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Resumo 

Os sistemas de recuperação de imagens baseada em conteúdo (CBIR – Content-based Image 

Retrieval) consideram o conteúdo visual de uma imagem de consulta como chave de busca para 

retornar outras imagens cujos conteúdos são similares à imagem consultada. Tal técnica tem 

como objetivo a extração de informações das imagens que possam caracterizar o seu conteúdo 

adequadamente. Este trabalho está direcionado na geração de vetores de características 

considerando um banco de imagens médicas de imuno-histoquímica a fim de propiciar consultas 

CBIR. 

A textura é o conteúdo visual utilizado para representar as imagens neste trabalho. Para extrair a 

informação de textura, a transformada wavelet é aplicada às imagens, possibilitando sua 

representação e localização espacial. Descritores estatísticos são utilizados nos sub-espaços 

wavelets gerados para compor os vetores de características das imagens de imuno-histoquímica. 

Por fim, os resultados dos agrupamentos desses vetores são analisados através do algoritmo k-

médias e comparados com a interpretação semântica dos usuários realizada através de consultas a 

um ambiente web desenvolvido. 
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Abstract 

Content-based image retrieval (CBIR) considers the visual content of a query image as a key to 

search for other images whose contents are similar to the consulted image. The objective of this 

technique is to extract information of the images to characterize its content adequately. This work 

address the generation of feature vectors for immunohistochemistry medical image databases in 

order to propitiate CBIR consultations. 

Texture is the visual content used to represent the images in this work. To extract texture 

information, wavelet transform is applied to the images. This allow the representation and space 

localization of the texture. Statistics descriptors are used in the wavelets sub-spaces generated to 

compose the feature vectors of the immunohistochemistry images. Finally, the results of grouping 

these vectors are analyzed through the k-means clustering algorithm and compared with the 

semantics interpretation of the users through consultations in a web environment developed.   
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Introdução 

Nos últimos anos, o interesse no potencial das imagens digitais aumentou enormemente 
devido, em parte, ao rápido crescimento do uso de imagens na web. Usuários estão explorando as 
oportunidades oferecidas pela habilidade de acesso e liberdade de manipular imagens 
armazenadas remotamente de várias maneiras. Entretanto, o processo de localizar uma imagem 
desejada dentro de uma base de dados grande e variada pode ser uma fonte de frustração 
considerável. Os problemas de recuperação de imagens estão tornando-se extensamente 
reconhecidos, e a busca por soluções uma área cada vez mais ativa para pesquisa e 
desenvolvimento [1]. 

Os problemas com métodos tradicionais de indexação de imagens conduziram à ascensão 
de novas técnicas para recuperar imagens baseadas em características derivadas da própria 
imagem. CBIR – Content-based Image Retrieval (Recuperação de imagens baseada em conteúdo) 
é uma aplicação que usa conteúdo visual, através de diferentes técnicas, para procurar imagens a 
partir de bases de dados com larga escala de imagens de acordo com o interesse do usuário. 

A medicina tem sido uma das áreas que mais tem se beneficiado da interação com a 
computação. Atualmente, existe uma demanda muito grande para armazenar e consultar dados 
complexos, por exemplo, imagens coletadas em exames médicos, tais como radiografia, 
tomografia, seqüências de DNA, etc. Dentro deste contexto, a recuperação de imagens em bancos 
de dados multimídia, tem sido de grande funcionalidade para a medicina e a técnica CBIR tem se 
mostrado uma opção eficiente para extração de informações de imagens médicas, podendo 
caracterizar adequadamente os seus conteúdos. 

Imuno-histoquímica  é a aplicação de métodos e técnicas imunológicas ao estudo de células 
e tecidos e consiste na detecção de moléculas (antígenos) teciduais. Essa detecção é feita por 
meio de um anticorpo que, ao entrar em contato com um determinado antígeno, libera uma 
substância cromógena, ou seja, uma substância que marca o antígeno  com uma determinada cor 
[2]. 

A imuno-histoquímica pode ser utilizada para caracterização do local de origem de 
neoplasias malignas através do estudo imuno-histoquímico de material de metástases, 
identificação de agentes infecciosos, caracterização de determinadas proliferações celulares como 
benignas ou malignas, avaliações de tumores de difícil diferenciação, etc.  

Assim, uma técnica CBIR para análise de imagens de imuno-histoquímica utilizando 
descritores estatísticos de texturas é a proposta deste trabalho, a fim de auxiliar os patologistas na 
recuperação das imagens. 

 

Capítulo 
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Uma alternativa para representação do conteúdo de imagens é utilizar o domínio de 
transformadas, onde a vantagem esperada de uma transformação é a efetiva caracterização de 
propriedades da imagem. 

O uso da transformada wavelet tem se mostrado uma solução significativa no processo de 
extração de caracteísticas, em especial da textura. Isto porque a transformada wavelet representa 
o sinal em diferentes bandas de freqüência e em diferentes escalas, sendo possível a 
representação e localização espacial da textura. As wavelets foram aplicadas com sucesso na 
análise, classificação, caracterização e recuperação de imagens.  

Neste contexto, o objetivo deste trabalho foi desenvolver uma técnica para a extração de 
características de imagens médicas de imuno-histoquímica, para recuperação de imagens por 
conteúdo, através da análise multiresolução por wavelets. 

Essa técnica, implicou na aplicação de medidas estatísticas aos sub-espaços wavelets para 
extração e geração dos vetores de características que identifiquem as imagens, a fim de analisar 
os  resultados obtidos pelo agrupamento de vetores semelhantes. 

1.1 Organização do Trabalho 
Este trabalho está organizado em 6 capítulos. Este primeiro Capítulo apresenta as 

considerações iniciais, a motivação para o desenvolvimento objetivos do trabalho. 
O Capítulo 2 introduz o conceito de CBIR e extração de características, expõe os  principais 

atributos utilizados para descrever o conteúdo das imagens, com ênfase especial no atributo de 
textura, no qual está baseado este trabalho e mostra as principais abordagens estatísticas para 
descrever textura. 

O Capítulo 3 mostra conceitos relacionados à teoria das wavelets, aplicação da 
transformada wavelet na caracterização de imagens e à extração de características. 

No Capítulo 4, são apresentadas algumas técnicas de agrupamento e a definição de                              
métricas de distâncias para determinar o grau de similaridade entre imagens. 

O Capítulo 5 descreve os métodos utilizados para extração de características das imagens e 
analisa os resultados dos agrupamentos obtidos. 

Finalmente as Conclusões, Contribuições e propostas de possíveis trabalhos futuros à esta 
monografia são apresentadas no Capítulo 6. 
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2  
 

Recuperação de Imagens Baseada em 
Conteúdo - CBIR 

2.1 Introdução 
Recuperação de Imagens Baseada em Conteúdo (Content-Based Image Retrieval – CBIR) é 

uma aplicação que usa conteúdo visual para procurar imagens a partir de bases de dados com 
larga escala de imagens de acordo com o interesse do usuário e tem sido uma área de pesquisa 
explorada desde os anos 90 [3]. Tal aplicação, surgiu da necessidade de se estender as técnicas 
tradicionais de recuperação de imagens em bancos de dados multimídia, incluindo também 
informações visuais das imagens que podem ser obtidas através de um processo automático. O 
objetivo principal da abordagem CBIR consiste em extrair informações das imagens que possam 
caracterizar adequadamente o seu conteúdo [4].  

O termo conteúdo significa referência a cores, formas, texturas ou qualquer outra 
informação que possa ser derivada a partir da própria imagem para representá-la. Os conteúdos 
visuais da imagem são extraídos e descritos por um vetor multidimensional conhecido como 
“vetor de características”, que se torna um perfil descritivo da imagem, a partir do qual esta pode 
ser identificada como uma imagem. Para recuperar as imagens, usuários fornecem ao sistema de 
recuperação exemplos de imagens. As similaridades ou distâncias entre os vetores de 
características do exemplo e aqueles das imagens na base de dados são calculadas e a recuperação 
é executada com a ajuda de um esquema de índices que fornece um eficiente modo de buscar 
imagens na base de dados [3]. 

Diferentes implementações de CBIR fazem uso de diferentes tipos de consulta ao usuário, 
tais como a consulta por exemplo visual (query by visual example – QBVE) [4] e a recuperação 
semântica [6]. A consulta por exemplo visual envolve o fornecimento ao sistema CBIR de um 
exemplo de imagem na qual será baseada a busca das outras imagens a serem recuperadas. Os 
algoritmos de busca podem variar dependendo da aplicação, mas as imagens recuperadas devem 
compartilhar elementos em comum com o exemplo provido. Opções para o exemplo de imagem 
provido ao sistema incluem uma imagem pré-existente fornecida pelo usuário ou escolhida em 
um conjunto aleatório e também os usuários podem desenhar uma aproximação da imagem que 
estão procurando. Essa técnica de consulta por exemplo remove as dificuldades que aparecem ao 
tentar descrever imagens com palavras. 

Capítulo 
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A técnica de recuperação semântica seria o sistema CBIR ideal do ponto de vista do 
usuário. Nessa técnica, o usuário faz um pedido como “encontre imagens de cães” ou  “ache 
retratos do presidente Lula”. Esse tipo de tarefa  é muito difícil para computadores executarem, 
pois imagens de cães da raças chihuahuas e dinamarqueses, por exemplo, são bastante diferentes. 
Sistemas CBIR atuais, geralmente, fazem uso de características de baixo nível como textura, cor 
ou forma, embora alguns sistemas tomem vantagem de características de alto nível  muito 
comuns como faces usando-as para sistema de reconhecimento facial [7]. 

Outras técnicas incluem especificar as proporções das cores desejadas (por exemplo “30% 
verde, 70% vermelho”) e procurar por imagens que contêm um objeto dado em uma imagem de 
consulta [7]. Para gerar resultados mais significativos, sistemas CBIR podem também fazer uso 
de feedback de relevância do usuário [8] para modificar o processo de recuperação. O usuário 
refina progressivamente os resultados da busca marcando as imagens recuperadas como 
"relevantes", "não relevantes", ou “neutras”, então repete a busca com a nova informação. 

O interesse em CBIR está crescendo por causa das limitações herdadas dos sistemas 
baseados em metadados como também a larga escala de possíveis usos para recuperação eficiente 
de imagens. A informação textual sobre imagens pode ser facilmente procurada usando  
tecnologia existente, mas requer que seres humanos descrevam pessoalmente cada imagem na 
base de dados. Essa descrição textual não é prática para base de dados muito grandes ou para 
imagens que são geradas automaticamente. Também é possível que imagens que usem diferentes 
sinônimos em suas descrições não sejam recuperadas. 

O sistema de consulta pelo conteúdo da imagem da IBM conhecido como QBIC (Query-
By-Image-Content) [9-10] é um dos mais poderosos sistemas de consulta a base de dados de 
imagens. Foi desenvolvido para consultar uma grande base de dados de imagens on-line usando o 
conteúdo da imagem como a base das consultas. Exemplos dos conteúdos usados pelo QBIC 
incluem cor, textura e forma dos objetos e regiões da imagem. Entre os potenciais usos de CBIR 
podemos citar coleções de arte, arquivos de fotografias, imagens médicas, entre outros. 

2.2 Atributos das imagens  
Nos sistemas de recuperação de imagens, alguns dos atributos mais utilizados para efetuar 

descrições sobre o conteúdo das imagens são cor, forma e textura. A recuperação da imagem está 
baseada na similaridade das características derivadas destes atributos. 

2.2.1 Cor 

A cor é um dos atributos mais utilizados pelos seres humanos para reconhecimento e 
discriminação visual. A aparência de uma cor em objetos do mundo real geralmente é alterada 
pela textura da superfície, pela iluminação e sombra de outros objetos, e as condições de 
observação e captura. Examinar imagens baseadas nas cores que elas contêm é uma das técnicas 
mais extensamente utilizadas, pois as cores presentes em uma imagem possuem um papel 
significativo na indexação e recuperação da mesma. Existem diferentes representações de cores 
incluindo desde o traficional modelo RGB (red, green, blue), o mais simples dos modelos que 
mapeia diretamente as características físicas do dispositivo de exibição; até o HSI (hue, 
saturation, intensity) que reflete mais precisamente o modelo de cores para a percepção humana 
[11].  

Muitos trabalhos recentes de extração de características baseadas em distribuição de cores 
estão concentrados nos histogramas de cor. Swain e Ballard [12] incluíram a indexação da cor 
usando intersecção de histogramas. Já Bueno [13] monta uma estrutura baseada em histogramas 
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de dimensão variável, nomeada histogramas métricos, sendo utilizados na recuperação de 
imagens similares. Os histogramas de cor são invariantes à translação e rotação das imagens, 
sendo que, com a normalização dos histogramas, obtém-se também a invariância à escala. 

Mudando parâmetros e limiares, muitas operações podem ser feitas com os histogramas de 
cor. A Figura 2.(a), por exemplo, representa o histograma da imagem original (Figura 1.(a)). Ao 
se aplicar uma operação de alongamento (stretch) sobre a imagem, o histograma ficaria como na 
Figura 2.(b), tendo como resultado uma imagem melhor definida como mostra a Figura 1.(b). 
 

  
(a) (b) 
Figura 1. (a) Imagem original e (b) imagem saturada  

 
  

  
(a) (b) 

Figura 2. (a) Histograma da imagem original e (b) histograma da imagem saturada  
 

Existem diversas dificuldades com a recuperação através de histogramas, relacionadas com 
a grande quantidade de dimensões dos histogramas de cores, e com o uso de histogramas para 
localizar espacialmente diversos tipos de características, onde os histogramas de cor não indicam 
a localização espacial dos pixels na imagem. Além disso, se a imagem contém um número alto de 
cores, então o vetor de características será maior e a indexação de vetores com essa dimensão 
torna-se problemática. Entre os sistemas comerciais populares que utilizam os histogramas de 
cores em sistemas de recuperação de imagens por conteúdo podemos citar o QBIC [10-11], 
Virage [14], VisualSEEK [15], entre outros. 
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2.2.2 Forma 

As formas de um objeto são características muito eficientes para a identificação do mesmo. 
Estas características podem ser descritas através da forma global do objeto, como a área, o seu 
alongamento em relação a um eixo, a orientação em relação a um eixo, ou através dos elementos 
locais, como os limites e contornos, pontos característicos, etc [16]. 

Em sistemas CBIR, o atributo forma é a abordagem que mostra maior dificuldade, 
especialmente pelo fato de ter que segmentar e conhecer o tamanho dos objetos contidos na 
imagem. Em aplicações médicas, por exemplo, a forma e tamanho dos tumores é de muita 
importância na hora de classificá-los como malignos ou benignos. Segundo Theodoridis [17], 
tumores com bordas irregulares têm uma alta probabilidade de serem malignos e aqueles que 
mostram bordas regulares geralmente são benignos. 

Theodoridis [17] mostra também que existem duas abordagens pelas quais se pode obter a 
caracterização da imagem pela forma. Uma é desenvolver técnicas que transmitem uma descrição 
total da borda do objeto através de coeficientes de Fourier [18] e a outra é utilizar qualidades que 
descrevam as características morfológicas da região usando número de quinas na borda. Nessa 
abordagem estão as características baseadas em momentos. O trabalho recente de [29] envolve 
essa última abordagem. 

Costa e Cesar [20] apresentam técnicas de análise e classificação de formas onde o 
processo de extração de características de formas é definido com base em três tarefas: (a) 
organizar e visualizar as características; (b) extrair características; e (c) mensurar as 
características extraídas dos objetos. Na Figura 3, apresentam-se alguns exemplos de forma como 
resultado do trabalho de [20].  
 

 
 

Figura 3. Formas de imagens [20] 
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2.2.3 Textura 

Apesar de não haver uma definição estrita do conceito de textura de imagem, os autores 
concordam em entendê-la como as mudanças na intensidade da imagem que formam 
determinados padrões repetitivos [21]. Esses padrões podem ser o resultado de propriedades 
físicas da superfície do objeto como rugosidade, ou ser o resultado de diferenças de reflexão tal 
como a cor na superfície. 

A textura refere-se a um padrão visual que tem algumas propriedades de homogeneidade 
que não resultam simplesmente de uma cor ou intensidade. Então, podemos considerar, de forma 
genérica, que texturas são padrões visuais complexos compostos por entidades ou sub-padrões 
que apresentam propriedades características (brilho, uniformidade, densidade, dureza, 
linearidade, frequência, fase, direcionalidade, suavidade,  granulação, aleatoriedade, grossura, 
etc) da textura como um todo [22]. Gonzalez [11], descreve a textura por medidas que 
quantificam suas propriedades rugosidade e regularidade. 

Embora seja fácil, para as pessoas, o reconhecimento de textura, isto não acontece com 
procedimentos automáticos onde esta tarefa, às vezes, precisa de técnicas computacionais 
complexas. A extração de características a partir da textura é considerada como um descritor 
importante para imagens naturais, sendo muito útil para sistemas CBIR, pois a grande maioria de 
superfícies naturais exibem texturas. Além disso, é facilmente perceptível pela visão humana e 
representa uma fonte de informação visual muito rica. A Figura 4, mostra alguns exemplos de 
imagens com textura. 

 

   
 

Figura 4. Exemplos de texturas 
 

De acordo com Traina [23], a análise de textura tem por objetivo estabelecer o 
relacionamento  de vizinhança dos elementos de textura e seu posicionamento em relação aos 
demais (conectividade), o número de elementos por unidade espacial (densidade) e a sua 
regularidade (homogeneidade). Geralmente, a análise de textura é utilizada para:  
 

• Segmentação: divisão de uma imagem em regiões com mesmo perfil textural; 
• Descrição: extração de características baseada na quantificação de seu conteúdo de textura 

 para discriminação entre classes de objetos; 
• Classificação: rotulação de uma região com determinada textura com base em exemplos 

de texturas conhecidas; 
• Forma: empregar a informação de textura para derivar a geometria de uma superfície 

tridimensional; 
• Réplica: descrever uma textura visando sua síntese. 

 
Aplicações práticas e científicas do uso de textura podem ser encontradas em áreas como 

computação gráfica, processamento de imagens e reconhecimento de padrões. Além disso, 
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existem pesquisas, em processamento de imagens, visando a procura de algoritmos que gerem 
textura automaticamente. Mello [24] cita que essa síntese de texturas procura definir um padrão 
da textura e reproduzi-lo. 

Segundo Gonzalez [11], as principais abordagens utilizadas para descrever texturas podem 
ser divididas em Estatísticas, Estruturais e Espectrais. Para Sonka [25], a abordagem estatística é 
a que tem sido mais amplamente utilizada, gerando resultados satisfatórios com um custo 
computacional reduzido. 

As abordagens estatísticas (momentos do histograma, matriz de co-ocorrência de níveis de 
cinza [26], etc.) descrevem a textura através de um conjunto de medidas locais extraídas da 
imagem. 

As abordagens extruturais (conceitos estruturais) descrevem a textura como arranjos de 
primitivas da imagem dispostas de forma aproximadamente regular e repetitiva. Esta primitiva é 
um elemento fixo que se repete numa área da imagem, de acordo com regras bem definidas. 

As abordagens espectrais lidam com as regiões no domínio das freqüências espaciais 
(espectro de Fourier). Utilizando-se das propriedades do espectro de Fourier, é possível 
identificar características como periodicidade global, através da identificação de picos de alta 
energia no espectro da imagem. 

A caracterização de uma textura não é uma tarefa fácil. Várias dificuldades estão presentes, 
da mesma forma que no caso de cores, como a invariância e a dimensionalidade do vetor de 
características. Este trabalho dará ênfase as abordagens estatísticas como métodos para descrição 
de texturas. 

2.3 Abordagens estatísticas 
As abordagens estatísticas (momentos do histograma, matriz de co-ocorrência de níveis de 

cinza [26] e medidas estatísticas) descrevem a textura através de grandezas que as caracterizam 
como suave, áspera ou granular.  

2.3.1 Momentos do histograma 

Os momentos do histograma podem ser utilizados para descrever as propriedades de uma 
textura, já que a forma em que se apresenta o histograma da imagem fornece informação sobre a 
natureza dessa imagem. Assim, a partir do histograma de intensidade de uma região, podem ser 
calculados os momentos. 

Seja I a variável aleatória que representa os níveis de cinza na região de interesse, o 
histograma P(I) é definido como: 

 
P(I) = número de pixels com nível de cinza I 

          número total de pixels na região 
(1) 

 
O histograma P(I) de uma imagem digital fornece a freqüência com que cada nível de cinza 

I ocorre na imagem. Isto significa que P(I) é a fração de pixels com nível de cinza I. O gráfico de 
um histograma é uma função I x P(I) (onde P(I) representa o eixo da porcentagem e I para I = 0, 
1, ...,Ng − 1 representa o eixo da intensidade, sendo Ng o máximo tom da resolução de cinza da 
imagem) que provê uma percepção da distribuição de cores. Medidas estatísticas calculadas sobre 
o histograma nos dão informações gerais sobre esta população de níveis de cinza [27]. 

O momento do histograma pode ser representado pela equação (2):  
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Se i = 1 então m1 = E[I] que representa a média do valor I. Assim o primeiro momento, 

média dos níveis de cinza, indica a média de intensidade da região. 
O momento central do histograma pode ser calculado pela equação (3): 
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O segundo momento central 2µ  é a variância, σ ², e é útil na descrição da uniformidade de 

uma determinada região da imagem, ou seja, indica como estão distribuídas as intensidades iguais 
dentro da região. O terceiro momento central, às vezes denotado como σ ³, é uma medida de não 
centralismo (assimetria) que calcula o grau da assimetria do histograma ao redor da média. 

2.3.2 Matriz de Co-Ocorrência de Níveis de Cinza - GLCM 

O cálculo dos momentos de intensidade possui a vantagem de ser fácil de realizar, mas não 
oferece nenhuma informação sobre a natureza repetitiva da textura, ou seja, não dá informação 
sobre a posição relativa dos níveis de cinza distintos dentro da imagem. Um método estatístico 
que soluciona este problema é a Matriz de Co-Ocorrência de Níveis de Cinza (GLCM, Gray 
Level Co-Occurence Matrix), proposto por Haralick et al [26], que consiste em experimentos 
estatísticos realizados sobre como um certo nível de cinza ocorrer em relação a outros níveis de 
cinza. 

A GLCM contém informações sobre as posições dos pixels que têm valores de níveis de 
cinza similares, usando de uma medida de probabilidade de ocorrência de cores separadas por 
uma dada distância em uma dada direção. Para isso, são empregadas múltiplas matrizes, uma para 
cada direção de interesse (horizontal, vertical e as duas diagonais). Para construção dessas 
matrizes, define-se um operador (d,θ ), onde d é a distância relativa medida em número de pixels 
(d = 1 para pixels vizinhos, etc) e θ  pode ser uma das 4 direções, conforme a figura 5:  

 

 
 

Figura 5. Orientações usadas para construir as matrizes de co-ocorrência [17] 
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A dimensão da GLCM depende da resolução de cor da imagem, ou seja, se a imagem 

possuir k níveis de cinza, a matriz terá dimensão kk × . Cada elemento (i,j) da matriz indica  o 
número de vezes que um ponto com o tom i aparece na posição especificada por (d,θ ) em relação 
a um ponto com tom j. Por exemplo, para a imagem binária dada pela matriz abaixo que possui 2 
níveis de cinza (0 e 1):  

 























001100

100110

110011

011001

001100

 

 
A GLCM correspondente para essa imagem e operador (1, 135°) é a matriz 2x2: 

 

A = 








100

010
 

 
Por exemplo, o elemento ooa , (canto superior esquerdo), representa o número de vezes que 

um elemento com o tom 0 aparece à distância 1 e à direita e abaixo de outro ponto com o tom 0, 
ou seja, 10 vezes. Já o elemento 1,0a (canto superior direito), nos mostra que nenhum elemento 

com o tom 0 aparece à distância 1 nessa mesma posição (135°) de outro ponto com o tom 1. 
A matriz de co-ocorrência  não caracteriza univocamente as texturas, mas a comparação de 

algumas características extraídas dessas matrizes ajuda a averiguar a similaridade de duas 
texturas. Algumas das características têm uma interpretação física direta em relação à textura, por 
exemplo, onde é possível quantificar a rugosidade, suavidade, etc. Por outro lado, outras 
características não têm tais propriedades, mas ainda assim codificam informação relacionada à 
textura com uma grande capacidade discriminatória [17] [28]. Haralick [26] propõe 28 
descritores de textura que podem ser extraídas das matrizes de co-ocorrência. Normalmente, a 
escolha dos descritores a serem adotados baseia-se em testes empíricos sobre um domínio 
específico, verificando-se quais deles produzem resultados mais satisfatórios. Exemplos de 
descritores de textura que podem ser calculados após a obtenção da matriz de co-ocorrência são: 
a variância (4), a entropia (5), a energia (6), a homogeneidade (7), a assimetria (8) e a variância 
inversa (9). 
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A abordagem GLCM possui a vantagem de ser invariante às transformações na imagem, 

entretanto não permite revelar a forma da textura. Além disso, para uma imagem armazenada 
com um grande número de níveis de cinza, será necessário um grande espaço de armazenamento 
para a GLCM, como também o tempo de processamento necessário para seu cálculo é alto. Por 
esses motivos, a GLCM não é utilizada nesse trabalho. Outras técnicas têm sido desenvolvidas 
tais como o Histograma da Soma e da Diferença [29] e o LPB - Local Binary Pattern [30]. 

Caracterizar textura é uma tarefa difícil. Os métodos para representação de textura ainda 
não produziram uma solução efetiva para o problema da análise, classificação e segmentação de 
texturas. Tais métodos incluem diferentes abordagens como o uso de momentos do histograma, 
matrizes de co-ocorrência e análise no domínio espaço-freqüência, chamada de análise de 
multiresolução.  

Métodos baseados em análises de multiresolução estão sendo desenvolvidos sob a alegação 
de serem capazes de suprir as deficiências encontradas em métodos anteriores. Tais deficiências 
são devidas a estes métodos não possuírem recursos para caracterização eficiente da textura em 
diferentes escalas. 

 Trabalhos recentes relatam o uso de transformadas baseadas em wavelets como solução 
para uma análise multiresolução efetiva e consistente. A transformada wavelet produz 
decomposições no domínio da freqüência que atingem uma solução comum máxima no domínio 
espacial e no domínio da freqüência, onde é possível atingir uma resolução em ambos os 
domínios. Isto é altamente significativo no processo de extração de informação de textura o qual 
possui o conflitante objetivo de acurácia na representação da textura e localização espacial desta 
[16].  No Capítulo seguinte, iremos apresentar a base teórica da transformada de wavelet e o 
conceito de análise de multiresolução para caracterizar texturas na geração de um vetor de 
características que possa ser capaz de representar suficientemente uma imagem, dado um 
determinado problema de classificação. 
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3  

Wavelets e Extração de Características 

3.1 Introdução 
Uma imagem é, antes de tudo, um sinal, e, para seu processamento e análise, conta-se com 

uma série de ferramentas, onde uma das mais conhecidas é a transformada de Fourier que faz a 
representação de um sinal por meio de uma série de senos e cossenos. Através da transformada de 
Fourier, um sinal representado no domínio do tempo é transformado para o dominío da 
freqüência. A expressão da transformada de Fourier para um sinal contínuo f (t) é dada por: 

 

dtetfwF wtj π2)()( −+∞

∞−∫=  (10) 

 
 Onde w é a freqüência. Essa transformada detecta a variação de tons presentes na imagem, 

mas não gera informação sobre a localização espacial destes, então ela não pode representar 
adequadamente as mudanças que acontecem no sinal no espaço. Esse não seria um problema se o 
sinal não mudasse durante o tempo (sinais estacionários), mas acontece que muitos sinais reais 
contêm muitas características não estacionárias ou transitórias (fluxos, tendências, mudanças 
repentinas). Essas características, geralmente, são a parte mais importante do sinal [31]. 

A solução para este problema, uma variação da transformada de Fourier, foi elaborada por 
Gabor (1946) e chamada de transformada por janelas de Fourier (Windowed Fourier Transform - 
WFT). A WFT se utiliza de uma janela de observação para analisar só uma pequena porção do 
sinal. Essa janela é deslocada no domínio do tempo e para cada posição da janela é calculada a 
transformada de Fourier do sinal dentro dela. 

No entanto, a transformada por janelas de Fourier traz outro problema: a definição do 
tamanho da janela. Pois uma vez definido o tamanho da janela, ela permanece constante para 
todas as freqüências e pode haver sinais que precisem de uma janela maior para detectar o 
conteúdo local da freqüência. Por outro lado, uma janela grande perde a consideração de 
estacionaridade do sinal. 

Capítulo 
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As transformadas wavelets suprem estas falhas presentes na abordagem da transformada 
por janelas de Fourier para a análise de sinais não periódicos. As wavelets foram desenvolvidas 
com base na matemática, física quântica e estatística, e são funções que decompõem os sinais em 
diferentes componentes de freqüência e analisam cada componente em diferentes resoluções [32].  

Segundo Castañón [31], as wavelets estão sendo utilizadas em inúmeras áreas de aplicação, 
por exemplo na mecânica de fluidos, computação numérica, análise de imagens, processamento 
de sinais, sistemas de controle, fenômenos biológicos, medicina, medidas e psicologia. No futuro 
próximo, espera-se que a análise de wavelets seja uma ferramenta de análise e visualização tão 
popular quanto a transformada de Fourier. Outras aplicações comuns das wavelets são: remoção 
de ruído de sinal, compressão de imagens, suavização de imagens e análise fractal [32]. A seguir, 
é mostrada uma introdução à sua teoria.  

3.2 Transformada Wavelet 
A transformada wavelet apresenta-se como uma ferramenta alternativa para o 

processamento de sinais, mudando o paradigma de representação dos mesmos, ao utilizar funções 
base de wavelets (em vez das senoidais de Fourier) para transformar um sinal no espaço de 
tempo-escala [31]. O que a análise de wavelets faz é decompor um sinal. O processo inverso é a 
reconstrução ou síntese do sinal. 

Pode-se interpretar a tranformada wavelet como uma técnica por janelas, mas com janelas 
de tamanho variável, e que tem como base uma função de duração limitada definida por dois 
parâmetros: posição e escala. Esses parâmetros indicam a translação (localização da janela) e 
compressão ou expansão das janelas, respectivamente. Isso permite que características de um 
sinal examinado sejam extraídas em função de determinada posição e tamanhos desejados, dando 
à wavelet uma flexibilidade na representação do domínio do tempo. A Figura 6 compara as ondas 
geradas por Fourier e wavelet. Observa-se que a janela de tempo varia para wavelets, o que não 
ocorre para Fourier. 

 

  
Figura 6. Comparação entre a transformada de Fourier e wavelet em função do tempo [32] 

 
Já o fato da função ser de duração limitada significa ter suporte compacto, ou seja, possuir a 

propriedade na qual seu domínio é diferente de zero em uma extensão finita e igual a zero em 
todo o resto. Castañón [31] afirma que isto torna interessante a utilização das wavelets no caso 
específico da análise de imagens, pois as mudanças de regiões ou bordas podem ser detectadas 
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mais facilmente. A definição da transformada wavelet, considerando um sinal contínuo f (t) é 
dada por:  

 

dtttfbaF ba )()(),( ,∫= ψ  (11) 

 
Pela equação 11, percebe-se que a transformada wavelet depende de dois parâmetros a e b, 

que variam continuamente em R , correspondendo às informações de escala e tempo 
respectivamente [32]. As wavelets, funções que analisam o sinal, são representadas por ba,ψ  e 

assim definidas:  
 

)(
1

)( ,, a

bt

a
t baba

−= ψψ  (12) 

  
Para sinais discretos, a transformada wavelet é definida como: 
 

dtnbtatfabaF mm
nm )()(),( 00

2/
0, −= −−

∫ ψ  (13) 

 
Pela equação 13, observa-se que o comportamento dessa função está baseado em dilatações 

e translações da wavelet mãe ( )ψ . A transformada contínua de wavelets, obtem os coeficientes de 
wavelets em cada escala possível, isso requer uma grande quantidade de cálculo e torna o 
trabalho bastante custoso. Por esse motivo, a transformada discreta de wavelets escolhe um 
sobconjunto de escalas e locações sobre as quais os cálculos vão ser realizados. 

 

3.3 Análise de Multiresolução 
As primeiras construções de bases de wavelets eram muito trabalhosas. Mallat, em 1986, 

formulou a análise de multiresolução que surgiu como solução para este problema. A análise de 
multiresolução é uma estratégia de processamento de sinais onde é utilizado um conjunto de 
filtros especializados em extrair as informações do sinal, como as freqüências presentes nesse e 
sua localização no tempo de duração do sinal, em diferentes resoluções [34]. Segundo diversos 
estudos sobre o sistema visual humano, o uso da multiresolução é útil em sistemas de 
classificação de imagem [35] [36]. Estes estudos indicaram que o córtex visual humano detecta as 
imagens em diferentes resoluções, onde as informações sobre as freqüências e a orientação dos 
tons presentes na imagem são interpretadas separadamente. A análise da imagem é feita através 
de um mapeamento desta para um conjunto de imagens em diferentes resoluções, a partir de uma 
transformada matemática [37]. A transformada utilizada detecta a variação dos tons de cores da 
vizinhança de um pixel e a sua localização espacial e transpõe isto em um espaço multiresolução. 

A idéia de se estudar imagens em várias escalas simultaneamente era popular quando 
Mallat estava trabalhando com análise de imagens e usou wavelets pela primeira vez. Isso o 
estimulou a ver bases ortonormais de wavelets como uma ferramenta para descrever 
matematicamente o “incremento na informação” necessário para se ir de uma aproximação 
grosseira para uma aproximação com maior resolução [32].  

Segundo Mallat [38], uma decomposição multiresolução permite obter uma interpretação 
invariante de escala da imagem. A escala de uma imagem muda em razão da distância entre a 
cena e o centro óptico da câmera. Quando a escala da imagem é modificada, a interpretação da 
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imagem não deve mudar. Uma representação multiresolução pode ser parcialmente invariante de 
escala, se a seqüência de parâmetros da resolução varia exponencialmente. 

Assim, na análise de multiresolução, qualquer tipo de sinal pode ser analisado em termos de 
escalas e translações de uma simples função wavelet mãe. Essa estratégia se mostra bastante 
adequada para a extração de características das imagens, pois poucos coeficientes representam 
bem a imagem, armazenam informações de arestas e bordas e, praticamente, não dependem da 
resolução original da imagem. 

3.4 Algoritmo 
O algoritmo da transformada de wavelets é feito da seguinte forma: o sinal é passado por 

dois filtros, um passa baixa e um passa-alta, os quais irão dividir o sinal em dois sinais, um de 
freqüências maiores que um dado limiar e outro de freqüências menores. O operador (↓2) é o 
operador de sub-amostragem (do inglês downsampling) [39] e quando é aplicado ao sinal reduz o 
sua taxa de amostragem pela metade. Este processo é repetido sobre o sinal de menores 
freqüências até um nível pré-determinado e os sinais de maiores freqüências são armazenados a 
cada iteração com os filtros. Estes sinais de maiores freqüências são conhecidos como 
coeficientes de detalhes e os de menores freqüências são os de aproximação [37].  

A aplicação destes filtros em uma imagem é feita pela iteração entre linhas e colunas da 
matriz de imagem, o que gera a cada nível de iteração 3 sub-imagens, que são os coeficientes de 
wavelets armazenados. Assim, tanto o processo de decomposição quanto o de reconstrução da 
imagem podem ser implementados em duas dimensões, ou seja, aplicando o algoritmo nas linhas 
e colunas da imagem, como mostra a Figura 7. 

 

 
Figura 7. Decomposição de imagem em um domínio 2D ao aplicar a transformada wavelet [40] 

 
Assim, as sub-imagens que compõe o resultado da transformada estão organizadas em 

diferentes níveis de resolução, cada um responsável por espectro de freqüências, e em cada nível, 
têm–se a angulação destas texturas, obtendo-se assim, uma descrição das variações dos tons de 
cinza e a localização destes. Isso mostra a eficácia das wavelets na caracterização de imagens. 
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Após 2 níveis de decomposição da imagem original, podemos observar o resultado da aplicação 
da transformada wavelet em um espaço de níveis de cinza na Figura 8. 

   
(a) (b) (c) 

Figura 8. Tranformada wavelet sobre um domínio 2D. (a) Imagem original, (b) 1 nível de 
decomposição da Transformada e (c) 2 níveis de decomposição. 

 
Um dos pontos fortes da transformada wavelet, para processamento de imagens, vem do 

fato que com uma quantidade mínima de valores (em uma escala menor da imagem) é possível 
representar a imagem toda, ou seja, através dos coeficientes de wavelet. Esses coeficientes podem 
ser aproveitados na montagem do vetor de características para representação de uma imagem. 

3.5 Extração de Características 
A parte crítica do processo de recuperação de imagens é definir o espaço de características 

a ser utilizado para realizar o casamento entre atributos similares. Espaços de características 
comuns incluem bordas, contornos, superfícies e outras características salientes tais como 
esquinas, interseção de linhas e pontos de alta curvatura da imagem [31]. 

Os dados que serão usados no processo de recuperação de imagens por conteúdo   
representam  o espaço de características e sua escolha determina o que será casado no momento 
da busca das imagens mediante a métrica de semelhança que determina a similaridade entre duas  
imagens. 

Wavelets modelam a textura no domínio da freqüência espacial e sua aplicação para a 
geração do vetor de características é efetuada através de uma análise estatística em cada uma das 
sub-bandas, onde cada elemento do vetor pode corresponder a uma descrição de cada sub-
imagem, de maneira que o conteúdo presente na imagem seja a correta descrição feita pelo vetor.  

Existe uma variedade de funções wavelets, chamadas de “famílias de wavelets”, que têm 
comportamento distinto de acordo com o domínio de imagens. As wavelets Daubechies [32] 
apresentam-se como as que melhor caracterizam os detalhes da imagem através das wavelets mãe 
que ficam nas sub-bandas de baixa resolução (os coeficientes de wavelets) enquanto que as 
wavelets que ficam nas sub-bandas de alta resolução caracterizam a tendência do sinal [41]. Estas 
propriedades podem ser aproveitadas para representar uma imagem e gerar o vetor de 
características aplicando descritores estatísticos sobre esses vetores. Assim, pode-se avaliar a 
uniformidade da imagem (através da energia), a suavidade (através da entropia), entre outros 
descritores vistos na Seção 2.3.2 .  

O processo geral de extração de características está representado na Figura 9, onde, 
dependendo da abordagem, realiza-se a obtenção dos coeficientes das sub-imagens e as análises 
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estatísticas desses a fim de gerar o vetor de característica da imagem. Assim, o número de valores 
gerados para cada vetor de características vai depender de cada abordagem. 
 
 

 
Figura 9. Processo de extração de características [31] 

 
Para Traina et al [42], a representação de uma imagem mediante um conjunto de valores 

característicos é equivalente a associá-la com um ponto no espaço de dimensionalidade igual ao 
número de características no vetor, onde aqueles que têm valores próximos entre si possuirão 
maior grau de similaridade. 

Depois de realizada a extração de características, a partir de alguma métrica, como a 
distância euclidiana, por exemplo, é possível recuperar imagens semelhantes, dado um certo grau 
de aproximação de seus vetores como critério de semelhança. 

No Capítulo seguinte, mostraremos algumas técnicas de agrupamento, também conhecidas 
como clusterização, que agrupam as imagens similares em clusters. Também é apresentada a 
definição de medidas de distância ou dissimilaridade, que são utilizadas para o agrupamento das 
imagens segundo seu grau de semelhança. 
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4  
 

Técnicas de Análise de Agrupamento 

4.1 Introdução 
Na maioria dos sistemas CBIR, o usuário geralmente pensa em termos de conceitos 

semânticos e não está interessado nas características de baixo nível das imagens (cor, textura e 
forma). Por exemplo, alguma imagem que ele se lembra de já ter analisado e que deseja recuperar 
do banco de imagens, ou mesmo buscar as imagens mais parecidas com uma determinada 
imagem sob análise [31]. 

Assim, depois de ocorrida a extração de características, a definição de uma métrica capaz  
de responder às consultas por similaridade é de grande importância, além da capacidade de 
agrupar (clustering) e diferenciar cada uma das classes semânticas. 

4.2 Algoritmos de Agrupamento  
Os algoritmos de agrupamento ou Clustering particionam os objetos em conjuntos 

(clusters) baseados na similaridade entre eles. Um agrupamento pode ser visto como uma 
partição sobre um espaço de atributos, definidos sobre algum critério de semelhança. Esse 
critério, faz parte da definição do problema e, depende, do algoritmo utilizado. 

Assim, Clustering é um técnica de data mining para fazer agrupamentos automáticos de 
dados, explorando as semelhanças entre esses dados e agrupando-os em categorias. O principal 
objetivo da clusterização é particionar conjuntos de objetos em grupos homogêneos de maneira 
que se maximize a similaridade de objetos dentro de um mesmo cluster e se minimize a 
similaridade de objetos de clusters distintos. 

 Agrupar ou classificar objetos em conjuntos ou categorias tem sido uma atividade bastante 
comum que vem sendo itensificada devido ao número elevado de informações disponíveis 
atualmente. Segundo [43], a clusterização é um método que utiliza o aprendizado não 
supervisionado [44], ou seja, não há um “professor” que lhe indique o que cada padrão 
representa. A aprendizagem não supervisionada busca extrair informação relevante de dados não 
rotulados e os conjuntos aos quais os dados pertencem são definidos por um algoritmo de 
agrupamento. Já na aprendizagem supervisionada, o usuário é quem define os conjuntos ou 
classes aos quais os dados pertencerão. 

Capítulo 
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4.2.1 K - Médias 

O k-médias [45] é um tipo de algoritmo de agrupamento cuja aprendizagem é não 
supersionada. O objetivo desse algoritmo é encontrar a melhor divisão dos dados em k clusters de 
maneira que a distância total entre os dados de um cluster e o seu respectivo centro, somada por 
todos os clusters seja minimizada. Dessa maneira, o centro do cluster inicial para cada caso é 
formado em torno dos dados mais próximos e então comparado com os pontos mais distantes e os 
outros clusters formados. A partir daí, dentro de um processo de atualização contínua e de um 
processo interativo encontram-se os centros dos clusters finais [46]. 

Assim, o algoritmo atribui aleatoriamento os dados a k grupos e calcula as médias dos 
vetores de cada grupo. Em seguida, cada ponto é deslocado para o grupo correspondente ao vetor 
médio do qual ele está mais próximo. Com este novo rearranjo dos pontos em k grupos, novos 
vetores médios são calculados. O processo de re-alocação de pontos a novos grupos cujos vetores 
médios são os mais próximos deles continua até que se chegue a uma situação em que todos os 
pontos já estejam nos grupos dos seus vetores médios mais próximos [47]. 

 O primeiro passo do algoritmo k-médias é a determinação das posições iniciais dos k 
centros dos clusters onde o número de clusters  tem que ser definido inicialmente pelo usuário. A 
Figura 10 mostra esse primeiro passo, com um k = 3. 

 
  

 
(a) (b) 

Figura 10. (a) Dados a serem agrupados e (b) primeiros k centros são escolhidos aleatoriamente. 
 
O segundo passo é a alocação de cada elemento ao cluster associado com o centro mais 

próximo. Em seguida, no terceiro passo, é computado um novo centro para cada cluster, ou seja, 
a média dos valores de  todos os elementos chamado de centróide. Ambos os passos são 
apresentados na Figura 11. 
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(a) (b) 

Figura 11. (a) Elementos são alocados aos clusters com o centro mais próximos e (b) um 
centróide é calculado para representar o cluster. 

 
Feito isso, repete-se o segundo e terceiro passos com os novos centróides, ou seja, a 

alocação de elementos aos clusters e o cálculo de um novo centróide até algum critério de 
convergência, como observa-se na Figura 12.  

 

  
(a) (b) 

Figura 12. (a) Alocação dos elementos aos clusters e cálculo de novos centróides até um critério 
de convergência e (b) algoritmo converge resultando nos clusters finais. 

 

Como critério de convergência pode ser empregado um número máximo de iterações ou 
executar o algoritmo até que os centros não se movam mais, ou apresentem uma mudança muito 
pequena de posição. No último caso, deve ser definido um erro mínimo no início da execução. 

O k-médias, no entanto, aprensenta como dificuldade a definição inicial de k clusters 
distintos e se são realmente suficientes para representar os dados. 

4.2.2 Mapas Auto-Organizados - SOM 

 As redes SOM (Self-Organized Maps) [48] são redes neurais artificiais que possuem a 
capacidade de auto-organização. Em contraste com outros modelos de redes neurais, tem uma 
forte inspiração fisiológica, pois são baseadas no mapa topológico que existe no córtex do 
cérebro. O córtex é organizado de modo que neurônios topologicamente próximos tendem a 
produzir respostas ao mesmo tipo de estímulo, esta é uma das razões pelas quais as redes SOM 
são amplamente empregadas em reconhecimento de padrão visual. 
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As SOMs utilizam-se do paradigma de aprendizagem não supervisionada e são baseadas no 
aprendizado competitivo, onde os neurônios competem entre si para serem ativados. O neurônio 
vencedor tem o direito de atualizar seus pesos [48]. O algoritmo SOM, similar ao k-médias, é um 
algoritmo de partição onde o número de clusters é definido inicialmente; diferente dos clusters 
gerados pelo k-médias, no entanto, nas SOMs há uma ordenação topológica dos clusters. 

Segundo [49], quando um padrão de entrada é apresentado, a rede SOM procura a unidade 
mais semelhante a esse padrão. Durante o treinamento, a rede aumenta a semelhança do nodo 
escolhido e de seus vizinhos a esse padrão de entrada. Desta forma, um mapa topológico é 
construído pela rede onde nodos que estão topologicamente próximos respondem de forma 
semelhante a padrões de entrada semelhantes. 

Após o treinamento, a rede SOM organiza os padrões de entrada em clusters. Algumas 
aplicações requerem a rotulação dos nós de saída para indicar os clusters que representam. Isto é 
útil para a classificação de padrões desconhecidos [49]. Desde que seus parâmetros sejam 
ajustados adequadamente, o algoritmo SOM geralmente leva a uma representação organizada de 
padrões de ativação retirados do espaço de entrada [50].  

As redes SOM são utilizadas geralmente para explorar grandes conjuntos de dados, 
extraindo as características e relações mais relevantes entre estes dados [51]. Imagens são 
consideradas dados que, às vezes, escondem informações úteis. O uso de redes SOM permite a 
criação de conjuntos de características que mantêm os dados mais relevantes contidos em uma 
imagem.  

A dificuldade apresentada pelo algoritmo SOM é a dependência de muitos parâmetros para 
a obtenção do resultado, como a inicialização dos pesos, a taxa de aprendizagem, taxa de 
vizinhança e número de iterações.   

4.3 Medidas de Distância 
Na procura de imagens visualmente similares, dada uma imagem de consulta, em um 

sistema de recuperação de imagens é importante levar em consideração dois aspectos: uma 
representação apropriada das características visuais das imagens e uma medida que determine o 
grau de similaridade ou dissimilaridade das imagens de resposta. Considerando que não existe 
nenhuma anotação textual da imagem, as características que podem ser utilizadas são descrições 
do conteúdo da imagem que podem ser representados pela cor, textura e forma. Estas 
características mudam sobre uma mesma imagem, por variações inerentes da aparência da 
superfície e como resultado de mudanças na iluminação, sombreamento, entre outros [31]. 

Para classificação, segmentação e recuperação de imagens, foram desenvolvidas medidas 
de similaridade baseadas em estimativas empíricas da distribuição das características dessas 
imagens. Para dados numéricos, a distância entre dois objetos é um dos métodos mais simples, 
onde valores pequenos indicam maior similaridade entre os objetos, assim como valores maiores 
indicam menor similaridade ou maior dissimilaridade entre os objetos. Então, deve-se definir uma 
medida de distância entre dois objetos. Sejam dois objetos, S e Q pertencentes a um mesmo 
domínio, a distância entre os dois objetos é denotada por :  d (S,Q). 

Por exemplo, se os objetos têm sido caracterizados por vetores de características de igual 
tamanho, a distância d() pode ser a distância Euclidiana entre eles: 
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Onde S e Q são dois objetos, S[i] e Q[i] correspondem ao valor da i-ésima dimensão de S e 
Q respectivamente. 

Medidas de distância são utilizadas em várias áreas, incluindo aprendizagem baseada em 
instâncias, redes neurais, estatísticas, reconhecimento de padrões e psicologia cognitiva. Muitos 
sistemas inteligentes dependem da eficiência de uma função para cálculo de distância entre dois 
vetores. Uma variedade de funções de distância está disponível para tais usos, incluindo as 
métricas de distância Minkowsky, Mahalanobis, Canberra, Chebychev, Quadrática, Correlação e 
Qui-quadrado [31].  

No próximo Capítulo, mostramos a aplicação da transformada wavelet às imagens médicas 
de imuno-histoquímica a fim de avaliar estatisticamente os sub-espaços wavelets formados para a 
geração dos vetores de características das imagens e são expostos os resultados do agrupamento 
desses vetores. 
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5  

Resultados e Discussões 

5.1 Introdução 
Os experimentos desenvolvidos neste trabalho envolvem a extração de características de 

imagens de imuno-histoquímica baseada em wavelets detalhadas em Capítulos anteriores. 
Especificamente, descrevem-se os conjuntos de imagens usados nos experimentos, as abordagens 
adotadas na extração e geração do vetor de características, e a comparação dos resultados obtidos 
pelo agrupamento das imagens com a interpretação semântica dos usuários e com o algoritmo de 
clusterização k-médias. 

Para todos os testes, o banco de imagens utilizados foi gerado em 2001 no hospital das 
clínicas da UFAL [2].  

Para a extração de características das imagens, foi aplicada a transformada wavelet, que 
modela a textura no domínio da freqüência espacial, com o filtro Daubechies-4, onde o número 4 
representa o tamanho do filtro. Tanto a aplicação da transformada wavelet quanto a geração dos 
vetores de características das imagens foram todas realizadas no software Scilab [52] e com o uso 
das toolboxs SIVP (Scilab Image and Vídeo Processing toolbox) [53] e SWT (Scilab Wavelet 
Toolbox) [54]. 

Por fim, foi criado um arquivo ARFF, com os vetores de características gerados das 
imagens, para ser usado no software Weka [55], com a finalidade de obter os resultados da 
clusterização das imagens através do algoritmo k-médias. Esses resultados foram, então, 
comparados com os resultados obtidos pela interpretação semântica dos usuários através de 
consultas ao ambiente web desenvolvido. 

5.2 Conjuntos de dados 
As imagens utilizadas no trabalho, são imagens de imuno-histoquímica da placenta e do 

pulmão e podem ser do tipo CD68 e CD34, que significam o tipo de antígeno. Na nomenclatura 

Capítulo 
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das imagens, NP significa placenta, enquanto P quer dizer pulmão. Logo, uma imagem pode ser 
CD68 ou CD34, que por sua vez podem ser P ou NP. Assim, tem-se 4 tipos de imagens como 
pode ser observado na figura 13.  
 

  
(a) (b) 

(c) (d) 
Figura 13.  (a) CD34 NP001a, (b) CD34 P003b, (c) CD68 NP993a e (d) CD68 P9824b 
 
Essas imagens estão armazenadas em formato bitmap, mas também encontra-se imagens do 

tipo CD68 no formato JPEG. Todas as imagens têm dimensões 640 x 480 pixels.  

5.3 Geração dos Vetores de Características 
Para geração dos vetores de características, foi separado um grupo de cem imagens de 

imuno-histoquímica, vinte e cinco imagens de cada classe, sobre o qual foi aplicada a wavelet 
Daubechies-4 em dois níveis de decomposição, gerando, assim, seis sub-espaços wavelets como 
mostra a Figura 14. 
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Figura 14.  Transformada wavelet Daubechies-4 nível 2 aplicada em imagem de imuno-

histoquímica 
 

Para o cálculo das wavelets, as imagens foram convertidas para tons de cinza e, em seguida, 
para o tipo double pois a SWT [54] só aceita imagens desse tipo como entrada para suas funções 
[56]. A função de decomposição wavedec2 [57] é aplicada à imagem, recebendo como 
parâmetros de entrada a quantidade de nível de decomposição e filtro desejados, além da matriz 
que representa a imagem. As funções appcoef2 [57] e detcoef2 [57] são aplicadas às saídas da 
wavedec2 (vetores de decomposição), calculando os coeficientes de aproximação e detalhes, 
respectivamente. A função detcoef2 é aplicada duas vezes para calcular os coeficientes de 
detalhes horizontal, vertical e diagonal nos dois níveis de decomposição. Feito isso, os 
coeficientes são “cortados” para seus tamanhos apropriados através da função wkeep [56], para 
formarem as sub-imagens que representam os sub-espaços wavelets  na imagem resultante. Por 
fim, esses mesmos coeficientes são normalizados e utilizados para o cálculo das medidas 
estatísticas que formarão os vetores de características. 

Nos testes realizados, após aplicar a transformada wavelet em dois níveis de decomposição, 
é gerada uma sub-imagem de baixa freqüência (coeficientes de aproximações), e seis sub-espaços 
wavelets (cada três nas direções horizontal, vertical e diagonal) que correspondem as sub-
imagens direcionais de alta freqüência (coeficientes de detalhes), os quais são aproveitados para 
realizar uma análise estatística para a extração de características e assim, gerar o vetor de 
características. Cada elemento do vetor corresponde a uma descrição estatística de cada sub-
imagem, de maneira que o conteúdo presente na imagem seja a correta descrição feita pelo vetor. 

As medidas estatísticas utilizadas para extrair as características e compor os vetores de 
características, neste trabalho, foram a média, calculada a partir da função mean2 [53] e avalia a 
luminosidade da imagem; a variância, calculada a partir da função variance [52], indicando o 
contraste da imagem; e o momento de terceira ordem, calculado pela função moment [52], cuja 
ordem é um parâmetro de entrada da função, neste caso o número três, e indica a distorção da 
imagem. 

Assim, obtem-se, para cada imagem, um vetor de características composto de dezoito 
posições, já que tem-se seis sub-espaços wavelets e para cada um é calculado a média, a variância 
e o momento de terceira ordem. Foram então gerados cem vetores, vinte e cinco para cada tipo de 
imagem, com dezoito posições cada, representando as cem imagens separadas para os testes. 
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5.4 Resultados dos Agrupamentos 
Os testes de clusterização das imagens foram realizados em duas etapas. Na primeira, os 

vetores de características gerados no Scilab, foram agrupados no Weka através do algoritmo k- 
médias, a fim de avaliar os resultados da clusterização dos vetores em suas respectivas classes. 
Na segunda, o agrupamento é feito levando em conta a interpretação semântica do conteúdo das 
imagens pelos usuários em um ambiente web desenvolvido para esse fim. Por fim, os resultados 
das duas etapas foram avaliados e comparados. 

5.4.1 Agrupamento no Weka 

Depois de gerados os vetores de características, foi criado um um arquivo ARFF para 
realizar a clusterização dos vetores no Weka. 

Um arquivo no formato ARFF é um arquivo de texto puro, composto de três partes. A 
primeira é a relação, primeira linha do arquivo, que deve ser igual a @relation seguida de uma 
palavra chave que identifique a relação a ser estudada. A segunda parte são os atributos, 
composta de um conjunto de linhas onde cada uma inicia com @attribute seguida do nome do 
atributo e seguida do seu tipo, que pode ser nominal ou numérico. E a terceira parte é a dos 
dados, começando após uma linha contendo @data. Cada linha deve corresponder a uma 
instância e deve ter valores separados por vírgula correspondentes e na mesma ordem dos 
atributos da parte atributos.  

 O arquivo “vetores.arff” gerado neste trabalho é composto de dezoito atributos numéricos,  
que são os componentes dos vetores de características, e um atributo nominal representando uma 
das quatro classes que as imagens podem fazer parte : CD34NP, CD34P, CD68NP ou CD68P. Já 
a parte de dados é composta de cem instâncias, correspondendo aos cem vetores. A Figura 15 
mostra uma parte do arquivo contendo as primeiras cinco instâncias de dados. 

No software Weka, o arquivo é aberto e na aba de cluster escolhe-se o algortimo 
SimplekMeans, ou seja, o algoritmo de clusterização K-médias com número de clusters igual a 
quatro. Modificou-se apenas o número de iterações do algoritmo a fim de analisar a menor 
porcentagem de clusterizações incorretas das instâncias. 

5.4.2 Agrupamento Segundo Interpretação Semântica  

O mesmo conjunto de cem imagens utilizado para o cálculo dos vetores de características e 
geração do arquivo ARFF  é cadastrado no ambiente web desenvolvido na linguagem PHP. As 
Figuras 16 e 17 mostram as telas do ambiente para o cadastro de imagens visualisação da imagem 
cadastrada no banco de dados, respectivamente. 
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Figura 15.  Parte do arquivo “vetores.arff” 
 

 

 
Figura 16.  Tela para cadastrar imagens 

@RELATION vetores 
 
@ATTRIBUTE medh1   REAL 
@ATTRIBUTE varh1  REAL 
@ATTRIBUTE  mh1  REAL 
@ATTRIBUTE medv1   REAL 
@ATTRIBUTE varv1  REAL 
@ATTRIBUTE mv1  REAL 
@ATTRIBUTE medd1   REAL 
@ATTRIBUTE vard1  REAL 
@ATTRIBUTE md1  REAL 
@ATTRIBUTE medh2   REAL 
@ATTRIBUTE varh2  REAL 
@ATTRIBUTE mh2  REAL 
@ATTRIBUTE medv2   REAL 
@ATTRIBUTE varv2  REAL 
@ATTRIBUTE mv2  REAL 
@ATTRIBUTE medd2   REAL 
@ATTRIBUTE vard2  REAL 
@ATTRIBUTE md2  REAL 
@ATTRIBUTE class  {CD34NP,CD34P,CD68NP,CD68P} 
              
 
@DATA 
%CD34NP 
0.454716, 0.000624, 0.094942, 0.518975, 0.001127, 0 .141519, 0.541715, 0.000552, 
0.159861, 0.460559, 0.003091, 0.102032, 0.501467, 0 .001536, 0.128411, 0.504815, 
0.001531, 0.130954, CD34NP 
0.447640, 0.000541, 0.090486, 0.488341, 0.000920, 0 .117802, 0.523369, 0.000729, 
0.144498, 0.475491, 0.000816, 0.108701, 0.516943, 0 .000583, 0.139039, 0.557132, 
0.000698, 0.174087, CD34NP 
0.451886, 0.000509, 0.093024, 0.436279, 0.000802, 0 .084105, 0.495034, 0.000530, 
0.122100, 0.463818, 0.000924, 0.101105, 0.527504, 0 .000575, 0.147686, 0.546376, 
0.000699, 0.164243, CD34NP 
0.453754, 0.000626, 0.094351, 0.473425, 0.001053, 0 .107623, 0.515491, 0.000704, 
0.138068, 0.455726, 0.002127, 0.097598, 0.517849, 0 .001130, 0.140625, 0.506115, 
0.001326, 0.131653, CD34NP 
0.454531, 0.000688, 0.094915, 0.426479, 0.001439, 0 .079437, 0.476481, 0.000796, 
0.109315, 0.445191, 0.003387, 0.092814, 0.518553, 0 .001682, 0.142056, 0.531487, 
0.002587, 0.154250, CD34NP 
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Figura 17.  Visualização da imagem cadastrada no banco 

 
A tela principal do ambiente, onde são realizadas as consultas, é mostrada na Figura 18. 

Nessa tela, é apresentada uma imagem principal e outras nove imagens que são selecionadas de 
acordo com a opinião do usuário em relação à semelhança delas com a imagem principal. Ou 
seja, só são selecionadas as imagens que a pessoa consultada achar que os conteúdos são 
similares ao da imagem principal. Todas as imagens são escolhidas aleatoriamente no banco de 
dados do sistema e mudam a cada nova consulta.  

As imagens selecionadas são cadastradas em uma tabela no banco e indexadas à imagem 
principal da consulta. Assim, é formada uma relação identificando, por exemplo, que a imagem 
NP001b do tipo CD34 foi associada, segundo a interpretação semântica do usuário, as imagens 
P9422b e NP992a dos tipos CD34 e CD68 respectivamente. Foram consultados dez usuários 
leigos em análise de imagens de imuno-histoquímica, com a finalidade, apenas, de agrupar as 
imagens segundo a interpretação semântica desses usuários. O agrupamento das imagens nas 
quatro classes mencionadas anteriormente foi realizado através da análise das relações resultantes 
das consultas. 
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Figura 18.  Tela para consultar a opinião dos usuários sobre a semelhança das imagens 

 

5.4.3 Comparação dos Resultados  

Após vários testes no Weka, o melhor resultado obtido foi com seis iterações do algoritmo 
k-médias, com o número de clusters igual a quatro previamente conhecido. A Figura 19 mostra a 
tela de visualização dos resultados da clusterização dos vetores obtidos no Weka. Como pode ser 
observado na figura, o modo de cluster escolhido avalia o cluster para a sua respectiva classe. A 
porcentagem de clusterização incorreta das instâncias foi de 52% e representa o melhor resultado 
encontrado. Para sete iterações do algoritmo, por exemplo, a porcentagem de erro foi de 60% e o 
pior resultado foi para cinco iterações que obteve erro de 62%. 

Ainda analisando a Figura 19, observa-se as porcetangens de instâncias atribuídas a cada 
classe e a distribuição das instâncias nos quatro clusters. Para melhor visualização, a Tabela 1 
mostra esses valores. As linhas representam a distribuição das vinte e cinco instâncias de cada 
classe nos quatro clusters representados pelas colunas. Os números em vermelho representam a 
classificação correta da classe ao seu cluster correspondente. 
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Figura 19.  Visualização dos resultados da clusterização no Weka 

 
 

Tabela 1. Resultados da clusterização através do algoritmo k-médias no Weka 
Clusters  

Classses  CD34-NP CD34-P CD68-NP CD68-P 
CD34-NP 8 8 2 7 
CD34-P 3 10 5 7 

CD68-NP 3 0 20 2 
CD68-P 4 0 11 10 

% atribuída a 
cada classe 

18% 18% 38% 26% 

 
Na Tabela 2, estão os resultados obtidos a partir das consultas aos usuários, onde a 

clusterização foi realizada observando-se as relações existentes no banco entre imagens e as 
selecionadas como semelhantes a elas. Foram consultadas dez pessoas e a cada uma delas foram 
feitas 10 consultas. Assim, por exemplo, nove imagens das vinte e cinco da classe CD34-NP 
foram selecionadas como sendo desse mesmo tipo, como pode ser observado na tabela. 

 
Tabela 2. Resultados da clusterização através da interpretação semântica dos usuários 

Clusters 
Classes CD34-NP CD34-P CD68-NP CD68-P 
CD34-NP 9 4 7 5 
CD34-P 5 12 2 6 

CD68-NP 4 3 9 9 
CD68-P 2 3 9 11 

% atribuída a 
cada classe 

20% 22% 27% 31% 
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Observando-se os resultados das duas tabelas, conclui-se que mesmo com uma 
porcentagem alta de erro, a técnica proposta se mostrou mais eficiente do que a interpretação do 
conteúdo das imagens pelos usuários consultados. A clusterização semântica feita pelos usuários 
classificou  41% das instâncias corretamente a seus respectivos clusters obtendo um erro de 59%  
contra 52% de erro obtido pela clusterização dos vetores de características gerados pela técnica 
proposta neste trabalho. Além disso, os resultados da Tabela 1 mostram que vinte das vinte e 
cinco instâncias da classe CD68-NP foram atribuídas corretamente ao seu cluster correspondente 
contra nove da Tabela 2. Constata-se ainda que nenhuma instância das classes CD68-NP e CD68-
P foram atribuídas ao cluster correspondente a classe CD34-P na Tabela 1 contra seis instâncias 
dessas classes atribuídas ao mesmo cluster na Tabela 2. Na Tabela 1, o cluster que mais agrupou 
instâncias foi o CD68-NP com 38% das instâncias, sendo que vinte dessas corretamente 
classificadas e na Tabela 2 o cluster que mais agrupou instâncias foi o CD68-P com 31% das 
instâncias onde onze dessas foram classificadas corretamente. 

A partir dos resultados obtidos, conclui-se que seria necessário a inclusão de informação de 
textura das diferentes bandas da imagem colorida. Uma vez que, no processo de formação de 
imagens na técnica de imuno-histoquímica a informação de cor é essencial e integra a informação 
semântica da imagem num sistema CBIR. 

Neste trabalho, não houve preocupação em acrescentar informação de cor porque o 
interesse inicial é investigar a possibilidade de construir um sistema CBIR apenas com 
descritores de textura atingindo um desempenho razoável para a tarefa de diferenciação de tipos 
de imagens de imuno-histoquímica a serem analisadas pelo patologista, dado que para a tarefa de 
triagem esperava-se que uma abordagem mais simples fosse suficiente. 

5.4.4 Dificuldades Encontradas 

Nesta Seção, julga-se importante também relatar alguns problemas encontrados durante a 
realização deste trabalho. Inicialmente, a proposta era utilizar a toolbox SIP (Scilab Image 
Processing toolbox) [58] para o processamento das imagens no Scilab. No entanto, ao tentar 
realizar os primeiros testes com wavelets no Scilab, os resultados não eram gerados devido a 
toolbox SWT não ser compatível com a SIP, por esse motivo nenhuma função da SWT aceitava 
as matrizes das imagens processadas com o uso da SIP. Daí passou-se a usar a toolbox SIVP e o 
problema foi solucionado. 

Outro problema encontrado, foi com a toolbox SIVP que não era carregada ao iniciar o 
Scilab pois não conseguia encontrar o arquivo “loader.sce”, mesmo esse estando presente na 
pasta contendo os arquivos de instalação da toolbox. Depois de reinstalar várias vezes tanto o 
Scilab quanto a SIVP e não solucionar o problema, a solução encontrada foi executar o arquivo 
“loader.sce” a partir do seu local de instalação através de um comando exec. Para o trabalho em 
questão o comando executado era:  

exec ("c:\arquivos de programas\scilab-4.1.2\contrib\sivp/loader.sce") 
Para não ficar executando esse comando toda vez que precisar-se utilizar a toolbox SIVP ao 

iniciar o Scilab, o comando foi incorporado ao script responsável pela aplicação da transformada 
wavelet e geração dos vetores de características, sendo necessário apenas a execução do script 
uma única vez. 

Por último, os testes com a toolbox SWT foram inicialmente realizados com as imagens da 
ordem 29 pixels, providas pela própria toolbox. Os sub-espaços e coeficientes wavelets foram 
gerados corretamente com essas imagens, porém quando os mesmos testes foram realizados com 
as imagens de imuno-histoquímica (640 x 480 pixels), ocorria um erro e os resultados não eram 
gerados. Isso porque, a função wkeep, responsável pelo “corte” das sub-images, não aceitava 
como entrada imagens com 320 x 240 pixels, só aceitava imagens da ordem 28 pixels, como as 
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imagens dos testes providas pela toolbox. A solução foi aplicar a transformada wavelet para um 
nível de decomposição e descobrir o tamanho das sub-imagens geradas (323 x 243 pixels), já que 
para uma única decomposição wkeep não é utilizada. Feito isso, o tamanho encontrado foi testado 
na função wkeep para dois níveis de decomposição, o que finalmente funcionou. 
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6  

Conclusão e Trabalhos Futuros 

 
A Recuperação de Imagens Baseada em Conteúdo (Content-Based Image Retrieval – 

CBIR) é uma aplicação cujo interesse vem crescendo devido as limitações herdadas das técnicas 
tradicionais de recuperação de imagens. Em vários trabalhos, o uso da transformada wavelet para 
representar textura tem sido cidado como uma boa maneira de caracterizar o conteúdo da 
imagem, no entanto, por tratar-se de uma abordagem relativamente nova, muito estudo na área 
ainda precisa ser realizado. No caso de recuperação de imagens médicas, a análise e escolha da 
família wavelet a ser utilizada é de grande importância para melhor precisão na caracterização das 
mesmas, pois existem várias funções wavelets que têm comportamento distinto de acordo com o 
domínio das imagens. 

6.1 Contribuições 
Este trabalho procurou ser uma contribuição aos estudos de recuperação de imagens, que 

ganharam bastante repercussão na última década devido ao rápido crescimento do uso de imagens 
digitais na web e à ineficiência das técnicas de indexação textual em localizar imagens em 
grandes bases de dados. 

A aplicação da transformada wavelet foi sugerida como uma solução para o processo de 
caracterização de imagens. Propõe-se o tratamento de textura na análise de imagens médicas 
mediante o uso de filtros wavelets e testes para extração de texturas e geração de vetores de 
características a partir da análise estatística dos sub-espaços wavelets em imagens de imuno-
histoquímica foram realizados. 

Além disso, uma ferramenta foi desenvolvida com a finalidade de agrupar as imagens cujos 
conteúdos fossem semelhantes segundo a interpretação semântica dos usuários consultados. A 
partir dessa ferramenta, lança-se a idéia de formação de um ambiente web para triagem de 
imagens similares, podendo auxiliar  patologistas na difusão de informação destas imagens. 

Capítulo 
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6.2 Trabalhos Futuros 
Para uma melhor caracterização das imagens, novos testes podem ser realizados, aplicando-

se a transformada wavelet em mais de dois níveis de decomposição, gerando mais sub-espaços 
wavelets, pois para cada nível de decomposição, três sub-espaços são gerados. Já que esses sub-
espaços correspondem as sub-imagens de alta freqüência, as imagens seriam caracterizadas com 
maior detalhamento e consequentemente a recuperação mais eficiente.  

Um outro trabalho futuro sugerido, é a utilização de outros descritores estatísticos para a 
análise dos sub-espaços wavelets como os vistos na Seção 2.3.2. A entropia e a energia, que 
indicam, respectivamente, a suavidade e a uniformidade da imagem, são descritores que devem 
ser utilizados na geração de novos vetores de características a fim de testar se caracterizam 
melhor ou não as imagens, observando para isso, os resultados do agrupamento desses novos 
vetores.  

  A geração de vetores de caracaterísticas com maiores dimensões para uma caracterização 
mais precisa da imagem, deve ser realizada. Para isto, é necessária a adição de informação de 
textura em cada banda da imagem colorida, ou seja, separar a imagem nos três níveis de cinza 
RGB, aplicar a transformada wavelet em cada banda, aplicar os descritores estatísticos e gerar um 
vetor com os valores obtidos para as três bandas.  

Análise e testes com novos filtros wavelets podem ser feitos, uma vez que, o uso de filtros 
que melhor caracterizem a textura não só acrescenta a eficiência computacional, mas também, 
extrai maior informação significativa da imagens. 
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