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Resumo

Este trabalho descreve o desenvolvimento de uma metodologia para a  resolução do problema de previsão diária de consumo de energia elétrica da região Nordeste do Brasil utilizando redes neurais artificiais do tipo MLP.  Este problema é relevante pois a qualidade da previsão, realizada diariamente nas empresas de energia elétrica, influencia nos custos, na segurança e confiabilidade do Sistema Elétrico.  O objetivo deste trabalho é aplicar o algoritmo de Otimização por Enxame de Partículas (PSO), para o treinamento e otimização da topologia da rede neural MLP e efetuar comparação dos resultados da previsão com aqueles obtidos através do algoritmo de treinamento do tipo backpropagation que é bastante  difundido e consolidado na literatura.
Abstract

This work describes a methodology for solving the problem of forecasting daily consumption of electricity in the northeastern region of Brazil through multi layer perceptron (MLP) artificial neural networks. This problem is relevant because the quality of forecasting, held daily in the business of power, influence on costs, security and reliability of the Electrical System. The objective of this work is to implement the algorithm for optimization by Hive of Particulates (PSO), for training and optimization of the neural network topology and make comparison of results with those obtained in the forecast through the algorithm of backpropagation training that is very widespread and consolidated in the literature.
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Tabela de Símbolos e Siglas

(Dispostos por ordem de aparição no texto)

PSO : 

Otimização por Enxame de Partículas

RNA : 

Redes Neurais Artificiais

ONS : 

Operador Nacional do Sistema

HN : 

Número de neurônios escondidos

JT : 

Tamanho da janela de tempo.

(: 


Coeficiente de inclinação da função sigmóide.

BP : 

Algoritmo Backpropagation.

MAPE : 
Erro médio absoluto de previsão.
PSOJV : 
PSO com otimização da janela de tempo e nº de neurônios escondidos
PSOJF : 
PSO com otimização do nº de neurônios escondidos

PSOTF : 
PSO sem otimização de topologia.

Dpad : 
Desvio Padrão.

Iter : 

Número de Iterações.
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Introdução

1.1 A previsão de consumo de energia elétrica

A previsão de consumo de energia elétrica consiste na tarefa de prever os valores de consumo de energia em horizontes futuros. Esta tarefa não é simples, pois as séries de consumo de energia são influenciadas por variáveis como temperatura, dia da semana, estação do ano, região do país e também por aspectos econômicos da região [22].  

As empresas de energia elétrica realizam previsão de carga para diferentes horizontes futuros, a saber:

· Previsão de longo prazo:
É a previsão de carga com objetivos de planejamento e expansão da operação elétrica, podendo contemplar meses ou anos.

· Previsão de curto prazo:
É a previsão de carga com objetivo de garantir segurança e operação eficiente do sistema elétrico, este horizonte de curto prazo pode ser horário ou diário.

· Previsão de curtíssimo prazo: É a previsão de carga com objetivo de garantir segurança e operação eficiente em períodos críticos do sistema, como por exemplo nos períodos de pico de consumo, ou durante eventos de grande impacto no consumo de energia.  Este horizonte de curtíssimo prazo é da ordem de minutos.

Neste trabalho pretendemos definir metodologias e estratégias para a solução do problema de previsão de carga elétrica de curto prazo da Região Nordeste do Brasil, mais precisamente, objetivamos prever valores horários de consumo ao longo de um dia (24 horas) com base no histórico de dados.

O problema da previsão de carga de curto prazo é relevante pois divergências significativas de previsão comprometem a operação do sistema elétrico, podendo acarretar distúrbios como violação da capacidade nominal dos geradores, sobrecarga em transformadores ou linhas de transmissão, violação de parâmetros de confiabilidade do sistema elétrico, descoordenação dos níveis dos reservatórios das usinas hidrelétricas e até dificuldade no controle regional da tensão na rede elétrica.
1.2 Modelos de previsão de consumo de energia 

Trabalhos e pesquisas em modelos de melhor eficiência na previsão de consumo de energia  elétrica podem contribuir com o aumento do desempenho e economia na operação do sistema elétrico. Algumas técnicas têm sido utilizadas para este fim, dentre as quais se pode destacar os modelos estatísticos tradicionais ARIMA [2]  e Box & Jenkins [1]

 REF _Ref198996235 \r \h 
[10]. Outras técnicas que também merecem destaque nesta área são os métodos de previsão por Lógica Fuzzy [3] e Redes Neurais Artificiais (RNA) [9],[19].
Nas empresas de energia elétrica o modelo de previsão através de redes neurais artificiais tem obtido o melhor desempenho quando comparado aos modelos estatísticos. Estas empresas, em sua grande maioria, utilizam sistemas inteligentes para a previsão de consumo de energia baseados em sua maioria em redes neurais artificiais do tipo Multi Layer Perceptron (MLP)[5] que são treinadas por métodos baseado no gradiente descendente tipo backpropagation [7] ou variações deste. 
Embora o algoritmo backpropagation seja bastante consolidado na literatura, o mesmo apresenta algumas limitações como estagnação em mínimos locais, necessidade de definição prévia da topologia da RNA, lentidão de convergência para problemas complexos e necessidade de função de ativação diferenciável. 

 Técnicas de otimização global com algoritmos genéticos (AG) e Otimização por enxames de partículas (PSO)  tem sido objeto de pesquisas devido sua eficiência no treinamento das RNA e por reduzir os problemas do backpropagation, já que não são baseadas no gradiente descendente e não necessitam de função de ativação diferenciável.
1.3 Objetivos 

O resultado esperado deste trabalho é uma metodologia de previsão de consumo de energia baseada em RNA treinadas com o algoritmo de otimização por enxame de partículas (PSO) [16], que além de apresentar bom desempenho possa também otimizar a topologia da RNA durante a fase de treinamento.
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Redes Neurais Artificiais

As redes neurais artificiais são técnicas de computação inteligente que se baseiam em  simulações do funcionamento do cérebro humano. O cérebro humano é formado por células especializadas chamadas neurônios que estão interconectadas entre si, formando uma imensa rede neural biológica. Para realizar o processamento da informação, cada neurônio recebe sinais de outros neurônios, combina estes sinais, realiza um processamento interno e então envia sinais a um grande número de outros neurônios. A capacidade de aprendizado e conseqüente generalização é função do padrão de conexões entre os neurônios.

O interesse na simulação do funcionamento do cérebro está  na sua capacidade de resolução de problemas onde não existem regras explícitas, esta capacidade é chamada de  aprendizado através de exemplos, ou seja, generalização. Na figura 1 está ilustrado o processo do cálculo baseado em regras e o cálculo baseado em exemplos.

2.1.1 Modelagem do neurônio artificial

Para simular o funcionamento do cérebro é preciso compreender o funcionamento do neurônio e então construir um modelo matemático que o represente. Um dos primeiros modelos matemáticos para um neurônio biológico foi proposto por McCullough e Pitts [8] em 1943. Na figura 1 estão  ilustrados os neurônios biológico e artificial. Logo em seguida está descrito o modelo matemático que o define.


Figura 1. Neurônios biológico (a) e modelo artificial (b).
No neurônio biológico os dentritos (entrada) são responsáveis pela recepção dos estímulos transmitidos pelos outros neurônios; o núcleo celular tem a função de coletar e combinar informações aquisitadas de outros neurônios; e o axônio (saída) transmite os estímulos de saída para outras células nervosas. 

Na modelagem matemática do neurônio artificial, os sinais de entrada  (xi) são captados pelo neurônio. Cada entrada está associada a um peso (wi). O neurônio combina estes sinais e produz um valor de atividade (λ) como soma ponderada das entradas pelos  respectivos pesos (λ = Σxiwi) chamada de saída linear. Uma função de ativação é aplicada sobre esta saída linear resultando no valor de saída do neurônio [ y = f(λ)].  Funções de ativação típicas envolvem comparações e transformações matemáticas e estão ilustradas  na figura 2. Portanto, a saída y envolve uma função não-linear, daí a capacidade das redes neurais resolverem problemas complexos do mundo real.

Figura 2. Funções de ativação típicas.
2.1.2 Regra de aprendizado

A principal característica das rede neurais é sua capacidade de aprendizado.  A partir de um conjunto de dados, a rede extrai o conhecimento e aplica este conhecimento para encontrar a solução para novos padrões.
Na prática, a rede aprende  ajustando os pesos das conexões entre neurônios. Este peso é um fator que pondera o valor da entrada, ou seja, indica o grau de influência daquele valor de entrada para obtenção da saída desejada. As regras de aprendizado de forma geral podem ser classificados em aprendizado supervisionado (onde é fornecida uma referência  do objetivo a ser alcançado, ou seja, são fornecidos à rede pares entrada-saída) e aprendizado não-supervisionado (onde não é fornecida nenhuma referência externa.)

A metodologia para que a rede possa aprender através de exemplos é chamada de algoritmo de aprendizado e basicamente envolve 3 fases: (1) aquisição e processamento dos sinais de entrada para determinação do sinal de saída, (2) comparação da saída da rede com a resposta desejada através de uma função de desempenho e (3) ajuste dos pesos das conexões.

Este processo se repete até que algum critério de parada seja atingido. Existem diversos algoritmos de treinamento para diferentes tipos de redes neurais. O que os diferencia é o método para a minimização do erro e a forma como os pesos são ajustados.

2.1.3 A RNA Perceptron

O perceptron [4] é uma rede neural artificial proposta por  Rosenblatt (1957) com base no neurônio de McCulloch-Pitts, com  função de ativação limiar e aprendizado supervisionado. O grande avanço do perceptron foi o desenvolvimento de uma regra de aprendizado de tal forma que o mesmo pudesse ser aplicado na resolução de problemas práticos.

A regra de aprendizado do perceptron está descrita abaixo:

1. Inicializar os valores do vetor de pesos w(n) e da taxa de aprendizado µ.
2. Apresentar o vetor de entrada x(n) e a saída desejada yd(n), de cada par do conjunto de treinamento.

3.  Calcular a resposta real do Perceptron: yr(n) = f [w(n)x(n)+ b (n)], onde f[.] é a função de limiar utilizada como função de ativação. 
4. Calcular o erro de saída da unidade da seguinte forma: e(n) = yd(n) - yr(n); 

5. Atualizar o vetor de pesos para cada uma das unidades da rede segundo a regra: w(n+1) = w(n) + µ e(n)x(n); 
O processo se repete até que erro seja nulo  para todos os elementos do conjunto de treinamento em todas as unidades de saída da rede. 
2.1.4 Redes Neurais Perceptrons de Múltiplas camadas (MLP)

Uma rede Perceptrons de Múltiplas Camadas (MLP) é uma importante classe de redes neurais artificiais sendo uma das mais empregadas na literatura para resolução de problemas complexos onde os dados não são linearmente separáveis.  A rede MLP está ilustrada na figura 3 e suas características estão descritas abaixo:

1. Cada neurônio da rede é um modelo do perceptron, visto na seção 2.1.3, que inclui uma função de ativação não-linear e diferenciável, geralmente funções do tipo sigmóide. 
2. A rede possui uma camada de nós de entrada, composta por nós cuja função é apenas a aquisição dos dados de entrada, não existindo qualquer processamento neuronal. 
3. A rede possui uma ou mais camadas de neurônios escondidos. É a camada de neurônios escondidos que dá à rede MLP a capacidade de resolver problemas onde os dados não são linearmente separáveis. Uma camada escondida é suficiente para aproximar qualquer função contínua, e duas camadas escondidas são suficientes para aproximar qualquer função matemática [6]. Os neurônios desta camada são responsáveis pelo aprendizado das características dos padrões de entrada, ou seja, são extratores de características.
4. A rede possui uma camada de neurônios de saída, cujos neurônios combinam as saídas dos neurônios da camada anterior.
5. A rede possui alto grau de conectividade entre os neurônios das diversas camadas e não possui conexões recorrentes, ou seja, não existem conexões entre neurônios de uma camada com neurônios da camada anterior.

Figura 3. Rede neural tipo MLP.
2.1.5  Algoritmo de treinamento backpropagation

O algoritmo backpropagation [7] é o algoritmo mais conhecido para treinamento de redes neurais tipo MLP. A maioria dos métodos de aprendizado para RNA tipo MLP utiliza variações deste algoritmo. O backpropagation é baseado na correção do erro quadrático para minimização do erro através do método do gradiente  e é  composto de duas fases:
1. Cálculo do erro (fase forward)

Um padrão é apresentado à camada de entrada da rede. A atividade resultante flui através da rede, camada por camada, até que a resposta seja produzida pela camada de saída. 
2. Correção dos pesos sinápticos (fase backward)

A saída obtida é comparada à saída desejada para esse padrão particular. Se esta não estiver correta, o erro é calculado. O erro é propagado na direção contrária do fluxo de dados, a partir da camada de saída até a camada de entrada, e os pesos das conexões das unidades das camadas internas vão sendo modificados conforme o erro é retropropagado. 

Cada amostra do conjunto de treinamento é submetida às fases forward e backward, até que o critério de parada do algoritmo seja atendido. O critério de parada determina o encerramento do treinamento. Alguns critérios de parada comuns na literatura são:

· Avaliação do valor do erro quadrático médio.  Quando o  erro quadrático médio atingir um valor suficientemente pequeno o treinamento é encerrado. A desvantagem desta abordagem é que o erro pode não ser minimizado a ponto de atender ao critério de parada, ou o treinamento pode ser encerrado prematuramente.

· Avaliação do número de iterações. Quando o número de iterações atinge um valor prefixado o treinamento é encerrado. Esta abordagem carrega o inconveniente da dificuldade na determinação correta do limite de iterações de forma que seja garantido o aprendizado pela rede. Poucas iterações podem ser insuficientes para a convergência (underfitting), enquanto um número excessivo de iterações pode levar à perda da capacidade de generalização (overfitting).
· Avaliação da capacidade de generalização da RNA. Conhecido como critério de parada antecipada (Early stopping). Durante a fase de treinamento, a capacidade de generalização da rede é avaliada através de um conjunto de dados chamado conjunto de validação. Quando o erro do conjunto de validação tende a aumentar, caracteriza-se perda de generalização, e o treinamento é encerrado conforme podemos verificar na Figura 4.


Figura 4. Critério de parada baseado na perda de generalização da RNA.
Embora o backpropagation seja bastante difundido e consolidado na literatura, sendo o mais utilizado em aplicações práticas de previsão, classificação e reconhecimento de padrões em geral, o mesmo apresenta as seguintes desvantagens:

1. Durante o treinamento, o erro tende a diminuir com a atualização dos pesos podendo convergir para mínimos locais conforme figura 5, havendo encerramento prematuro do treinamento;  


Figura 5. Processo de minimização do erro durante treinamento
2. A topologia da rede deve ser determinada previamente. Atualmente predominam, para esta finalidade, métodos empíricos baseados na experiência do pesquisador; 

3. O algoritmo é lento para problemas complexos;
4. A forma de definição de parâmetros de treinamento (como a taxa de aprendizagem)  é pouco compreendida, de modo que pequenas diferenças nestes parâmetros podem provocar grandes diferenças na generalização obtida pela rede;
2.1.6 Previsão de séries temporais com RNA 
Séries temporais são um conjunto de observações de um fenômeno ordenados numa seqüência de tempo. A previsão de séries temporais consiste em prever valores da série em horizontes futuros. Quando a série pode ser descrita por uma função matemática a série é classificada como determinística e quando envolve também componentes aleatórios a série é dita estocástica.
Os  modelos baseados em RNA vêm sendo utilizados com sucesso na previsão de séries temporais, onde há um forte componente de não linearidade [9]. Este fato pode ser explicado pela capacidade que uma rede neural tem de funcionar como um aproximador universal, ou seja, a rede pode capturar qualquer tipo de comportamento, não importando o quão complexo ele seja. A grande dificuldade é a determinação da topologia ótima da rede.

Para que uma rede neural possa realizar previsão de valores futuros é necessário que a mesma tenha a capacidade de memória. Esta capacidade irá definir o modelo e estrutura da rede neural.  As estruturas mais comuns são: (i) redes MLP com janelamento de tempo e (ii) redes recorrentes, descritas a seguir.
Redes MLP com janelamento de tempo

Neste modelo  a rede neural é do tipo MLP e obtém a capacidade de memória através do atraso de tempo entre os padrões de entrada, ou seja, a rede recebe como entrada o valor atual e valores anteriores da série [11]. Os valores anteriores determinam a memória da rede, ou seja, se a entrada consiste do valor no instante atual e 2 valores anteriores, diz-se que a rede tem memória de ordem 2. Esta metodologia é a mais comumente usada para previsão de séries de consumo de energia.
A entrada da rede constitui uma janela temporal que evolui no tempo obtendo os valores da série e realizando previsão do valor de horizonte futuro, conforme mostrado na Figura 6, para o caso de janela de tempo de tamanho 3.


Figura 6. Topologia RNA para previsão (Janela de tempo de ordem 3)

Redes recorrentes

São redes que possuem uma ou mais conexões de realimentação, as quais proporcionam comportamento dinâmico à rede [12]. A realimentação armazena, indiretamente, os valores prévios apresentados à rede, constituindo uma memória.  Na figura 7 está ilustrado alguns exemplos de redes recorrentes.

A principal diferença entre estas metodologias é que para as redes com atraso no tempo é necessário estabelecer previamente o tamanho da janela (número de observações prévias a serem usadas como memória). Em geral o tamanho da janela de tempo é definido empiricamente ou através da análise do gráfico de correlação da série, onde seu valor é igual à ordem da última correlação significativa. 


Nas redes recorrentes o nível de atraso é incorporado dentro da própria rede (através da realimentação).


Figura 7. Exemplo de redes recorrentes
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Inteligência de Enxames

A inteligência de enxames  é um conjunto de técnicas de computação inteligente que simula o comportamento coletivo de sistemas caracterizados pela colaboração das partículas que o compõem [14].


Estes sistemas são formados por indivíduos de características simples cuja interação e colaboração entre si  promovem um comportamento global complexo e auto-organizado, embora não haja qualquer controle centralizado.


Na natureza estes sistemas estão presentes nos enxames de abelhas, colônias de formigas, bando de pássaros ou manada de animais. As regras que guiam estes sistemas são:

· Separação: os indivíduos não colidem entre si;
· Alinhamento: procuram manter a velocidade dos vizinhos;
· Direcionamento: seguem a direção do centro de sua vizinhança.

Os algoritmos que utilizam inteligência de enxame são muito utilizados para a solução de problemas de otimização, entre os mais comuns na literatura estão os algoritmos de otimização por enxame de partículas (particle swarm optimization - PSO) e otimização por colônia de formigas [19].
3.1 Algoritmo de Enxame de partículas (PSO)

A otimização por enxame de partículas (PSO) [15] é um algoritmo de otimização baseado na inteligência de enxames. PSO foi desenvolvido por Kennedy e Eberhart [18], em 1995, baseado no trabalho do biólogo Frank Heppner, que estudou o comportamento social de bandos de pássaros.

Tarefas simples como a procura por comida, lugar para o ninho ou a interação das aves durante o vôo podem ser considerados tarefas de otimização.  O PSO é adequado para solucionar problemas de otimização, ou seja, encontrar a melhor solução global.

Na modelagem do problema, a melhor solução é considerada como um ponto no espaço de busca. As partículas são geradas aleatoriamente e exploram este espaço de busca de forma cooperativa com o objetivo de encontrar a melhor solução, conforme ilustrado na figura 8.

Cada partícula está associada a uma posição e possui uma velocidade que permite a exploração do espaço de busca. A cada iteração do algoritmo a posição da partícula é atualizada com relação à melhor posição local da partícula (pbest) e à melhor posição global do enxame (gbest) conforme podemos verificar na figura 9 (considerando topologia em estrela). A melhor posição local é a componente cognitiva que representa a experiência individual da partícula, enquanto a melhor posição global do enxame é a componente social que representa a experiência da colaboração das partículas.

Figura 8. Geração aleatória de partículas no espaço de busca.

Figura 9. Exemplo de movimentação de uma partícula no espaço de busca.
Na figura 10 o algoritmo PSO é ilustrado na forma de um fluxograma de execução e logo a seguir segue uma explicação do mesmo.














Figura 10. Algoritmo PSO utilizado.
Onde
xi(t) é a posição atual da partícula, vi(t) é a velocidade atual da partícula, w é  o fator de inércia, c1 e c2 são  parâmetros de confiança (coeficientes de aceleração), r1,r2 são números aleatórios no intervalo (0,1), pbesti(t) é  melhor posição local da partícula, gbest(t) é  melhor posição global do enxame
O fluxograma de execução do algoritmo PSO é explicado como segue:

· A população de partículas é iniciada com posições e velocidades aleatórias no espaço n dimensional (1).  Para cada partícula:

· Compara-se o valor obtido da partícula i com pbesti.(2). Se o valor for melhor, atualiza-se pbesti com o novo valor (3); 
· Compara-se o valor obtido com o melhor valor global gbest (4). Se for melhor, atualiza-se gbest com o novo valor (5); 
· Altera-se a velocidade e a posição da partícula (6); 
· Repete-se os passos anteriores até que o critério de parado seja satisfeito (7).
3.2 Aperfeiçoamento do algoritmo de Enxame de partículas

O algoritmo de otimização por enxames de partículas básico pode apresentar algumas características indesejáveis como dificuldade em encontrar a solução ótima nas iterações finais, baixa eficiência na exploração inicial do espaço de busca e ainda estagnação do algoritmo em mínimos locais. Alguns métodos para o aperfeiçoamento do PSO básico foram propostos com o objetivo de aumentar a sua eficiência[16]. 

3.2.1 Limitadores de Velocidade
Vimos que a velocidade de cada partícula varia conforme a experiência individual da partícula e a experiência colaborativa do enxame  durante a exploração do espaço de busca.  Se não houver o controle da velocidade das partículas o algoritmo pode não encontrar o ótimo global. Uma baixa velocidade pode ser insuficiente para alcançar a posição ótima, enquanto uma velocidade elevada pode levar a ultrapassar a posição ótima.
Desta forma foi estabelecido os parâmetros vmax e vmin como limitadores de velocidade das partículas, ou seja, se a velocidade for superior a vmax, recebe o valor de vmax, e se o valor da velocidade for inferior a vmin, passará então a ser vmin. Estes valores limitadores de velocidade variam com o tipo de problema.
3.2.2 Parâmetros de confiança variáveis

Os parâmetros de confiança funcionam como fatores de aprendizagem para as partículas, ou seja, indicam o quanto um partícula confia em sua própria experiência (comportamento individual) e na experiência do enxame (comportamento coletivo). O PSO básico utiliza parâmetros de confiança com valores fixos, enquanto o PSO otimizado utiliza valores variáveis  conforme equação abaixo com objetivo de melhorar a  exploração do espaço de busca no início da pesquisa e convergência do algoritmo para o ótimo global no final da busca. 





















(Eq. 1)

(Eq. 2)

Onde : iter é valor de iteração atual, maxIter é valor máximo de iteração, c1fim e c1ini são valores final e inicial dos parâmetro de confiança individual c1, e c2fim e c2ini  são valores final e inicial dos parâmetro de confiança coletivo c2.

3.2.3 Peso Variável

Com o objetivo de encontrar soluções mais refinadas em um menor número de iterações foi introduzido a fator de inércia (w). O valor de w varia a cada iteração do algoritmo conforme equação abaixo. Com a inércia peso variável foi possível encontrar soluções mais refinadas em um menor número de iterações.


(Eq. 3)
Onde:  
wini é o valor inicial do fator de inércia e wfim é valor final  do fator de inércia.

3.2.4 Redefinição de velocidade
Durante a execução do algoritmo do PSO pode ocorrer estagnação sem uma melhoria local, neste momento é realizada uma redefinição das velocidades das partículas de modo a obter uma nova dinâmica com objetivo de melhorar o desempenho em busca do ótimo global. A velocidade é redefinida da forma apresentada no algoritmo abaixo:


onde:

p1: probabilidade para que uma partícula seja selecionada (0,5 neste estudo)

p2 : probabilidade para que uma dimensão do vetor velocidade seja selecionada (0,5 neste estudo)

vmax: valor máximo da perturbação aleatória para cada dimensão do vetor velocidade.

r1, r2 e r3 são números aleatórios no intervalo (0,1).

3.3 Algoritmo IPSONet

O algoritmo IPSONet é um método de treinamento construtivo para redes neurais artificiais tipo MLP baseado no algoritmo de otimização por enxames de partículas (PSO) para a solução de problemas práticos de classificação [16]. 

A rede neural MLP considerada  no IPSONet possui estrutura de três camadas formadas por neurônios perceptrons com função de ativação do tipo sigmóide logística conforme ilustrado na figura 11. Durante o treinamento da rede ocorre a otimização das seguintes características da RNA:

· Valores dos pesos das conexões entre as camadas;
· Valores dos bias dos neurônios;
· Número de neurônios da camada escondida;
· Estrutura de conexões entre neurônios.

Cada característica da RNA a ser otimizada é representada como uma dimensão da partícula no espaço multidimensional.












Figura 11. Rede neural MLP do IPSONet.
3.3.1 Fluxo de execução do algoritmo IPSONet

Inicialização da população: Consiste na geração aleatória de um número de redes superior àquelas que serão utilizadas durante o processo evolutivo. São geradas 10R redes e selecionadas as R redes com melhor desempenho.  O desempenho das redes é medido em relação ao conjunto de treinamento segundo uma função objetivo .
Fluxo de dados na rede : Os valores do conjunto de treinamento são obtidos pelos nós da camada de entrada da RNA. Só existe um fluxo de dados que se propaga da entrada à saída da rede de forma semelhante à fase foward do algoritmo backpropagation, onde os valores de saída de alguns neurônios são usados como entradas nos neurônios da camada seguinte. Cada neurônio aplica a função de ativação sigmóide logística sobre a soma ponderada dos pesos das conexões com a camada anterior.

Evolução : A evolução da população durante o treinamento está baseada no algoritmo de otimização por enxame de partículas (PSO) que através de iterações sucessivas examina o espaço de busca em direção à melhor posição global com objetivo de encontrar melhores redes.

Critério de Parada: O treinamento é encerrado quando atingido o valor de fitness pré-fixado ou o número máximo de iterações.

Seleção das melhores redes: Quando o treinamento é encerrado o IPSONet usa um conjunto de teste para selecionar as melhores redes com base na taxa erro.

3.4 Adaptação do Algoritmo IPSONet 

Neste trabalho o algoritmo IPSONet foi adaptado e implementado de forma a solucionar o problema de previsão de séries de consumo de energia. Na tabela 1 abaixo estão descritas as principais alterações de metodologias que foram efetuadas para esta finalidade.

Tabela 1. Adaptação do algoritmo IPSONet.
	
	IPSONet
	IPSONet Adaptado neste Trabalho

	Problema
	Classificação
	Previsão de séries temporais

	Parâmetros ajustados durante treino da RNA
	Valores dos bias dos neurônios;
Valores dos pesos das conexões;
Número de neurônios da camada escondida;
configuração das conexões entre camadas.
	 Valores dos bias dos neurônios;
 Valores dos pesos das conexões;
 Tamanho da janela de tempo; 

Número de neurônios da camada escondida.


	Nº de Camadas da rede MLP
	3 camadas
	3 camadas

	Topologia limite da RNA
	7 neurônios escondidos;
Entradas e saídas em função do tipo de problema de classificação.
	10 neurônios escondidos; (*)
24 valores de entrada; (*) 

1 neurônio de saída.
(*) Inicialmente, sendo que o valor ótimo será obtido pelo próprio algoritmo.

	Critério de parada
	Nº máximo de iterações ou valor de fitness pré fixado.
	Estabilização do erro de treinamento.

	Avaliação de desempenho
	Função fitness para o conjunto de validação.
	Erro sobre o conjunto de validação.

	Função de ativação
	Sigmóide logística. 
	Sigmóide logística.



Na adaptação do IPSONET optamos pela rede MLP completamente conectada (sem otimização das conexões entre neurônios) que é largamente utilizada e consolidada na literatura. Foram realizados experimentos com outras funções de ativação como a tangente e secante hiperbólica, porém a função sigmóide logística obteve os melhores resultados.

Com relação à avaliação de desempenho foi escolhido o erro MAPE pois é o padrão utilizado nas empresas de energia elétrica e fornece um valor percentual de erro de previsão facilmente compreensível. O critério de parada foi modificado pois o critério do IPSONET apresenta uma série de desvantagens conforme vimos no item 2.1.5 (2) que trata dos tipos de critérios de parada.

O ponto forte da adaptação do IPSONET neste trabalho é o fato deste algoritmo ser aplicado para a solução do problema de previsão do consumo de energia e ainda realizar a otimização do tamanho da janela de entrada. Esta adaptação consumiu bastante tempo e esforço.
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4.1 Análise das variáveis externas na previsão

A previsão de séries temporais pode ser realizada apenas com os dados da série em questão, ou além destes, podem ser utilizados dados externos que exercem influência nos valores futuros da série. 
A série de consumo de energia é bastante influenciada por variáveis externas e a inclusão destas variáveis como entrada do modelo implica numa melhor precisão dos resultados da previsão. A variável externa que mais influencia na eficiência da previsão a curto prazo é a temperatura, pois exerce impacto na carga térmica da região. Só para exemplificar, um dia chuvoso e frio implica no consumo de energia elétrica inferior quando comparado a um dia ensolarado e quente. 
Neste trabalho não tivemos acesso aos valores da série de temperatura da região Nordeste.
4.1.1 A influência da hora e dia da semana 

As curvas diárias de carga para os dias da semana apresentam diferentes tendências, ao longo do dia, conforme ilustrado na figura 12, em função das variações de carga das indústrias, comércio e residências e do comportamento descanso-trabalho da sociedade. Desta forma verificamos a importância de se utilizar como entradas a hora e o dia para uma maior eficiência da previsão. O dia com feriados nacionais tem o comportamento semelhante ao domingo
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Figura 12. Comportamento diário do consumo de energia elétrica.
4.1.2 A influência mensal

A influência do mês do ano no comportamento do consumo de energia elétrica está diretamente ligado a variáveis como temperatura (definida pelas estações do ano) e hábitos de consumo definidos pelo calendário.

Analisando o gráfico ilustrado na figura 13 percebemos que no 1º semestre o consumo é decrescente atingindo valores mínimos em meados de junho e julho, enquanto no 2º semestre o consumo é crescente atingindo valores máximos nos meses de novembro e dezembro.
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Figura 13. Comportamento mensal de consumo de energia (2005 a 2007).
Da análise acima procuramos considerar dados para treino que estejam compreendidos na mesma estação do ano.

4.1.3 A influência anual 

O consumo de energia elétrica vem aumentando ao longo dos anos em função do crescimento econômico da região Nordeste conforme podemos observar na figura 14. 
Podemos verificar que o ano de 2000, o comportamento foi atípico devido ao evento do racionamento de energia, e que de 2001 a 2007 houve uma evolução no consumo de energia a uma taxa quase constante.

Pelos fatos expostos anteriormente, os dados de consumo médio horário de energia da região Nordeste foram obtidos no período de 2001 a 2007 com o ONS (Operador Nacional do Sistema Elétrico)[21] para subsidiar os experimentos e análises necessários neste trabalho.
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Figura 14. Variação anual de consumo médio de energia na região Nordeste do Brasil.
4.1.4 Análise dos comportamentos atípicos 

Comportamento atípico de consumo é aquele motivado por feriados, períodos festivos e eventos que perturbem o comportamento habitual de consumo, como por exemplo, copa do mundo, olimpíadas, eleições, finais de programas televisivos de interesse geral, etc. Embora estes eventos possam ser previstos, a influência sobre o consumo de energia é incerta. Neste trabalho consideramos apenas os dias típicos para fins de previsão.

4.2 Tratamento dos Dados de consumo de energia elétrica da região Nordeste do Brasil

A base de dados utilizada neste trabalho consiste em valores médios horários de demanda de energia no período de 2001 a 2007. Estes valores médios foram calculados através da aquisição dos valores instantâneos de demanda de energia a cada 4 segundos pelo Sistema de Supervisão e Controle do ONS (Operador Nacional do Sistema Elétrico) [21].
4.2.1 Eliminar sazonalidade

Analisando a base de dados de consumo de energia, percebeu-se que a mesma possui sazonalidade diária ao longo do tempo, conforme podemos verificar pela figura 17. De forma a eliminar a sazonalidade foi aplicado o operador da forma Zd= Zt – Zt-s, onde Zd é o valor diferenciado, Zt é o valor no instante (t) e Zt-s é o valor anterior no instante (t-s), onde s é o período da sazonalidade. Para o nosso problema em questão a sazonalidade é diária e portanto s=24.
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Figura 15. Série com sazonalidade.
4.2.2 Normalização dos dados

Os dados da série de consumo de energia usados pela rede neural devem ser normalizados em valores pequenos para evitar saturação da função de ativação sigmóide. Desta forma os dados foram normalizados no intervalo [0,1] utilizando a equação abaixo:

valoratual - valormin
valornorm = 













(Eq. 4)
valormax - valormin
onde: valornorm é o valor normalizado no intervalo [0,1], valormin é o valor mínimo da série, valorMax é o valor máximo da série e valoratual é valor atual da série

A figura 18 ilustra a série sem sazonalidade diária e normalizada no intervalo [0,1].
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Figura 16. Série sem sazonalidade diária e normalizada 

4.2.3 Divisão dos dados

As séries temporais de consumo de energia foram divididas em três conjuntos de dados: conjunto de treinamento (com 50% dos dados), conjunto de validação (com 25% dos dados) e conjunto de teste (com 25% dos dados). Os dados mais recentes foram utilizados para os testes de previsão, os imediatamente anteriores foram usados para o treinamento e os mais antigos para a validação.

 O conjunto de treinamento e validação são usados para ajustar os parâmetros do modelo proposto, enquanto que o conjunto de teste é utilizado para medir o desempenho do modelo .

4.3 Experimentos

A topologia da rede neural utilizada nos experimentos de previsão utilizando a técnica de janelamento de tempo foi definida conforme figura 17 abaixo. 


Figura 17. Topologia da RNA para previsão com técnica de janelamento de tempo.
Com objetivo detectar o dia da semana foi inserido entradas com codificação binária conforme tabela 2. 

Tabela 2. Detecção do dia da semana através de codificação binária.
	
	Domingo
	Segunda
	Terça
	Quarta
	Quinta
	Sexta
	Sábado

	Cód. Binária
	1000000
	0100000
	0010000
	0001000
	0000100
	0000010
	0000001


4.3.1 Critério de parada considerado

Inicialmente usamos o critério de parada GL5 [26] que aborta o treinamento quando o a rede começa a perder a capacidade de generalização, ou seja, quando o erro de treinamento diminui ao passo que o erro de validação aumenta. Este critério de parada não apresentou desempenho satisfatório, pois não era atingido durante o treinamanto da RNA implicando na continuação do treinamento até o limite de iterações pré-fixado.

O critério de parada considerado neste trabalho é a estabilização do erro de treinamento, ou seja, quando o erro de treinamento durante 20 iterações estabiliza e mesmo havendo redefinição de velocidade dinâmica das partículas (que ocorre com 19 iterações) o valor de erro permanece estabilizado, o treinamento é encerrado. 

4.3.2 Ajuste dos parâmetros

O algoritmo IPSONet foi adaptado para o treinamento de uma RNA para a solução do problema de previsão de consumo de energia . Desta forma o treinamento consistiu no ajuste dos pesos das conexões, dos valores de polarização externa dos neurônios, a otimização do número de neurônios da camada escondida e do tamanho da janela de tempo.

 A etapa inicial dos experimentos consiste no ajuste dos parâmetros do PSO e da RNA que vão influenciar significativamente na qualidade da previsão do consumo de energia. Os parâmetros do PSO são ajustados de acordo com a complexidade e o tipo do problema. Para este trabalho será utilizado inicialmente os parâmetros constantes na tabela 3, e serão realizados experimentos de forma a ajustar estes parâmetros com objetivo de melhorar o desempenho da previsão. 

Tabela 3. Parâmetros iniciais do PSO para experimentos

	Wmax
	0,9
	Cmax
	1
	Vmax
	+1

	Wmin
	0,4
	Cmin
	0,5
	Vmin
	-1

	Taxa cruzamento
	0,5
	Taxa mutação
	0,7
	Base treino
	Mensal

	Nº máximo HN
	10
	População: 
	50
	Itermax
	1500


O desempenho da previsão será avaliado com base no Erro Percentual Médio Absoluto (MAPE), que é calculado sobre o conjunto de teste conforme equação abaixo. Quanto menor o valor do MAPE, melhor o desempenho da previsão.


1   
            desejadoj - previstoj
 





(Eq. 5)
     N                         desejadoj

Onde desejadoj são os valores reais e previstoj  representam os valores previstos pela rede neural.


Nesta etapa de ajuste dos parâmetros foram realizados 30 experimentos para cada análise e calculado o desempenho médio da previsão (Media) , o melhor e pior desempenho individual de previsão encontrado, e o  desvio padrão (Dpad) para detectar a dispersão dos resultados. Os experimentos foram relizados sobre uma base de dados considerando um treinamento mensal (720 padrões) e trimestral (2160 padrões). 

Tamanho da janela de entrada

Para eliminar a sazonalidade da série foi aplicado o operador diferenciador conforme  explicado na seção 4.2.3, porém houve estagnação das partículas no início da execução do algoritmo não havendo qualquer melhora de desempenho. 

Como a série de consumo de energia apresenta sazonalidade diária (24 horas), aplicamos para eliminar a sazonalidade uma topologia onde a  janela de tempo é igual ao tamanho do período de sazonalidade (24 horas) e não aplicamos o operador diferenciador na série.

Operadores genéticos (taxa de cruzamento e taxa de mutação)

Para a otimização de desempenho do PSO foi proposto como parte do algoritmo IPSONET [16], o uso de operadores genéticos de mutação e cruzamento. Conforme tabela 4  percebemos que para o problema de previsão de consumo de energia o uso dos operadores genéticos  resultou em baixo desempenho na previsão.

Tabela 4. Desempenho (MAPE)  em função dos Operadores Genéticos.
	
	Com Operadores Genéticos
	Sem Operados Genéticos

	Pior
	56,69
	28,31

	Melhor
	17,89
	10,60

	Média
	30,75
	22,13

	Dpad
	12,20
	7,94


Tamanho da base de dados para treinamento
Sabe-se que o tamanho da base de dados para treinamento influencia na qualidade da previsão em aplicações com uso de RNA. Um conjunto de treinamento pequeno pode ser insuficiente para a convergência (underfitting), já um conjunto de treinamento grande pode provocar lentidão no processo de treinamento, além de aumentar as chance de redundância de informação.


Conforme pode-se observar na tabela 5, o melhor desempenho considerado  foi aquele para a base mensal, que é composta por conjunto de treinamento 50% (30 dias),  o conjunto de validação 25% (15 dias) e o conjunto de teste 25 % (15 dias).

Tabela 5. Desempenho (MAPE)  em função do período de treinamento

	
	Base Mensal
	Base Trimestral

	Pior
	28,31
	34,39

	Melhor
	10,60
	14,82

	Média
	22,13
	26,14

	Dpad
	7,94
	8,53


Coeficiente de inclinação da função de ativação sigmóide (λ)

A função de ativação sigmóide logística tem a  sua inclinação determinada pelo parâmetro (λ), chamado de coeficiente de inclinação. Durante os experimentos constatamos que o desempenho da previsão varia com o valor de  λ . No artigo original do IPSONet foi considerado λ =1, porém para este trabalho o melhor desempenho alcançado foi para λ =0,1 conforme podemos verificar pela tabela 6. Observe que para λ =0,1 a curva sigmóide apresenta uma maior componente linear conforme podemos verificar na figura 18. 

Tabela 6. Desempenho (MAPE)  para diferentes valores de λ

	
	λ=1,0       
	λ=0,7    
	λ=0,5    
	λ=0,3    
	λ=0,1    

	Pior
	28,31
	31,51
	36,22
	24,63
	22,19

	Melhor
	10,60
	12,32
	15,08
	10,64
	10,98

	Média
	22,13
	22,68
	28,77
	17,10
	16,00

	Dpad
	7,94
	7,74
	6,90
	6,78
	6,36
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Figura 18. Função sigmóide logística para diferentes valores de λ.
População do enxame 

A população do enxame corresponde ao número de partículas pré-fixada no espaço multidimensional de busca e influencia na eficiência da previsão conforme podemos observar pela tabela 7. 
Vale salientar que quanto maior o número de partículas maior o custo computacional na execução do algoritmo. A população de 20 partículas apresentou melhor desempenho médio e menor desvio padrão.
Tabela 7. Desempenho (MAPE) em função do nº de partículas (P).
	
	P=5
	P=10
	P=20
	P=30
	P=40
	P=50

	Pior
	33,46
	34,39
	20,71
	31,45
	17,96
	22,19

	Melhor
	22,71
	13,04
	9,20
	9,75
	7,29
	10,98

	Média
	28,74
	24,19
	14,67
	18,20
	17,96
	16,00

	Dpad
	5,99
	7,36
	5,68
	5,94
	7,29
	6,36


Limite do número de neurônios escondidos


O algoritmo de otimização da RNA utiliza valor limite pré-fixado para o número de neurônios escondidos. A inicialização da otimização utiliza este valor limite e durante a execução evolui na busca de uma topologia otimizada.


Percebemos então que este valor pré-fixado influencia na qualidade da previsão, conforme podemos verificar pela tabela 8,  pois determina o limite a ser considerado para a topologia. Outros métodos de otimização não necessitam deste limite pois inicializam com a RNA vazia e otimizam a topologia até a convergência. Para este problema específico, o valor limite para o número de neurônios escondidos igual a 10 apresentou os melhores resultados.

Tabela 8. Desempenho (MAPE) em função do nº de neurônios escondidos (HN).
	
	
HN=5
	HN=10
	HN=15
	HN=20
	HN=25

	Pior
	24,11
	20,71
	22,51
	23,09
	25,37

	Melhor
	11,25
	9,20
	8,65
	8,79
	11,36

	Média
	15,80
	14,67
	16,88
	16,81
	18,01

	Dpad
	5,81
	5,68
	5,64
	5,07
	4,53


Para os experimentos seguintes foi considerado o nº limite de neurônios pré-fixados igual a 10, pois o mesmo apresentou melhor desempenho médio de previsão.

Limite de variação de velocidade das partículas (Vmax e Vmin)

O valor do limite de velocidade das partículas determina o nível de mudança máximo que uma partícula pode ser submetida a cada iteração.  Constatamos que à medida que aumentamos o valor limite há uma maior dispersão das partículas, o que pode ser observado pelo aumento do desvio padrão na tabela 9. O limite de velocidade que obteve os melhores resultados de previsão está compreendido no intervalo [+4,-4].

Tabela 9. Desempenho (MAPE)  em função dos valores de limites de velocidade

	
	± 1
	± 4
	± 7
	± 10

	Pior
	20,71
	20,35
	35,14
	41,39

	Melhor
	9,20
	9,05
	10,08
	12,04

	Média
	14,67
	14,36
	17,31
	20,38

	Dpad
	5,68
	5,27
	4,82
	8,46


À medida que aumentamos o limite de velocidade das partículas o desvio padrão aumenta, porém um limite de velocidade baixo, como por exemplo [-1,+1], pode ser insuficiente para alcançar uma melhor solução.

4.3.3 Comparação de desempenho com o algoritmo Backpropagation

Nesta etapa realizamos os experimentos utilizando o algoritmo PSO, com os parâmetros ajustados conforme tabela 10, e realizamos uma comparação de desempenho com o algoritmo backpropagation, considerando os ajustes da tabela 11.

Tabela 10. Parâmetros base para os experimentos com PSO.
	Wmax
	0,9
	Cmax
	1,0
	Vmax
	+4

	Wmin
	0,4
	Cmin
	0,5
	Vmin
	-4

	Taxa cruzamento
	0
	Taxa mutação
	0
	Base treino
	Mensal

	Topologia da RNA
	24 -10-1
	População: 
	20
	Itermax
	500


Tabela 11. Parâmetros base para os experimentos com Backpropagation.
	Taxa 

aprendizado (β)
	0,1 a 0,5
	Topologia 

da RNA
	24-10-1
	Nº de iterações
	400


Realizamos experimentos distintos para diversas configurações do PSO, de tal forma que os experimentos ficaram organizados da seguinte forma:

· PSO Janela Variável (PSOJV):  Aplicação do algoritmo PSO no treinamento da RNA (ajuste dos pesos das conexões e bias dos neurônios) com  otimização de topologia (número de neurônios da camada escondida e tamanho da janela de tempo). 

· PSO Janela Fixa (PSOJF): Aplicação do algoritmo PSO no treinamento da RNA (ajuste dos pesos das conexões e bias dos neurônios) com  otimização de topologia (apenas o número de neurônios da camada escondida). 

· PSO (PSOTF): Aplicação do algoritmo PSO no treinamento da RNA sem otimização de topologia (apenas ajuste dos pesos das conexões e bias dos neurônios).

· Backpropagation (BP): Aplicação do algoritmo backpropagation no treinamento da RNA  (24 neurônios de entrada e 10 neurônios escondidos).
Para cada abordagem acima foram realizados 30 experimentos e calculado o desempenho  médio da previsão (Media), o  desvio padrão (Dpad) para detectar o nível de dispersão dos resultados, o número de iterações (Iter) necessárias até ser atingido o critério de parada. Para os experimentas com otimização de topologia registramos também o nº de neurônios escondidos (HN) e o tamanho da janela de tempo (JT). 

Para realizar os experimentos com PSO foi necessário desenvolver uma aplicação de simulação para o treinamento da RNA. Esta aplicação foi desenvolvida na linguagem JAVA [5] usando a Plataforma de desenvolvimento IDE Eclipse 3.11 [23] e sua interface pode ser verificada na figura 20. Para os experimentos com backpropagation utilizamos o simulador JAVA NNS [24]. 

Na tabela 12 pode-se verificar um resumo dos experimentos (dispostos em ordem crescente de desempenho) para as diversas abordagens do PSO e para o backpropagation. Na figura 19 está ilustrado como exemplo o gráfico de melhor previsão para um dia útil típico.

Tabela 12. Resumo das diferentes abordagens de treinamento da RNA.
	
	PSOJV
	PSOJF
	PSOTF 
	BP

	Nº
	MAPE 
	JT
	HN
	Iter
	MAPE 
	HN
	Iter
	MAPE 
	Iter
	MAPE 
	Iter

	01
	29,99
	23
	8
	287
	15,96
	7
	241
	13,92
	201
	6,94
	400

	02
	27,35
	24
	9
	285
	15,36
	7
	241
	13,57
	221
	6,91
	400

	03
	26,82
	24
	9
	264
	14,97
	5
	201
	13,54
	221
	6,87
	400

	04
	24,23
	24
	9
	309
	14,32
	9
	261
	13,16
	261
	6,82
	400

	05
	22,37
	23
	5
	264
	14,13
	8
	161
	13,05
	221
	6,76
	400

	06
	17,97
	23
	8
	305
	13,75
	8
	241
	12,94
	261
	6,67
	400

	07
	17,82
	23
	7
	309
	13,39
	5
	261
	12,92
	241
	6,51
	400

	08
	16,69
	24
	8
	330
	13,24
	9
	221
	12,81
	281
	6,50
	400

	09
	15,56
	24
	8
	271
	12,86
	8
	221
	12,75
	201
	6,36
	400

	10
	15,43
	23
	8
	349
	12,63
	7
	301
	12,28
	261
	6,07
	400

	11
	14,96
	24
	5
	284
	12,63
	8
	221
	12,04
	241
	6,01
	400

	12
	14,63
	23
	9
	365
	12,02
	8
	321
	11,91
	221
	5,67
	400

	13
	13,94
	21
	6
	345
	11,58
	6
	221
	11,77
	301
	5,55
	400

	14
	13,87
	23
	8
	289
	11,55
	7
	241
	11,57
	221
	5,28
	400

	15
	12,78
	24
	6
	322
	11,42
	8
	261
	11,47
	281
	5,18
	400

	16
	12,38
	24
	7
	306
	11,35
	10
	241
	11,47
	261
	5,14
	400

	17
	12,18
	24
	8
	305
	11,28
	8
	261
	11,31
	241
	5,01
	400

	18
	12,10
	23
	9
	364
	11,28
	9
	241
	11,17
	321
	4,98
	400

	19
	11,76
	24
	7
	322
	11,19
	5
	241
	10,88
	281
	4,97
	400

	20
	11,70
	24
	8
	302
	10,94
	8
	261
	10,83
	241
	4,81
	400

	21
	11,18
	22
	7
	325
	10,66
	9
	221
	10,54
	281
	4,73
	400

	22
	11,07
	24
	8
	290
	10,48
	10
	201
	10,44
	241
	4,61
	400

	23
	10,77
	24
	8
	302
	10,44
	6
	241
	10,29
	261
	4,36
	400

	24
	10,68
	24
	6
	306
	9,61
	8
	261
	10,17
	221
	4,34
	400

	25
	10,59
	24
	8
	402
	9,32
	6
	361
	9,70
	241
	4,32
	400

	26
	10,40
	24
	8
	282
	9,27
	6
	241
	9,29
	221
	4,30
	400

	27
	10,16
	24
	8
	351
	9,11
	8
	301
	8,75
	281
	4,28
	400

	28
	9,86
	24
	9
	326
	8,90
	7
	241
	7,92
	281
	4,27
	400

	29
	9,74
	24
	9
	290
	8,49
	5
	241
	7,84
	221
	4,25
	400

	30
	9,69
	24
	7
	322
	8,19
	7
	241
	6,14
	281
	4,23
	400

	Media
	14,36
	23,6
	7,7
	308
	11,68
	7,40
	247
	11,24
	250
	5,42
	400

	Dpad
	5,27
	0,7
	1,2
	33
	2,10
	1,43
	38
	1,78
	31
	0,97
	0
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Figura 19. Melhor desempenho de previsão para um dia útil típico.
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Figura 20. Interface do simulador implementado em JAVA para os experimentos. 

Análise e comentários sobre os  resultados dos experimentos 

Desempenho da previsão: À medida que inserimos mais dimensões para otimização utilizando o algoritmo do PSO o desempenho médio da previsão diminui e o desvio padrão aumenta.  A abordagem do PSO que obteve melhor desempenho médio de previsão e menor desvio padrão foi aquela sem otimização de topologia com media de 11,24% e desvio padrão de 1,78%. O algoritmo backpropagation apresentou melhor desempenho médio (5,42 %) e menor desvio padrão (0,97) quando comparado às abordagens do PSO. 

Otimização da Topologia:  A otimização da topologia foi obtida através de duas abordagens do PSO, com otimização apenas do número de neurônios escondidos (PSOJF) e com otimização do número de neurônios escondidos e do tamanho da janela de tempo (PSOJV). O algoritmo PSO realiza a otimização da topologia com base numa topologia limite pré-fixada. A topologia pré-fixada que foi adotada nos experimentos considerando JT = 24 e HN = 10. Constatamos que a otimização realizada pelo PSO funciona como um ajuste fino da topologia, ou seja, não há grandes variações em torno da topologia pré-fixada. O melhor desempenho do PSOJV foi obtido com uma topologia otimizada com JT=24 e HN=7, enquanto a abordagem PSOJF com HN=7. As maiores variações de topologia durante os experimentos atingiram configuração com JT=21 e HN=5.

Número de iterações:  O número de iterações necessárias sobre o conjunto de treinamento até ser atingido o critério de parada da estabilização do erro de treinamento foi superior no backpropagation. O algoritmo PSO estabilizou mais rapidamente, com média de 308 iterações, enquanto o algoritmo backpropagation só estabilizou com número de iterações próximo a 400.

Tempo de execução:  Constatamos para este problema específico que o backpropagation encontra a solução do problema com tempo de execução inferior quando comparado ao PSO, ou seja, apresenta uma maior rapidez mesmo havendo a propagação dos sinais de entrada e retropropagação dos sinais de erro para cada padrão de treinamento . O tempo de execução no PSO aumenta à medida que inserimos mais partículas no espaço de busca, pois a cada iteração, cada uma das partícula vai executar o algoritmo  sobre o conjunto de treinamento.

4.3.4 Comparação com o modelo utilizado pelo ONS

O uso de modelos baseados em redes neurais artificiais treinadas com algoritmo backpropagation tem sido amplamente aplicado nas empresas de energia elétrica para a realização de previsão de consumo de energia em horizontes de curto, médio ou longo prazo. 

O ONS - Operador Nacional do Sistema Elétrico [21], empresa responsável pela operação do sistema elétrico interligado Nacional no Brasil, realiza previsões de consumo de energia para as diversas regiões do país usando o software ANNSTLF [25]. Este software realiza previsões de consumo de energia diária (24 passos à frente) através de uma modelagem que utiliza RNA do tipo MLP com topologia fixa treinadas com o algoritmo backpropagation. O erro médio de previsão do ANNSTLF para região Nordeste é inferior a 4% . Nos experimentos com o PSO, com topologia fixa, o melhor desempenho encontrado  foi de 6,94 % , embora a média alcançada tenha sido de 11,24 %.

O grande diferencial do ANNSTLF é que o mesmo utiliza como entrada da RNA os valores de consumo de energia e os  valores de temperatura horária do Nordeste, o que confere maior desempenho, haja vista que a variável que mais influencia na previsão diária é a temperatura.

Neste trabalho não tivemos como obter as séries de temperatura da região Nordeste cujo valor é resultado de uma modelagem matemática com base nas temperaturas médias das cidades capitais. Portanto, não é possível fazermos uma comparação justa entre as técnicas proposta neste trabalho e a utilizada pelo ONS, pois o ONS recebe mais informações importantes na entrada do que o método proposto neste trabalho.
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Conclusão 

A previsão diária do consumo de energia elétrica não é uma tarefa fácil, e o resultado desta previsão reflete diretamente no sistema elétrico, podendo causar impacto na  operação, planejamento, segurança e custos do setor elétrico. Um desvio acentuado na previsão pode trazer conseqüências que podem comprometer a qualidade da energia elétrica, provocando variações de tensão, de freqüência ou sobrecarga em geradores, linhas de transmissão ou transformadores de potência. Por estes motivos as empresas do setor elétrico investem em pesquisas com objetivo de aumentar cada vez mais a eficiência da previsão.


Neste trabalho procuramos desenvolver um modelo de previsão baseado em redes neurais artificias onde o treinamento construtivo da rede é realizado através da técnica de otimização por enxames de partículas (PSO).  

Os resultados dos experimentos com o PSO não foram satisfatórios e obtiveram desempenho de previsão inferior e maior desvio padrão quando comparados ao algoritmo backpropagation.

5.1 Dificuldades encontradas

No desenvolvimento deste trabalho não encontramos referências científicas sobre a aplicação do PSO para treinamento de RNA na solução de problemas de previsão de séries temporais. A maior dificuldade encontrada foi o grande número de parâmetros  ajustáveis do algoritmo PSO . Estes parâmetros variam de acordo com o problema em questão e exercem bastante influência sobre os resultados. 

A necessidade de implementar uma ferramenta de simulação para os experimentos também foi um fator complicador que demandou bastante tempo e esforço. 

5.2 Trabalhos Futuros

Neste trabalho não se pretende fechar a questão ou esgotar as possibilidades sobre os estudos do uso do PSO aplicado ao treinamento de redes neurais artificiais para a previsão de consumo de energia elétrica. Muito trabalho e pesquisa deve ainda ser desenvolvido para que no futuro os objetivos aqui propostos sejam atingidos. 


Outros trabalhos podem ser elaborados na busca de uma melhor configuração dos parâmetros do PSO, podendo estes parâmetros variar de acordo com o dia da semana a ser previsto. Com relação à topologia, pode-se utilizar séries de valores externos que possam contribuir com o aumento da previsão (como temperatura -  utilizada pelo ONS - e condição climática). Além disso, a otimização da topologia pode ser adaptada de tal forma que possa evoluir com o treinamento sem a necessidade de limites pré-fixados.
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(3) Atualizar pbesti(t)
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(7) Algoritmo encerrado








(2) Para cada partícula do enxame avaliar


Se xi(t) melhor que pbesti(t) 


 





(6) Atualizar a nova velocidade e posição da partícula





vi(t+1) = w * vi(t) + c1r1 * [ pbest(t) - xi(t) ] + c2r2 * [ gbest(t) - xi(t) ]





xi(t+1) = xi(t) + vi(t+1)
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B1: vetor dos valores de  bias nos neurônios da camada escondida; 


B2: vetor dos valores de  bias nos neurônios da camada de saída; 


E: vetor de neurônios da camada escondida;


C1: matriz das conexões entre a camada de entrada e  camada escondida. 


C2: matriz das conexões entre a camada escondida  e  camada de saída;


W1: matriz dos valores de pesos das conexões entre a camada de entrada e  camada escondida;. 


W2: matriz dos valores de pesos das conexões entre a camada escondida  e  camada de saída.
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Valor de saída


(valor 1 hora à frente)
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Avaliar critério de parada








(5) Atualizar gbest(t)








C2 = (c2fim-c2ini) *  iter    +  c2ini


		               maxIter





(1) Inicializar a população de partículas


em posições aleatórias








solução
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melhor global


 (gbest)
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λ = Σxiwi
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entradas





núcleo celular 





Linear





f(x) = kx





f(λ)


γ





Tangente


hiperbólica





f(x) = tanh(x)





Sigmóide logística





f(x) = 	    1


(1+e-x)





Limiar





 	     1, se x > 0


f(x) = 


 0, se x ≤ 0





não








sim








(4) Avaliar se resultou na  


atualização de  gbest(t)








 (b) modelo  artificial





(a)  Neurônio biológico
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Janela temporal
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errot
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xt





Camada de Contexto





Camada de Contexto





errot-1





Rede Elman: Além da janela de tempo, usa como entrada os valores passados da camada escondida








Janela temporal





yt+1





Rede Jordam: Além da janela de tempo usa como entrada os valores dos erro de previsão.
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f(x) =             1


    (1+ e - λx)





Camada


De entrada





w=( wini  - wfim) * (maxIter-iter) + wfim		                      maxIter





c1 = (c1fim-c1ini) *  iter    +  c1ini


		               maxIter
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QUI





x





QUA





TER
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Para todas as partículas 


	Se r1 > p1


		Selecione partícula para atualização de velocidade


	Para todas as dimensões do vetor velocidade vi(t) da partícula


		Se r2>p2


			vi= vi + (2*r3-1)*vmax
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sim











