[image: image33.png]

i

Resumo

Superar as expectativas do cliente oferecendo software de alta qualidade é tarefa fundamental das empresas de TI. Para atingir o nível de qualidade adequado e agregar valor ao serviço é imprescindível a realização dos testes de software. Tradicionalmente as empresas do ramo não apresentam condições de implantar um processo de teste, desta forma, utilizam a técnica de testar seus softwares através de seus desenvolvedores de modo informal, intuitivo e baseados na experiência prática de seus profissionais.
Outras empresas optam por não realizá-las pois observam a atividade como entediante e custosa. Desta forma, somente focam na atividade após o início da produção do software quando começam a surgir os mais variados erros. Empresas que incorporam em seu processo atividades de teste em software oferecem um diferencial competitivo em relação a empresas que não utilizam esta atividade. Este trabalho traz uma boa visão sobre testes de software e propõe um processo de teste
, utilizando recursos exploratórios com o intuito de promover resultados a custos reduzidos. A modelagem do processo foi feito com o auxílio do SPEM para descrever as fases e as atividades do processo, sua interação com os colaboradores e os artefatos de entrada e gerados. O processo abordado pode ser adaptado e moldado para ser empregado em qualquer organização. Garante que testes mínimos são realizados. Quando é necessário, ele também trabalha de forma a encontrar o maior número de erros possível.

Abstract

Overcoming the expectations of the client software offering high quality is fundamental task of the IT industry. To get the appropriate level of quality and adding value to the service is essential to carrying out the testing of software. Traditionally companies in the industry haven't able to establish a process of testing this way, using the technique to test its software through its developers so informal, intuitive and based on practical experience of its professionals. Other companies choose to don't implement them because observe the activity as tedious and expensive. Thus, only focusing on the activity after the start of production of software when they start to emerge the most varied errors. Companies that incorporate activities in their process of testing in software offer a competitive differential regarding companies that don't use this activity. This work provides a good overview on testing of software and proposes a process of testing, using resources exploration in order to promote results at reduced costs. The modeling of the process was done with the SPEM help to describe the phases and activities of the process, its interaction with the staff and the artifacts of entry and generated. The process can be discussed and shaped adapted to be used in any organization. It ensures that minimum tests are conducted. When necessary, he also works in order to find the largest possible number of errors.

Sumário

vÍndice de Figuras

viÍndice de Tabelas

viiTabela de Símbolos e Siglas

91
Introdução

101.1
Motivação

111.2
Objetivos

111.3
Metodologia

121.4
Contribuição

131.5
Estrutura da Monografia

142
Testes de Software

142.1
História da Atividade de Teste

162.2
Verificação e Validação

172.3
Estratégias Fundamentais dos Testes

182.4
Tipos de Testes de Software

192.5
Níveis de Testes

202.6
Formas de Testar

202.6.1
Testes Manuais

212.6.2
Testes Automáticos

222.7
Conceito “V” de testes

232.8
Processo tradicional de teste

263
Metodologias de Desenvolvimento de Software

273.1
Pessoas versus Processo

283.2
XP - eXtreme Programming

293.3
Scrum

293.4
O Manifesto para Desenvolvimento Ágil de Software

303.5
RUP – Rational Unified Process

314
O Processo Ágil de Teste - PAT

324.1
SPEM - Software Process Engineering Metamodel

334.1.1
Principais Elementos de Definição do Processo

354.2
Definição de PAT

364.3
Composição

374.3.1
Papéis

404.3.2
Estrutura

424.3.3
Planejamento

424.3.4
Projeto de Teste

454.3.5
Preparação

464.3.6
Execução de Teste

474.3.7
Automação

474.3.8
Finalização

484.3.1
Acompanhamento e Controle

494.4
Vantagens e Desvantagens

505
Considerações Finais e Trabalhos Futuros

515.1
Trabalhos Relacionados

515.1.1
Ambiente

515.1.2
Descrição do Processo

525.1.3
Benefícios do Processo para Organização

525.2
Trabalhos Futuros

535.3
Dificuldades Encontradas

535.4
Contribuição

Índice de Figuras

15Figura 2.1: Gráfico ilustrando o momento de interromper os testes

16Figura 2.2: Exemplo ilustrativo de validação e verificação

23Figura 2.3: O conceito “V” de testes de software

25Figura 2.4: 11 passos do Processo de Teste de Software

32Figura 4.1: Níveis de modelagem definidos pela OMG

4Figura 4.2: Visão Macro do PAT

1
4Figura 4.3: PAT - Planejamento

2
4Figura 4.4: PAT - Checklist de Testes Genéricos

4
4Figura 4.5: PAT - Projeto de Teste

5
46Figura 4.6: PAT - Preparação de Teste

47Figura 4.7: PAT - Automação

48Figura 4.8: PAT - Finalização

49Figura 4.9: PAT - Acompanhamento e controle

Índice de Tabelas

	34Tabela 4.1: Representação gráfica dos principais elementos do SPEM

	32

Tabela de Símbolos e Siglas

CIN – Centro de Informática UFPE

SPEM - Software Process Engineering Metamodel
OMG - Object Management Group
PAT - Processo Ágil de Teste.
SPEM - Software Process Engineering Metamodel

PML - Process Modeling Language
UML - Unified Modeling Language

XP - eXtreme Programming

IEEE - Institute of Electrical and Electronics Engineers)

DSDM - Dynamic System Development Method

RAD - Rapid Application Development

RUP - Rational Unified Process

Agradecimentos

Este trabalho, desenvolvido durante aproximadamente quatro meses, é fruto dos conhecimentos adquirido
 durante cinco anos no curso de Engenharia da Computação, do Curso Seqüencial de Formação Complementar realizado pelo Centro de Informática (CIN) em parceria com a Motorola e da colaboração de amigos que estiveram ao lado durante esse período.

Agradeço a minha família pelo apoio e motivação que me incentivaram a ir sempre à busca de meus objetivos.
Agradecer também ao meu orientador Márcio Lopes Cornélio pela disposição, ajuda paciência e orientações.

Capítulo

1 SEQ Figura \h \r 0

 SEQ Tabela \h \r 0

 SEQ Equação \h \r 0

Introdução

A importância do software tem crescido cada vez mais nas organizações e na sociedade. A cada dia ele desempenha atividades mais importantes, que trazem benefícios e agregam valor ao meio no qual atua. Geralmente, essas atividades podem ser realizadas pelo homem. Porém, algumas delas só podem ser executadas por computadores. A tendência é que o mundo se torne cada vez mais dependente dos softwares.

Determinadas atividades desempenhadas por computadores têm impacto direto na saúde financeira de uma instituição. Outras delas estão extremamente relacionadas à vida. Tornam-se cada vez mais necessários produtos com alto nível de qualidade e que satisfaçam o cliente. Por outro lado, os softwares que estão disponíveis no mercado, em sua grande maioria, apresentam falhas, havendo a necessidade de disponibilizar versões novas do sistema apenas com correções de erros que, enquanto não forem corrigidos, afetam a funcionalidade, o desempenho, a segurança, a confiabilidade e a usabilidade do sistema, tendo impacto direto no ambiente no qual ele atua e podendo trazer conseqüências graves.

Informações de mercado dizem que mais de 90% dos sistemas são liberados com graves defeitos [1
]. Objetivando o controle da qualidade dos softwares torna-se necessário a implantação de um conjunto de atividades voltadas para encontrar defeitos nesses sistemas. Porém, em muitos casos, as atividades de testes são informais, sem metodologia e responsabilidades definidas.

A insuficiência de testes é um dos principais motivos de falhas nos Projetos de Desenvolvimento de Software [2
]. Um processo de teste bem definido e eficiente unido a uma equipe de teste independente são fundamentais para garantir a qualidade do produto e encontrar os erros antes que a aplicação entre em produção. O custo para corrigir os erros em um sistema já implantado é cem vezes maior que o custo que se teria para corrigir esses mesmos erros em fase de desenvolvimento [3
].

Atualmente, as metodologias ágeis [4
] ganharam repercussão por serem boas no gerenciamento do desenvolvimento de software, incorporando testes unitários ao processo de desenvolvimento, realizando testes caixa-branca em seu processo, não havendo uma atenção maior em testes de sistema.

Um modelo de processo de software é uma representação das atividades do mundo real de um processo de produção de software [5
]. A modelagem de processos de software é atualmente uma grande fonte de pesquisa na qual a comunidade acadêmica e as empresas têm aplicado diversos esforços, a fim de aprimorar a expressividade e a percepção do processo como um todo.

A modelagem de um processo deve ser conduzida de modo a possibilitar o entendimento e a padronização do mesmo. A notação escolhida, SPEM (Software Process Engineering Metamodel), é o meta-modelo mais difundido e aceito, proposto pela da OMG(Object Management Group) para a descrição de um processo concreto de desenvolvimento de software [6
].

Este trabalho propõe definir e modelar um processo ágil de teste criando um processo
para suprir uma necessidade de mercado. Dentre as estratégias de testes existentes, será abordada a forma exploratória e baseada em caso de uso. Acreditamos, que para a equipe de teste ser uma equipe de sucesso não deva depender da metodologia utilizada no processo de desenvolvimento do software, para com isso atender a demanda de projetos que necessitam de teste.

1.1 Motivação

Empresas necessitam de equipe de testes para comprovar que seus produtos cheguem aos clientes com nível de qualidade adequado ao objetivo da empresa, porém uma equipe de teste que trabalha com testes tradicionais, seguindo o RUP, que por ser detalhista na construção de artefatos e na quantidade de papeis envolvidos no processo, pode deixar a equipe bastante custosa para a empresa burocratizando atividades que poderiam ser feitas de forma ágil focando no objetivo principal
. Encontrar erros e produzir relatórios de resultado de teste deve ser o foco de uma equipe de teste funcional cobrindo assim uma ‘deficiência’ dos testes unitários das metodologias ágeis de desenvolvimento e não sendo muito burocráticas como as metodologias mais conservadoras.

1.2 Objetivos

O objetivo deste trabalho de graduação apresentado neste documento é definir e modelar um Processo Ágil de Teste (PAT).
Um processo que planeje e organize as atividades a serem realizadas, que garanta que o sistema está de acordo com determinado padrão, que possibilite uma melhor distribuição dos recursos utilizados e um aumento na detecção dos erros. Esse processo visa aumentar a garantia de qualidade, pois será realizado ao longo do processo de desenvolvimento, e o controle de qualidade, visto que fará verificações para comprovar que o sistema está de acordo com o que foi especificado pelo cliente
.
1.3 Metodologia

O projeto será iniciado com a revisão bibliográfica, enfocando os pontos destacados na abordagem proposta:

· Contextualizar a Área de Testes de software apresentando tipos, estratégias, níveis de teste, técnicas e boas práticas na área.

· Introduzir conceitos de projetos ágeis.
· Apresentação de modelagem de processo

Em seguida será proposta o modelo de processo de teste de software. Essa etapa compreende:

Apresentar uma metodologia ágil para desenvolvimento de software.

· Relatar a importância dos testes exploratórios.
· Definir testes em par. Dois conceitos devem ser abordados.

· Testes apenas com a equipe de teste, objetivando homogeneidade do conhecimento

· Participação do líder de desenvolvimento para melhor entendimento da visão do cliente e para definição, caso ainda não tenha, do escopo negativo de teste.

· Criação de checklist para testes exploratórios, guiando o testador na execução dos testes.

· Definir estratégia para escolha por testes exploratórios ou criação de projetos de teste.

Com base na abordagem, serão realizadas atividades, com iterações de uma semana, ilustrando a aplicação dos conceitos introduzidos, relatando as dificuldades e a importância processo de testes. As principais atividades são:

1. Revisão Bibliográfica

2. Planejamento da monografia

3. Planejamento para o estudo do trabalho relacionado
4. Modelar o processo

5. Realização do trabalho relacionado e coleta de resultados
6. Analise dos Resultados

7. Escrita da Monografia

1.4 Contribuição

Este trabalho de graduação vai procurar desenvolver um processo de teste, com características de processos ágeis, para suprir uma necessidade de mercado. Dentre as estratégias de testes existentes, devemos abordar a forma exploratória e baseada em caso de uso.
Será feita uma modelagem do processo com o auxílio do SPEM (Software Process Engineering Metamodel) para descrever as fases e as atividades, sua interação com os colaboradores e os artefatos de entrada e saída.

Iremos fornecer uma boa visão de testes de software e tentaremos construir um processo que garanta que testes básicos sejam testados de forma rápida, possibilitando uma melhor distribuição dos recursos e o aumento na detecção de erros. Um guia de cenários de testes que abrange testes de campo, negócio, usabilidade, segurança será construído. Uma planilha de execução que instancia o guia de cenários de testes será concebida. O guia será genérico o suficiente para suprir a necessidade de um projeto que seja apresentado a equipe de teste. O guia tem por objetivo auxiliar na execução e poderá ser alterado para adaptar-se a qualquer requisito ou projeto.
O processo deve ser flexível o suficiente para ser adaptado e moldado para ser empregado em qualquer organização objetivando tornar a atividade de teste menos informais. Quando é necessário, ele trabalha de forma a encontrar o maior número de erros possível, mesmo que isto signifique aumento no esforço.
1.5 Estrutura da Monografia

Este documento foi estruturado em capítulos da seguinte maneira, após esta introdução:

Capítulo 2 Testes de Software - Apresenta uma visão geral sobre teste de software, mostrando modelos de teste tradicionais, a evolução das atividades de testes, os conceitos, estratégias, tipos e níveis de testes e algumas formas de testar.

Capítulo 3 Metodologias de Desenvolvimento de Software - Apresenta conceitos e exemplos de algumas metodologias ágeis de desenvolvimento de software.
Capítulo 4 O Processo Ágil de Teste - PAT - Com base no que foi apresentado nos capítulos anteriores, este capítulo propõe um processo para testes de forma ágil.

Capítulo 5 Considerações Finais e Trabalhos Futuros - Apresenta as considerações finais, relata um trabalho relacionado além de propor trabalhos futuros.

2

2.1

2.2

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Capítulo

3

Testes de Software

O mercado está cada vez mais competitivo e as empresas buscam estratégias para assumirem um papel de destaque. Melhorar a qualidade do produto final e reduzir os custos do desenvolvimento deste produto são importantes objetivos das organizações. Visando aumentar a qualidade do produto a atividade de teste de software visa reduzir os custos do desenvolvimento e principalmente da manutenção, minimizando os defeitos do produto final tendo como premissa a satisfação do cliente.

3.1 História da Atividade de Teste
Em 1950, Alan Turing escreveu o primeiro artigo cientifico que abordava questões de teste de software. No seu artigo ele definia o teste operacional para demonstrar o comportamento da inteligência de um programa semelhante ao ser humano Para passar pelo teste o sistema deve possuir habilidades humanas num nível capaz de enganar um interrogador humano.
Em 1957, foi criado o conceito de Teste de Software para detecção de erros ao final do processo de desenvolvimento. Antes deste conceito a atividade de teste em software era uma simples tarefa de percorrer o código e corrigir erros já conhecidos.

Em 1970, quando o conceito de Engenharia de Software passou a ser utilizado como modelo para as organizações o processo de desenvolvimento de software passou a ter mais relevância.

Em 1972 houve a primeira conferência sobre teste na Universidade da Carolina do Norte. Mas um trabalho mais completo só foi produzido em 1979 por Glenford Myers. Neste trabalho a atividade de teste foi definida como um “processo de trabalho com a intenção de encontrar erros”. Até esse momento, o objetivo do teste era somente provar o bom funcionamento de uma aplicação. Todos os esforços da atividade estavam voltados para a comprovação desse fato e conseqüentemente poucos defeitos eram encontrados. Myers propôs que se o objetivo do teste for encontrar erros, uma quantidade maior de problemas será encontrada. Uma vez que vários cenários serão buscados para testar o comportamento do aplicativo em várias circunstâncias. Essa nova visão revolucionou a forma de abordar o problema, no entanto, os testes continuavam a serem executados no final do processo de desenvolvimento.

Os primeiros conceitos de qualidade de software surgiram no início dos anos 1980. Nesses novos conceitos, desenvolvedores e testadores trabalham juntos desde o início do processo de desenvolvimento. Agora a atividade de teste ocorre de forma paralela ao processo de desenvolvimento com planejamento, análise, implementação e execução específicos.
As primeiras ferramentas para realizar as atividades teste só começaram a ser fabricadas em 1990. Elas possibilitam a execução de teste que não podiam ser feitos manualmente. Como testes de carga, desempenho, entre outros.

Segundo a IEEE (Institute of Electrical and Electronics Engineers) Standard Glossary of Software Engineering Terminlogy, teste de software é um processo de exercitar um software ou componente sobre condições específicas, observando ou gravando os resultados, e realizando uma avaliação sobre algum aspecto.

É impossível ter um produto livre de erros devido ao número enorme de cenários possíveis. Porém, após uma bateria de testes a probabilidade de encontrar erros graves, que inviabilizem uma entrega, é mínima e muito pequena para os erros em geral. O momento certo de parar de testar é o momento em que o custo para testar e corrigir os erros é mais caro que o custo da falha ocorrer em produção [11]. A Figura 2.1 mostra o momento de interromper os testes.

[image: image11.png]Custo da
falha para o
negécio

Figura 2.1: Gráfico ilustrando o momento de interromper os testes
A criticidade do sistema é quem define a quantidade de testes. Quanto mais crítico for o sistema mais testes terão que ser executados para garantir a qualidade dele. Um exemplo é a comparação do tempo de parar os testes entre um software de locadora e um software de controlador de vôo. Ocorrendo um erro em produção no software da locadora tem um custo muito menor do que encontrar erro em produção no software de controlador de vôo.
Segundo Myers, quanto mais tarde um erro é descoberto mais caro ele é. Ele aplica a “Regra de 10” aos custos de correção do erro. Ou seja, quando um erro não é encontrado em uma fase do processo de desenvolvimento, os custos de correção são multiplicados por 10 para cada fase que ele se propaga. Isso significa dizer que erros encontrados em produção são extremamente caros.

3.2 Verificação e Validação

Existem muitas diferenças entre o que o cliente necessita, e o que o analista projeta. A Figura 2.2 exemplifica bem o que acontece durante a construção de um sistema.

[image: image12.jpg]

Figura 2.2: Exemplo ilustrativo de validação e verificação
Os testes de verificação são tipos de teste que geralmente são realizados sobre os documentos que são produzidos durante o ciclo de desenvolvimento. Essas atividades são iniciadas antes da codificação do sistema, elas começam na fase de requerimento e continuam através da codificação do produto. O teste consiste na realização de inspeções, revisões e/ou auditorias sobre os produtos gerados em cada etapa do processo, evitando que dúvidas e assuntos mal resolvidos passem para a próxima fase do processo de desenvolvimento.
A verificação tem por objetivo provar que o produto vai ao encontro dos requerimentos especificados. Ela garante a qualidade do software na produção e na manutenção.

Os testes de validação também são aplicados diretamente no software. Eles podem ser aplicados em componentes isolados, módulos existentes ou em todo o sistema. Esse tipo de teste avalia se o sistema atende aos requisitos e especificações analisadas nas fases iniciais do projeto, se ele vai ao encontro dos requerimentos do usuário.

Testes de verificação e validação são complementares, eles não são atividades redundantes. Eles possuem objetivos e naturezas distintas, contribuem para a detecção de erros e aumentam a qualidade final do produto.

3.3 Estratégias Fundamentais dos Testes

Para executar os testes de validação existem duas estratégias: estratégia caixa branca e a estratégia caixa preta. A utilização destas estratégias é determinando para aumentar a probabilidade de detecção de erros presentes no produto.

Essas estratégias não são complementares. Se as duas estratégias forem combinadas de forma apropriada o resultado final será um software de melhor qualidade.

Os testes caixa branca são baseados na arquitetura interna do software, por isso, são conhecidos como caixa branca. Eles identificam defeitos nas estruturas internas do programas através da simulação de situações que exercitem adequadamente todas as estruturas utilizadas na codificação. Logo, é necessário que o testador tenha conhecimento suficiente sobre a arquitetura interna e conheça a tecnologia utilizada no software.

O objetivo desses testes é garantir que todas as linhas de código e condições foram executadas pelo menos uma vez, e estão corretas. Alguns métodos são aplicados nos testes de caixa branca, exemplo: Método de Cobertura de Linhas de Código, Método de Cobertura de Caminhos, Métodos de Cobertura de Desvios Condicionais e Método de cobertura de Laços.

Esses testes são difíceis de implementar e são altamente eficientes na detecção de problemas. Uma característica desse tipo de teste é que ele pode ser modelado, estruturado e executado pelos desenvolvedores.

Estratégia caixa preta utiliza técnicas para garantir que o software atende os requisitos do sistema. Esses testes não verificam os processamentos internos, se a solução adotada foi a melhor, mas verificam se o sistema produz o resultado esperado. Ela não se preocupa com o código, testa as entradas e as saídas da aplicação.

Para adoção da estratégia de teste caixa preta não é necessário conhecer a tecnologia utilizada nem a arquitetura do sistema. Isso facilita a modelagem dos testes. O que é necessário é o conhecimento dos requisitos, o comportamento esperado do sistema para que se possa avaliar se o resultado produzido é o correto.

Eles são conhecidos como mais simples de implementar que os de caixa branca.

3.4 Tipos de Testes de Software

É necessário dividir os testes em tipos, para que seja escolhido o que deve ser testado, sua prioridade e criticidade. Esta tarefa ajuda bastante quando gerente for preparar as suítes de teste.
Existem os testes de interface que testam a interação do usuário com o sistema verificando o posicionamento correto dos itens da tela e a facilidade de uso do sistema. Ex.: caso seja necessário executar vários cliques no mouse para desempenhar alguma funcionalidade isto deve ser reportado para o analista em busca de minimizar muitos cliques.
O teste mais reconhecido pelo cliente é o teste funcional este teste se caracteriza pela necessidade do conhecimento do negócio do sistema para que os cenários das regras de negócio sejam simulados. Este teste verifica se as funcionalidades se comportam de acordo com a documentação de especificação funcional, ou seja, se não existe diferença entre os requisitos funcionais e o comportamento da aplicação. Valores de entrada e saída são utilizados para a avaliação do comportamento do software. Esses testes são caracterizados pelo foco em negócios.

Outro teste que deve ter uma especial atenção são os testes de desempenho, eles verificam se o tempo de resposta de uma determinada situação é condizente com tempo especificado nos requisitos definidos. Eles analisam o sistema sob condições reais de acesso simultâneo ou de carga de dados. As situações de pico máximo previstas são comparadas como os valores-limite especificados nos requisitos. Já os de carga verificam se o sistema suporta a quantidade de usuários requeridos. Ele avalia o comportamento do sistema para um volume de usuários simultâneos que simule uma quantidade real. Em geral teste de desempenho e de carga se confundem, mas podemos dizer que o de desempenho se refere à medição de tempo.
O teste de estresse é parecido com os testes de carga, porém levando o sistema além do seu limite, ele é destinado a avaliar como o software se comporta em condições anormais, testa o aplicativo em situações inesperadas. O teste pode envolver cargas extremas de trabalho, memória insuficiente, hardware e serviços indisponíveis ou recursos compartilhados limitados.
Testes de volume dão enfoque a parâmetros de sobrecarga. Ao ser testada a aplicação é submetida a grandes quantidades de dados. Nesse teste o volume de dados é incrementado sucessivamente até que o limite máximo que a infra-estrutura está preparada para processar seja atingido. O objetivo é conhecer os limites do software e comparar com os requisitos especificados.

Teste de Configuração verificam se a aplicação funciona como esperado em diferentes ambientes de software e hardware, ou seja, o aplicativo é testado em várias configurações de software e hardware. Esses diferentes ambientes são os ambientes previstos na fase de elicitação de requisitos.

Os testes de instalação têm por objetivo garantir que a instalação do sistema ocorrerá corretamente em diferentes ambientes de software e hardware e em diversas condições (falta de energia, falta de espaço em disco). Recomenda-se que este teste seja executado pelo usuário.

Teste de Integridade é um tipo de teste que verifica a robustez, a resistência à falhas do objeto do teste e a integridade dos dados armazenados.

Teste de segurança foca em encontrar falhas na segurança do sistema que podem provocar perdas de dados, interrupções de processamento, comprometimento do sigilo e fidelidade das informações.
Testes de Documento focam na documentação do sistema. Os testes analisam a completude e a clareza dos documentos.

Os ataques à segurança do sistema podem ter origens internas ou externas e podem ser realizados por profissionais descontentes, quadrilhas especializadas, hackers.

3.5 Níveis de Testes

Há quatro níveis de teste e sua divisão se deve pela granularidade dos componentes testados e indivíduos responsáveis por eles.
O primeiro nível a ser discutido é o teste de unidade. Seu objetivo é testar um pedaço do código. Os testes são aplicados nos menores componentes de código e testam unidades individuais como: funções, classes, componentes. Eles podem testar a estrutura interna, funcionalidade, segurança dos componentes. Para a realização desses testes é requerido um conhecimento da estrutura interna do software. Geralmente esses testes são realizados por desenvolvedores.

Outro nível seria os testes de integração onde são avaliadas as interações entre partes do software. São realizados no final de cada iteração e comprovam que duas ou mais funções, componentes juntos funcionam corretamente. Esse teste requer um conhecimento da arquitetura interna do software. Eles podem testar interfaces e dependências entre componentes.

Os testes de sistema são executados no sistema como um todo e em um ambiente teste, mas esse ambiente tem que ser muito parecido com o de produção. Não é necessário conhecimento da arquitetura interna do software. Os testes devem ser executados por uma equipe de testes independente. Nesses testes tanto os requisitos funcionais quanto os não funcionais podem ser testados.
Por fim temos os testes de aceitação ou homologação que são feitos pelos usuários finais. Os testes são realizados no sistema como um todo. O usuário valida se o sistema está pronto e pode ser usado por usuários finais, se as funções do sistema estão funcionando corretamente. A usabilidade e a segurança do software também podem ser testadas.

3.6 Formas de Testar

A forma de testar pode ser dividida de duas, Testes Manuais e Testes Automáticos.
3.6.1 Testes Manuais

Para facilitar o entendimentos vamos dividir os testes manual em dos subgrupos, Testes Sistemáticos e Testes Exploratórios. Este último é o mais utilizado.

Testes sistemáticos são testes predefinidos executados seguindo os passos do Projeto de Teste. Com base em algum documento que especifique o funcionamento ideal do sistema o projetista de teste cria o projeto de teste com todos os fluxos idéias e os de exceção para serem testados nos ciclos de execução.
Esses testes geralmente são empregados em instituições que seguem um processo de teste e possuem uma equipe de testes independente. Esses testes são recomendáveis para projetos aderentes a um processo de desenvolvimento, que apresentação documentação de qualidade, além de tempo e recurso disponíveis. Esses testes verificam formalmente se o sistema está de acordo com a sua especificação, permitem identificar as dependências entre os testes através da matriz de rastreabilidade. Nesse tipo de teste as atividades acontecem em paralelo com as atividades de desenvolvimento. Outras características desses testes são: elaborados por pessoas que possuem o perfil de testador, alta cobertura dos testes e são facilmente reproduzidos. Qualquer pessoa que for testar o produto usando testes sistemáticos vai executar os mesmos testes e da mesma forma, uma vez que o passo a passo para execução dos testes está documentado.

Os testes exploratórios são testes onde o testador executa e projeta o teste ao mesmo tempo. Nem sempre utilizando documentação especifica. Os casos de teste são criados no momento da execução. Na maioria das vezes eles são criados de maneira intuitiva. Poucos casos de testes são executados.

Os testes exploratórios ajudam muito quando o projeto não contém documentação especifica do sistema ou é de baixa qualidade ou desatualizada. Essa técnica traz resultados rápido, sendo assim, indicada quando o prazo é curto, o requisito não é critico ou muito simples.
Para que os testes exploratórios sejam eficientes é necessário a utilização de um pequeno processo de teste especifico para testes exploratórios.

Estudar a documentação do sistema e problemas de sistemas similares ajuda na detecção de falhas. Toda informação do sistema serve para ganho de conhecimento e de elaboração de caso de teste, logo um treinamento ministrado pelo líder do projeto pode esclarecer possíveis dúvidas.

É aconselhável a execução do fluxo básico da funcionalidade e a interação entre os requisitos.

3.6.2 Testes Automáticos

Testes automáticos têm por objetivo executar casos de teste de forma automática. Sua principal vantagem é a execução de vários casos de teste sem a necessidade da presença de uma pessoa monitorando o processo.
Essa automação inclui a automação do processo de planejamento dos testes, permite aumentar a profundidade e abrangência dos casos de testes envolvidos, viabiliza a execução de alguns tipos de testes, como é o caso dos testes de carga e estresse. Porém, os projetos de automação de teste devem ser implementados com muito cuidado. A seleção da ferramenta de automação de teste, bem como o que deverá ser automatizado ou não, deve ser analisada de forma clara porque dependendo das técnicas de teste utilizadas, o retorno de investimento pode ser negativo ou positivo.

A automação só deve ser realizada quando existe um processo maduro na organização e na equipe de testes, conscientização por parte da organização e os testes levam muito tempo para serem executados manualmente.

3.7 Conceito “V” de testes
É comum pressupor que testes são realizados em todo o processo de desenvolvimento. O ciclo de vida de testes e o de desenvolvimento são totalmente interdependentes, sendo que o ciclo de testes é dependente da conclusão dos produtos das atividades do ciclo de desenvolvimento. A aplicação destes ciclos de vida e das suas interdependências, na ordem de execução das suas atividades, gerando os produtos previstos é um pré-requisito para viabilizar o processo de desenvolvimento de software.
A experiência tem demonstrado que não foram alcançados bons resultados quando os testes são feitos pelas pessoas do próprio grupo de desenvolvimento de um projeto, uma vez que é muito difícil fazer estas pessoas atuarem ao mesmo tempo como desenvolvedores e testadores, de forma independente isenta e adotando metodologias diferentes para cada função. Foi constatado que os desenvolvedores tendem a encobrir os seus próprios enganos de forma que a eficácia dos testes vai depender da capacidade destas pessoas de atuar com estas duas metodologias de forma isenta e independente.

O conceito de ciclo de vida de testes é ilustrado na Figura 2.3. A figura mostra que os processos de desenvolvimento e testes iniciam simultaneamente. A equipe que desenvolve o sistema inicia o processo de desenvolvimento do sistema e a equipe que está conduzindo os testes começa o planejamento do processo de testes. Ambas as equipes começam no mesmo ponto usam as mesmas informações. A equipe de desenvolvimento tem a responsabilidade de capturar e documentar os requisitos para os propósitos do desenvolvimento do sistema e a equipe de testes usa os mesmo requisitos para os propósitos de testar o sistema. Em apropriados pontos do processo de desenvolvimento, a equipe de testes utilizará as técnicas de testes, como base para avaliar os produtos do processo de desenvolvimento com o objetivo de descobrir defeitos.
No conceito “V” de testes, os procedimentos de fazer e chegar convergem do inicio até o fim do projeto. O grupo que EXECUTA, trabalha com o objetivo de implementar o sistema e a equipe que CHECA, simultaneamente, executa procedimentos de testes visando minimizar ou eliminar riscos. Com esse enfoque, se os grupos trabalharem juntos e de forma integrada, o alto nível de riscos que caracteriza os projetos de desenvolvimento de software, irá decrescer a um nível aceitável que permita a conclusão do projeto com sucesso.

3.8 Processo tradicional de teste
O processo de teste de software tradicional segue o conceito “V” mencionado na seção anterior e apresentado de forma mais detalhada na Figura 2.4. A parte esquerda do “V” representa o ciclo de desenvolvimento de software e a parte da direita, alguns dos passos do processo de teste de software.
Os primeiros cinco passos usam a técnica de verificação como o principal meio para avaliar a correção dos produtos do desenvolvimento de software. Por outro lado. A técnica de validação é usada para testar o software durante as atividades de construção à implantação. Os resultados de ambos devem ser registrados na documentação dos testes. Validação e verificação devem ser usadas para desenvolvimento e manutenção de software.
1) Acesso ao Plano de Desenvolvimento – pré-requisito para a construção do Plano de Testes. Durante esse passo, os testadores verificarão a completeza e correção do plano de desenvolvimento. Baseado neste plano será possível estimar a quantidade de recursos necessários para testar a solução a ser implementada.

2) Desenvolvimento do Plano de Testes – A preparação do Plano de Testes segue os mesmo padrões da preparação do plano de desenvolvimento. A estrutura dos planos é a mesma, mas o conteúdo irá variar em função do grau de risco associado com o software que está sendo desenvolvido.

3) Inspeção ou Teste dos Requisitos do Software – Avaliação dos requisitos do software através da técnica de verificação. Requisitos incompletos, inexatos ou inconsistentes conduzem a insucesso da maioria do desenvolvimento de software.
4) Inspeção ou Teste do Desenho do Software – Avaliação do desenho do software (interno e externo) através da técnica de verificação. Os testadores estarão interessados em verificar se o desenho atinge os objetivos dos requisitos, bem como se é eficaz e eficiente para operar no hardware previsto.

5) Inspeção ou Teste da Construção do Software – O método para construir o software a partir do desenho do sistema determinará o tipo e a extensão dos testes que serão necessários. Quanto mais a construção se tornar automatizada, menos testes serão requeridos durante esta fase.
6) Execução dos testes – Envolve testar o código em estado dinâmico. A abordagem, métodos e ferramentas que foram especificadas no Plano de Testes serão usadas pra validar o atendimento dos códigos executáveis aos requisitos do software as suas especificações do desenho.

7) Teste de Aceitação – Avaliação da aplicabilidade e usabilidade do software pelo usuário. Além dos requisitos documentados, os usuários geralmente testam outras funções não documentadas e as suas expectativas.

8) Informação dos Resultados dos Testes – Informação sobre os testes é um processo contínuo. É importante que os defeitos sejam informados aos setores envolvidos o mais rápido possível, de foram que as correções sejam feitas com o menor custo possível.

9) Teste da Instalação do Software – Visam verificar a interoperabilidade com o sistema operacional, com outros softwares relacionados e com os procedimentos operacionais.
10) Teste das Mudanças no Software – Embora as atividades sejam consideradas como o passo 10, estas cobrem as mudanças durante o processo de implementação e aquelas que irão ocorrer após o software estar implantado.

11) Avaliação da Eficácia dos Testes – As melhorias no processo de testes podem ser melhor verificadas pela avaliação da eficácia dos testes ao término de um projeto.

[image: image13]
Figura 2.4: 11 passos do Processo de Teste de Software
3.9 Resumo do Capítulo
Este capítulo explanou o tema testes de software objetivando introduzir o leitor aos principais conceitos de teste. Apresentamos além dos conceitos, características, tipos e estratégias, formas de teste e o conceito “V” de teste assim como a forma tradicional de testar.
Capítulo

4

Metodologias de Desenvolvimento de Software
A inspiração comum para a maioria das metodologias são as áreas da Engenharia Civil e/ou Mecânica. Tais áreas enfatizam o planejamento antes da construção. Engenheiros destas áreas trabalharão em uma série de desenhos que indicam precisamente o que precisa ser construído e como todas as coisas devem se encaixar. Muitas das decisões são tomadas antes do início da execução. Um exemplo prático é que a decisão da forma com que o peso ira ser distribuído ao passar um veículo em alta velocidade em uma ponte é feita à medida que os desenhos são produzidos.

Previsibilidade é uma propriedade muito desejável. Entretanto, quando acreditamos que podemos ser previsíveis quando na verdade não podemos, leva a situações de perda de controle nas situação onde o plano falha. Você vê a realidade lentamente distanciando-se do plano. Por muito tempo, você pode fingir que o plano ainda é válido. Mas em algum ponto, o distanciamento fica muito grande e o plano simplesmente cai em pedaços.
Então, como controlamos um mundo imprevisível? O mais importante, e ainda mais difícil, é saber com precisão onde estamos. Precisamos de um mecanismo honesto de feedback que possa dizer-nos com precisão qual é a situação em intervalos freqüentes.

A chave para este feedback é o desenvolvimento iterativo. Esta não é uma idéia nova. Desenvolvimento iterativo já existe por algum tempo sob vários nomes diferentes: incremental, evolucionário, em estágios, espiral. A chave para o desenvolvimento iterativo é freqüentemente produzir versões que funcionam do sistema final, que contém um subconjunto dos recursos requeridos. Estas versões são bastante limitadas em funcionalidade, mas devem ser fiéis às demandas do sistema final. Elas devem ser totalmente integradas e cuidadosamente testadas como se fossem a entrega final.

O ponto é que não existe nada como um sistema testado e integrado para trazer uma dose de realidade a qualquer projeto. Documentos podem esconder todo tipo de falhas. Código-fonte não-testado pode esconder muitas falhas. Mas quando as pessoas sentam em frente a um sistema e trabalham com ele, as falhas se tornam verdadeiramente aparentes: tanto em termos de defeitos como em termos de requisitos mal-interpretados.

Desenvolvimento iterativo faz sentido em processos previsíveis também. Mas é essencial em processos flexíveis, pois um processo flexível precisa ser capaz de lidar com mudanças nas funcionalidades requisitadas. Isso leva a um estilo de planejamento onde os planos de longo prazo são bastante fluidos, e os únicos planos estáveis são os de curto prazo, feitos para uma única iteração. O desenvolvimento iterativo lhe dá uma fundação firme em cada iteração onde você pode basear seus planos futuros.

Uma pergunta comum é o quão longa uma iteração deve ser e qual o tamanho ideal para cada iteração. Pessoas diferentes darão respostas diferentes. eXtreme Programming (XP) sugere interações entre uma e três semanas. SCRUM sugere a duração de um mês. Em Crystal, vai ser maior. A tendência, entretanto, é fazer cada iteração o tão curta quanto possível. Isso provê feedback mais freqüente, para que você possa saber com mais freqüência onde está.
4.1 Pessoas versus Processo

Executar um processo flexível não é fácil. Particularmente, exige uma equipe bastante eficaz de desenvolvedores. A equipe precisa ser efetiva tanto na qualidade de seus indivíduos, quanto em como essa equipe interage como um time de verdade. Existe também uma sinergia importante: não apenas a adaptatividade requer uma equipe mais forte, mas também a maioria dos bons desenvolvedores prefere um processo adaptativo.

Um dos objetivos das metodologias tradicionais é desenvolver um processo onde as pessoas envolvidas são partes substituíveis. Com tais processos, você pode tratar pessoas como recursos que estão disponíveis de várias formas. Você tem um analista, alguns programadores, alguns especialistas em testes, um gerente. Os indivíduos não são tão importantes, somente suas funções. Desta forma se você planeja um projeto, não importa qual analista ou quais especialistas em testes você vai ter, apenas que você saiba quantos deles você terá, para saber o quanto o número de recursos afetará seu planejamento.

Mais isso levanta uma questão-chave: as pessoas envolvidas em um desenvolvimento de software são peças substituíveis? Uma das principais características das metodologias ágeis é que elas rejeitam tal premissa.

4.2 XP - eXtreme Programming
As raízes do XP estão na comunidade Smalltalk, e em particular na colaboração estreita entre Kent Beck e Ward Cunningham no final da década de 1980. Ambos refinaram suas práticas em diversos projetos durante a década de 90, estendendo suas idéias para uma abordagem do desenvolvimento de software que fosse tanto adaptativa, quanto orientada a pessoas.

O passo crucial para a passagem da prática informal para metodologia ocorreu na primavera de 1996. Kent foi chamado para revisar o progresso no projeto C3, o controle de folha de pagamento da Chrysler. O projeto estava sendo desenvolvido em Smalltalk por uma empresa terceirizada, e estava em problemas. Devido à baixa qualidade do código, Kent recomendou jogar tudo fora e reiniciar do zero. O projeto então foi reiniciado sob sua liderança e, desde então, se tornou a bandeira e o campo de treinamento para o XP.

A primeira fase do C3 foi muito bem-sucedida e este entrou em produção no início de 1997. O projeto continuou desde então e entrou em dificuldades posteriormente, o que resultou no cancelamento de qualquer desenvolvimento adicional em 1999

XP começa com quatro valores: comunicação, feedback, simplicidade e coragem. Depois disso, são construídas 12 práticas que os projetos XP devem seguir. Muitas dessas práticas são técnicas antigas e testadas, entretanto muitas vezes esquecidas por muitos - inclusive pela maioria dos processos planejados. Além de ressuscitar essas técnicas, XP as tem como um todo sinérgico, onde cada técnica reforça as outras.

Uma das técnicas mais notáveis, pelo menos inicialmente atraente para mim, é a forte ênfase nos testes. Enquanto todos os processos mencionam a verificação através de testes, a maioria a faz de forma pouco enfática. Entretanto, XP a coloca na base do desenvolvimento, com cada programador escrevendo testes à medida que escrevem código de produção. Os testes são integrados em um processo de integração contínua e construção (build), o que leva a uma plataforma altamente estável para desenvolvimento futuro.

XP desenvolveu uma liderança muito ampla, alguns destes líderes provenientes do projeto C3 original. Como resultado, existem muitas fontes para mais informações. Kent Beck escreveu Extreme Programming Explained, o manifesto-chave para XP, que explica todo o raciocínio por trás da metodologia e contém explicações suficientes para que as pessoas saibam se estão interessadas em seguir adiante. Nos últimos anos houve um crescimento epidêmico de livros de XP, vários deles muito similares, no sentido que descrevem todo o processo do ponto de vista dos vários pioneiros na adoção do XP.

4.3 Scrum

Scrum divide um projeto em iterações (chamadas de sprints) de 30 dias. Antes de iniciar um sprint, você define a funcionalidade requerida para o sprint e então deixa a cargo do time para implementar tais funcionalidades. O ponto é estabilizar os requisitos durante o sprint.

Entretanto, a administração não perde o envolvimento durante o sprint. Todo dia, a equipe tem uma pequena reunião (15 minutos), chamada de scrum, onde ela passa por tudo que vai fazer no próximo dia. Em particular, eles fazem transparecer os impedimentos administrativos: impedimentos que dificultam o avanço, e que a gerência precisa resolver. Eles também reportam o que está sendo feito para que a gerência tenha uma atualização diária sobre em que ponto o projeto se encontra.

A literatura sobre Scrum foca principalmente no planejamento iterativo e em processos de acompanhamento. É muito parecida com outras metodologias ágeis em diversos aspectos, e deve funcionar bem com as práticas de programação do XP.

4.4 O Manifesto para Desenvolvimento Ágil de Software

Com tantas similaridades entre essas metodologias, houve um razoável interesse em alguma forma de trabalho coletivo. Dessa forma, os representantes de cada uma dessas metodologias foram convidados para um workshop de dois dias em Snowbird, Utah em fevereiro de 2001.

O resultado é o Manifesto para Desenvolvimento Ágil de Software, uma declaração de valores comuns e princípios de processos ágeis. Há também um desejo de colaborar ainda mais no futuro, para encorajar não somente tecnólogos, mas também pessoas de negócios para usar e requerer abordagens ágeis para o desenvolvimento de software.

O manifesto era apenas isso, uma publicação que agia como um ponto de partida para aqueles que compartilhavam as mesmas idéias básicas. Um dos frutos deste esforço foi a criação de uma entidade mais permanente, a Aliança Ágil. A Aliança Ágil é uma organização sem fins lucrativos que procura promover o conhecimento e discussão sobre todas as metodologias ágeis. Muitos dos líderes do movimento ágil que mencionei, são também membros da Aliança Ágil.

4.5 RUP – Rational Unified Process
O Rational Unified Process (RUP) foi desenvolvido por Philippe Kruchten, Ivar Jacobson como o complemento de processo ao UML. RUP é uma plataforma processual, e como tal pode acomodar uma vasta variedade de processos. De fato, essa é minha principal crítica ao RUP - algo que pode ser tudo acaba não sendo nada. Eu prefiro um processo que lhe diga o que fazer ao invés de um que lhe ofereça opções intermináveis.

Como resultado dessa mentalidade de plataforma processual, RUP pode ser usado em uma maneira bastante tradicional, como desenvolvimento em cascata, ou também de forma ágil. Logo, como resultado você pode usar RUP como um processo ágil ou como um processo tradicional - tudo depende de como você o adapta para seu ambiente.

Craig Larman é um forte defensor de se utilizar RUP de maneira ágil. Seu excelente livro introdutório sobre desenvolvimento orientado a objetos contém um processo bastante fundamentado em seu pensamento RUP. Sua visão é que muito da corrente atual a favor das metodologias ágeis nada mais é que o aceite do desenvolvimento orientado a objetos, que já foi capturado no RUP. Uma das coisas que Craig faz é investir os primeiros dois ou três dias de uma iteração de um mês com todo o time, usando UML para esboçar o trabalho a ser feito durante a iteração. Isso não é um plano de projeto que não pode ser desviado, mas sim um esboço que dá perspectiva às pessoas de como fazer as coisas durante a iteração.

Outra abordagem ao RUP ágil é o processo dX, de Robert Martin. O processo dX é uma instância totalmente conforme com RUP, que simplesmente é idêntica ao XP (vire dX de ponta-cabeça para entender a brincadeira). dX foi projetada para pessoas que tem que usar RUP, mas gostariam de estar usando XP. Como tal, é tanto XP como RUP e, portanto, um bom exemplo de um uso ágil do RUP.

4.6 Resumo do Capítulo
Este capítulo abordou o tema de metodologias de desenvolvimento de software. Uma introdução geral é apresentada e em seguida alguns metodologias e suas características.

Capítulo

5 SEQ Figura \h \r 0

 SEQ Tabela \h \r 0

 SEQ Equação \h \r 0

O Processo Ágil de Teste - PAT

Acreditamos que um processo de teste bem definido e eficiente unido a uma equipe de teste independente são fundamentais para garantir a qualidade do produto e encontrar os erros antes que o software entre em produção
. O objetivo de um processo de testes com metodologia própria é minimizar os riscos causados por defeitos provenientes do processo de desenvolvimento [1].

Infelizmente, muitas organizações não possuem um processo de teste bem definido e eficiente, sendo as atividades de teste informais, sem uma metodologia e responsabilidades definidas. Na maior parte das vezes essas atividades são realizadas de maneira ad-hoc
. Embora saibamos da importância da atividade de testes, m
uitas empresas do ramo optam por não realizá-las pois observam a atividade como entediante e consumidora de tempo. Desta forma, somente focam na atividade após o início da produção do software quando começam a surgir os mais variados erros.
 É importante salientar que uma metodologia ágil prevê teste em software, porém em um nível diferente do proposto neste trabalho. Metodologias ágeis, em sua maioria, executam testes do tipo caixa branca com visão do código fonte, como testes unitários, que são executados pela equipe de desenvolvimento e não por uma equipe independente de teste. A utilização desta técnica diminui a quantidade de erros em software, mas não os elimina. A utilização de Testes do tipo caixa preta executados por uma equipe especializada na detecção de erros complementa as técnicas de detecção de erro da equipe de desenvolvimento
.

Para auxiliar na modelagem do processo usamos o SPEM (Software Process Engineering Metamodel).
5.1 SPEM - Software Process Engineering Metamodel

O SPEM é um metamodelo proposto pela OMG Object Management Group
 para a descrição de um processo de software ou uma família relacionada de processos. Diferente da maioria das Linguagens de Modelagem de Processos (PML- Process Modeling Language) o SPEM surge como uma proposta de unificação entre as diferentes metodologias propostas para modelagem de processos. O SPEM utiliza a orientação a objeto para modelar uma família relacionada de processos de software e usa a Unified Modeling Language
(UML) como notação. A F
igura 4.1 mostra as quatro arquiteturas de modelagem definidas pelo OMG.

[image: image14.png]MetaObject Facility

Process Metamodel

Process Model

Performing process

MOF N

™3
) [UPM, UML D
i g, RUP,
Sl Method, Open
[

Process as really enacted
onagiven project

Figura 4.1: Níveis de modelagem definidos pela OMG

O SPEM encontra-se no nível M2 da arquitetura de quatro camadas da OMG e seu metamodelo é definido usando um subconjunto da UML de modo semelhante da UML. Este subconjunto da UML corresponde às facilidades implementadas e apoiadas pelo MOF. Pela proposta do SPEM um processo executado é aquele, na produção no mundo real ou como o processo é ordenado, sendo nivelado no nível M0. A definição do processo correspondente está nivelada em M1. O SPEM pode ser usado para definir todos os tipos de processos, incluindo os que estejam focalizados no uso específico da UML. Instâncias para orientar subclasses para descrever práticas com a UML podem ser criadas com ferramentas para um processo UML específico. A UML é definida por um metamodelo, que é definido como uma instância do metamodelo MOF. Um subconjunto da notação gráfica da UML é usado para descrever este metamodelo. O metamodelo SPEM foi elaborado similarmente, e é formalmente definido como uma extensão de um subconjunto da UML chamado SPEM-Foundation.

5.1.1 Principais Elementos de Definição do Processo

Os elementos de definição do processo ajudam na demonstração de como o processo será executado. Descrevem ou restringem o comportamento geral do processo em execução, e são utilizados para auxiliar o planejamento, a execução e o monitoramento do processo. São divididos em três grandes grupos: Pacote da Estrutura do Processo, Pacote dos Componentes do Processo e Pacote do Ciclo de Vida do Processo.

Um Process pode ser visto como uma colaboração entre papéis para alcançar um objetivo. Para guiar sua execução, determina-se a ordem na qual as atividades devem ser executadas. Também existe a necessidade de definir o modelo do processo no tempo, utilizando-se para isso a estrutura Lifecycle em termos de fases e iterações. Um Process é um ProcessComponent que pode ser apresentado como um processo completo.
Um ProcessComponent é elemento de conveniência de descrições do processo que é consistente internamente e pode ser reutilizado com outros ProcessComponents para montar um processo completo.
Um ProcessComponent importa um grupo não arbitrário de elementos de definição de processo, modelados no SPEM pelo ModelElements.
Um Lifecycle de processo é definido como uma seqüência de fases que alcançam uma meta específica, definindo o comportamento completo de um processo que será executado em um dado projeto ou programa.
Um Workdefinition é um tipo de Operation que descreve o trabalho executado no processo. Suas subclasses são Activity, Phase, Iteration, e Lifecycle. Um WorkDefinition pode ser composto de outros WorkDefinitions, estando diretamente relacionados aos WorkProducts que são usados através da classe ActivityParameter, especificando se são usados como entrada ou como saída dos elementos de trabalho.
O ProcessPerformer representa de forma abstrata o “processo inteiro” ou um de seus componentes, e é usado para WorkDefinitions próprias que não têm mais um proprietário especifico.
O ProcessPerformer tem uma subclasse, ProcessRole. Um ProcessRole define responsabilidades sobre WorkProducts específicos, e sobre os papéis que executam e auxiliam em atividades específicas. Um ProcessPerformer é o executor de WorkDefinitions agregadas de alto nível que não podem ser associadas com ProcessRoles individuais.
A cada WorkDefinition pode ser associada uma Precondition e uma Goal. As Preconditions e Goals são Constraints, onde a Constraint é expressa na forma de uma expressão booleana seguindo sintaxe semelhante àquela de uma condição de proteção na UML. A condição é expressa em termos dos estados dos WorkProducts que são os parâmetros da WorkDefinition ou de uma WorkDefinition inclusa.

Uma Activity é a subclasse principal da WorkDefinition. Ela descreve uma parte do trabalho executado por um ProcessRole: as tarefas, operações, e ações que são executadas por um papel ou com a qual o papel pode auxiliar. Uma atividade pode consistir de elementos atômicos chamados Steps. Uma Activity é podendo fazer uso dos ProcessRoles adicionais que são os assistentes na Activity.
Alguns dos elementos do SPEM podem ser representados graficamente através de ícones outros existem como metainformação e não possuem representação gráfica. Onde está a chamada desta tabela no texto?
Tabela 4.1: Representação gráfica dos principais elementos do SPEM
	Estereótipo
	Representação

	WorkProduct
	[image: image15.png]

	WorkDefinition
	[image: image16.png]Y

	Guidance
	[image: image17.png]

	Activity
	[image: image18.png]

	ProcessRole
	[image: image19.png]

	ProcessPackage
	[image: image20.png]

	Process
	[image: image21.png]

	Document
	[image: image22.png]

	UMLModel
	[image: image23.png]

5.2 Definição de PAT
O PAT é um processo desenvolvido para suprir uma necessidade do mercado. Ao iniciar uma equipe independente de teste a empresa observa poucas opções para ter retornos positivos rápidos
. Isto acontece pelo fato da equipe ter a necessidade de colher dados para a geração de informação provando assim a necessidade do seu trabalho.
Propomos neste trabalho uma equipe de teste independente e eficiente, onde os valores do sucesso não estão
 apenas no processo, mas também se encontram nas pessoas. A homogeneização da informação é uma premissa deste processo.
Teste em par é ideal para deixar a equipe de teste mais homogênea em se tratando do conhecimento do sistema. Esse tipo de teste foi baseado em uma das práticas de XP, a programação em par. Os testes em par consistem na execução do teste por dois testadores que utilizam o mesmo computador. Como em XP, os pares não são fixos e podem mudar ao longo do dia, essas mudanças são importantes para a disseminação do conhecimento. Os testes em par contribuem para um espaço de aprendizado contínuo dentro da equipe. Os mais experientes ou quem tem mais conhecimento sobre um assunto termina passando informações valiosas para seus pares. Essa prática procura potencializar o que existe de melhor em cada um e eliminar as falhas.

A idéia é que enquanto um testador executa o teste o outro presta atenção, faz perguntas, sugere idéias, toma nota, etc. Essa prática pressupõe uma comunicação contínua entre os testadores que forma o par. Através da conversa eles analisam cenários, discutem as melhores alternativas.

Esse tipo de prática ajuda o testador a se manter focado no teste. Não é necessário interrupções para se tomar nota, tirar dúvidas, consultar manual ou documentação, replicar o erro em outra máquina. Essas atividades podem ser realizadas pelo outro testador. Ela também melhora a reportagem dos erros, pois facilita a reprodução e tudo que é reportado é revisado por outra pessoa. Como o conhecimento é transmitido de uma forma prática, esta prática é um bom treinamento para novatos
. É necessário observar que um esforço maior deve ser estimado nesta prática já que duas pessoas estão alocadas em uma atividade. Existe pelo menos um conhecimento técnico e um conhecimento sobre as informações do projeto. Testes em par permitem que alguém que acabou de entrar na equipe conheça rapidamente o sistema, pois o conhecimento é transmitido pelo parceiro à medida que a atividade é executada.

A prática de teste em par pode ser desenvolvida tendo como participantes um testador e uma pessoa com conhecimento profundo do sistema, o líder do projeto por exemplo. Duas pessoas com focos tão diferentes tendem a somar qualidades no final do processo. Enquanto o foco de um está em mostrar como a funcionalidade deve se comportar a do outro busca falhas e caminhos alternativos. Esta prática ajuda tanto no processo de teste como no processo de desenvolvimento. Testadores absorvem a forma de pensar dos desenvolvedores e os desenvolvedores absorvem a forma de pensar dos testadores, ocorrendo assim maior cuidado no desenvolvimento das funcionalidades tendo o objetivo não apenas nos fluxos principais, mas também nos fluxos alternativos e de exceção que podem levar a erros no sistema.
Outra forma de facilitar a execução dos testes e de certa forma padronizar os testes que são executados por diversos testadores é a adoção de uma planilha de testes genéricos. Nessa planilha existirá a maior parte dos cenários de testes que podem ser executados por uma determinada
 funcionalidade, campo para indicar se o cenário passou ou falhou campos para os registros abertos. Também é importante ter informações do sistema como: versão, funcionalidade, executor, data de execução, tempo total gasto, registros abertos
. Além dos números de registros passados, falhos e bloqueados. Guardar essas informações torna-se importante na execução de reteste, na geração de relatórios e na detecção da localização de falhas na execução dos testes.
Documentar o erro encontrado e essencial para ajudar em regressões futuras e para garantir que o erro não ocorre mais nas próximas versões.
5.3 Composição

Em toda equipe organizada, existe uma divisão de tarefas entre os membros. Um papel constitui um conjunto de responsabilidades que determina qual será o comportamento de uma pessoa em algum momento do processo. No PAT,
 recomenda-se a presença de sete papéis: Gerente de Teste, Líder de Teste, Gerente de Projeto, Líder de Projeto, Projetista de Teste, Executor de Teste e Desenvolvedor.
A alocação dos papéis deve ser feita de acordo com as necessidades e escopo do projeto, levando-se em conta as habilidades e características de personalidade das pessoas envolvidas no processo. A equipe de teste deve ser estruturada de forma a se obter a maior produtividade possível.
É essencial que todos os papéis estejam presentes na equipe, pois caso contrário pode ocorrer que algumas etapas importantes do processo sejam esquecidas ou não recebam a atenção necessária.
Um papel não corresponde necessariamente a uma pessoa da equipe, ou seja, uma mesma pessoa pode desempenhar vários papéis simultaneamente. A palavra mais importante da sigla PAT talvez seja a palavra ‘ágil’. Um indivíduo que exerce o papel de projetista em um determinado projeto, pode ser executor e líder em outro. Várias combinações são possíveis. Tendo apenas o cuidado de não haver sobrecarga de responsabilidades de algum membro da equipe.

5.3.1 Papéis

Gerente de Projeto – é o responsável por coordenar as atividades da equipe de desenvolvimento. O gerente deve ser capaz de gerenciar o desenvolvimento e tomar decisões referentes aos riscos e rumos do projeto. Em relação ao PAT as principais competências do gerente são:

· Conduzir os planejamentos e as ações dos desenvolvedores – O gerente deve garantir que os desenvolvedores estejam executando corretamente suas atividades, e no tempo estabelecido, para assegurar o bom andamento do projeto.
· Tornar a documentação do projeto sempre atualizada e acessível - A documentação do projeto deve estar disponível e atualizada para que possa ser consultada a qualquer momento pela equipe de teste.

· Priorizar as funcionalidades – Deve especificar quais partes do sistema são de maior urgência.
Líder de Projeto – é o responsável pela interface da equipe de desenvolvimento com a equipe de teste. Ele coordena a equipe de desenvolvimento, atualiza o cronograma e mantém o Gerente informado do status do projeto. As principais responsabilidades do líder do projeto são:

· Ajudar a coordenar a equipe de desenvolvimento – O líder de projeto deve ajudar na elaboração da estratégia de desenvolvimento.

· Alertar o gerente sobre possíveis desvios no cronograma – Manter o gerente do projeto ciente do andamento do processo de desenvolvimento, sugerindo soluções para possíveis desvios.

· Monitorar e ajudar na montagem do ambiente disponível para teste – o líder deve ter o conhecimento necessário para ajudar a equipe de infra a preparar o ambiente, quando necessário ou montar de fato o ambiente para teste quando não existe a necessidade da equipe de infra.

· Manter o líder de teste informado do andamento da execução – é muito importante o líder de teste estar devidamente informado do andamento do desenvolvimento de possíveis desvios.
Líder de Teste – é o responsável pela interface da equipe de teste com a equipe de desenvolvimento.
Muitas vezes, na execução de teste do sistema, surgem dúvidas e a pessoa responsável por eliminar as dúvidas dos desenvolvedores é o líder de teste. As principais responsabilidades do líder de teste são:

· Ajudar a elaborar o plano de teste – ajuda o gerente de teste a elaborar o plano de teste. Sendo o especialista no sistema
 na equipe de teste. O líder de teste deve responder as dúvidas da equipe de teste sobre o sistema, não sabendo responde-la ele será o encarregado de procurar as respostas com a equipe de desenvolvimento.
· Manter equipe informada sobre desenvolvimento – alterações no cronograma e possíveis atrasos no ambiente para teste deve ser reportado a equipe.

· Elaborar a estratégia de teste – o líder é o responsável pela estratégia de teste. Ele aloca e coordena os recursos para desempenhar determinado papel.
· Contactar equipe de desenvolvimento quando necessário – quando um testador ou projetista necessita de ajuda na execução
de sua tarefa seja por falta de informação ou por problemas no ambiente, o líder é o encarregado de analisar e procurar soluções para aquele problema.

· Ajudar na geração de relatórios – o líder tem a responsabilidade de coletar dados para o gerente quando solicitado.
Gerente de Teste
– o papel do gerente de teste é gerenciar as suítes de teste a ser realizado no produto. As principais responsabilidades do gerente de teste são:
· Elaborar plano de teste – o gerente é o principal responsável pela elaboração do plano de teste. De posse deste artefato o líder de teste prepara a estratégia de teste para sua equipe.

· Monitorar a equipe de teste – O gerente tem o papel de monitorar o andamento das execuções, não deixando margens para que nenhum recurso fiar ocioso nem sobrecarregado.
· Coletar e analisar métricas – As métricas são informações que permitem a análise do andamento do projeto pelo gerente. O gerente deve coletar métricas periodicamente junto ao líder e utilizá-las para melhorar
 o processo
.
· Presidir as reuniões de acompanhamento dos projetos – O gerente deve realizar semanalmente reuniões de acompanhamento com a equipe, onde deve garantir que a equipe seja tenha um conhecimento macro mínimo de todos os projetos, para que o custo de uma mudança de papeis e projetos não seja alto.
Desenvolvedor – o papel do desenvolvedor consiste em criar scripts de testes para os casos de teste verificando a existência de falhas em seu código e na sua correção. As principais responsabilidades do desenvolvedor são:

· Auxiliar o líder de teste na elaboração da estratégia de teste – O desenvolvedor deve participar da elaboração da estratégia de teste para identificar possíveis dificuldades na automação de algum requisito do ciclo.
· Analisar e modelar o caso de teste – O desenvolvedor deve analisar o caso de teste a ser implementado e modelá-lo da melhor forma possível. Modularizando comportamentos distintos e evitando retrabalhos.
· Manter a integração contínua de código – Em projetos onde há mais de um desenvolvedor é necessário que o código gerado por cada um seja integrado com o código produzido pelos demais, para identificar eventuais conflitos. Esta integração deve ocorrer de forma contínua para evitar a perpetuação de conflitos entre partes do software até etapas posteriores, onde estes conflitos serão mais difíceis de serem resolvidos.
Projetista de teste – o papel do projetista é de analisar a documentação e construir o projeto de teste. Artefato necessário para a execução dos testes. No projeto de teste estão contidos os casos de testes que cobrem as funcionalidades testadas. As principais responsabilidades do projetista de teste são:

· Elaborar o projeto de teste – O projetista deve elaborar o projeto de teste para ser viável a execução de testes no sistema.

· Correção do projeto de teste- Havendo alteração nos artefatos usados para a elaboração do projeto de teste, o líder de teste deve avisar ao projetista para efetuar as devidas correções, mantendo assim a integridade dos projetos de teste.
Executor de testes – este papel deve ser considerado um dos mais importantes em uma equipe de teste. Nele está empregado a responsabilidade de validar fluxos e regras de negócio. O executor de testes é o responsável por executar os casos de testes criados pelo projetista de teste. Tem o dever de
 registrar o status do testes e efetuar os retestes quando solicitado.
· Executar o projeto de teste – com o artefato de projeto de teste em mãos o executor deve efetuar seus testes com o olhar critico. Havendo quaisquer dúvidas sobre a elaboração do projeto de teste e do comportamento do sistema deve ser reportado.
· Manter líder do projeto informado do andamento do projeto – O executor deve manter o líder informado do status da execução, caso o sistema esteja bastante instável os testes devem ser interrompidos e o líder do projeto deve ficar encarregado de informar equipe de desenvolvimento e monitorar a resolução dos resultados.
5.3.2 Estrutura
O tamanho de uma iteração em processo ágil é motivo de discussão e divergências. Acreditamos que para o processo ágil de teste ser positivo deva ser planejada a iteração de acordo com a equipe de desenvolvimento. Caso o projeto tenha uma equipe de desenvolvimento madura, com planejamento de curto, médio e longo prazo, as iterações devem ser planejadas em duas ou três semanas. Caso o projeto tenha uma equipe de desenvolvimento ágil ou que necessite alterar o cronograma constantemente o planejamento deve ser feito com iterações de uma semana. Vale salientar que a equipe de teste presta serviços a vários projetos e a alocação de recursos depende da demanda de todo. Iterações longas são inviáveis a uma equipe de teste que deseja agradar seus clientes. A equipe de teste trabalha sobre demanda, todos os projetos devem ter atenção especial,
 sempre que requisitado.
No macro-fluxo estão representados os processos do PAT – Processo Ágil de Teste: Planejamento, Projeto de Teste, Preparação, Execução De Teste, Finalização e Acompanhamento e Controle. Como descrito na Figura 6
.
[image: image24.png]Processo Agil de Teste (PAT)
Versdo: 01.00

Projeto de i
Planejamento P04 proparacso

Execucdode putomacdo Finalizagdo

Acompanhamento
e Controle

Figura 4.2: Visão Macro do PAT
A fase de Planejamento é composta de atividades de perfil gerencial, que se preocupam em avaliar e relacionar informações a serem executadas em prazo, custo e recursos. limitados visando à execução de objetivos predeterminados.
A fase de Projeto de Teste se preocupa com a inteligência dos testes com base na complexidade e relevância do Requisito para o Sistema, levando em considerações também variáveis como prazo, recurso e necessidade do cliente. Para isso, são criados elementos que possibilitam esta definição, como: cenários de teste e casos de teste.

A fase de Preparação é o momento em que os testes são agrupados em suítes de acordo com a estratégia de testes e criados ciclos de execução.

A fase da Execução de Teste tem como objetivo a execução dos testes planejados, projetados e organizados nas fases de Planejamento, Projeto de Teste e Preparação, respectivamente.

A fase de Automação tem como objetivo preparar scripts e executar teste de forma automática visando garantir que mudanças realizadas em outros requisitos não tiveram impacto no requisito testado.

Na fase de Finalização, após a execução de testes de sistema, os gerentes e líderes do projeto deverão avaliar os critérios de conclusão e êxito e resultados de teste para definir se o produto será ou não liberado para o usuário final.

O processo de Acompanhamento e Controle é um processo de apoio, com atividades de monitoramento do andamento das atividades de cada fase. Suas atividades ocorrem ao longo das fases.

5.3.3 Planejamento
Observa-se que o objetivo principal desta fase é o desenvolvimento do
plano de projeto de teste. O gerente de teste é o principal responsável pela elaboração deste artefato. Vário
s fatores podem influenciar na elaboração do plano de projeto de teste, a importância dos requisitos, a prox
imidade de uma entrega, a influência de outros projetos na equipe são exemplos de fatores que podem influenciar na decis
ão do gerente.
A Figura 7
 esquematiza o fluxo da fase de planejamento, seu principal responsável e alguns dos artefatos que podem influenciar na construção do plano de projeto de teste.

[image: image25.png]Processo Agil de Teste (PAT)

Planejamento

Plano de Projoto;
Gronograma do rjes

GP: Gorent do Projeto
L e et

Figura 4.3: PAT - Planejamento
5.3.4 Projeto de Teste

Definido
o plano de projeto de teste para a iteração chega
 a hora de classificar os requisitos pela complexidade e importância, para com isto dar iní
cio a elaboração dos casos de teste. Nesta fase o plano de projeto de teste pode ser alterado para dar início ao desenvolvimento
do Cronograma de Teste.

Nesta fase é importante que o gerente de teste especifique junto ao gerente de projeto os critérios de conclusão e êxito do sistema, para ser validado nas próximas fases a conclusão dos testes.

Na atividade de classificar requisitos por complexidade e importância é interessante
salientar que dependendo
do resultado desta classificação, da análise dos artefatos fornecidos para o requisito e da demanda que teste tem o Gerente de Teste junto com o Líder de Teste avaliam a necessidade de criar casos de teste específicos para o requisito ou se vai usar casos de teste genéricos.
Para executar testes exploratórios o testador deve se basear em algum template, evitando que esqueça de testar algum fluxo do sistema para isso é uma boa prática usar uma planilha de testes genérica que contem alguns fluxos que podem ser apresentados durante o sistema. É de primordial importância documentar os resultados dos testes tendo assim um caminho para a execução de retestes e de relatórios quando for solicitado. A Figura 8
 apresenta um modelo de como pode ser representada a planilha de testes genéricas usada para guiar os testes exploratórios
.

[image: image26.png]Tipo.

Campo

usabi

Seguranga

Navegagio

14Caso
deteste

creem

Tamanho e campo

Ezecuta Itac
doneste Hesultad

ciclo
Vethicar amanho minima, maima ¢ It de Garseteres scehz:

=

Eampo shrate

[Vl campos shaaeios.

creem

Tipodeentada (rmers,
 anumeri,Dats, Hora,ete).

algr tpo deenradados campos.

creems

Espagamento ene caasteres

Vi campos sam = agamerta s o2 CaseereE Evemale
Eny s

CreEms

Viliagio g sampo (CUE G

U .0pg30 0 solgerm par vl o campes.

creems

Campo somente et oy sdtareTs

g campos somenteleu sou sdtveis

creen

[

Vlor et sz campos

creeme

crmEns

[Veriear s sivagia g3 Bars g rlagem m campa s s
oment st

ericar s svave dss mensagens i,

e

e

cruEne

o A
 Veriaropges pacs do sistema,evemplo opes
Vertior padinagiopadrio do sstem;

e

5ol (00RE00 s 0ZATee]

cruEms

Facio visus te Campo

e

o Vieua g Bt

CrEr:

Fadrio Visus g Toone.

cruEnT

e

[Vl Fegrs 3 Negdoio (Futos e Pl stempio: Fgtis
adistrada com supsszo

crens

[t Fegr d Negéoio (Fuos de Secundsros),sempl
Catasto de egisto somnomef istente

e

[V erpretagio d eBios, s sonsiEnea o 300
eisentes e

e
TR

Validr g 0= NegB50 (Pt & Evoeg 0] stampo-Fgitis
jeadasiradono banco

CrvER

Crvene

Crver

crven

crvenr

creens

Garants que o sistema o preserva
4405 natel sp6s operagio

avegadores

i e
Utesr navegadores dobrowser apss nlu, consula, terar o
v e sndo consisténca dos dadas.

creens

tarpelobrowser

R ————— L

um registo 4 adastia na banco.

Figura 4.4: PAT – Checklist
de Testes Genéricos
É importante usar uma ferramenta de controle de mudanças para facilitar a documentação, a geração de relatório e a integração com a equipe de desenvolvimento para uma avaliação do defeito de forma rápida e precisa.
O projeto de teste sendo construído de forma específica necessita de documentação rica em detalhes e atualizada, caso seja possível ter tal artefato como entrada para a elaboração de casos de teste deve ser considerado um custo ligeiramente mais alto na preparação do projeto de teste, porém terá um resultado mais expressivo na execução dos testes.
A última atividade do projeto de teste é a identificação dos cenários de testes. Esta atividade se faz necessária para a criação de ciclos de teste e de regressão. Na fase de execução o lider de teste deve solicitar testes de tudo que foi projetado porém, havendo uma urgência na entrega dos resultados o ciclo pode ser populado contendo apenas os cenários de negócio, cenário este que contém os casos de teste com os principais fluxos e regras de negócio da funcionalidade, por exemplo.

A Figura 9
 representa a fase de Projeto de Teste.

[image: image27.png]Processo Agil de Teste (PAT) <>

Projeto de Teste
o de Proft
Cronsgama do oo LEGENDA
oot o Aot =
oo papsis:
Oocumant b Caso do Usr L R
o casa i Tose . Gerrtedo Toste
dohe T oo Tong
57 Gorain e Pl

LP: Lider de Projeto
Plano do Tesis: PT: Projetista de Teste

EX: Excciitor do Tost.
DE: Desenvolvedor

Plano do Projets;
Cronograma do Projsio;
Documento de Requisitos;

Simbologi

Keapel Rosponsavel
Clasaicar Gonlcar
Conos do

Requisttos por *
complexidada Teste Papel Participante.

e importancia

Figura 4.5: PAT – Projeto de Teste
5.3.5 Preparação
Esta fase consiste nas atividades de criação de suítes de teste e na criação de ciclos de teste. O líder de teste é o responsável por esta fase, ele pode agrupar os cenários e criar suítes de teste que podem ser executadas ou não pelos testadores. Os ciclos de teste são as suítes preparadas para a execução. Esta distinção entre suíte e ciclos de teste fez-se necessária para o melhor aproveitamento e organização dos ciclos de execução.
A Figura 10
representa esta fase.

[image: image28.png]Processo Agil de Teste (PAT)

Preparagdo

Plano o Tost

Plno de TOS6: S5 da Tosto Casos o Tests 0590 GP: Gerente de Projeto

asoe de Tasts Gaosde To%e Eracupdo L5 Ldor dy Projots
BT Projtsa oe Tosts

*® o)

Criar Sule de Criar Ciclo de Execugao de
Teste Execugdo Teste * Papel Responsavel

A oo patcipane

Figura 4.6: PAT – Preparação de Teste
5.3.6 Execução de Teste
A fase de execução refere-se tanto para testes automáticos como a testes manuais. A única atividade dessa fase é a Execução de Teste, nela o testador executa os testes do ciclo populado pelo líder na fase anterior.
Esta é a principal atividade da equipe de teste e deve ser considerada como a mais importante do processo. A seguir a Figura 11
representa a fase.

[image: image29.png]Processo Agil de Teste (PAT)

Execugéo de Teste

Planitha do
Execugdo
=

Plano de Teste:
Projoto do Tosto

x

)
X Atendeu ao Critrio
de Conclusaoe —Sim—-
rmm

Exacutar Toste

Necassdrio

Nao

»

Preparagdo

»

Automatizar? a

=

Finalizagao

LEGENDA

Phpéis:

Gerents de Tests
- Lidor do Tosto
Gerente de Projoto
: Lider de Projeto
rojetistarde Teste:
Executor de Teste
 Dosanvolvedor

Simbologia:

* Papel Responsavel

oK Papel Participanto

Figura 4.3: PAT – Execução de Teste
5.3.7 Automação

Nesta fase é apresentado o papel do desenvolvedor. Este desenvolvedor não deve ser confundido com o desenvolvedor da equipe de desenvolvimento, ele é responsável pela criação de scripts de teste para execução de testes automáticos. Apesar de ser interessante, o desenvolvedor não necessariamente entende da arquitetura do sistema a ser automatizado
.

O gerente de teste executa nova avaliação com base no cronograma de teste e na planilha de execução. Caso a equipe esteja atrasada ou os testes iniciais obtiveram
muitas falhas, o gerente pode abolir a criação de scripts de teste para dado requisito.

O principal papel desta fase é o desenvolvedor que vai traduzir os casos de teste em scripts de automação.

A Figura 12
representa a fase.

[image: image30.png]Processo Agil de Teste (PAT)

Automagéo

Plano de Projeto.
N Plano do Toste
Planiiha do Execugao Cronograma de Teste
Planilha do Projoto do toste

. B

GP: Gerente do Projeto,
LP; Lider do Projdto

i s | Do da Scrbscocasos BT Projotist oo Tosto
oneirama e Requsios pis EX. Exautor fo st
o Avtaos BE bovervalvedor

BB M
£ ecires et Elaborar
e s - B \
e wase | sopele Propvacio | ol v
e st

automatizadas

Figura 4.6: PAT - Automação
5.3.8 Finalização
Fase consiste na atividade de levantar lições aprendidas objetivando a melhoria contínua do processo. Figura 13
exemplifica a fase.

 [image: image31.png]Processo Agil de Teste (PAT) <>

Finalizagéo

LP: Lider de Projeto
P Projotista do Toste -

Figura 4.8: PAT - Finalização
5.3.9 Acompanhamento e Controle

Esta fase ocorre em paralelo as outras. Existe para garantir que as demais fases trabalhem de forma correta.

A atividade de acompanhar status do projeto é necessária para o gerente de teste saber se o que foi planejado está sendo cumprido e realizar ajustes na sua estimativa em teste.

A atividade de gerar relatório existe para suprir a necessidade do cliente, gerente de projeto e gerente de teste em saber o status do produto objetivando estimar esforço para futuras iterações. O gerente de projeto necessita saber se o produto encontra-se robusto para estimar esforço para correção ou para desenvolvimento de outras funcionalidades, caso o sistema encontre vários pontos de melhoria o gerente deve alocar recursos para corrigir os registros de defeito abertos. O gerente de teste necessita de relatórios para estimar novos ciclos de execução de teste, planejando execução de teste em outros requisitos ou criando ciclos de regressão.

[image: image32.png]Processo Agil de Teste (PAT) @

Acompanhamento e Controle

LEGENDA

Figura 4.9: PAT – Acompanhamento e controle
5.4 Vantagens e Desvantagens

O PAT não tem obrigatoriedade de documentos formais, apenas de documentação mínima para gerar relatórios, estimar esforço e para execução de retestes. Exemplificando o que foi dito é o fato que pode ser considerado como plano de projeto de teste a ata de reunião onde foi estabelecido todo o escopo da equipe de teste. E-mails, e papéis assinados pelos colaboradores podem ser usados como artefato de entrada para uma atividade. Esta agilidade torna o processo menos burocrático
, trazendo um retorno significativo mais rapidamente. Não existe uma documentação padrão para a maioria dos artefatos do processo
.
O PAT utiliza a flexibilidade das metodologias ágeis, bem como o processo iterativo e é fortemente baseado no feedback, se adaptando e moldando a cada iteração. Ele também dá prioridade a pessoas e não ao processo visto que um de seus focos são os testes exploratórios e para serem bem executados necessitam de pessoas bem treinadas.
5.5 Resumo do Capítulo
Este capítulo propôs e detalhou cada fase de um processo de teste que utiliza testes exploratórios e tem características ágeis. Apresentou um guia de cenários de testes de sistema que pode ser utilizado para várias funcionalidades de vários projetos. E com base nesse guia montou uma planilha de execução que contém informações relevantes para analisar a situação e acompanhar a evolução de um sistema. Além de fornecer dados para estimativas de esforço. Foi explanado neste capitulo um metamodelo para descrição de processo de software, o SPEM, que foi utilizado para descrever o processo proposto bem como suas fases e atividades.
 SEQ Figura \h \r 0

 SEQ Tabela \h \r 0

 SEQ Equação \h \r 0
Capítulo

6 SEQ Figura \h \r 0

 SEQ Tabela \h \r 0

 SEQ Equação \h \r 0

Considerações Finais e Trabalhos Futuros
Este trabalho de graduação abordou a importância e os ganhos obtidos quando os produtos são testados antes de chegarem aos clientes. Vários conceitos e informações relevantes sobre teste de software foram apresentados.
O trabalho procurou desenvolver um processo de teste para suprir uma necessidade de mercado. Foram utilizadas estratégias ágeis. Dentre as estratégias de testes existentes, foram abordadas a forma exploratória e baseada em caso de uso.
Foi feito uma modelagem do processo com o auxílio do SPEM para descrever as fases e as atividades do processo, sua interação com os colaboradores e os artefatos de entrada e gerados.

O trabalho traz uma boa visão sobre testes de software. O processo garante que testes básicos são realizados de forma rápida, ajuda a exploração, possibilita uma melhor distribuição dos recursos e o aumento na detecção de erros. Um guia de cenários de testes que abrange testes de campo, negócio, usabilidade, segurança foi construído. O guia desenvolvido é bem genérico e pode ser usado em vários projetos. Uma planilha de execução que instancia o guia de cenários de testes foi concebida. A planilha fornece informações básicas para a medição e análise dos testes.

O processo abordado pode ser adaptado e moldado para ser empregado em qualquer organização. Ele torna a atividade de teste menos informais. Garante que testes mínimos são realizados e preserva as vantagens da utilização da técnica que são: resultados rápidos, necessidade de pouco tempo e pouco recurso. Quando é necessário, ele também trabalha de forma a encontrar o maior número de erros possível, mesmo que isto signifique aumento no esforço.
6.1 Trabalhos Relacionados

Um processo de Teste semelhante ao exposto neste trabalho foi aplicado em uma empresa no início do ano de 2008. Nesta seção serão descritos o ambiente, o processo, análise de resultados, benefícios para a organização e a análise crítica do processo pelos usuários.

6.1.1 Ambiente

A organização onde o processo foi aplicado é uma empresa nacional de Tecnologia da Informação. Os processos possuem certificado ISO 9001:2000 e o processo de desenvolvimento também é compatível com o CMMI Nível 2.

O processo de teste ocorre em paralelo ao processo de desenvolvimento e é um processo maduro e é independente.

6.1.2 Descrição do Processo

Inicialmente o projeto foi estruturado em Fases e Pacotes e os requisitos distribuídos entre elas. Foi projetado duas fases a primeira com três pacotes e a segunda com 4 pacotes. Cada pacote tem um conjunto de requisitos.
É importante salientar que os registros de defeito encontrados foram reportados com o auxilio da ferramenta de código aberto Mantis BugTracking System. [16]

A equipe de teste estudada é composta de 8 pessoas que eram distribuídas de acordo com a demanda dos projetos. Todos, em algum momento, executaram e projetaram casos de teste no sistema.

Com base nas estórias de uso deu-se início ao desenvolvimento do software e ao início das atividades com a elaboração do projeto de teste com casos de testes genéricos, baseando-se no foco da estória.

Os primeiros requisitos foram simples, o fato de existirem é apenas para dar suporte aos requisitos principais do sistema logo, não foi necessário detalhar seu funcionamento e estórias foram suficientes para descrever sua importância. Logo, foi usada a planilha de testes genéricos para a execução de teste nesses requisitos.

A equipe de teste encontrou nesta fase inicial 166 registros de defeitos sendo 70 de negocio apenas executando testes exploratórios, porém consultando a equipe de análise e os principais fluxos com base na planilha de testes genéricos.

A fase 2 tiveram menos requisitos, mas com maior importância para o sistema. Alguns requisitos foram homologados através de documentos de caso de uso, que possui um detalhamento maior da funcionalidade se comparado as estórias. A equipe de teste não projetou casos de teste específicos para os requisitos, houve um atraso na entrega e foi solicitado que a equipe a execução de caso de teste genérico. O resultado dos testes foram satisfatórios, mesmo não projetando caso de teste específico foram encontrados 156 registros de defeitos sendo 79 registros de negócio, números significativos para os principais requisitos do sistema.

O cliente encontrou 12 erros no sistema. Destes 6 foram erros encontrados por teste que foi implementado e testado por teste mas que por um erro no processo de desenvolvimento escapou para o cliente e 6 foram erros que a equipe de teste não encontrou. Este número foi aceitável pela baixa gravidade dos erros e por ter sido em fluxos de difícil previsão.

Para este projeto não foi utilizado automação.

6.1.3 Benefícios do Processo para Organização

Foi considerado um caso de sucesso. Vários erros foram encontrados e reportados antes de chegar ao cliente. A utilização do processo foi bem vista na organização, inclusive pelos desenvolvedores. Utilizando o processo tradicional da empresa, a equipe de teste não iria participar deste projeto, pois a estimativa do esforço de teste era alto e ultrapassava o orçamento do projeto. Com a utilização deste processo
 viu-se que o custo de teste pode ser baixo, tornando o custo-benefício atrativo para vários projetos, inclusive de pequeno e médio porte que antes não poderiam usar os recursos de teste.

6.2 Trabalhos Futuros

Ao elaborar este trabalho surgiu a necessidade de se utilizar uma ferramenta específica para armazenamento, controle e gerenciamento de caso de teste, com escopo em geração de relatório e em automação. Isto aumentaria a velocidade com que os testes são executados e a coleta de métricas de teste.

Deve ser adicionado ao escopo do processo de teste proposto neste trabalho, testes de suporte, carga, volume, estresse, configuração, instalação e integridade. Além desses é imprescindível que versões futuras aumentem o escopo dos testes de segurança.

Fornecer templates para todos os artefatos do processo. Por se tratar de um processo ágil, tais artefatos não
necessitam seguir fielmente o template, porém tal padronização torna o processo mais robusto e mais organizados
.
6.3 Dificuldades Encontradas
As maiores dificuldades foram na utilização do processo descrito na seção acima, trabalhos relacionados, na empresa. Por a empresa possuir um processo de teste maduro, houve a resistência em se tentar algo com características ágeis.
Na elaboração do processo, a principio, não tínhamos conhecimento em como modelar e apresentar esta modelagem. Depois de um estudo foi proposto o SPEM que foi aceito pelo orientador. A ferramenta a qual foi criado o processo, Microsoft Office Visio também foi um desafio para seu entendimento. Tivemos que pensar em uma forma de documentar os testes exploratórios, pois no início os testes exploratórios criavam registros de defeitos, mas não se tinha registros de quais funcionalidades o testador passou, com isso foi idealizado um checklist para guiar os testes exploratórios.
6.4 Contribuição
Criou-se uma modelagem de um processo de teste com o auxílio do SPEM para descrever as fases e as atividades, sua interação com os colaboradores e os artefatos de entrada e gerados.

O trabalho trouxe uma boa visão sobre testes de software.
Um guia de cenários de testes que abrange testes de campo, negócio, usabilidade, segurança foi construído.
Conceito de teste em par com sua particularidade no processo foi apresentado.
Apresentação de um processo que pode ser instanciado em uma empresa.
6.5 Resumo do Capítulo
Este capítulo relata a o resultado de um processo com características ágeis em uma empresa. Foi descrito o ambiente, o processo, análise dos resultados, benefícios para a organização e a análise crítica do processo pelos usuários.

Bibliografia
[1] POL M., et al. Software Testing - A Guide to the TMap, ed. Approach - Addison-Wesley, 2006. 592p

[2] JONES, T.Capers. Patterns of Software System Failure and Success,,ed. Intl Thomson Computer Pr, 1995. 292p.

[3] RIOS, Emerson; MOREIRA, Trayahú, Teste De Software, 2 ed. Alta Books, 2006. 768p

[4] SCHWABER, Ken; Agile Project Management with Scrum, ed. Microsoft Press, 2004. 163p

[5] ARAUJO, Rodrigo. Construção Gráfica de Processos de Desenvolvimento e Geração de uma Ontologia de Processo de Software. 2005. 73f. Trabalho de Conclusão de Curso (Graduação) – Curso de Ciência da Computação, Centro de Informática UFPE, Recife, 2005. Disponível em: < http://www.cin.ufpe.br/~tg/2005-1/rma.pdf>. Acesso em: mar. 2008.
[6] OMG - Software Process Engineering Metamodel Specification versão 1.1, Disponível em: http://www.omg.org/technology/documents/formal/spem.htm Acesso em: Março de 2008 OMG - Software Process Engineering Metamodel Specification versão 1.1, Disponível em: http://www.omg.org/technology/documents/formal/spem.htm Acesso em: Março de 2008

[7] Java Magazine edição 33, Desenvolvimento Ágil “Um Guia sobre os Processos Ágeis de Desenvolvimento”
[8] Pressman, R. “Engenharia de Software” McGraw-Hill, (2001)
[9] FILHO, Manoel. Um estudo comparativo entre SPEM e BPMN como padrões para modelagem de Processos de Software. 2007. 91f. Trabalho de Conclusão de Curso (Graduação) – Curso de Ciência da Computação, Centro de Informática UFPE, Recife, 2007. Disponível em: < http://www.cin.ufpe.br/~tg/2007-1/mgcasf.pdf>. Acesso em: mar. 2008

[10] GENVIGIR, C. E., SANT’ANNA, N., FILHO, B.F.L. Modelagem de Processos de Software Através do SPEM - Software Process Engineering Metamodel - Conceitos e Aplicação. In: III WORCAP 2003
[11] GENVIGIR, C. E., SANT’ANNA, N., FILHO, B.F.L. Modelagem de Processos de Software Através do SPEM - Software Process Engineering Metamodel -Conceitos e Aplicação.

[12] JACINTO, Shirley. Modelagem dos processos de Gerenciamento de Tempo do PMBok utilizando SPEM e BPMN. 2007. 93f. Trabalho de Conclusão de Curso (Graduação) – Curso de Ciência da Computação, Centro de Informática UFPE, Recife, 2007. Disponível em: < http://www.cin.ufpe.br/~tg/2007-2/ssj.doc>. Acesso em: mar. 2008
[13] MARÇAL, Ana; FREITAS, Bruno. Estendendo o SCRUM segundo as Áreas de Processo de Gerenciamento de Projetos do CMMI, Publicado em: CLEI 2007: XXXIII Conferencia Latinoamericana de Informática, San Jose, Costa Rica

[14] MENDES, Rodrigo. MODELAGEM ODELAGEM E AVALIAÇÃO DO CMMI NO SPEM PARA DEFINIÇÃO DE UM META-PROCESSO DE SOFTWARE. 2004. 83f. Trabalho de Conclusão de Curso (Graduação) – Curso de Ciência da Computação, Centro de Informática UFPE, Recife, 2004. Disponível em: < http://www.cin.ufpe.br/~tg/2004-2/rcm2.pdf>. Acesso em: mar. 2008.

[15] TELES, Vinicius, Extreme Programming, ed. Novatec, 2004. 320p
[16] Mantis BugTracking System, Disponível em: http://www.mantisbt.org/ Acesso em: julho de 2008

Início da Implementação

Início dos Testes

Correções Completadas

Verificação

Validação

DEFINIÇÃO DOS REQUISITOS DO SOFTWARE

CONSTRUÇÃO DO SOFTWARE

INSTALAÇÃO DO SOFTWARE

OPERAÇÃO E MANUTENÇÃO DO SOFTWARE

PASSO 9

Instalação do Software

PASSO 8

Informação dos Resultados dos Testes

PASSO 7

Teste de Aceitação

PASSO 4

Tete do Desenho do Software

PASSO 3

Testes dos Requerimentos do Software

PASSO 2

Desenvolvimento do Plano de Testes

PASSO 5

Teste da Construção do Software

PASSO 6

Execução e Registro dos Testes

PASSO 1

Acesso ao Plano de Desenvolv. e Situação

PASSO 11

Avaliação da Eficácia dos Testes

PASSO 10

Teste das MudnçasMudanças do Software

Figura � SEQ Figura * ARABIC �4�2.3: O conceito “V” de testes de software

�m

�“eficaz” * não vi menção a uma avaliação

�“eficaz” * não vi menção a uma avaliação

�‘S’

�Referência [1]

�Referência [2]

�Referência [3]

�Referência [4]

�[REF]

�Referência [5]

�Uma metodologia?

�Vc diz isso? Qual a base?

�Qual a base?

�

Processo diferente de metodologia

�É preciso padronizar. Você tem que rever estes conceitos no seu trabalho.

�Metodologia? / contrinuição

�Cuidado para não generalizar!

�[REF’s] Há alguns anos não se encontrava relatos sobre a atividade de teste na literatura. Larre: “retirei estah frase pois a minha referencia é uma pagina na internet não confiavel”

�Sessão

�Cuidado com as frases fortes! Com Base em que diz isso?

�[REF’s]

�() ou itálico <- padronização

�itálico

�F

�Quem disse isso?

�itálico

�m

�TOMOU POR BASE O QUÊ? RATIONAL CLEARQUEST? Larré: “Professora, eu não abordo ferramenta de registro de defeito no processo para com isso a empresa que for instaniá-lo utilizar a que mais se adapte a ela. No capitulo de trabalho relacionado adicionei umas linhas falando que os defeitos foram registrados utilizando o Mantis”

�As atividades são complementares.

�() ou itálico <- padronização

�itálico

�F

�s

�ão

�Pq? E o risco associado?

�da

�Vale a pena explicitar o significado.

�,

�Ñ existem papéis que são incompatíveis? Não é uma equipe independente? Mesmo assim fica sob a Supervisao do GP? Larré: “Professora, não observei em qual momento relato que o gerente de projeto tem que gerenciar a equipe de teste, relato sim que ele deve gerenciar a equipe de desenvolvimento. Não fiz alteração no texto por não entender seu comentário.”

�Existe o líder de Projeto. Larré: “existe o lider de projeto e o líder de teste, são dois papeis diferentes em equipes diferentes.”

�?

�|

�Pts.datsus.gov.br|procesos/papaeis/gerente.htm

�ar

�corte na seguinte frase desnecessária “de deste sempre”

�de

�independente de

�F e corte na palavra seguinte

�Desenvolvimento do

�o

�x

�ç

�F maiúsculo e corte na palavra seguinte

�A fase é composta apenas por uma atividade – elaborar plano de teste. Larré : “não modifiquei o texto com base nesse comentário. Não o entendi.”

�Definido

�Cote em ‘chegasse’

�acento

�ao desenvolvimento

�texto sublinhado sem observaçoes

�dependendo

�F maiúsculo e corte na palavra seguinte

�É contribuição? Larré: “sim, adicionado texto em contribuiçoes”

�Checlist

�Este texto tem um comentário falando da ligação de cenário de teste com tipo de teste. Apesar de não ter entendido muito bem o seu comentário, achei melhor retirar o motivo do seu omentario e alterar o texto.

�F maiúsculo e retirada da palavra seguinte.

�F maiúsculo e retirada da palavra seguinte

�F maiúsculo e adição de ‘A seguir’

�Aqui estava localizado um parágrafo que ontinha um comentário de uma pesquisa informal que fiz. A senhora solicitou referencia, como não as encontrei achei melhor retirar o parágrafo.

�obtiveram

�F maiúsculo e retirada da palavra seguinte

�F maiúsculo e retirada da palavra seguinte

�Qual a finalidade de gerar relatrios?

�Texto original falava de ‘pobre em documentação’ Cristine: Cuidado. Não confundir agilidade com infomalidade

�Onde está a definição de que existe agilidade no processo? Quais são as técnicas utilizadas?

�CAPITULO SOBRE PROVA DE CONCEITO FOI ALTERADO PARA TRABALHOS RELACIONADOS

�Não entendi este frase. É melhor refazer.

�Não confundir a simplicidade a falta de formalidade.

�Diciculdades encontradas e contribuição.

