler

TOTAL | 1 =T TOTAL
FC MERGE _ : |
. ~Fh PARCID | ¢
MBRSHIP MBRSHIP FRAG VERSHIP
FRAG FRAG NAK FRAG
NAK NAK COM NAK
CoM COM coM

@

@

©

Figura 9. Protocolos de pilhas[13]

-

ESCOLA POLITECNICA
DE PERNAMBUCO

34
HCPI(Horus Common Interface Protocol) fornece uma extensa interface que suporta todas as
operacdes comuns em um sistema de comunicacdo de grupo, indo além das funcionalidades do
sistemas em camadas. HCPI ¢ projetado para multiprocessamento e ¢ completamente assincrono
e reincidente.
Geralmente, interfaces HCPI recaem em 2 categorias: as do primeiro grupo que se preocupam
com o envio ¢ o recebimento de mensagens e com a estabilidade das mensagens, quando o
processamento foi completo e as informagdes associadas podem ser descartadas(garbage
collected). E as do segundo grupo que se preocupam com a associa¢do dos membros. De cima
para baixo, que permite as aplicagcdes ou a camada controlar o grupo de associacao usada pela
camada abaixo, de baixo para cima, relatam as mudangas de associagdo, problemas de
comunicacao e outros eventos relacionados a aplicagoes.
Com o suporte de um mesmo HCPI, cada camada Horus executa um protocolo diferente. Embora
seja possivel que as camadas sejam empilhadas em qualquer ordem, muitas das camadas impdem
certas semanticas para as camadas abaixo dela, impondo uma ordem parcial de empilhamento.
Essas restricoes podem ser tabeladas, fornecendo informagdes sobre as propriedades fornecida
pela aplicacdo, as vezes ¢ possivel gerar automaticamente um protocolo de pilha minimo que
consiga as propriedades desejaveis.

3.3 TAO(The ACE ORB)

ADAPTIVE Communication Environment(ACE) é um kit de ferramentas orientado a objetos
usado por desenvolvedores em servicos de comunica¢do de alto desempenho. ACE automatiza
configuragdes e reconfiguragdes por servigos dinamicamente conectados em aplicagdes em tempo
de execugdo e executa esses servicos em um ou mais processos ou threads[16].

TAO(The ACE ORB) foi desenvolvido com o padrdo e os componentes do framework ACE.
TAO ¢ um ORB(Object Request Brokers) de alto desempenho para sistemas de tempo real
baseado no padraio CORBA(Common Object Request Broker Architecture) que permite a
clientes invocar operagdes de objetos distribuidos sem se preocupar com a localizagdao do objeto,
linguagem de programacao, sistemas operacionais, protocolos de comunicagdo e interconexdes €
hardware.

Viérios dominios de aplicagdo, como comando e controle de sistemas, telecomunicacdes, servigos
financeiros e simulagdes interativas distribuidas exigem garantias de tempo real para redes
basicas, sistemas operacionais e componentes de middleware para satisfazer seus requisitos de
Qualidade de Servico(QoS)[16].

As garantias de QoS as quais TAO da suporte podem ser divididas em deterministicas, como
aplicagdes em tempo real de controle de avido, onde decisdes criticas sdo cruciais e estatisticas,
como aplicagdes de teleconferéncia, onde pequenas flutuagdes de entrega e garantia de
confiabilidade sdo toleraveis.

3.3.1 Arquitetura TAO

Como TAO ¢ uma implementacgao de tempo real de CORBA, sua arquitetura ¢ baseada na
arquitetura CORBA que serd apresentada a seguir.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

35

e Componentes do Modelo CORBA

Um modelo de objetos ¢ um conjunto de defini¢des sobre propriedades das entidades
computacionais, tal qual os tipos disponiveis e suas semanticas, regras para compatibilidade de
tipos, comportamento em caso de erros, etc. Os modelos de plataformas de middleware sao muito
similares, porém os detalhes em suas diferencas sdo fatores que tem maior impacto no projeto e
desempenho do sistema.

Para um melhor entendimento dos modelo de ORB, apresentaremos, na Figura 10, os
componentes do modelo CORBA, que dé suporte a varios niveis de transparéncia e permite aos
clientes invocar operacdes nos objetos-alvo sem se preocupar onde estdo os objetos, em que
linguagens de programagdo estdo escritos, em que plataformas de hardware/sistema operacional
eles rodam ou que protocolos de comunicagdo e de rede sdo usados para interconectar os objetos.

% 3
» = = in .
e —— o
CLIENT operationy IMPLEMENTATION)
oul args+ return value A e

F 3
\ IDI
H-KELE
L ORB umm
) INTERFACUE

h v,

Figura 10. Componentes no modelo de referéncia CORBA[16].

Os componentes do modelo de referéncia CORBA sdo os seguintes:

¢ Implementacio dos Objetos (Object Implementation): definem operagdes que implementam
uma interface especificada usando CORBA Interface Definition Language(IDL).

¢ C(liente (Client): entidade que invoca uma operagdo em uma implementagdo de objeto. O
acesso aos servicos do objeto remoto podem ser transparentes, pois o cliente ndo conhece os
detalhes da implementacao dos objetos, somente a interface IDL.

¢ Niucleo do ORB (ORB Core): responsavel por achar o objeto de implementagdo, entregando a
requisi¢ao ao objeto e retornando ao cliente uma resposta, se existir. O Protocolo Geral Inter-
ORB(GIOP) define a seqliéncia de mensagens do protocolo que implementa comunica¢ao
inter-ORB, isto ¢, ele ¢ utilizado para transportar os dados entre ORBs distintos. Protocolo de
Internet Inter-ORB(IIOP) ¢ um mapeamento de GIOP para os protocolos TCP/IP. IIOP nasceu
do protocolo de comunicacdo bdsica (cliente/servidor) para computacdo de objetos
distribuidos sobre a Internet.

¢ Interface do ORB (ORB Interface): interface abstrata para ocultar das aplicagdes detalhes de
implementagdo. E a tunica interface que possui uma interagdo direta com ORB e por isso, é
compartilhada pelo lado cliente e pelo lado servidor.

e IDL Stubs e Skeletons: servem como intermedidrios entre aplicagdes cliente e servidor,
respectivamente, ¢ ORB. Sao interfaces estaticas geradas a partir da compila¢do da interface
IDL. A interface IDL contém as interfaces dos objetos e dos métodos implementados no
cliente e no servidor, stub e skeleton respectivamente. A transformagao entre a definigdo IDL e
a linguagem de programacdo alvo ¢ automadtica devido oa compilador IDL, o que reduz o

-

ESCOLA POLITECNICA
DE PERNAMBUCO

36

potencial de inconsisténcias entre clientes stub e servidores skelefon e aumenta a otimizagao
das implementagdes stub e do skeleton.

¢ Interface de invocacdo dinamica (DII): permite aos clientes acesso direto aos mecanismos
basicos de requisicao fornecidas pela ORB. Invocag¢do dinamica s6 ocorre quando em tempo
de execu¢do um cliente chama um método de um objeto que ndo possui uma interface
conhecida.

¢ Interface skeleton dinamica (DSI): ¢ a parte do servidor andloga ao DII no cliente. Ela
permite a ORB entregar requisi¢des a implementagdes de objetos cujo o tipo a ORB ndo
conhece em tempo de execugao.

o Adaptadores de objetos (Object Adapters): possibilitam que a implementacdo dos objetos
acesse o maximo possivel de fungcdes do ORB. Ajuda ORB com as requisi¢des de
demultiplexacdo para os objetos-alvo e enviando operagdes de chamadas do objeto. Esses
objetos associam as implementacdo de objetos ao ORB. Basic Object Adapters(BOA)
possuem acesso a diversas func¢des, como invocagdo, ativagdo e desativacdo de métodos,
geracdo e interpretacdo de referéncias para objetos. Alem disso, 0 modelo CORBA define um
adaptador de objetos portatil(POA — Portable Object Adapter), que permite maior
flexibilidade na interagdo entre objetos do lado servidor e os ORBs de diversos
desenvolvedores.

e Componentes do modelo TAO

TAO ¢ um ORB de tempo-real e alto desempenho que tem por finalidade dar suporte a
constru¢do de aplicagcdes com exigéncias de QoS deterministicas e estatisticas. O ORB TAO
contém uma interface de rede, Sistema Operacional, protocolo de comunicacdo e componentes €
servigos CORBA concordantes[17]. Na Figura 11 apresentamos os componentes no modelo
TAO.

operation() ORIECT
(SERVANT)

im oargs
O

wout args + refurn value

HIGH-SPEED HIGH-SPEED
NETWORK INTERFALCE NETWORK INTERFALCE

Figura 11. Componentes do modelo TAO[17]

e IDL stub e skeleton otimizadas: IDL stub e skeleton realizam marshaling e demarshaling nos
parametros de aplicagdo da operacgdo, respectivamente. O compilador IDL do TAO gera
stubs/skeletons que podem seletivamente usar compilagcdes altamente otimizadas e/ou
interpretativo (de)marslhing. Essa flexibilidade permite aos desenvolvedores de aplicagdo
seletivamente diminuir tempo e espago, o que ¢ crucial para alto desempenho de sistemas em
tempo-real.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

37

e Adaptadores de objeto de tempo real: no TAO, esses objetos utilizam perfeitamente hashing
e otimizacdo de demultiplexagdo ativa para envio de operacdes criadas em tempo constante,
independente do niimero de conexdes ativas criadas e operagdes definidas na interface IDL.

¢ Escalonador de tempo real: mapeia requisi¢des QoS de aplicagdes, tais como laténcia fim-a-
fim, reunindo periodicamente deadlines de escalonamento, para recursos de um sistema
final/rede ORB, como CPU, memdria, conexdes de rede e dispositivos de armazenamento.
TAO da suporte a escalonadores de tempo real estaticos e dindmicos.

¢ Nicleo do ORB de tempo real: entrega a requisicdo do cliente ao objeto adaptador e retorna
uma resposta ao cliente, se houver alguma. O nicleo do ORB do TAO permite que protocolos
customizados possam ser ligados ao ORB sem afetar o modelo de programacdo padrdo das
aplicagdoes CORBA.

e Interface de rede de alta velocidade: no nicleo o subsistema de I/O do TAO, ha uma
interface de rede “daisy-chained” que consiste em um ou mais chips APIC(ATM Port
Interconnect Controller). APIC foi desenvolvido para suportar uma taxa bidirecional agregada
de 2.4 Gbps.

e Componente interno: TAO ¢ desenvolvido usando um middleware de baixo-nivel
denominado ACE, que implementa nucleos concorrentes e padrdes distribuidos para
comunicagdes de software. ACE fornece componentes que ddo suporte a requisi¢des de QoS
para alto desempenho, aplicagdes em tempo real e middlewares de alto nivel, como TAO.

3.3.2 Tolerancia a Falhas

TAO fornece tolerancia a falhas a objetos CORBA utilizando trés componentes da especificagdo
FTCORBA, Detector de falhas(monitora processos e hospedeiros), Notificador de falhas(recebe
relatorios do detector de falhas) e Gerenciador de Réplicas(gerencia grupos de objeto), junto com
o DOORS, servico de tolerancia a falhas para entrega de aplicacdes, e a adicdo de replicagdes
semi-ativas.

¢ Deteccao de Defeitos

e FTCORBA

FT CORBA ¢ uma especificacdo que define servicos e estratégias para aumentar a confiabilidade
das aplicagdes CORBA. Os mecanismos de tolerancia a falhas usados pelo FT CORBA para
deteccdo e recuperagdo de defeitos sdo baseados na redundancia de entidades(entity
redundancy)[18]. Para introduzir tolerancia a falhas nos padrdes CORBA foram definidas
algumas especificacdes com um conjunto de servigos essenciais para o desenvolvimento de
aplicacdes confiaveis.
¢ Gerenciador de Réplicas: servicos de tolerancia a falhas interagem com o gerenciador de
réplicas para criar, gerenciar propriedades e controlar associagdo em grupos de objetos. O
gerenciador de réplicas também € responsavel pela criacdo e manutengdo de um referéncia de
interoperabilidade entre grupos de objeto(IOGR— Interoperable Object Group Reference). As
operacdes do gerenciador de réplicas sao divididas em trés interfaces separadas:
o Gerenciador de propriedades: define operagdes para as configuragdes de propriedades.
o Gerenciador de grupos de objeto: define operagdes de entrada e saida de membros de
grupos de objeto, especifica ou descobre a localizacdo dos membros do grupo de objetos
e descobre o valor atual da referéncia do grupo de objeto e do identificador do grupo de
objeto.

el

ESCOLA POLITECNICA
DE PERNAMBUCO

38

o Fabrica genérica: define operagdes para criar ou remover objetos. O objeto fabrica
genérica negocia com o0s objetos Fabrica Local para criar ou remover réplicas de grupos
de objetos. No processo de criagao de réplicas sdo utilizados servigos de logging e
checkpoint.
Gerenciador de Falhas: responsavel pela deteccdo, notificagcdo, analise e diagnostico de
falhas em objetos. O detector de falhas(fault detector) periodicamente emite requisicoes
CORBA para objetos monitorados e relata falhas sobre objetos que falharam em resposta.
Detectores de falha sdo criados por fabricas de detectores de falhas e sdo criados nos mesmos
processos que as fabricas de detectores de falhas. Notificador de falhas(fault notifier) retine
relatorios de falhas dos detectores de falha, aplicagdes ou plataformas especificas de detecgao
de falhas.
Dominios de tolerancia a falhas: geralmente possuem varios kosts e grupos de objeto, e um
unico host pode suportar varios dominios de tolerancia a falhas. A existéncia de politicas de
seguranga ¢ mecanismos pode ser mantida pela certeza de que um dominio de tolerancia a
falhas estd totalmente contido em um unico dominio de seguranga. Todos os grupos de
objetos de um dominio de tolerancia a falhas s3o criados e gerenciados por um unico
gerenciador de réplicas, mas eles podem invocar e ser invocados por objetos de outros
dominios de tolerancia a falhas.
Gerenciamento de recuperacio e logging: responsavel pela consisténcia de estados das
réplicas. O mecanismo de logging ¢ responsavel pela registro do estado atual do objeto
primario nos objetos secundarios em cada intervalo de checkpoint definido no gerenciador de
propriedades. O mecanismo de recuperagdo ¢ responsavel pela recuperacdo de réplicas, do
objeto ou do grupo apds a ocorréncia de falhas.

Na Figura 12, mostramos uma representacao da arquitetura do FTCORBA, de como acontece um

gerenciamento de tolerancia a falhas em um unico dominio de tolerdncia a falhas. Na figura
temos um /ost, um cliente, o ORB cliente, dois #ost cada um com uma réplica do objeto servidor,
uma fabrica, um detector de falhas, um ORB servidor e, em cada ORB, um mecanismo /ogging e
um mecanismo de recuperagao.

create_obieci()

Replication g

Global Fault ﬂ

Notificat]) Fault
Manager = MNotficatnons MNotifier Daisiiar
| 'k,.‘\ Fault F
create_obieci() "‘-,\. reports r.ﬁ'_&:"r:u-:'r} is_alive()
'] Server |\ i Server
\(:f"t Replica =\ Replica
> - = ‘I\ 'I\‘. ; =
' AR
X .
Local Fault "~ |Local Fault
Factory Dete ctor Detector
ORB . ORB ORB
Recovery Logging Recovery Logging Recovery Z_.Ogg!'r.lg
M echanism| Mechanism)| Mechanism)| Mechanism| Mechanism)| Mecl:zm:sm
Mty B e

Figura 12. Arquitetura FTCORBA

-

ESCOLA POLITECNICA
DE PERNAMBUCO

39

Uma falha ¢ detectada por objetos do Detector de Falhas, que esta localizado em cada servidor
host e pode ser supervisionado por um objeto adicional do Detector de Falhas. Quando a falha for
detectada, ela sera transmitida pelo Notificador de Falhas aos consumidores da falha, por
exemplo, o gerenciador de replicas. Cada servidor possui o seu proprio mecanismo de
recuperagao e logging para se recuperar de falhas.

FTCORBA utiliza todas as modalidades disponiveis de replicacdo, no caso stateless, cold
passive, warm passive, active € active with voting.

e DOORS

DOORS(Distributed Object-Oriented Reliable System) ¢ um servico de estratégia do CORBA
para tolerar falhas que fornece servicos de politicas e mecanismos tolerantes a falhas para
entregas de aplicagdes e foi incorporado ao padrdo FT-CORBA em Janeiro de 2000.

A Figura 13 mostra a interacdo de protocolos entre os componentes do framework DOORS
quando as aplicagdes usam o esquema de réplicagdo warm passive.

I rep regisser

2. register with fanli desecior —_— Py
3. create and pell

4. create IOGR CLIENT)—

5. register TOGR with N5]

& checkpoin TOGE TAO

7. bind with naming service \ —L
& resolve service I\A_HE.'\-'G
9. zend request fo primary SERVICE

40 ORE

-
-) A -=== { r'{]
! .Fee;?r.rbea 2 EI'E = 10
| Gooome)
1
i
i AFF. .-IPP FA ULT 3
' EC’MR OBJECT OBJECT pa; ETEC'm
[TAQ ORE] TAC DRB [mo{mx] ?:u:l ORE J
.SECG'.\D_—!RI' PRIMARY
frm———— o
MANAGER 2
OBJECT
i TAOQ ORE
1 | —
: '
i 1 " Py v
: - REPLICATION| & |(CHECKPOINT
i —|| MANAGER ™\ SERVER
1 . o
i heartbear [r100rE | (r4oomB |
L -

Figura 13.Interagcdo de componentes FTCORBA[18]

1. O gerenciador de aplicagdes requisita ao gerenciador de réplicas que crie um grupo de réplicas
usando a operacdo ()create object da interface fabrica genérica do FTCORBA e passa um
conjunto de propriedades de tolerancia a falhas para o grupo de réplicas.

2. O gerenciador de réplicas permite ao task a criacdo de réplicas individuais para a fabrica de
objetos local baseado na propriedade de localizagdo de objeto. As fabricas locais retornam
referéncias individuais de objetos criados pelo gerenciador de réplicas.

3. Neste ponto, o gerenciador de réplicas informa ao detector de falhas para iniciar o
monitoramento das réplicas.

4. O gerenciador de réplicas coleta todos os IORs das réplicas individuais, cria um IOGR para o
grupo, e estabelece uma das réplicas como primdria. No esquema de réplicagdo ativa, todas as
réplicas sdo primarias.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

40

5. Entdo o gerenciador de réplicas registra o IOGR com o servico de nomes, o qual publica o
registro em outras aplicacdes e servicos CORBA.

6. O gerenciador de réplicas recupera o ponto dos IOGR e outros estados.

7. O cliente interessado no servigo contata o servico de nomeacgdo(servico que fornece um
mapeamento de nomes, organizados hierarquicamente, para o IOR).

8. O servigo de nomeagdo responde com o IOGR.

9. Finalmente, o cliente faz a requisi¢ao e o cliente ORB garante que a requisi¢ao sera entregue a
réplica primaria.

Dependendo do estilo de monitoragdo escolhido(keartbeat, polling), o detector de falhas
continuard monitorando as réplicas nos periodos de intervalo depois que o grupo de réplicas esta
estabelecido. O detector de falhas e o gerenciador de réplicas enviam mensagens de heartbeat ao
“super” detector de falhas primario nos periodos de intervalo. Como o FTCORBA ndo permite
ponto unico de falhas, o “super” detector de falhas também ¢ réplicado e as réplicas enviam umas
as outras mensagens de heartbeat no periodo de intervalos. Uma das réplicas ¢ denominada de
primaria e as outras servem como backup. Se a primaria falha, as backups elegem uma nova
réplica primdria.

TAO dé suporte a especificacio FTCORBA. Porém, um grupo de desenvolvedores do Instituto
para Sistemas Intensivo de Software(ISIS), projetou e implementou melhorias no nucleo ORB do
TAO para dar melhor suporte a introducdo de tolerancia a falhas em aplica¢des, incluindo a
implementagdo de caracteristicas a nivel do componente nucleo do ORB definidas na
especificagio FTCORBA. Algumas dessas melhorias foram:

- adigdo de replicacdo semi_ativa(semi_active).

- separando interfaces e tipos de definicdo comuns as especificagdes multiplas em moédulo de
grupo portatil(Portable Group).

- adigdo de registracao de fabricas e interfaces de fabricas de detecctor de falhas.

e Replicacdo semi-ativa

A abordagem de replicacdo semi-ativa foi projetada com a evoluicdo da réplicagdo ativa e da
réplicagdo passiva para dar suporte a execugdo previsivel de programas sem acrescentar
overhead, imprevisibilidade e nao-determinismo a estratégia padrao do FTCORBA. A replicagdo
semi-ativa tenta combinar a velocidade das propriedades de recuperacao de defeitos da replicagdo
ativa com a habilidade de replicar aplicacdes com comportamento de nao-determinismo da
replicagdo passiva. Estende a nocdo de lider e seguidor, enquanto o processamento da requisi¢ao
esta sendo realizada em todas as replicas, ¢ responsabilidade do lider realizar as partes nao-
determinisicas do procesamento e informar a resposta aos seguidores. Em caso de defeito no
lider, uma eleigdo deve ser realizada para a escolha de um novo lider. A Figura 16 ilustra como as
réplicas estdo arrumadas para tolerar falhas na replicacio semi-ativa. E criada uma lista com
todas as réplicas que, exceto o objeto primdrio, sdo interligadas por conexdes em nivel de
transporte orientado a conexdo a cabeca da fila e adicionadas a uma fila onde a réplica que estiver
na cabeca da fila serd nomeada como objeto primario na ocorréncia de falhas. Em caso de falha
no objeto primadrio, o defeito ¢ detectado pela proxima réplica da lista quando a conexdo em nivel
de transporte for fechada. O termino da conexdo ¢ usado para detectar defeitos, isso € feito
fazendo com que os objetos secunddrios esperem a abertura de conexdes usando mecanismos de
demultiplexagao.

Réplicas consistentes podem ser mantidas por mensagens de sincronizacdo de estados em
multicast confiavel para todas as réplicas. O protocolo multicast utilizado para invocagdo de
requisi¢des ou transferéncia de estados precisa forgar um ordenamento das mensagens. Para isso,

-

ESCOLA POLITECNICA
DE PERNAMBUCO

41

sdo passadas ao cliente uma lista ordenada de referéncias o qual garante a ordem da lista. Nao sao
usados threads adicionais no envio de mensagens de heartbeat ou monitoramento dos objetos

servidores.

Replicagdo semi-ativa soluciona diversas questdes existentes nas demais replicagdes(ativa e
passiva), como: uma eficiente e previsivel deteccdo de defeitos que garante um tempo de
recuperagdo mais rapido e previsivel comparado as replicagdes passiva fria e passiva quente.
Reduziu mensagens de heartbeat e de votagao(polling) na rede desde que nao sao mais usadas na
detecgdo de defeitos. Utilizam mais facilmente mecanismo RTCORBA (Real-Time CORBA) e de
policiamento. A replicagdo semi-ativa distribui o overhead de detec¢ao de defeitos e de

recuperacdo de erros entre as réplicas.

P

b OPEN CONNECTION
SERVER 2

SERVER

l__ ! .E_d- - . .- ~]b _ ‘T_-'
[I z MULTICAST o |
| MULTICAST
=E o]
|0 L veskeso
Fakuiahes | L o
£ RELIABLE g
g MULTICAST 4
= MANAGER b
E -
% MULTICAST g
i ") _~CORBA INVOCATION 6 il
SERVER 1 andlor SERVER 4
STATE INFORMATION
L yy, -,
o ‘_*u I
ad
L wrmmen] INVOCATION Veriaion

CLIENT
OBJECT

CIECCa—

Server Referetice

Figura 14. Arquitetura da replicacdo semi-ativa

* Recuperacao de Defeitos
¢ Gerenciamento de recuperacio e logging:

3

responsavel pela consisténcia de estados das réplicas. O mecanismo de logging ¢
responsavel pela registro do estado atual do objeto primario nos objetos secundarios em
cada intervalo de checkpoint definido no gerenciador de propriedades. O mecanismo de
recuperagdo ¢ responsavel pela recuperagdo de réplicas, do objeto ou do grupo apos a

ocorréncia de falhas.

3.4 Internet Communications Engine(ICE)

Internet Communications Engine(ICE) ¢ uma plataforma de middleware orientada a objetos. Isso
significa que ela fornece ferrementas, API e bibliotecas para a constru¢do de aplicagdes
cliente/servidor orientadas a objetos. Suas aplicacdes sdo apropriadas para o uso em ambientes

-

ESCOLA POLITECNICA
DE PERNAMBUCO

42

heterogéneos[19]. ICE representa uma nova abordagem de middleware que desenvolve os pontos
fortes do CORBA, sem cometer seus erros. Clientes e servidores podem ser escritos em diferentes
linguagens de programacao e rodar em diferentes sistemas operacionais € mesmo assim podem se
comunicar utilizando vérias tecnologias de rede[20].

ICE fornece um modelo de objetos que € ao mesmo tempo simples e poderoso. Os principais
objetivos de seu desenvolvimento foram[19]: (i) fornecer um middleware orientado a objetos
apropriado para o uso em ambientes heterogéneos, um conjunto completo de caracteristicas que
déem suporte ao desenvolvimento de aplicagdes distribuidas realistas; (i7) evitar complexidades
desnecessarias criando uma plataforma de facil aprendizado, fornecendo uma implementagdo
eficiente em largura de banda da rede, uso de memoria e overhead de CPU; e (iii) fornecer uma
implementa¢ao de desenvolvimento seguro.

ICE atualmente ¢ compativel com diversas linguagens de programagdo que podem ser
empregadas na construgdo de aplicagdes como, Java, C++, Visual Basic, Ruby, Python, C# e
PHP[19].

3.4.1 Arquitetura ICE

A arquitetura baseada em modelos de objetos do ICE melhora o modelo de objetos de CORBA,
por isso os componentes da arquitetura ICE sdo compativeis com os componentes do modelo
CORBA.

¢ C(lientes e Servidores
Clientes sao entidades ativas. Eles emitem requisigdes para servigos dos servidores. Servidores
sdo entidades reativas. Eles fornecem servigos solicitados pelos clientes. Geralmente os
servidores nao trabalham somente recebendo requisi¢des € podem também trabalhar como
clientes enviando requisi¢des para outros servidores. Neste caso, porém, com a finalidade de
responder a requisi¢ao do cliente inicial[19].

e Objeto ICE
Objetos ICE sdo entidades de espaco de endereco local ou remoto que respondem a requisi¢odes
de clientes. Um Objeto ICE tnico pode ser instanciado em um unico servidor, ou
redundantemente, em servidores multiplos. Objetos ICE possuem um ou mais interfaces(cole¢ao
de operagdes implementadas pelo objeto). Uma operagdo possui um ou mais parametros assim
como valores de retorno. Parametros e valores de retorno possuem um tipo especifico. Objetos
ICE possuem uma interface distinta conhecida como interface principal(main interface), além de
poder fornecer uma ou mais interfaces alternativas, conhecidas como facets. Cada objeto ICE
possui uma unica identidade de objeto(object identity, valor de identificagdo que distingue o
objeto de todos os outros objetos). O modelo de objetos do ICE assume que a identidade do
objeto ¢ globalmente unica, ou seja, dois objetos em um mesmo dominio de comunicagao ICE
ndo podem ter a mesma identidade[19].

® Proxies
Proxies sao tratados por objetos remotos, fornecendo conhecimento sobre a maquina € o nimero
da porta onde o servidor estd rodando e conhecimento sobre a identidade do objeto ao cliente[20].
Clientes utilizam proxies para conseguir se comunicar com os objetos ICE. O proxy atua como
um representante local para o objeto ICE, quando os clientes invocam uma operagao. Um proxy
contém[19]: informagdes de enderecamento que permitem que o lado cliente contate o servidor
correto; um objeto identidade que identifica no servidor qual é o objeto destino; e um
identificador facet opcional que determina que interface facet particular de um objeto o proxy
referencia. Aplicagdes podem comparar os proxies por igualdade e igualdade de proxies equivale
a igualdade de objetos

-

ESCOLA POLITECNICA
DE PERNAMBUCO

43

ICE fornece ndo s6 uma heranca de interfaces, como também uma agregacdo de interfaces.
Clientes podem perguntar ao proxy por uma interface diferente da qual o objeto estd
representando. Embora um objeto fornega multiplas interfaces, existe apenas um Unico objeto e
conseqlientemente uma Unica identidade de objeto. Interfaces de agregacdo resolvem os
problemas das versdes, pois um Unico objeto pode ter multiplas interfaces nao relacionadas
enquanto possui apenas uma identidade objeto. Desenvolvedores podem entdo adicionar novas
interfaces a objetos pré-existentes sem violar o contrato cliente-servidor. Isso faz com que os
desenvolvedores adicionem novas versdes aos sistemas existentes sem impacto aos clientes
implantados[20].
o Slice

Tal como o IDL CORBA, ICE fornece uma linguagem de especificagdo. Slice(Specification
Language for ICE) ¢ um mecanismo de abstracdo fundamental para separar as interfaces dos
objetos de suas implementacdes[19]. Slice estabelece contrato entre o cliente e o servidor e
descreve os tipos e as interfaces de objeto utilizadas na aplicacdo, independente das linguagens de
programacao em que o cliente e o servidor foram implementados. Slice fornece um niimero
minimo de tipos primitivos internos(short, int, long, float, double, byte, string, object e bool).
Além disso, d4 suporte a varios tipos definidos pelos usudrios, como constantes, listas,
seqliéncias, estruturas ¢ modelos, ¢ ainda fornece novos construtores. A definicdo do Slice ¢
focada nas interfaces de objetos, nas operacdes fornecidas por estas interfaces e pelas excegdes
que podem surgir por destas operacoes.

3.4.2 Réplicacoes

As replicagdes fazem com que os adaptadores de objeto(e seus objetos) fiquem disponiveis em
multiplos enderecos. O objetivo da réplicacdo ¢ de prover redundancia pela execugdo de um
mesmo servidor em computadores diferentes. Se ocorrer a falha em algum computador, o
servidor continuard disponivel em outros computadores. Um cliente pode acessar um objeto via
um enderego e obter a mesma resposta como se fosse de qualquer outro endereco. Esses objetos
ndo possuem estado, ou seja, sua implementacdo ¢ projetada para sincronizar com o banco de
dados ao invés de manter uma visao consistente de cada estado do objeto. Se compararmos essa
estratégia com os que sdo implementados por FT-CORBA, pode-se dizer que o ICE usa apenas a
primeira, replicagao sem estado.

ICE fornece uma forma limitada de réplicagdo quando o proxy especifica enderecos multiplos
para um objeto. A execucdo do ICE escolhe aleatoriamente um dos enderecos para iniciar a
tentativa de conexao e continua tentando em todos eles no caso de um defeito.

ICE fornece uma forma mais util de réplicagdo conhecida como réplicacao de grupos que exige o
uso de um servigo de localizacdo. Um grupo réplicado possui um identificador Uinico e consiste
em um valor qualquer de adaptadores de objeto[19]. O adaptador de objeto deve ser membro de
no maximo um grupo réplicado. O grupo réplicado ¢ tratado por um servico de localizagdo como
um “adaptador de objetos virtual”. O comportamento de um servigo de localizagdo quando
resolvendo um proxy indireto contendo o identificador do grupo réplicado ¢ apenas um detalhe de
implementagdo. Por exemplo, o servico de localizagdo pode decidir retornar os enderecos de
todos os adaptadores de objeto do grupo, assim o cliente pode selecionar aleatoriamente um dos
enderecos e implementar novos servigos sobre mecanismo de replicagdo fornecido pelo ICE.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

44

3.4.3 Transacoes

e Modelos de Invocacao

ICE suporta, como o CORBA, invocacdes com limite de tempo, para configuracdes globais ou
invocagoes individuais, onde as operagdes que ndo terminaram a execugao no tempo especificado
retornam com uma excecao de limite de tempo. ICE fornece invocagdes sincronas e assincronas,
além de datagramas e capacidade de executar requisicdes em lote(batching capability). CORBA
também oferece time outs por thread, mas ICE nao fornece devido ao alto custo ao acesso
especifico de threads armazenados. Entdo, o ICE fornece apenas um esquema simples de time out
como forma de detecgdo de defeitos.

Requisi¢cdes ICE possuem semantica at-most-once: a infra-estrutura de tempo de execugdao do
ICE faz o melhor para entregar a requisicdo ao destino correto e, dependendo das exatas
circunstancias, pode reenviar a requisi¢oes falhas. ICE garante que a requisi¢do sera entregue. Se
ndo for possivel entregar a requisi¢do, informa ao cliente com um a exce¢do especifica.
Requisi¢des t€ém semantica at-most-once, 0 que garante que operagdes que nao sao idempotent
sejam usadas com seguranga.

Sem semantica at-most-once, podem ser construidos sistemas distribuidos que sdo mais robustos
na presenca de defeitos na rede. Sistemas realistas exigem operacdes ndo idempotentes, 0 que
exige a semantica at-most-once, tornando o sistema menos robusto na presenca de defeitos na
rede. ICE permite o desenvolvedor marcar operagdes como idempotent. Para essas operagdes a
execu¢ao ICE utiliza mecanismos mais rigorosos de recuperagdo de erros do que as operacdes
nao idempotent[19].

¢ Invocacoes Sincronas
Para invocagdes sincronas ICE fornece a semantica at-most-once, que exige um tratamento de
erros conservador. Caso ocorra uma falha de invocag@o enquanto a resposta para a requisi¢cao esta
pendente, o lado cliente ndo tem outra alternativa a ndo ser propagar o defeito para a aplicagdo. A
semantica at-most-once do ICE ¢é complementada pelos modificadores de operagdes nonmutating
e idempotent. O primeiro indica que uma opera¢do ndo modifica estado e o segundo fixa o estado
em um valor definido independente do estado anterior para onde a execugdo possa reenviar com
seguranga mensagens na presenca de um defeito na rede. Isso torna a execucdo de ICE
transparentemente recuperavel com relagdo a falhas da rede[20].

¢ Invocac¢oes Dindmicas
Nas aplicacoes ICE, ¢ mais comum o uso do modelo de invocagdo estatica, onde a aplicacao
invoca uma operagdo Slice chamando uma fun¢do membro de uma classe gerada no proxy. No
servidor, 0 modelo de envio estatico comporta-se como de forma analoga: a requisi¢do ¢ enviada
ao empregado como uma chamada do tipo estatica a uma funcdo membro no proxy. As execugdes
do ICE no cliente e no servidor trocam sequencias de bytes que representam o codigo dos
argumentos e respostas da requisi¢ao(Figura 15).

el

POLE
ESCOLA POLITECNICA
DE PERNAMBUCO
45
|
Client Proxy | Server Servant
I T | I T
L | 1 L
1. add(x, v)
- |
2. request (bytes)
i -
| 3add(x, v
...
d.replyiﬁytes)
il |
5.add (x, v) I
Ll |

Figura 15. Interacdes na Invocagao Estatica[19].

1. O cliente inicia a chamada com a operagao Slice add chamando a fun¢ao add do membro
No proxy.

2. A classe proxy gerada codifica os argumentos em uma sequencia de bytes para ser
transmitida ao servidor.

3. No servidor, a classe empregado gerada decodifica os argumentos e chama a funcao add
na subclasse.

4. O empregado codifica os resultados e transmiti-os para o cliente.

O proxy cliente decodificaos resultados e retorna-os ao chamador original da requicao.

e

A aplicacdo ¢ totalmente inconsciente desta negociagdo de baixo-nivel, ¢ na maioria das vezes
isto ¢ bastante vantagoso. No entanto, em algumas situagdes a aplicagdo pode utilizar esse tipo de
negociacao para conseguir tarefas que ndo seriam possiveis num ambiente do tipo estatico. ICE
da suporte a servigos de envio e invocacao dinamica para essas situagdes, permitindo aplicagdes
enviar e receber requisi¢des como sequencia de codigos ao invés de utilizar argumento do tipo
estatico. No ICE as sequencias de bytes podem ser enviadas sem a necessidade de codificar e
decodificar os argumentos. Além de ser mais eficiente que o implementagdo do tipo estatico, ele
permite aos servicos intermediarios desconhecer o tipo Slice usados pelos destinatarios e
remetentes.

A utilizacdo de invocacao dinamica deve ser realizada com cuidado devido aos riscos e a
complexidade. Por exemplo, uma aplicacao que utiliza interfaces streaming estdo exposto a um
alto risco de defeitos em codificar e decodificar argumentos de requisi¢des manualmente a
assinatura do argumento de uma operacao se mudar. Ao contrario, esse risco ¢ altamente reduzido
se usado o modelo de envio e invocagdo estatica porque os erros em linguagens de tipo forte sdo
encontrados cedo, durante a compilacao. Por isso, s6 reconmendavel utilizar invocagdes
dinamicas se as vantagens superarem de forma significativa os riscos.

3.4.4 Protocolos e Transporte

Protocolo ICE pode ser rodado em uma variedade de protocolos de transporte. ICE da suporte a
TCP/IP, SSL e UDP. Para transporte orientado a conexdo, ICE oferece uma caracteristica

-

ESCOLA POLITECNICA
DE PERNAMBUCO

46

opcional de controle de conexdo ativa que automaticamente recupera conexdes que tenham sido
perdidas apos um espago tempo pré-estabelecido.

3.4.5 Tolerancia a Falhas

e Deteccio de Defeitos

ICE suporta, como o CORBA, invocagdes com limite de tempo, para configuragdes globais ou
invocagoes individuais, onde as operagdes que ndo terminaram a execug¢ao no tempo especificado
retornam com uma exce¢ao de limite de tempo.

ICE nao possui compromisso com as caracteristicas das aplicagdes: com ICE podemos conseguir
0 mesmo que podemos conseguir com CORBA com menos esfor¢co, menos coédigo € menor
complexidade.

e Recuperacio de Defeitos

Slice fornece duas qualidades de operagdes, nonmutating e idempotent. Nonmutating indica que a
implementa¢dao de uma operagdo nao modifica o estado do objeto final. Idempotent indica que o
efeito de duas ou mais invocagdes sucessivas de operagdes, € igual a uma unica invocagdo. Com
operagoes idempotent, se a primeira tentativa de invocar uma operacao falhar, o lado cliente tenta
reestabelecer a conexdo com o servidor e com seguranca enviar a requisicao falha uma segunda
vez. Se o servidor puder ser alcancado na segunda tentativa, o sistema continua normalmente e
nunca anunciard um defeito(temporario). Apenas se houver falha na segunda tentativa é que a
execu¢dao informa um retorno de erro a aplicagdo. Idempotent ajusta o estado a um valor
definido(independente do estado anterior) pra que a execugdo possa enviar mensagens novamente
com seguranca apos a presenca das falhas de rede. [20]. Estas operagdes fornecem uma poderosa
ferramenta de recuperacdo de erros porque, para as operagdes, a repeticdo apds um erro nunca
deve violar a semantica at-most-once(semantica do melhor esfor¢o para entrega de requisdes aos
destinatarios corretos).

3.5 JBoss

JBoss ¢ um servidor, open-source, de aplicagdes compativel com Java EE(Java Enterprise
Edition). Por ser open-source, ¢ possivel que desenvolvedores ampliem os servigos de
middleware implementando dinamicamente novos componentes para o servidor. Possui suporte a
servicos web Java EE, arquitetura orientada a servicos e modelo de programacgdo orientada a
aspectos para o desenvolvimento de solucdes middlewares[21]. JBoss possui diversos aspectos
pré-empacotados dar suporte a seguranga, transacdes e threads assincronos. Essa orientagdo a
aspectos ¢ um diferenciador que habilita os desenvolvedores a adicionar comportamento e
competéncia a qualquer objeto. Essa tecnologia oferece uma o6tima flexibilidade para customizar
comportamento de servidores de aplicacdo especificos implantados em ambientes de requisi¢ao.
JBoss ¢ um microkernel com um framework orientado a aspectos que usa essa base para criar
servidores de aplicacdao Java EE com um conjunto completo de APIs.

3.5.1 Arquitetura JBoss

A arquitetura de servidores de aplicagdo JBoss ¢ dividida em quatro camadas principais(Figura
16): camada microkernel, camada de servicos, camada de aspectos e camada de aplicagdo.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

47

WEB/SESSIONS MODEL DATA

§ _~ jff" &
\._}

J25E appllcahon (simple java)

JBoss makes J2SE (simple java) look like J2EE

Clustered
Flisrncte webmonicn = Cicka
WMoniaor Cached model daba § Porsn data

Transacted
e, e O i) 3

Application—-
layer —}§i

Servicelayer

B L

Microkernel
layer

JBOSS Microkemel (JMX)

Figura 16. Arquitetura de servidores de aplicacao Jboss

Camada microkernel: no seu nicleo tem um servidor baseado em microkernel. Utilizando
IMX(Java Management Extensions), o microkernel entrega um modelo de componente leve
mas que oferece avangadas caracteristicas de carregamento de classes € uma forte introducao
(reintrodu¢do) de aplicacdes sem precisar reiniciar as aplicagdes para serem atualizadas e em
todo gerenciamento do ciclo de vida. Essa ¢ a base para a implantacdo flexivel de
componentes € a arquitetura orientada a aspectos.

Camada de servico: acima da camada microkernel existe a camada de servi¢o que consiste
em uma série de servicos onde cada um ¢é cuidadosamente empacotado e fortemente
introduzido. Servigos de implantagio no JBoss podem alcangar qualquer lugar, desde
transacdes e servico de mensagens até servicos de seguranga. Cada servigo é empacotado em
um arquivo de servigos(SAR) onde cada SAR ¢ individualmente implantado, facilitando a
extensdao do JBoss. Assim, os desenvolvedores podem facilmente incluir/remover servigcos ou
construir seus proprios servicos e implantd-los como SARs dentro de um servidor de
aplicacao JBoss.

Camada de aspectos: baseada no modelo de programagado orientada a aspectos(AOP). JBoss
utiliza o conceito de interceptores, que permitem ao sistema adicionar transparentemente o
comportamento fornecido pelos servicos em todos os objetos. Desenvolvedores podem
adicionar ou remover interceptadores de acordo com as suas especificagdes. E a camada de
aspectos que permite aos desenvolvedores acrescentar capacidades como transacdes ou
servigos de aglomerados.

Camada de aplicacio: ¢ nesta camada onde as aplicagcdes sao hospedadas. As aplicagdes
elevam as capacidades da infra-estrutura JBoss caso utilizem diretamente o servigo de
container ou se empregam a camada de aspectos e etiquetam os aspectos para adicionar
comportamentos aos objetos.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

48

3.5.2 Transacoes

r

ArjunaCore ¢ um sistema de programagao orientado a objeto que fornece um conjunto de
ferramentas para a construcdo de aplicagdes tolerantes a falha usando objetos e transagdes.
ArjunaCore ¢ utilizado apenas para transagdes locais, quando sdo necessarias transagoes
distribuidas o ArjunaCore fornece o gancho necessario para que a informagao seja transmitida.
Por isso, ¢ JBoss utiliza o JBossTS para transacdes distribuidas tendo o ArjunaCore como nucléo
para o servigo de transagoes.

® Arquitetura ArjunaCore

ArjunaCore foi projetado e implementado para fornecer uma forma de construir aplicagdes
distribuidas tolerantes a falhas. Para isso foram levadas em consideracdo trés propriedades de
sistemas consideradas de extrema importancia:
¢ Modularidade: o sistema deve ser facil de se instalar e executar. Ou seja, ¢ possivel
substituir um componente do ArjunCore por um ja existente na base do sistema.
¢ Integracio de mecanismos: um sistema tolerante a falhas precisa de uma variedade de
fungdes para controle de concorréncia, deteccdo de defeitos, recuperagao de erros, etc.
Estes mecanismos podem ser fornecidos de uma maneira integrada para que seu uso seja
facil e natural.
¢ Flexibilidade: os mecanismos devem ser flexiveis, permitindo as aplicagdes especificar
caracteristicas que melhor se adequam aos seus objetivos, por exemplo, tipo especifico de
concorréncia e controle de recuperagao.

- Objetos e Transacoes

Consideramos um modelo de computacdo onde cada programa de aplicagdo manipula objetos
persistentes sob o controle de transacdes atomicas. As operagdes de um objeto t€ém acesso a
instancias de variaveis e podem modificar o estado deste objeto. Todas as operagdes de invocagao
sdo controladas pelo uso de transagdes atdomicas que fornecem as propriedades ACID.

Os modelos de objetos e transagdes fornecem um arcabouco natural para o desenvolvimento de
sistemas tolerantes a falhas com objetos persistentes. Quando ndo se usa objetos persistentes, se
assume estar em um estado passivo em um objeto de armazenamento(object store) e ativado por
demanda pelo carregamento dos estados e métodos de um armazenador de objeto persistente para
um armazenador ndo-estavel(volatil), e associando-o com um objeto containner.

- Arquitetura do Sistema
ArjunaCore possui dois modulos principais para dar suporte a objetos persistentes: modulo de
transacdes atomicas ¢ modulo de armazenamento de objetos.

e Moébdulo de transacdes atomicas: fornece suporte de transagdes atdmicas aos programas de
aplicagdo na forma de operagdes para inicializacdoo, sucesso(commit), e cancelamento de
transagoes.

¢ Modulo de armazenamento de objetos: fornece um repositorio de armazenamento
estavel. Esses objetos s3o registrados com um identificador unicos(UID) para seu
nomeamento.

A estrutura ArjunaCore ¢ altamente modular: pelo encapsulamento de propriedades persistente,
recuperabilidade, compartilhamento, seqilienciabilidade nos mddulos de transacdes atomicas,

-

ESCOLA POLITECNICA
DE PERNAMBUCO

49

interfaces bem definidas para o suporte a ambientes, ArjunaCore consegue um decrescimento
significativo de modularidade além da portabilidade.

Servicos de Armazenamento de Objetos

e Salvando estados de objetos: ArjunaCore possui a capacidade de lembrar do estado do
objeto, por varios motivos: inclusdo de recuperacdo (o estado representa algum estado
passado do objeto), persistente (o estado representa o estado final do objeto em uma
aplicacdo de terminagdo), e para proposito de distribuicao (o estado representa o estado
atual de um objeto que deve ser levado ao local remoto).

e Armazenador de objetos (Object Store): fornece uma interface bastante restrita que pode
ser implementada de varios maneiras. Por exemplo, armazenadores de objetos sao
implementados em memoria compartilhada. Quando um objeto transacional estd
finalizando com sucesso (commiting), ¢ necessario para ele tornar persistentes algumas
mudangas de estado para que possa recuperar na ocorréncia de um defeito e continuar com
a finalizagdo da transacdo, ou fazer um rollback. Para garantir as propriedades ACID, essas
mudangas de estado podem ser descartadas (flushed) pela implementagdo do estado
persistente antes da transacdo proceder com a acao de sucesso. Sendo a aplicacdo pode
presumir que a transacao foi um sucesso quando de fato a mudanca de estado pode ainda
residir dentro da cache do sistema operacional e pode ser perdida por um subseqiliente
defeito da maquina. Como padrdo, ArjunaCore garante que tais mudangas de estados
sempre serao descartadas.

Servi¢os de Transacoes Atomicas

Recuperacio e Persisténcia: fornece a ativagao e desativagdo de objetos, recuperagdo de objetos
e também mantém o nome dos objetos (na forma de objetos UID). Os objetos sao divididos em
trés tipos. Objetos recuperaveis sdo geradas e mantidas informagdes de recuperagdo apropriadas
do objeto. Estes objetos possuem um tempo de vida que ndo ultrapassa o programa de aplicagdo
que o criou. Objetos recuperaveis e persistentes, por sua vez, t€ém tempo de vida maior. Por fim,
objetos podem nao possuir nenhum dos tipos citados. Neste caso, nenhuma informacao de
recuperagdo ¢ mantida. O objeto ndo pode ganhar ou perder capacidade de recuperacdo em um
ponto qualquer durante seu tempo de vida.

e JBossTS

JBossTS (JBoss Transaction Service) ¢ a solucdo de middleware que da suporte a aplicagdes
criticas em ambientes de computagao distribuida. ArjunaCore ¢ o nucleo para o JBossTS.
JBossTS ¢ uma extensdo dos servigos de transa¢do do ArjunaCore fornecendo alto desmpenho,
alta confiabilidade nos processos de transacgao e fornece JTA (Java Transactions API), JTS (Java
Transaction Service) e o padrdo dos servigos Web. JBossTS desempenha um papel critico na
constru¢do confiavel de aplicagdes sofisticadas de e-business, garantindo absoluta conclusao e
exatiddo dos processos de negocios.
Ha diversos participantes em uma transagao distribuida JBossTS, incluindo:
¢ Gerenciador de transacio: esta distribuido no sistema de transa¢des. Gerencia e ordena o
trabalho envolvido na transacao.
¢ Gerenciador de contexto: identifica uma transacao particular.
¢ (liente transacional: um cliente transacional pode invocar operagdes de um ou mais
objetos transacionais em uma unica transacdo. O cliente transacional que iniciou a
transacao ¢ chamado de originador de transagao.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

50

¢ Objeto transacional: objeto cujo comportamento ¢ afetado por operagdes ocorridas dentro
de um contexto transacional. Um objeto transacional também pode ser um cliente
transacional.

e Recurso recuperavel: um recurso recuperavel ¢ um objeto transacional cujo estado ¢ salvo
em um armazenamento estavel se a transacdo for bem-sucedida e cujo estado pode ser
reajustado para o que era no comeco da transagao se a transagao € restaurada a um ponto de
recuperacgao.

3.5.3 Tolerancia a Falhas

® Detecciao de Defeitos

JBoss utiliza o JBoss Remoting para detectar defeitos entre o lado cliente e o lado servidor da
aplicag¢do. JBoss Remoting fornece uma tinica API para a maioria da redes cliente/servidor
baseadas em invocagdes e servigos que usam inclusdo de protocolos de transporte e codificacao
de dados. A API JBoss Remoting fornece a capacidade de fazer chamadas remotas sincronas e
assincronas, envio e recep¢ao de mensagens callback, e descoberta automatica de servidores
remotos. A intengdo € permitir o uso de diferentes protocolos de transportes para servir para
diferentes propositos, mantendo a mesma API para fazer invocagdes remotas e apenas precisando
de mudangas de configuragdo sem mudangas de codigo.

Algumas caracteristicas disponiveis no JBoss Remoting sdo:

¢ Identificaciao de servidor: um identificador simples baseado em uma URL que permite os
servidores remotos serem identificados e chamados. Isso ¢ feito via InvokerLocator, que
pode ser representado por uma simples string com um formato baseado em URL. Isso ¢
tudo que se precisa para criar um servidor remoto ou fazer uma chamada a um servidor
remoto.

¢ Codificacao de dados conectavel: diferentes codificadores e decodificadores de dados
podem ser usados para converter a carga util invocadas no formato de dados desejavel
para a linha de transferéncia.

¢ Descoberta automatica: descobrir servidores remotos enquanto estdo on/off line. Multicast
ou JNDI.

¢ Grupos de servidores: capacidade de agrupar servidores em dominios logicos, portanto a
comunicagdo entre servidores sO se dard dentro de um dominio especifico.

® Callbacks: pode receber e enviar callbacks pelos modelos push/pull. O modelo push
permite armazenamento persistente e gerenciamento de memoria.

¢ Notificacao de conexdes falhas: notificacdo se o cliente ou o servidor falhou

e Compressao de dados: pode se usar compressdo (de)marshaling para a compressao de
grandes cargas uteis.

Detec¢cao Automatica

Para adicionar detec¢do automatica, o detector remoting precisard habilitar os lados cliente e
servidor assim como o registro de rede(NetworkRegistry) no lado cliente(Figura 18).

Quando o detector no lado servidor ¢ criado e iniciado, ele ird periodicamente por em
InvokerRegistry todos os invocadores servidor que foram criados. O detector ird usar a
informagdo para publicar

el

ESCOLA POLITECNICA
DE PERNAMBUCO
51
@ Remaling Sarver
Remoting Siant ! Invoker
‘ Detecior I— Reglstry
Metwark s -
Reglsiry B ol L@ S :
e e e ey T e e R L mir gy | | | Connecior
—_ Marshalles % | UnMarshaller —
it e
Sirmam Pl
Cliant L r Server oS
L] Cliant L—— Invoker s o s o= 1-\g¢ckul_ amn omn o o=es ees oy (oyoler Handlar
(transpart) ! ‘; (trancport)
ik Dulpul
Srcam s
UnMarshalier e —' —t—{ Marshaller |—

Figura 17.Inclusdo de deteccao automatica

uma mensagem de detec¢do contendo o localizador e o subsistema suportado por cada invocador
servidor. Um subsistema ¢ um identificador de que camada superior do sistema o suportador de
invocacdes esta associado. A publicagdo da mensagem de deteccdo serd enviada via mensagens
multicast ou ligadas a um servidor JNDI. No lado cliente, o detector recebera as mensagens ou a
poll do servidor JNDI para deteccdo de mensagens, se o detector determinar que a mensagem de
deteccdo ¢ para um servidor remoto que esta online ele o registrara em NetworkRegistry.
NetworkRegistry passard a informag¢do de deteccdo para todos os servidores remotos descobertos.
A mudancga no NetworkRegistry também pode ser feita quando o detector descobre que o servidor
remoto ndo esta muito disponivel e remove-o do registro.

* Recuperacio de Defeitos

A Figura 19 mostra a arquitetura principal dos componentes dentro da recuperacao de defeitos.

Crash Recovery
Architecture

Object Store

./Recovery/TransactionStatusManager |

Application Process(es)

TS AfuraTS @ | ./ StateManager BasicAction/AtomicACtion |
begin()
clcherk()

commit() | Transacion |1 Conmmiting| i
Transacion |2 Aboriing
Transaction 2 Transacfion |2 Preparing @ @
begin()
dcMWorkd()
comimit()

Local Transaction Tables

Transaction 3

in
beg . Recovery Manager deamon
5 | BExpired Scanner
TransactionStatusManager | (one per node) A i g =
Listener Connection Trar'sacl:ti onStatus Module
Thread Thread @ ConnectionManager
| AtcmicActionStatsSenvics i" 1 " Periodic Fﬁcwew Threar

Recovery Manager scans Object Store for failed transactions
Transaction status checked in originator Application Process TransactionStatus
Failed Transactions are activated in the TransactionCache Connector 3

Failed transaction commit replayed synchronously

Pass .
TrarsactionStatus l Backoff Pericd
Transaction Logs Written to Object Store Connector 2 g Pas: @
2nd s

B W=

l Reoowery Period

Figura 18. Arquitetura da recuperacao de defeitos[21].

-

ESCOLA POLITECNICA
DE PERNAMBUCO

52

O gerenciador de recuperagdo(recovery manager) € o processo central responsavel pela
realizacdo da recuperagdo de defeitos. Apenas um gerenciador de recuperacao ¢ executado por
n6. O armazenador de objetos fornece armazenamento persistente de dados para transagdes de
registro de dados. Durante o processamento de transacdo normal, cada transagdo registrara os
dados persistentes necessarios para que ela possa ser finalizada com sucesso(commit). Na
caracterizagdo do sucesso da transagdo, os dados sdo removidos. Porém se a transacdo falhar, os
dados permanecem no armazenador de objeto.

As fungdes do gerenciador de recuperagdo sio:

- Procurar periodicamente no armazenador de objetos por transacdes que possam ter falhado.
Transi¢des falhas sdo indicadas pela presenca de registro de dados depois do periodo de tempo
que a transagdo normalmente ja deveria ter terminado.

- Verificar junto ao processo de aplicacdo que originou a transagdo se a transagdo ainda esta em
andamento ou nao.

- Recuperar a transagdo pela reativacdo da transacdo e entdo repetir a fase 2 do protocolo de
sucesso(commit).

3.6 Comparaciao de Mecanismos

A comparagdo feita neste trabalho é baseada nos mecanismos de deteccdo e recuperacdo de
defeitos conhecidos na literatura de tolerancia a falhas. Neste trabalho estudamos os mecanismos
de mensagens de heartbeat, consenso, deteccdo de defeitos ndo confiavéis e multicast totalmente
ordenado como mecanismos de deteccdo de defeitos e os mecanismos de recuperagao por retorno
e recuperagdo por avango como mecanismos de recuperagdo de defeitos. As infra-estruturas
escolhidas para tal estudo foram desenvolvidas tanto no meio académico quanto no meio
comercial. Sendo elas Sprint, Horus, TAO, ICE e JBoss.

3.6.1 Sprint

XS(Durability Server) sao replicados para uma alta disponibilidade. Se houver a queda de XS,
DS(Data Servers) ndo precisam esperar o XS se recuperar para o sucesso de suas transagdes de
atualizagdo. DS sao replicados para melhor desempenho e disponibilidade. Quando ha a queda de
um DS, outra instancia ¢ iniciada em um servidor fisico operacional. A nova instancia estara
pronta para processar trasnsagdoes apos receber ao dados do banco de dados que estdo
armazenados no XS.

Servidores fisicos podem falhar por queda(crash) mas ndo comportam-se maliciosamente(falhas
Bizantinas). O servidor pode se recuperar apos um defeito, mas perde toda a informacgdo
armazenada na memoria principal antes da queda. Cada servidor tem acesso ao armazenador
estavel local(i.e. disco) cujo conteudo sobrevive a quedas. O defeito em um servidor fisico
implica no defeito de todos os servidores locais nele hospedados.

O sistema aplica deteccao de defeitos ndo-confiavel: (a) servidores falhos serdo detectados por
servidores operacionais, mas (b) um servidor operacional pode suspeitar erroneamente que um
servidor tenha falhado, caso ele esteja muito lento.

Nos ES, Se um defeito ocorre durante a execucao do protocolo de terminagdo, a transacao
finaliza com sucesso ou aborta, dependendo de quando o defeito ocorrer. Se a requisicdo do ES
para a terminacao da transagao alcancar todos os DS participantes, eles estardo prontos para dar
sucesso a transacao, e seus votos entregues antes de qualquer outro voto para a transagdo, entdo a
resposta sera de sucesso.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

53

Uma nova instancia de ES serd, imediatamente, criada em qualquer servidor fisico. Durante a
inicializacdo, o ES manda mensagens para um dos XS, perguntando pela configuragdo atual do
banco de dados. O ES estard pronto para processar requisicdes assim que for recebida a
configuracdo do banco de dados.

Nos DS a recuperacao de servidores defeituosos € simples, pois € necessario apenas criar uma
outra instancia do servidor em um servidor fisico operacional. Com um DS configurado para
evitar acesso ao disco, ndo existe imagem de banco de dados para ser restabelecida de um disco
local apds a queda. Em conseqiiéncia, uma nova cépia do DS defeituoso sera implantada em um
servidor fisico usando o estado armazenado pelo servidor de durabilidade. Sao necessarios alguns
cuidados para evitar inconsisténcia das estratégias de recuperacao.

Nos XS’s mensagens entregues perdidas pela recuperagao do XS podem ser recuperadas por um
XS operacional. Cada XS cria, periodicamente, uma imagem no disco, do estado atual do banco
de dados. Esse estado ¢ construido a partir das mensagens entregues pelos XS, como parte do
protocolo de terminacdo das transagdes de atualizagao.

Assim, concluimos que no Sprint os servidores fisicos utilizam detectores de defeitos nao-
confidveis. Isto se aplica também aos servidores logicos. Ja na recuperacao de defeitos cada
servidor cria uma nova instancia do servidor falho e se reconfigura a partir de um ponto de
recuperacdo que ¢ uma imagem de banco de dados armazenada no servidor de durabilidade(XS),
que se auto-recupera com a utilizagao de replicacao.

3.6.2 Horus

Horus fornece suporte eficiente para o modelo de execugao virtualmente sincrono. Este modelo ¢
baseado em grupos de processos e primitivas de comunicacdo e da suporte a uma variedade de
ferramentas de tolerancia a falhas, por exemplo, para execucdo de requisicdes com o
balanceamento de cargas, computa¢do tolerante a falhas, dados replicados coerentemente e
seguran¢a. Horus ndo fornece operagdes de controle de proposito geral, e possui apenas um
formato de enderecamento. Protocolos de camadas distintas podem ser misturados ¢ conectados
livremente.

Horus tolera falhas do tipo fail-stop, pois a utilizagdo do modelo de sincronizagdo virtual os
processos garante que ¢ possivel distinguir um processo falho de um que estd lento.
adicionalmente os membros de um mesma visdo tomam conhecimento do defeito em um mesmo
instante logico. A camada TOTAL fornece entrega totalmente ordenada para mensagens
multicast dentro de um grupo. A camada TOTAL fornece um tempo de entrega para as visdes
sobreviventes. A camada NAK fornece uma sequencia de numeros que sao analisados pelo
receptor como forma de detectar pacotes perdidos. Os defeitos sdo detectados pelos endpoints.
Visdes(views) sdo utilizados para recuperagdo de defeitos. Um endereco de grupo estd associado
a um objeto grupo que mantem o estado do protocolo local. Um endpoint pode possuir multiplos
objetos e diferentes visdes de um mesmo grupo. Entdo quando um processo falha, serd criada
uma nova visdo em um mesmo grupo para recuperagdo e serdo utilizados protocolos de
associacdo para alcangar alguma concordincia de visdes entre multiplos objetos grupo de um
mesmo grupo.

3.6.3 TAO

TAO ¢ uma infra-estrutura que estende o padrdo e os componentes do framework ACE e que foi
desenvolvido para prover um alto desempenho no padrado CORBA as aplicagdes de tempo real.

Sua arquitetura ¢ baseada em uma melhoria dos componentes da arquitetura CORBA,
principalmente no protocolo IIOP. As classes de falhas toleradas pelo TAO sdo falhas por

-

ESCOLA POLITECNICA
DE PERNAMBUCO

54

temporizacao, pois suas aplicagdes possuem um time-out de duragdo decidida pelo cliente e
controlado em tempo de execug¢do pelo objeto servidor.

TAO usa replicagdo como mecanismo de tolerancia a falhas. Utilizam mensagens de heartbeat
como mecanismo de deteccdo de defeitos pela extensdo do protocolo DOORS do CORBA. TAO
também utiliza mecanismos de polling(votacao) como mecanismos de detec¢ao de defeitos. Esses
mecanismos sdo utilizados apenas nas aplicacdes que usam replicagdo ativa ou passiva. TAO
inclui também um tipo de replicagdo hibrida denominada replicacdo semi-ativa onde as
mensagens de heartbeat e de polling ndo sdo mais utilizadas para fornecer uma diminui¢ao do
overhead no sistema. Na replicacdo semi-ativa, sdo usadas mensagens confiavel de multicast para
a detecg@o de defeitos. As mensagens sdo enviadas por multicast, mas sua ordenagdo ¢ forgada
pelo envio de uma lista ordenada de referéncias do lado cliente.

A recuperacdo de erros ¢ feita a partir de arquivos log que registram o estado atual do objeto
primario, para que sejam recuperados na ocorréncia de alguma falha. O mecanismo de
recuperagdo de erros no TAO ¢ baseado na redundancia das entidades; um dos objetos ¢ definido
como primario e, caso este objeto falhe, um dos objetos redundantes serd eleito o novo primario
e o sistema continuara sendo executado com o registro arquivado em /og do ultimo estado ideal
do objeto primario falho. TAO também pode usar uma forma simples de consenso baseado no
modelo de replicacdo ativa com votagdao de FT-CORBA.

3.6.4 ICE

ICE detecta defeitos usando temporizadores, pois as operagdes que ndo terminaram a execugao
no tempo especificado lancam uma excecdo de limite de tempo. ICE ndo possui compromisso
com as caracteristicas das aplicacdes: com ICE podemos conseguir o mesmo que podemos
conseguir com CORBA com menos esfor¢o, menos codigo e menor complexidade.

A literatura sobre ICE ndo especifica os mecanismos de detec¢do de defeitos usados para gerar a
excegoes, porém ICE foi criado para utilizar alguns mecanismos do padrio CORBA, por
exemplo, replicagdo e temporizadores.

A linguagem Slice fornece duas qualifica¢des(idempotente e nonmutating) para operacdes como
garantia de utilizagdo da semantica at-most-once. Assim, ele fornece um recuperagao de erros de
redes falhas porque com essas qualificagdes o reenvio apds um erro ndo pode violar a semantica
at-most-once. A utilizagdo das operagdes idempotent e nonmutating na recuperagdo de defeitos ¢
garantida pelo retorno ao ultimo ponto livre de falhas. Pois a operacdo idempotent garante o
melhor esfor¢o para a entrega da requisicao e a operagdo nonmutating garante que o estado final
ndo serd modificado. A operacdo idempotent ajusta o estado a um valor definido para que a infra-
estrutura de tempo de execucdo do ICE possa enviar mensagens novamente na presenca das
falhas de rede.

3.6.5 JBoss

JBoss ¢ um middleware com uma arquitetura em camadas. Entre essas camadas, especificamente
na camada de microkernel, existe uma extensdo que serve como integracao entre os componentes
do JBoss ¢ os servicos da aplicagdo.

As transagdes no JBoss sdo monitoradas por um componente chamado JBossTS, que utiliza
mecanismos de rollback na recuperacdo de transacdes falhas de acordo com um ponto de
recuperagdo armazenado em um dos componentes da transacdo denominado recovery resources.
O JBoss Remoting fornece servicos de chamadas remotas sincronas e assincronas, chamadas
callback e multicast confiavel para detectar se um objeto e esta ativo, inativo ou falhou. Além de
um detector automatico que envia mensagens periddicas aos clientes/servidores e armazenam a

el

ESCOLA POLITECNICA
DE PERNAMBUCO

55
informacao de seu estado em um log(NetworkRegistry) para descobrir quando algum
cliente/servidor falhou.

Além disso, existe uma arquitetura denominada ArjunaCore que foi desenvolvida para fornecer
melhores mecanimos de tolerdncia a falhas as aplicacdes do JBoss, introduzindo objetos
persistentes e transagdes atomicas. Combinados esses armazenar os estados dos objetos e persistir

esses estados, de modo que eles possam ser recuperados no evento de uma falha.

3.6.6

Com base no que foi discutido sobre as infra-estruturas estudadas, apresentamos na Tabela 3 uma
compara¢gdo dos mecanismo de tolerdncia a falhas e os servicos fornecidos em cada infra-
estrutura.

Servicos Fornecidos pelas Infra-Estruturas de Middleware

Tabela 3. Comparacao dos mecanismos de tolerancia a falhas e as infra-estruturas de middleware

estudados
Infra-Estrutura de Middleware
Sprint Horus TAO ICE JBoss
" Mensagens de heartbeat X X X
Q
L.g Multicast Confiavel X X X X
A
(]
P Consenso X X
ks
£ Detecgdo de Defeitos X
A Nio-Confiavel
o Recuperagdo por Retorno X X X X
13 8
s =
Q &
§ 5 Recuperagdo por Avango X X X
3

Como podemos observar na tabela 3, o Sprint e o TAO fornecem deteccdo de defeito ndo
confiaveis, onde no Sprint os defeitos serdo detectados por servidores que estejam operando
enquanto que no TAO serdo detectados por réplicas ativas devido o termino de time-outs. Ja no
Estas duas infra-estruturas também coincidem no mecanismo de recuperacao que junto com o
JBoss implementam recuperacdo por retorno. O TAO, e também o Jboss, armazena as
informacdes em um arquivo log, ja o Sprint armazena periodicamente a imagem do banco de
dados no servidor de durabilidade(XS), assim ele recupera todo o banco de dados e precisa
apenas atualizar as informagdes perdidas apds o defeito.

Horus, TAO e JBoss utilizam multicast confiavel como deteccdo de defeitos. A camada TOTAL
do Horus garante a ordenacao total na entrega de mensagens multicast em um grupo € a camada
MBRSHIP detecta os defeitos pelos membros vizinhos. No TAO o a ordenagdo do multicast ¢
forgado, para isso € necessario o envio ao cliente de uma lista ordenada de referencias, ja o JBoss
utiliza multicast para detectar o estado dos objetos e descobrir se eles estdo vivos.

Apenas a infra-estrutura TAO utiliza mensagens comuns de heartbeat, essas mensagens sao
enviadas periodicamente ao detector de falhas e entre as replicas a fim de se detectar algum
elemento falho. O Horus, o ICE e o Jboss utilizam temporizadores de mensagens como
mecanismo de detecgao.

Horus e Ice utilizam recuperagdo de erros por avango. Ice utiliza a operacdo idempotent(que
garante a semantica at-most-once) pois ele ajusta o estado a um valor definido, independente do

-

ESCOLA POLITECNICA
DE PERNAMBUCO

56
estado anterior, para que o tempo de execugdo possa enviar novamente com seguranga, na
presenca de falhas da rede. No Horus, depois da utilizagdo do protocolo flush, é criado uma nova
instancia da visdo, assim que estiver pronta as mensagens instaveis do membro defeituoso sao
enviadas e o sistema estd pronto para continuar com sua execugao.

3.6.7 Analise dos Mecanismos

As mensagens por multicast confiavél devem ser utilizadas para aumentar a garantia ao ustario
de entregas confiavéis aos receptores. Como sistemas distribuidos trabalham com um numero
grande de receptores e clientes, esse tipo de mecanismo deve ser empregado em sistemas que nao
suportem perdas de pacotes. Por exemplo, nas transa¢des bancarias os processos ndo podem
falhar durante as transagdes, ou o processo se completa ou € cancelado.

Mecanismos de consenso, os nds participantes ndo precisam saber o resultado final decido pelos
membros, apenas o membro lider conhece a decisdo final da votacdo. Consenso pode ser
empregado em sistemas que possuam falhas arbitrarias (ou bizantinas), para que mensagens
maliciosas enviadas por membros da votagdao nao influenciem na consistencia dos resultados.
Detectores de defeitos ndo-confidvel ¢ utilizado por servigos que tém a necessidade de saber
quem estd falho ou ndo no sistema. O detector de defeitos ndo-confiavél pode gerar informacgdes
incorretas, isto €, ele pode marcar que uma entidade esta falha, quando na realidade ela est4 ativa
e vice-versa, o que pode acarretar em gastos computacionais ja que as entidades podem ser
marcadas e desmarcadas como falho varias vezes durante a execugdo do sistema. A analise de
falhas nas entidades se da pelo envio periddico de mensagens aos participantes, sistemas que nao
tenham compromissos com tempo podem utilizar esse mecanismo, por exemplo, sistemas que
necessitem de implementagdes de Qualidade de Servigo(QoS).

Recuperagdo por retorno o sistema deve guardar informagdes de estados consistentes por um
determinado intervalo e tempo, para em caso de defeitos no sistema esta informagdo sirva como
ponto de retorno. Essa técnica deve ser usada por sistemas que necessitem de uma execu¢ao
completa da aplica¢do para que o estado final esteja livre de falhas. Recuperacao por retorno €
comumente utilizada em sistemas seguros, sistemas em que a seguanc¢a ¢ mais importante que a
disponibilidade e devem apresentar comportamentos fail-safe. Por exemplo, sistemas de
transporte urbanos utilizados na Europa para evitar colisdes de trens, bondes.

Recuperagdo por avango o sistema passa a um novo estado ainda nao ocorrido apds a ocorrencia
de uma falha para continuar operando normalmente. Essa técnica ¢ usada quando nao ha tempo
de voltar para o estado anterior para retomar a execucao, ou quando as a¢des podem ser desfeitas,
por exemplo, sistemas em tempo real.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

57

Capitulo 4

Conclusoes e Trabalhos Futuros

Este trabalho procurou abordar uma visdo geral de tolerancia a falhas em middleware e seus
mecanismos de deteccdo de defeitos e recuperagdo de erros, as infra-estruturas de middleware
bastante conhecidas e de diferentes ambientes ja que foram abordadas infra-estruturas tanto do
ambito académico como do ambito comercial. A tolerancia a falhas fornece uma abstragcdao ao
usuario dos problemas ocorridos no sistema. A tolerancia a falhas ¢ um atributo importante para
diversas aplicagOes na atualidade devido ao grande uso de aplicacdes via Internet e pelo alto grau
de complexidade e de utilizacdo de algumas aplicagdes, onde uma falha pode causar eventos
catastroficos com perda de vidas humanas ou grandes perdas financeiras.

4.1 Contribuicoes

Com o objetivo de analisar as infra-estruturas de middleware existentes, este trabalho apresentou
os mecanismos de deteccdo (mensagens de heartbeat, consenso, detectores de defeitos ndo-
confiavéis e multicast confiavel) e recuperacdo de defeitos (recuperagdo por retorno e
recuperacdo por avango) e as infra-estruturas (Sprint, Horus, TAO, ICE e JBoss) que foram
escolhidas para nossa andlise. A comparacdo se deu com base nos mecanismos apresentados e
nos servigos apresentados pelas infra-estrturas para o desenvolvimento de aplicagdes.

O objetivo da comparacdo entre os mecanismos de tolerdncia a falhas e infra-estruturas de
middleware ¢ bastante importante para que os desenvolvedores possuam alguma base prévia de
informagdo quando da escolha de uma infra-estrutura para o desenvolvimento de sua aplicagao.
Assim evita-se um desperdicio econdmico caso uma aplicagdo seja desenvolvida em um ambiente
improprio ou uma grande catdstrofe se o sistema desenvolvido ndo tolerar as falhas da forma
esperada pelo desenvolvedor devido a infra-estrutura utilizada.

A organizagdo dos resultados de acordo com os quesitos de detec¢do e recuperacdo facilitara o
entendimento da comparacdo e permitird que os desenvolvedores avaliem esses critérios de forma
separada. Pois, essas duas funcionalidades sdo essenciais a construgdo de sistemas distribuidos
tolerantes a falha.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

58

4.2 Trabalhos Futuros

Este trabalho foi apenas um primeiro passo na analise dos mecanismos de tolerancia a falhas e
das infra-estruturas de middleware da literatura. Para que haja uma quantidade maior de
informagdes aos desenvolvedores ¢ necessario que as abordagens deste trabalho sejam ampliadas.
Os mecanismos de detec¢do de defeitos e recuperagdo de erros sdo muito importantes no
desenvolvimento de sistemas distribuidos, porém existem outros mecanismos de tolerancia a
falhas que podem ser estudados. Além disso, existem outras maneiras de se detectar defeitos que
podem ser analisadas e adicionadas a este estudo. Sdo conhecidas na literatura uma gama de
infra-estrutras de middleware, por isso, este estudo pode ser ampliado a um numero maior de
infra-estruturas.

Para uma melhor avaliacdo dos desenvolvedores, seria necessario um estudo que envolve um
numero maior de mecanismos de tolerancia a falhas, detec¢ao de defeitos, recuperacao de erros e
de infra-estruturas de middleware. Assim seria feita uma analise minuciosa dos requisitos da
aplicagdo e de qual infra-estrutura de middleware a ser utilizada.

-

ESCOLA POLITECNICA
DE PERNAMBUCO

59

Bibliografia

[1] Tanembaum, A e Steen, M. Sistemas Distribuidos: principios e paradigmas. Sao
Paulo: Prentice Hall, 2. ed., 2007

[2] Lamprort, L. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3, 2 (Mar), 125+143.

[3] Anderson, T e Lee, P. Fault-Tolerance — Principles and Practice. New York: Springer-
Verlag, 2. ed., 1990.

[4] Pradhan, D. K., Fault Tolerant System Design. Prentice Hall, New Jersey, 1996.

[5] Roteiro para exploracdo de conceitos basicos de tolerancia a falhas. Disponivel
em:<http://www.inf.lasalle.tche.br/~barreto/disciplinas/tf/artigos/Taisy ConceitosDepend
abilidade.pdf>. Acesso em 23 de marco de 2008.

[6] Schneider, F. B. (1993). What good are models and what models are good? In Mullender,
S., editor, Distributed Systems, paginas 17-26. Addison-Wesley, Workingham, 2* Ed.

[7] Cristian, F. (1991). Understanding fault-tolerand distributed systems. Communications of
the ACM, 34(2):56-78.

[8] Girtner, Felix C., Fundamentals of Fault-Tolerant Distributed Computing in
Asynchronous Environments. ACM Comput. Surv. 31(1): 1-26 (1999)

[9] J. C. Laprie. Dependable computing and fault tolerance : Concepts and terminology. 15th
International Symposium on Fault-Tolerant Computing Systems, Junho 1985

[10] A. Avizienis, J.-C. Laprie, ¢ B. Randell. Fundamental Concepts of Dependability.
Technical Report 739. Department of Computing Science. University of Newcastle upon
Tyne. 2001.

[11] BIRMAN, K. Building secure and reliable network applications, 1996.

[12] L. Camargos, F. Pedone e M. Wieloch Sprint: A Middleware for High-Performance
Transaction Processing 2nd European Conference on Systems Research (EuroSys2007)

[13] Robbert van Renesse, Kenneth P. Birman e Silvano Maffeis, Horus, a flexible Group
Communication System, Communications of the ACM, Abril 1996.

[14] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation of
protocols. In Proceedings of the ACM SIGCOMM Conference on Communications,
Architectures, Protocols and Applications, pg 200--208, Philadelphia, September 1990.
ACM.

[15] Van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., e Karr, D.A. A framework
protocol composition in Horus. Proceeding of the 14 Symposium on the Principles of
Distributed Computing ACM (Ottawa, 1995). pp. 88-89

[16] Schmidt, D. C.; Gokhale, A.; Harrison, T. H.; Levine, D.; & Cleeland, C. "TAO: a High-
Performance Endsystem Architecture for RealTime CORBA." RFI response to the OMG
Special Interest Group on Real-time CORBA, 1997.

[17] D. C. Schmidt and C. Cleeland, "Applying Patterns to Develop Extensible and
Maintainable ORB Middleware," Communications of the ACM, Dec. 1997.

[18]

[19]
[20]

[21]

[22]

-

ESCOLA POLITECNICA
DE PERNAMBUCO

60
B. Natarajan, A. Gokhale, D. C. Schmidt, ¢ S. Yajnik, “DOORS: Towards High-
performance Fault-Tolerant CORBA,” in Proceedings of the 2nd International
Symposium on Distributed Objects and Applications (DOA 2000), (Antwerp, Belgium),
OMG, Set. 2000
M. Henning et al., Distributed Programming with Ice, ZeroC, 2003; disponivel em:
<www.zeroc.com/Ice-Manual.pdf>. Acesso em 20 de margo de 2008.
Michi Henning: A New Approach to Object-Oriented Middleware. IEEE Internet
Computing 8(1): 66-75 (2004)
JBoss Transactions Failure Recovery Guide; disponivel em:
<http://www.jboss.org/jbosstm/docs/4.2.3/manuals/pdf/core/FailureRecoveryGuide.pdf >.
Acesso em Abril de 2008.
Jboss Transactions programmers Guide; disponivel em
<http://www.jboss.org/jbosstm/docs/4.2.3/manuals/pdf/core/ProgrammersGuide.pdf>
Acesso em Abril de 2008.

