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Resumo

O sucesso da heuristica de otimizacdo por enxame de particulas (PSO)
como otimizador de Unico objetivo tem motivado a sua aplicacdo em outras
areas. Uma dessas € a de Problemas com Mudltiplos Objetivos (MOP).
Problemas de otimizacdo com multiplos objetivos sdo bastante comuns em
diversas areas do conhecimento. Devido a isso, muitas propostas para
melhorar a convergéncia das solucdes, tém sido propostas. Muitas variagoes
no algoritmo MOPSO padrao foram propostas, visando alteracbes na equacéo
de atualizacdo de velocidade do PSO e insercéo de fatores de mutacéo. Outras
propostas visaram modificacdes na estrutura do Arquivo Externo e no processo
de selecdo de lideres cognitivos e sociais. Neste trabalho, uma nova técnica
para 0 MOPSO é proposta, com o propésito de melhorar a convergéncia das
solugdes, atraves da criacdo de um Gerenciador de Arquivo Externo e Executor
de Decisbes. A busca por melhores solugbes sem que o enxame fique
estagnado em regides onde se encontram solu¢gdes sub-6timas € também um
dos principais propésitos desta técnica, visando melhorar a capacidade de
convergéncia de exploracdo do enxame e fornecer maior qualidade a solucéo
obtida. Comparacbes com as técnicas ja existentes também séo realizadas,
cujos resultados das simulacbes demonstram que a técnica proposta
apresenta, em diversos casos, melhores resultados que as técnicas
encontradas na literatura como MOPSO-CDR e MOPSO. Por fim, estudos
foram realizados, analisando o comportamento da técnica no inicio das

iteracOes, percebendo-se a sua alta capacidade de convergéncia.
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Abstract

The success of Particle Swarm Optimization (PSO) heuristic as single-
objective optimizer has motivated its application in other areas. One of them is
Multi-Objective Optimization Problems (MOP). Optimization problems are very
common in many areas of knowledge, thus many proposals to improve the
convergence of External Archive’ solutions have been proposed. Many
variations on MOPSO standard algorithm were proposed focusing in changes
on PSO velocity update equation and the insertion of mutation factors. Other
proposals focused in modifications on External Archive structure and in the
leaders selection process. In this work, a new MOPSO technique is proposed to
improve the solutions’ convergence, through the creation of an External Archive
Manager and a Decision Executer. The search for best solutions avoiding
stagnation is one of the main purposes of this technique, aimed to improve the
exploration convergence capability of the swarm and provide high quality
solutions. Comparisons with well known techniques were performed, where the
simulations’ results have shown that our proposal out performed in many cases
well known techniques such as MOPSO-CDR and MOPSO. At last, we
performed, an analysis in the beginning of the search process and we checked

a superior convergence capacity of our proposal.
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Capitulo 1

Introducao

Encontrar solu¢des para problemas com multiplas variaveis sempre foi uma
tarefa ardua. Por esse mesmo motivo, existe uma atencdo relevante da
comunidade cientifica para desenvolver e aperfeicoar algoritmos matematicos
complexos com o intuito de tentar resolver problemas de maneira rapida e
precisa.

Uma das técnicas mais conhecidas e usadas nos campos de otimizacéo e
busca é o Particle Swarm Optimization (PSO) [1]. Esta técnica foi desenvolvida
por James Kennedy e Russel Eberhart [2] em 1995 e foi inspirada no
comportamento social de bandos de passaros em busca de alimento.
Basicamente, o algoritmo resume-se a modelagem da atualizacéo das posicoes e
velocidade de cada individuo do bando em modelos pré-definidos de
comunicagao.

A popularidade do PSO foi alcancada devido a sua simplicidade e a sua
capacidade de gerar solucdes precisas de forma rapida. O seu sucesso como
otimizador de funcbes de Unico objetivo tem motivado a extensdo e aplicacéo
desta técnica bio-inspirada em outros tipos de problemas [3]. Devido a sua rapida
convergéncia, o PSO tem sido bastante aplicado no contexto de problemas multi-
objetivos.

Em muitos casos, o0 processo de otimizagdo apresenta mais que um objetivo e
esses objetivos podem ser conflitantes [1]. No caso de Problemas Multi-Objetivos
(MOP, do inglés Multi-Objective Problems), a solucdo considerada oOtima ou
adequada é um vetor de soluc¢des onde cada solucao responde a um objetivo.

Um dos grandes desafios é definir o conjunto de solugcbes que sao
consideradas adequadas para os problemas em questdo. O processo que
determina a melhor condi¢cdo de uma solucdo em relacdo a outra é fundamentado

no conceito mateméatico de dominancia. Uma solucéo x é considerada melhor que

1
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y se x domina y, ou seja, para cada objetivo a ser atendido, x apresenta as
melhores solugdes para cada um deles.

Diante dos desafios que o campo de MOP proporciona, varios trabalhos vém
sendo desenvolvidos propondo estratégias com o0 objetivo de tornar o

comportamento das solu¢des mais distribuido e continuo.

1.1. Objetivos

Este trabalho de conclusédo de curso tem como objetivo o desenvolvimento de
uma nova técnica inspirada no algoritmo MOPSO-CDR, desenvolvido por
Santana, Pontes e Bastos-Filho [4].

O MOPSO-CDR com Especiacdo (MOPSO-CDRS) utiliza uma abordagem
alternativa ao CDR no processo de escolha do lider social e cognitivo.

A técnica desenvolvida apresenta um processo de andlise das solu¢gdes nao
dominadas no Arquivo Externo (AE). Este processo estuda a convergéncia das
solugcdes do AE, de modo a tentar identificar anomalias e tomar as decisdes
necessarias para sana-las.

A escolha dos lideres depende da analise feita no AE. Dependendo do
sintoma avaliado apos a aplicacdo das métricas no arquivo externo, pode-se
tomar a seguintes decisoes:

1. Manter a escolha dos lideres proposto pelo MOPSO-CDR,;

2. Dividir o enxame em grupos ou sub-enxames e atribuir a cada sub-enxame

tarefas especificas.

Espera-se que com essa melhoria possam-se obter melhores resultados

guanto ao espalhamento e espacamento das solu¢cdes no arquivo externo.
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1.2. Estrutura do Documento

Este trabalho esta organizado em capitulos, detalhados a seguir:

O Capitulo 2 introduz o conceito da técnica de otimizacdo por enxame de
particulas. Serd discutida a teoria fundamental da proposta, sua estrutura
cldssica, e também as principais variacdes na equacdo de atualizacdo da
velocidade.

O Capitulo 3 apresenta os conceitos basicos da area de otimizacdo multi-
objetivo, mostra as fungbes de teste e as métricas de desempenho que foram
implementadas neste trabalho.

O Capitulo 4 aborda a aplicacdo da técnica PSO em problemas com multiplos
objetivos. Aléem disso, serdo apresentadas algumas técnicas, encontradas na
literatura, que implementam esta combinacdo, uma delas sendo o MOPSO-CDR,
base deste trabalho, que sera vista com mais detalhes.

O Capitulo 5 detalha sobre a proposta do trabalho, o MOPSO-CDR com
Especiacdo, enfatizando as mudancas realizadas e o algoritmo desenvolvido,
incluindo a nova abordagem de selecéo dos lideres cognitivo e social.

O Capitulo 6 mostra a configuragdo, conjunto de funcdes de teste e métricas,
necessarios para a realizacdo das simulacdes; os resultados obtidos, suas
analises e comparacdo com outras técnicas.

No Capitulo 7 sdo apresentadas as conclusfes, contribuicbes e listados

alguns possiveis trabalhos futuros.
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Capitulo 2

Inteligéncia de Enxames e PSO

Neste capitulo serdo abordados os conceitos basicos da técnica PSO e

algumas das principais equac¢des de atualizagéo de velocidade.

2.1. Otimizac&o por Enxame de Particulas

A idéia dos algoritmos de otimizagdo baseados em enxames de particulas
iniciou-se com estudos a respeito do comportamento de bandos de passaros,
guais regras 0s regiam, e como poderiam mudar o curso de forma téo repentina e
sincronizada [5]. O PSO foi proposto apds a simulacdo de modelos sociais
simplificados baseados em observagdes feitas nos bandos de aves a procura de
alimento.

Um enxame pode ser definido com um conjunto de individuos que interagem
localmente entre si, regidos por um comportamento global, buscando a solucéo
para problemas de forma distribuida [6].

Atualmente, na maioria das implementagdes do PSO, as particulas movem-se
no espaco de busca sendo guiadas por uma combinacgéo entre a melhor posicao
encontrada pela particula e a melhor posicao encontrada pela vizinhanca em que
ela esta inserida. Esta vizinhanca € definida como um conjunto de particulas com
as quais a particula em analise pode se comunicar, podendo este conjunto se
estender para todo o enxame ou ndo. O que define esta comunicacao entre as
particulas € a topologia de comunicacdo entre elas; este capitulo mostrara, de
forma breve, duas topologias consideradas base de todas as outras: Anel e
Estrela.

Cada particula esta sob influéncia de trés forcas que podem ser representadas
matematicamente como vetores, a saber:

a) Vetor inércia: representa o movimento atual da particula, ou seja, a

velocidade atual. Na equacéo (1) esta representado por v,4;;
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b) Vetor cognitivo: representa a componente cognitiva da particula, uma
relacdo entre a posicao atual e a melhor posicdo encontrada por aquela

particula. Na equacéo (1) é representado pelo termo c;e,(p; — X,);

c) Vetor social: representa a influéncia do enxame em uma determinada
particula. E uma relacéo entre a melhor posicéo encontrada pelo enxame e

a posicdo atual da particula. Na equacéo (1) € representado pelo termo

Czez(ﬁg - 557)

Um esquema grafico pode ser observado na Figura 1, onde X, , representa a
posicdo atual da particula e x, 41, representa a posicdo da particula apés o

processo de atualizacdo da velocidade, que € determinante na atualizacdo da

posicao.

Xy (t+1)

Vetor Cognitivo . v

Vetor Inércia < T

.
.t
.
.
o
.
.
.
.t
.t
.
.
ot
.t
P
o

- Bl .
—_— "
.

Xy (t)

Figura 1. Vetores que influenciam o movimento das particulas.

O algoritmo do PSO apresenta como passo inicial a inicializacdo aleatéria das
posicdes e velocidades das particulas. Cada particula i é representada por trés
vetores:

a. Sua posicdto em um espaco de busca D-dimensional:
X = (Xi1,Xiz, ) Xip);
b. A melhor posicdo que a particula i encontrou durante o processo de

busca: p, = (pi1, Dizs > Pin);
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c. Asua velocidade atual: v/ = (v, Vig, .., Vip)-

As particulas entdo se movem no espaco de busca a procura da melhor
solucdo possivel. A cada iteragdo o algoritmo atualiza as posi¢coes e velocidades

das particulas usando as equacdes (1) e (2).

Viat+1) = Viae t c161(Drac — Xiar) + Czez(Pgdt - m): 1)
Xiat+1) = Xwae t Viae- (2

No algoritmo original, c; e ¢, sdo constantes com valor igual a 2,0, €; e €, sao
nameros aleatérios entre 0 e 1, a cada iteracdo para cada particula e cada
dimensao. O vetor ﬁg € a melhor posicdo encontrada pela melhor particula no
enxame.

O algoritmo PSO define a existéncia de uma condicdo de parada para a
execucao do processo, sendo esta determinada pela quantidade de iteracbes que
o algoritmo deve executar ou através de um limiar de aceitacdo, ou seja, se 0
enxame chegou até um ponto cujo desempenho ndo melhore significativamente.
Além da definicho da condicdo de parada, deve-se pré-definir o niumero de
particulas do enxame, a literatura costuma utilizar de 20 a 50 particulas. Para
cada intervalo t e para cada particula i do enxame, o algoritmo deve avaliar a
velocidade e posicdo usando as equacdes (1) e (2); atualizar o vetor de posicao
X; da particula i com os valores encontrados; calcular o fithess (desempenho) da

particula i e atualizar os valores de p, e p;.

Este algoritmo pode ser facilmente entendido observando-se a Figura 2. No
inicio do algoritmo, o enxame € inicializado, e com o passar das iteracdes, a
posicao, velocidade, pbest e gbest das particulas séo atualizados, de modo que
no fim do algoritmo cada particula apresenta uma solu¢éo para o problema

proposto.
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Inicializar enxame:
. Posicéo
. Velocidade

>

Atualizar posicéo e

— velocidade

A 4

Calcular fitness

Atualizou enxame?

N
Total de iteracdes?
£

Fim do
algoritmo

A 4

Atualizar pbest e
gbest

Figura 2. Fluxograma do algoritmo Classico do PSO.

2.2. Peso de Inércia e Fator de Constricao

Um fendmeno freqientemente observado nos enxames que utilizavam o
algoritmo classico é a “explosdo” de velocidades. Facilmente uma particula
adquiria uma velocidade muito alta muito rapidamente, o que a levava a oscilar
entre 0s extremos do espaco de busca.

Foi proposto, por Eberhart e Kennedy [7], um mecanismo que estabelece um
limite para a velocidade das particulas vmax. Foi observado, no entanto, que a
determinacdo do valor vmax nao era nada trivial, e a escolha errada para este
valor poderia implicar em uma diminuicdo do desempenho. Por exemplo, espacos

de busca maiores demandavam valores maiores que vmax para garantir a
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exploracdo e espacos de busca menores exigiam menores valores para evitar o
problema da “explosao” de velocidades.

O peso de inércia e fator de constricdo [8] foram introduzidos com a intencao
de se remover completamente o conceito de velocidade limite, tentando-se evitar
a “explosdo” da velocidade das particulas. A idéia foi de ponderar a velocidade
anterior da particula no processo de atualizagdo de sua velocidade. A equacao de
velocidade pode ser reescrita na forma da equacéo (3) para comportar 0 conceito

de peso de inércia (representado por w):

Viat+1) = WViqe + c161(Drar — Xuar) + szz(Pgdt - xldt)' 3)

Diversos estudos foram realizados sobre os efeitos dos valores de w sobre a
atualizagéo de velocidade. Os resultados obtidos com a variagdo da inércia com o
passar do tempo demonstram uma convergéncia mais rapida do que 0s mesmos
obtidos com valores de inércia estaticos.

Sugere-se que durante o processo de otimizacdo, w iniciando com valores
altos préximos a 1,0 encoraja as particulas a uma exploracdo maior do espaco de
busca (exploracdo em amplitude) e eventualmente esses valores véao
decrescendo (abaixo de 1,0), focando assim os esforcos do enxame na melhor
area encontrada durante a exploracao (exploracao em profundidade) [9].

O fator de constricdo, conceito similar ao peso de inércia, consiste na
introducdo de um novo parametro x, derivado das constantes existentes na
equacao de velocidade. A escolha destas constantes influencia na velocidade de
convergéncia e na capacidade do algoritmo de encontrar a solucdo oOtima. Pelo
fato de cada problema a ser solucionado necessitar de constantes especificas, a
idéia do fator de constricdo € balancear a influéncia das constantes, independente

do problema. O parametro x é calculado de acordo com a equacéao (4),

2
X = ) 4
12 - ¢ = Vo2 = 44| @
p=c + c. )

Foi demonstrado por Clerc e Kennedy [8] que para valores de c,e c, tal que

¢ < 4, 0 enxame converge lenta e espiralmente para a solugcdo. Ao passo que
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quando ¢ >4 a convergéncia é rapida e garantida para um o6timo local. Por
simplicidade, assume-se o valor de ¢ = 4,1 e consequentemente c; e c, iguais a
2,05 para assegurar convergéncia. Para aplicar o fator de constricdo a equacao

de atualizacéo de velocidade, esta precisa ser reescrita ha forma da equacéao (6).

Vidt+1) = X[Tdt)‘*‘ c161(Duar — Xuae) + szz(Pgdt - m)] (6)

Outro fator muito importante e responsavel por grande parte do sucesso ou
fracasso no processo de otimizacdo € a forma como as particulas se comunicam.
A secdo 2.3 trata do conceito de estruturas de comunicacéo entre particulas ou

topologias.

2.3. Topologias Basicas

Algoritmos inteligentes baseados em enxames, e consequentemente
semelhantes ao PSO, séo algoritmos que tentam mapear comportamentos sociais
em um ambiente computacional controlado. As particulas que compdem o
enxame precisam de alguma forma, propagar as informacdes que conseguem
coletar, caso contrario, os referidos algoritmos ndo poderiam se apoiar no
conceito de sociedade, pois as particulas estariam “voando” pelo espaco de
busca a procura de solucbes sendo influenciadas apenas por sua propria
experiéncia.

Neste cenario, as topologias, que definem as regras de como as particulas
devem se comunicar, desempenham um papel importantissimo, influenciando
completamente o comportamento do enxame.

As topologias mais conhecidas e utilizadas séo as topologias estrela e anel [2]
apresentadas na Figura 3.

A topologia estrela, Figura 3 (a), foi a primeira a ser proposta. Nesta topologia
cada particula pode se comunicar com qualquer outra particula do enxame.
Consequentemente, uma particula € influenciada por todas as outras particulas,
pois estaria recebendo informacdes de todo o enxame, este modelo também é

conhecido gbest.
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Na topologia anel, Figura 3 (b), também conhecida como lbest, cada particula
se comunica apenas com seus vizinhos diretos. Uma decorréncia direta desta
diferenca entre os modelos de comunicagdo é que a topologia global apresenta
um desempenho superior a topologia em anel em problemas uni-modais
(problemas com apenas uma solucdo Otima), enquanto que problemas
multimodais (problemas com varias solu¢des 6timas ou sub-6timas) sdo melhores
tratados com a topologia em anel. Isso se deve ao fato de enxames com topologia
em anel explorarem melhor o ambiente, ndo atraindo todas as particulas para
uma solucdo sub-6tima rapidamente, o que € bastante interessante para

problemas multimodais.

Figura 3. Topologias (a) Estrela e (b) Anel.

Vale salientar que na maioria das aplicagbes reais do PSO nao se conhece
bem o problema a ser resolvido, muito menos se sabe quantas solucdes
satisfatorias ele pode ter. Consequentemente, utilizar a topologia global pode ser
muito arriscado se a solugdo 6tima for necessaria. No entanto, aplicar a topologia
em anel geralmente leva a uma convergéncia mais lenta, pois num enxame de N
particulas, uma particula pode ter de esperar de uma a N/2 iteracBes para
indiretamente receber informac¢des da melhor particula do enxame, enquanto que
na topologia global, apdés a primeira iteracdo todas as particulas ja tém
conhecimento da melhor solucdo obtida pelo enxame.
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Capitulo 3
Otimizacao Multi-Objetivo

Este capitulo introduz alguns conceitos basicos, da area de otimizacdo com
multiplos objetivos, considerados fundamentais para o melhor entendimento deste
trabalho. Além disso, serédo apresentadas algumas funcdes de teste (problemas a
serem solucionados) e métricas de desempenho, que auxiliam na analise do

retorno gerado pelo algoritmo.

3.1. Conceitos Basicos

Em contraste com a otimizacdo de um unico objetivo, a Otimizacdo Multi-
Objetivos (MOO, do inglés Multi-Objetive Optimization), diferentemente do PSO,
possui varios objetivos a serem solucionados e sua principal meta € obter um
conjunto de solucdes bem distribuido e diverso. MOO pode ser definido como o
problema de encontrar um vetor de variaveis de decisdo que satisfazem
restricbes e otimizam um vetor de funcgdes cujos elementos representam as
funcBes objetivo. Um problema genérico na otimizacdo multi-objetivo contendo
um numero de objetivos a serem minimizados como mostrados em (6), por
exemplo, e restricbes a serem satisfeitas como apresentados em (7)(8) pode ser

escrito da seguinte forma:

Minimizar fz) = [f1(X), 2(X), ..., i (D], (7)
Sujeito a:
Gipy < 0 i=12,..,m, 8)
hi =0 j=12..,p. (9)

T@

onde ¥ = [xq,%;,...,x,]T € 0 vetor de varidveis de decisdo, f;: R® - R, i=
1,..,k sé@o as funcdes objetivo e g;,h; : R" > R, i=1,..,m, j=1,..,p sdo as

funcdes de restricdo do problema.
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Em problemas de otimizacdo multi-objetivo existe um conjunto de solucdes
equivalentes consideradas superiores ao restante das solugcbes e séo
consideradas incomparaveis na perspectiva de multiplas fun¢des objetivo. Estas
solugdes sdo chamadas de ndo dominadas ou solu¢cbes do Pareto-6timo. Cada
uma delas apresenta resultados, para pelo menos um dos objetivos, melhor do
gue os resultados das solugdes restantes.

Para facilitar o entendimento do conceito de dominancia seguem algumas

definicbes:

Definicdo 1. Dados dois vetores ¥,y € R¥, se dizque ¥ < y se x; < y; para
todoi=1,..,k, eque xdominay (X < y)sex < yex # y. A Figura 4 mostra
um caso de relacdo de dominéancia em problemas de minimizagcdo com dois

objetivos f; e f,.

f5
A A solugéo

Figura 4. Relacdo de dominancia em um espaco bi-objetivo.

Definicdo 2. Se diz que um vetor de variaveis de decisédo ¥ € X ¢ R" é ndo

dominado com respeito a X, se ndo existe outro ¥ € X tal que f(£) < f(®).

Definicdo 3. Diz-se que um vetor de variaveis de decisdo x* € F ¢ R" (F é

uma regido alcancavel) € considerado Pareto-6timo se x* ndo € dominado em

relacdo a F.
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Definicdo 4. O conjunto de solugdes do Pareto-6timo P* é definido por:

P* = {X € F|Xéum Pareto — 6timo}.

Definicdo 5. O Pareto Front PF* € definido por:
PF* = {f(¥) € R*|% € P*}.

A Figura 5 mostra um caso particular de Pareto Front para problemas de dois

objetivos.

' Voo A A A solucdes dominadas
O e T T @  Solugdes do Pareto Front

Figura 5. Conjunto de solugbes do Pareto Front.

Cada problema de multiplos objetivos apresenta um Pareto-6timo associado,
que representa o conjunto de solugbes oOtimas que melhor o soluciona. Deste
modo, um processo de otimizacdo multi-objetivo deve seguir duas premissas. A
primeira é determinar o conjunto de solu¢cfes do Pareto Front a partir do conjunto
F de todos os vetores de variaveis de decisdo que satisfacam (7) e (8); de modo
gue este se assemelhe com o Pareto-6timo esperado, ja& que matematicamente, o
Pareto-6timo é a imagem do conjunto de solugdes do Pareto Front no espaco de

objetivos [1].

A segunda premissa consiste em encontrar solucbes que apresentem

diversidade, ou seja, que sejam bem distribuidas entre os objetivos. Na pratica,
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nem todo conjunto de solu¢des do Pareto Front € normalmente o desejavel ou

alcancavel.

3.2. Meétricas para Calculo de Desempenho

As métricas sdo equacBes matematicas com a funcdo de quantificar a
qualidade do Pareto gerado apos a execucdo do algoritmo. Serdo abordadas
quatro métricas neste trabalho: Hypervolume, Spacing, Maximum Spread e
Coverage. Cada uma destas métricas extrai diferentes aspectos do Pareto obtido.

3.2.1. Hypervolume

A métrica Hypervolume foi proposta por Zitzler e Thiele [10] e é definido pela
area pela area ocupada pelo Pareto Front obtido (PF*) (area embaixo da curva).
De modo a explicar o conceito, sera adotado uma otimizacdo com dois objetivos.
Considerando um retangulo limitado pelo ponto (f;(X); f.(X)) que pertence ao
Pareto Front e a origem. Supondo que cada ponto no Pareto gera um retangulo
no espaco de objetivos, o Hypervolume corresponde a area formada pela unido

de todos os retangulos, como é mostrado na Figura 6.

S

Figura 6. Retangulos necessarios para calculo do Hypervolume.

E possivel generalizar a aplicacdo desta métrica para problemas com n-

objetivos usando da equacao:
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Uai|xi € PF*}, (10)

i

HV =

onde x; € um vetor de solu¢gdes ndo dominadas contido em PF* e a; € O
Hypervolume determinado pelos componentes de x; e a origem. Sendo HV a

unido de todos os hypervolumes calculados.

3.2.2. Spacing

O objetivo € medir a variancia da distancia entre as solugfes ndo dominadas
gue sao adjacentes e que pertencem ao Pareto Front. O célculo desta métrica é

realizado usando-se a seguinte equacéao

n—1

1, 2
S = (d-d,)", (11)
2,

onde d; =min;(|[ff(D) - @|+ @ -F@D|), ij=1L..nj*i;d é a
distancia média entre todas as solucdes adjacentes e n € o numero de solucbes
nao dominadas do Pareto Front. O valor igual a zero significa que todas as

solucdes do Pareto Front estédo espacadas de forma equidistante.

3.2.3. Coverage

Esta métrica foi proposta por Zitzler e Thiele [10] [11] [12] e realiza o
mapeamento do par ordenado (4, B), sendo A e B dois paretos, no intervalo [0, 1]

de acordo com

|{b € B; 3a € A;a = b}|

12
IB] (12)

C(4,B) =

O valor de C(4,B) = 1 significa que todas as solu¢des do Pareto Front B sdo

fracamente dominadas pelas solu¢cbes do Pareto Front A. Por outro lado,
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C(A,B) = 0 significa que nenhuma das solu¢cbes do Pareto Front B é fracamente
dominada pelas solucbes do Pareto Front A. Esta métrica é interessante, pois
permite a comparacao entre paretos gerados por algoritmos diferentes, baseando-

se na dominancia entre suas solugdes.

3.2.4. Maximum Spread

Proposta por Zitzler [11], esta técnica calcula a maxima extensao abrangida
pelas solugbes ndo dominadas do pareto. Usando problema com dois objetivos, o
valor do Maximum Spread corresponde a distancia euclidiana entre as duas

solu¢Bes mais distantes. Esta métrica € calculada de acordo com

M
MS = Z (maxi, fm - min?=1fni1)2' (13)
m=1

onde n € numero de solu¢des no Pareto Front e M é o numero de objetivos em
um dado problema. Valores de Maximum Spread maiores indicam melhor

desempenho e maior diversidade [4].
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Capitulo 4
Abordagens de PSO para MOP

Este capitulo tem como objetivo mostrar algumas abordagens da técnica de
otimizacdo baseada em enxames em problemas de multiplos objetivos. Seréo
apresentados algoritmos que obtiveram resultados significativos com esta nova
idéia; entre eles 0o MOPSO-CDR que sera estudado mais profundamente, pois, €

nele que este trabalho é fundamentado.

4.1. PSO aplicado a Problemas Multi-Objetivo

Como foi visto no Capitulo 2, o PSO é uma técnica cujo objetivo € solucionar
problemas de Unico objetivo; de modo que para aplica-lo em MOP o seu formato
original deve ser alterado.

No contexto de problemas com varios objetivos existem trés pontos a serem
alcancados [11]:

1. Maximizar o numero de elementos pertencentes ao Pareto.

2. Minimizar a distancia do Pareto Front produzido pelo algoritmo em
relacéo ao verdadeiro Pareto Front do problema.

3. Maximizar o espalhamento das solu¢des encontradas, de modo a se

obter um vetor de solu¢des uniforme e bem distribuido.

Ao se utilizar o PSO neste novo contexto, surgem algumas duvidas técnicas
referentes a adaptacdo que deve ser feita ao seu algoritmo [13]:
1. Como selecionar particulas para serem usadas como lideres, de modo
a dar preferéncia as solu¢cbes ndo dominadas?
2. Como armazenar as solucbes ndo dominadas encontradas durante o
processo de busca, de modo a reportar as solu¢des ndo dominadas de

todo o passado?
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3. Como manter diversidade no enxame de modo a evitar convergéncia

para uma unica solucao?

No PSO, o lider que cada particula utiliza para atualizar sua posicao é
determinado através da relacdo de vizinhanca entre as particulas. No caso de
problemas de otimizacdo multi-objetivo, cada particula teria um conjunto de
diferentes lideres a disposi¢do, do qual apenas um seria selecionado para
atualizar a sua posicdo. O conjunto de lideres € armazenado em um Arquivo
Externo. O AE é um repositério das solu¢cdes ndo dominadas encontradas durante
0 processo de busca, e ao se chegar no ponto de parada do algoritmo, as
solucdes nele contidas sao as solugcdes que compde o Pareto Front.

A Figura 7 apresenta o pseudo-cédigo do algoritmo genérico da aplicacéo de
PSO em MOP. Os processos que foram adicionados ao algoritmo do PSO estao
marcados em italico.

Apbés 0 enxame ser inicializado, o conjunto de solu¢cdes ndo dominadas,
proveniente do enxame, € inserido no arquivo externo. Baseado em alguma
politica de qualidade, como por exemplo, o Crowding Distance e roleta, é
selecionado um lider para cada particula do enxame, sendo utilizado com gbest
na equacao (1), e este passo se repete a cada iteracao.

Outro detalhe importante acontece na atualizacdo do pbest das particulas.
No caso do PSO a atualizacdo acontece da seguinte forma, no caso de problemas

de minimizag&o:
se fitness(x;) < fitness(pbest;).

Jé nesta proposta, o pbest s6 é atualizado se a nova posicdo dominar o pbest
armazenado. Apoés a atualizacdo da posicéo e velocidade do enxame, o algoritmo

se repete até o ponto de parada.
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Inicio:
Inicializar enxame
Inicializar lideres no Arquivo Externo
Qualificar lideres
g =10
Enquanto g = gmax:
Para cada particula:
Selecionar lider
Atualizar Posicio
Calcular Fitness
Atualizar phest
Atualizar lideres no Arguivo extemno
Qualificar lideres
g++
Reportar resultados

Fim

Figura 7. Pseudo-cédigo do algoritmo genérico do PSO em MOP.

4.2. Trabalhos Relacionados

A area de MOP combinada com PSO possui, basicamente, dois campos que
sao bastante pesquisados e que apresentam bastante influéncia no resultado final

[3]:
1. Selecéo e atualizacéo de lideres;
2. Geracéo de diversidade.

Nesta secdo serdo mostradas algumas técnicas que propdem idéias e
melhorias nestas duas areas citadas.
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4.2.1. CSS-MOPSO

Este algoritmo foi proposto por Chiu [14] e apresenta uma peculiaridade, que é
a auséncia do componente cognitivo da equacédo (1) e a presenca de dois
componentes sociais.

A selecdo do gbest; € realizada se baseando no angulo 8 entre a datum line,
linha que conecta 0 membro do arquivo e um datum point ¢ (ponto formado pela
interseccéo das linhas perpendiculares de duas solugcdes extremas provenientes
do conjunto de solucdes), e a linha que conecta a particula e o membro do
arquivo externo que esta sendo verificado. O membro do arquivo externo que
apresente o menor angulo com a particula sera alocado como seu gbest;. A

Figura 8 (a) ilustra o processo de escolha do gbest; descrito anteriormente.

@ Fonto Datum

& @ Particula 4
® Bl Avquive Externo| |/ ® Particula
.I 5 Arquivoe Ext.
B_‘_‘ Sl s ny e e 9
- @ Y B’ "
. : ¢
EJ"*;'- e : i
e o - v [
e . © = p
1 4 "J. . i ’ 5
S L e ®
8 Sl g %
i l’ .
() (b)

Figura 8. Estratégia de escolha do (a) gbest; e (b) gbest,. Figura adaptada de
Chiu [14].

A selecéo do gbest, € feita de acordo com a escolha de uma das soluc¢des do
vetor de solugcdes para um objetivo selecionado aleatoriamente f; em cada
iteracdo. Todas as particulas sdo ordenadas pelo seu valor de fitness de f;. Apos
isso, a cada particula serd dado um numero serial. Para todas as particulas
pares, 0 membro do arquivo mais proximo delas cujo valor de fitness de f; € maior
que o da particula, sera alocado como o gbest, da particula. O mesmo acontece

para as particulas impares, o membro do arquivo mais proximo delas cujo valor
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de fitness de f; € menor que o da particula, serd alocado como o gbest, da

particula. A Figura 8 (b) ilustra a estratégia de escolha do gbest, para o0 objetivo

fi-

4.2.2. MOPSO

Este algoritmo foi proposto por Coello [15], e é baseado na idéia de se ter um
arquivo externo em que cada particula depositard suas experiéncias a cada
iteracdo. Nesta proposta, o espaco de objetivos explorado € dividido em
hipercubos. Cada hipercubo recebe um valor de fitness que depende do niumero
de particulas inseridas nele.

A selecdo do lider social de cada particula € feita através de uma técnica
chamada Roulette Wheel. Através dela, é escolhido o hipercubo, e dentro deste,
escolhe-se uma particula de forma aleatéria, que esteja dentro do seu escopo
para ser a lider. Nesta técnica também ha o operador de mutacdo aplicado as

posi¢cdes das particulas.

4.2.3. MOPSO-CDLS

Proposta por Tsou [16] e baseada na proposta de Raquel [17], esta técnica
utiliza o conceito de Crowding Distance (CD), utilizando-o como mecanismo para
selecionar lideres do arquivo externo. O CD avalia o quéo distante as particulas
estdo umas das outras, isso se torna importante na analise de como estédo
distribuidas as soluc¢des. Na Figura 9, sdo mostradas regides com particulas em
seu interior. As particulas que se localizam em regifes mais populosas possuem
CD maior, ou seja, uma maior quantidade de particulas proximas.

Existem duas possiveis situacdes na escolha dos lideres social e cognitivo: 1)
o lider social é aleatoriamente escolhido entre 10% das solugdes com maior
Crowding Distance, se a particula € dominada por pelo menos uma das solugdes;
caso contrario, o lider é escolhido aleatoriamente utilizando todas as soluc¢des do
arquivo externo.

2) O lider cognitivo de cada particula é atualizado se a nova posi¢cdo domina o

atual pbest, se forem incomparaveis, uma das duas é escolhida aleatoriamente.
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Esta proposta utiliza um mecanismo de busca local no Arquivo Externo com o
objetivo de melhorar as habilidades de busca em amplitude e ainda aumentar a

convergéncia.
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Figura 9. Distribuicdo das solu¢cbes no Arquivo Externo.

4.2.4. m-DNPSO

Este algoritmo foi proposto por Hu e Eberhart [18], e tem como caracteristica a
solucédo de um objetivo a cada passo usando um esquema similar a da ordenacgéao
lexogréfica [19].

Os multiplos objetivos séao divididos em dois grupos: f; e f,. f; € definido como
0 objetivo da vizinhanca e f, como o objetivo de otimizacdo. A selecédo destes
grupos é arbitraria.

Para selecionar o lider social, o algoritmo tem que calcular a distancia da
particula; para todas as outras particulas considerando f;. Usando esta
informacdo, as m particulas mais proéximas sdo selecionadas, onde m € o
tamanho da vizinhanca. Finalmente, o lider social € definido pela melhor solucao
em termos de f, valores entre m vizinhos.

O lider cognitivo € atualizado apenas quando uma nova solu¢cdo domina sua
atual posicdo. Nesta proposta o Arquivo Externo também €& responsavel pelo

armazenamento de solu¢cbes ndo dominadas.
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Esta apresenta dois pontos negativos: a ordenacao lexografica tende a ser Uutil
apenas no escopo de apenas dois objetivos, além de que a ordem na escolha dos
objetivos pode influenciar na performance do algoritmo.

Na proxima secdo sera abordado outro algoritmo, MOPSO-CDR, que também
combina a técnica PSO com MOP, porém, diferente dos citados acima, este sera

estudado com mais detalhes, pois é nele que se fundamenta este trabalho.

4.3. Detalhamento do MOPSO-CDR

Este algoritmo foi desenvolvido por Santana, Pontes e Bastos-Filho [4], e é
fundamentado no algoritmo MOPSO. Além disso, 0 mesmo incorpora técnicas
como Crowding Distance e Roulette Wheel, vistas nas secfes anteriores, para
auxiliar nos processos de escolha do lider social (gbest) e para prevenir um
namero excessivo de solu¢gdes ndo dominadas no Arquivo Externo. Além disso, o
MOPSO-CDR apresenta um novo procedimento na atualizacdo do lider cognitivo

(pbest). O pseudocddigo do algoritmo desta proposta é mostrado a seguir:

Inicio:
Inicializar lideres no Arquivo Externo
Qualificar Lideres usando Crowding Distance
Enquanto Condicdo de parada ndo alcancada:
Para cada particula:
Aplicar turbuléncia [3]
Selecionar lider (usando-se Crowding Distance e roleta)
Atualizar velocidade e posicdo
Calcular Fitness
Atualizar pbest {tormeic binario)
Atualizar lideres no Arquivo Externo
Qualificar lideres aplicando Crowding Distance
Reportar resultados

Fim

Figura 10. Pseudo-cddigo do algoritmo do MOPSO-CDR.

23



-

ESCOLA POLITECNICA DE
PERNAMBUCO

4.3.1. Selecédo do Lider Social

Em problemas com mudltiplos objetivos a escolha apropriada do lider social é
de fundamental importancia, pois afeta a capacidade de convergéncia e
distribuicdo das solu¢bes ao longo do pareto.

Todas as solugdes ndo dominadas estdo presentes no Arquivo Externo, e
estas sdo as possiveis candidatas a serem utilizadas como gbest de alguma
particula do enxame. O MOPSO-CDR ordena, antes de cada iteragdo, as
solucdes presentes no arquivo externo utilizando como parametro o CD.

Como cada particula do enxame realiza sua atualizacdo de velocidade e
posicdo, faz-se necessaria a selecdo do lider social, sendo esta realizada por
meio da aplicacéo da roleta, onde as soluc¢des do arquivo externo com menor CD

apresentam mais chances de serem selecionadas.

4.3.2. Selecédo do Lider Social Cognitivo

A regra que define a substituicAo do pbest ou lider cognitivo também é
bastante importante para a convergéncia e eficiéncia do algoritmo [4]. Foi
desenvolvido no MOPSO-CDR uma nova estratégia para este processo. De
acordo com a nova proposta, 0 pbest sO € atualizado se a posicao atual da
particula domind-lo; se a relacdo entre eles for incomparavel, a escolha é feita
utilizando-se o Arquivo Externo. O arquivo externo € necessario, pois, neste caso,
a idéia é identificar a solucdo, presente nele, mais semelhante (aplica-se a
distancia euclidiana) do pbest e mais semelhante do x;. Deste modo, verifica-se
qual das duas solucdes apresenta menor CD; caso a solu¢cdo mais proxima da
posicdo atual x; tenha sido a de menor CD, o pbest tem seu valor atualizado para

esta posicao, caso contrario o pbest € mantido.

4.3.3. Turbuléncia

PSO apresenta como principal caracteristica o fato de apresentar alta
velocidade de convergéncia. Porém, este comportamento pode ser prejudicial

para otimizacdo multi-objetivo, pois o algoritmo pode convergir para um falso
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Pareto Front. O operador de mutacdo pode ajudar a evitar este problema através

do aumento da habilidade exploratéria das particulas [4].

O operador utilizado neste algoritmo é o mesmo utilizado no MOPSO [15] e é

aplicado a cada iteracdo com influéncia limitada. No inicio, todas as particulas séo

afetadas, porém com o passar das iteracdes esta interferéncia diminui.

4.3.4. Arquivo Externo

Como foi visto nas secdes anteriores, o principal objetivo do arquivo externo é

atuar como repositério de solucdes ndo dominadas que foram encontradas ao

longo do processo de busca.

De modo a evitar excesso de solu¢cdes armazenadas no AE, decisdes devem

ser tomadas quanto a sua insercdo e remocdo. Deste modo, faz-se uso de um

Gerenciador do processo de atualizagdo do arquivo externo. A Figura 11 mostra

todos 0s possiveis casos que podem ocorrer no repositorio.
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O Caso 1 mostra o0 momento em que uma nova solugéo Ns entra no AE vazio.
No Caso 2, o arquivo externo possui uma solugcdo S1, e a nova solugcao Ns, pelo
fato de ser dominada por S1 néo é adicionada ao repositério. Ja o Caso 3 mostra
que a solucao candidata Ns é incomparavel em relacdo S1, logo, S1 € mantida no
repositério e Ns adicionada. O Caso 4 mostra que a Ns é incomparavel em
relacdo as solucdes S1 e S4, e domina as solugdes S2 e S3 retirando-as do
arquivo externo. O ultimo caso apresenta a situacdo em que Ns € incomparavel a
todas as solugcdes do arquivo externo, deste modo, foi inserida no arquivo
externo, apresentado em duas dimensfes para exemplificar o Pareto formado
com as solugdes presente.

O Gerenciador, ao receber uma demanda de solucdes a serem adicionadas,
deve analisar se estas ndo sdo dominadas pelas solu¢des do arquivo externo, as
candidatas que forem dominadas nao serdo adicionadas, e as solucdes presentes
no Arquivo Externo que forem dominadas seréo removidas.

O Arquivo Externo apresenta um limite quanto ao niumero de solug¢des que
devem habita-lo, deste modo, se 0 numero exceder, aquelas que possuirem

menor CD serdo removidas do repositorio.
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Capitulo 5
A Nova Abordagem, MOPSO -CDR com
Especiacao

PERNAMBUCO

Este capitulo tem o objetivo de apresentar a proposta deste trabalho o
MOPSO-CDR com especiacdo (MOPSO-CDRS), uma abordagem nova

fundamentada no algoritmo MOPSO-CDR, analisado anteriormente.

5.1. AlteracOes Propostas

Para a construcao do trabalho foi utilizada a base do algoritmo MOPSO-CDR.
A filosofia deste algoritmo quanto a selecdo de lideres social e cognitivo,
utilizando conceitos de Crowding Distance e roleta, gerou resultados bastante
positivos.

Com o objetivo de melhorar ainda mais os resultados obtidos pelo MOPSO-
CDR, foram incorporados novos passos ao algoritmo.

Uma das mudancas propostas foi a insercdo de um Gerenciador de arquivo
externo. Este Gerenciador avalia como as solu¢des estdo se comportando com o
passar das iteracdes. Como foi visto no Capitulo 3, as métricas de calculo de
desempenho geram informacdo a respeito da distribuicdo e espacamento das
solugdes presentes no Arquivo Externo.

Outra mudanca proposta foi a criagdo de um tomador de decisGes baseado no
desempenho do pareto. Este é responsavel pela analise das informagfes geradas
pelo Gerenciador do Arquivo Externo e por tomar decisdes de modo a tentar
melhorar o desempenho na busca de melhores soluc¢des para os objetivos.

Estas decisbes estdo relacionadas com a forma pela qual a selecdo dos

lideres sera realizada, e nesta abordagem existem duas:

1. Selecéo de lideres adotando forma basica, mesma que no MOPSO-
CDR.
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2. Selecéao de lideres adotando a Especiacéao.

A primeira op¢do mantém a forma como é feita a sele¢cdo dos lideres social e
cognitivo do MOPSO-CDR, citado nas secoes 4.3.1 e 4.3.2 respectivamente.

A segunda opcéo divide o enxame, de modo que cada sub-enxame tenha uma
responsabilidade especifica. A proposta de particionamento do enxame tem o
objetivo de dividir tarefas; supondo que haja n objetivos a serem solucionados,
serdo criados n + 1 sub-enxames com o mesmo numero de particulas. O sub-
enxame adicional se comportara baseado no MOPSO-CDR, enquanto cada um
dos n restantes sera responsavel em solucionar um objetivo. A Figura 12 mostra
0 processo de especiacdo do enxame para o0 caso de dois objetivos f; e f,, com
um total de 21 particulas. Como foi dito anteriormente, cada sub-enxame tera o
mesmo numero de particulas, logo, para este caso, cada sub-enxame apresenta

7 particulas.

Soluciona Objetivo f;

MOPSO-CDR

Soluciona Objetivo f,

Figura 12. llustracédo do processo de Especiacédo do enxame.

Esta mudanca interferiu diretamente na selecdo dos lideres. Nas sec¢fes 5.2 e
5.3 serdao mostradas, com detalhes, as alteracdes implementadas na escolha dos
lideres no caso com Especiacdo e na secdo 5.4 serdo apresentados o

Gerenciador do Arquivo Externo, e 0 processo para a tomada de decisdes.
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5.2. Selecao do Lider Social

Na sessao anterior, foi mencionado que o MOPSO-CDRS apresenta uma
entidade responsavel pela tomada de decisbes: manter o funcionamento normal
do MOPSO-CDR ou utilizar a especiacdo. Caso a primeira seja escolhida, o
processo de selecdo dos lideres social e cognitivo € mantido. Caso contrario, o
lider social deixa de ser escolhido através de CD e roleta, e passa a utilizar
especiacao.

Lembrando que o gbest é utilizado no processo de atualizacdo de velocidade
e posicdo das particulas; se a particula em questdo pertence a um agrupamento
cujo objetivo é otimizar o objetivo f;, ser& buscada, no Arquivo Externo, a solugcéo
que melhor soluciona f;, sendo esta utilizada como lider social da particula em
questdo. A Figura 13 mostra a idéia da selecéo do lider social, de modo que a
solucdo que apresenta o melhor resultado para grupo de particulas responsavel

pelo objetivo f; foi escolhida.

Enxame

MOPSO-CDR

f2

f

Lider social

f2

Arquivo Externo

A

»
»

»
»

»
»

»
»

»>
»>
»
»>

Figura 13. Selecé&o do lider social com Especiacao.

f
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5.3. Selecao do Lider Cognitivo

O lider cognitivo ou pbest também é utilizado na atualizacédo de velocidade e
posicdo das particulas, porém, a forma como este deve ser atualizado € o
diferencial. O MOPSO-CDRS prop0e a seguinte mudanca.

Caso o fithess do pbest e o fitness da posicdo atual da particula analisada
sejam considerados incomparaveis, verifica-se qual das duas apresentam o menor
fithess para o objetivo atribuido ao grupo em que a particula estd inserida. A
Figura 14 mostra um exemplo onde se tem os valores de fitness do pbest e da
particula i. Caso a particula pertenca a um sub-enxame cuja responsabilidade &
solucionar o objetivo f;, de acordo com a figura, como o fithess de seu pbest
apresenta um melhor valor para este objetivo, logo, este € mantido. Caso o

objetivo a ser solucionado fosse o f,, o fithess da particula; € melhor que o do
pbest). Neste caso, a posicdo armazenada no pbest, seria substituida pela

posicao atual da particula.

fl f2 fn
pbest 20 [ 34| .. | 57]
X, 21 |31 ] .. | 43]

Figura 14. Fitness do pbest € fitness da posi¢ao atual da particula i.

5.4. Analisando o Arquivo Externo e Tomando
Decisbes

Existe uma série de requisitos que devem ser atendidos ao se retornar um
Pareto Front no final da execucdo do algoritmo. Com o0 uso das métricas de
desempenho, torna-se facil a quantizagdo destas caracteristicas. Deste modo,
tentando-se aperfeicoar as solugbes do Arquivo Externo, foi desenvolvido o

Gerenciador de Arquivo Externo, sendo este responsavel por supervisionar o
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comportamento das solucdes através da aplicacao das métricas de desempenho
a cada iteragao.

Além do Gerenciador, foi criado um Executor ou Tomador de Decisfes. Esta
aplicacdo recebe a andlise feita pelo Gerenciador e verifica qual decisdo deve ser
tomada para que se possa melhorar a convergéncia do pareto.

Como foi dito na secédo 5.1, o Executor é responsavel pela escolha do estado
em que o algoritmo deve estar em um dado momento; podendo migrar entre dois
estados: 1) o estado Basico utilizado pelo MOPSO-CDR e 2) o estado de
Especiacao.

Executor

Bdasico Especiagdo

Figura 15. O Executor decide entre os estados: (1) MOPSO-CDR ou Basico, e (2)

Especiacao para fazer a selecdo dos lideres.

A tomada de decisdo do Executor é influenciada pelos valores obtidos através
da aplicacao das métricas Spacing e Maximum Spread, estudadas no Capitulo 3.
Portanto, no caso do estado Béasico, o Gerenciador do Arquivo Externo analisa o
spreading do pareto; caso a variacdo do resultado desta métrica seja considerada
insignificante, ou seja, nao apresente melhora com o passar das iteragdes, 0
Executor muda para o estado de Especiacdo. Neste estado, o Gerenciador passa
a analisar o spacing do Pareto, caso este, em um dado momento, também

apresente estagnacao na variagdo, o Executor muda para o estado Basico.
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A Figura 16 mostra o aspecto que deve ser analisado pelo Gerenciador
guando o algoritmo adota o estado Basico. No inicio da analise, o Pareto
apresenta deficiéncias quanto ao spreading mostrado na Figura 16 (a), porém,
com o passar das iteragbes o Pareto tende a um melhor espalhamento, mostrado
na Figura 16 (b).

£ fa 4
| — ‘
(a) fl (b) fl

Figura 16. No estado Basico, o Gerenciador tem o objetivo de analisar o pareto
guanto ao spreading de modo a auxiliar na sua convergéncia. (a) Representa o
Pareto com pouco espalhamento, jA (b) mostra o Pareto com melhor grau de

convergéncia em relacao ao spreading.

A Figura 17 encaixa-se no momento em que o algoritmo esta no estado de
Especiacdo. No inicio, o Pareto apresenta um espacamento desuniforme entre as
solugbes, como mostra a Figura 17 (a). A medida que novas solugdes vao sendo
encontradas e adicionadas ao AE, a uniformidade entre as solu¢cbes se torna cada
vez maior, aperfeicoando cada vez mais o Pareto gerado. A Figura 17 (b) mostra

um Pareto com solucfes espacadas uniformemente.
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f2 f2

(@) f (b) f

Figura 17. No estado Especiacdo, o Gerenciador tem o objetivo de analisar o
pareto quanto ao spacing de modo a auxiliar na sua convergéncia. (a) Representa
o Pareto com espagcamento irregular entre as solugdes, ja& (b) mostra a
regularidade de espacamento entre as solu¢des do Pareto, ou seja, melhor taxa

de spacing.

Para se definir o percentual de estagnacao das solucdes aplicou-se o desvio
padrao sobre os resultados gerados pelo Gerenciador para uma dada métrica. De
forma empirica, foi determinado o limiar de estagnacéo igual a 0,1%, ou seja, se 0
desvio padréo gerado for menor que este limiar, o Executor muda o estado do

algoritmo.

Suponha o seguinte exemplo: O estado atual do sistema € Basico e este
estado estd sendo mantido a 1000 iteracbes. Como no estado Béasico o
Gerenciador € responsavel pela analise do Maximum Spreading, para cada
iteracdo foi gerado um valor que representa o spreading do Pareto naquele
momento. O Executor aplica o desvio padrdao sobre esses 1000 valores de
spreading gerados e verifica se o resultado € menor que o limiar de estagnacao,
caso seja menor o Executor muda o estado do algoritmo para Especiacédo. Deste
modo, o Gerenciador passa a analisar o spacing do pareto € 0 mesmo processo

se repete.
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5.5. Algoritmo

Como foi dito nas se¢Bes anteriores, novos processos foram adicionados a
rotina do MOPSO-CDR. De acordo com a Figura 18, percebem-se as mudancas,

em italico, que foram efetuadas no algoritmo base.

Inicio:
Inicializar enxame
Inicializar lideres no Arquivo Externo
Qualificar lideres usando CD e roleta
Utilizar estado Basico (1)
Enquanto Crterio de parada ndo alcancado:
Para cada particula:
Aplicar turbuléncia
Selecionar lider social (de acordo com estado)
Atualizar velocidade e posicio
Calcular Fitness
Atualizar pbest (de acordo com estodo)
Atualizar lideres do Arquivo Externo
Qualificar lideres usando CD
Analisar pareto usando metrica
Atualizor estodo
Reportarresultados
Fim

Figura 18. Pseudo-cddigo do algoritmo do MOPSO-CDRS.

A primeira mudanca a ser analisada € Utilizar estado Basico. O algoritmo
necessita de um estado inicial para que a escolha do lider seja fundamentada,
deste modo, foi definido como estado default o estado Basico. Outros dois pontos
bastante importantes que sofreram mudancgas foram: 1) Selecionar lider social e
2) Atualizar pbest; estes dependem da escolha feita pelo Executor em relacéo a

que estado sera utilizado: Basico ou Especiacgéo.
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Outra novidade desta proposta € apresentada nos passos
Analisar pareto usando métricas e Atualizar estado. As métricas de analise de
pareto costumam ser utilizadas no fim do algoritmo para verificar as
caracteristicas do pareto front gerado. No algoritmo proposto, a cada iteracdo, o
pareto gerado é avaliado (aplicando-se métricas) de modo que este possa ser
ajustado.

Supondo que o estado atual aplicado seja o Basico, deste modo, aplica-se a
métrica respectiva, a cada iteracdo, e analisa-se o comportamento das solu¢des
em relacdo ao spreading. O Executor supervisiona a melhora da taxa de
spreading de forma incremental, ao perceber que esta taxa apresenta uma
variacéo insignificante, ou seja, menor que 0,1%, o mesmo aciona a mudanca de
estado.

No estado Especiacdo, executam-se 0S mesmos passos citados no estado
Basico, porém, o objetivo é analisar o spacing do Pareto. Caso a taxa de spacing

sature, o Executor aciona a mudanca de estado.
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Capitulo 6

Experimentos

Este capitulo visa apresentar o arranjo experimental e a analise dos
resultados obtidos utilizando o MOPSO-CDRS. Também é realizada comparacao
com outras técnicas, citadas na sessado 4.2. Serao descritos os detalhamentos dos
arranjos experimentais, as funcdes de teste, métricas utilizadas para avaliacdo de
desempenho do arquivo externo, parametros de simulacdo e por fim a

apresentacao e discussao dos resultados.

6.1. Arranjo Experimental

6.1.1. FungOes de Teste

O trabalho desenvolvido por Deb [20] auxiliou na identificagdo de
caracteristicas que podem causar dificuldades no processo de convergéncia do
Pareto Front e na manutencdo da diversidade da populagcdo. Ao todo foram
identificadas seis caracteristicas: 1) multi-modalidade, 2) influéncia de minimos e
méaximos locais, 3) ponto étimo isolado, sendo estas trés bastante conhecidas no
campo de problemas de unico objetivo, 4) convexidade ou ndo convexidade, 5)
descontinuidade, 6) ndo uniformidade.

Para cada uma das seis caracteristicas mencionadas, uma funcdo de teste
correspondente foi criada seguindo a orientagcéo proposta por Deb [20].

De modo a facilitar a explicacdo das funcdes de teste, o estudo foi restrito a
dois objetivos, ja que este numero de objetivos € suficiente para refletir os
aspectos essenciais de otimizacdo multi-objetivo. Além disso, apenas problemas
de minimizag&o sao considerados.

As funcdes de teste sao estruturadas obedecendo a mesma regra, sendo esta
composta por trés fungoes f;, g, h [8]:

Minimizar T(x) = [f;1(x1), L (O] (14)

36



_med

POLE
R
Sujeito a f(x) = g(xz, ..., t)h(f1(x1), g (x2, ..., X)); (15)
onde x = (X1, ..., Xp)- (16)

A funcéo f; é uma funcdo da primeira variavel de decisdo apenas, g € uma
funcdo que utiliza as m — 1 variaveis restantes, e os parametros de h sdo as
funcbes f; e g. As funcdes de teste diferem nestas trés fun¢des, no nimero de
variaveis m e nos valores que as variaveis podem receber.

A primeira funcédo de teste € a ZDT1. Sua caracteristica € a presenca de um

Pareto Front com comportamento convexo como mostra a Figura 19.
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Figura 19. Representacao grafica da funcdo ZDT1.

A ZDT1 é definida matematicamente pelas fungdes:

fi(x) = x4, a7)
9z e xm) = 149 T, x5/ (m = 1), (18)
h(fLg) =1—-fi/g. (19)

As funcdes a seguir, exceto ZDT5 e ZDT6, apresentam m = 30 e x; € [0, 1].
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A segunda funcdo € a ZDT2, e diferente da primeira apresenta um Pareto

céncavo como mostra a Figura 20.
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Figura 20. Representacdo grafica da funcao ZDT2.

As funcdes que a define sdo mostradas a seguir:

fi(x)) = x4,
g(xz ) =1+ 9818, x;/(m — 1),

h(fu,9) =1-(f1/9)*

(20)
(21)

(22)

A caracteristica de descontinuidade é representada pela ZDT3. Seu Pareto

Front apresenta uma seérie de partes convexas ndo continuas como mostra a

Figura 21.

As funcdes que a define sdo mostradas a seguir:

fi(x)) = x4,

gz oy x) = 1+ 9.3, x,/(m — 1),

h(fi,9) = 1=+ fi/g = (fi/g)sin (107f;).

(23)
(24)

(25)
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A introducéo da funcéo seno em h causa descontinuidade no Pareto Front.

0,0 01 0.2 0,3 0.4 0,5 0.6 0.7 0,8
F2

Figura 21. Representacdo grafica da funcao ZDTS3.

A funcdo ZDT4 tem a caracteristica de ser multimodal, apresentando 21°

paretos front locais:

filxy) = x4, (26)
g(xy, s xp) =1+ 100m — 1) + X, (x? — 10cos (4mx;)), (27)
h(f,9) =1—-fi/g. (28)

onde x,,...,x, € [-5,5]. O Pareto-6timo é formado com g(x) =1, e o melhor
Pareto Front com g(x) = 1,25.

A Figura 22 mostra a disposi¢cao das solucdes no contexto da funcéo ZDT4.

A Ultima funcdo de teste é a ZDT6, e inclui dificuldade causada pela néo

uniformidade do espaco de busca:

filxy) = 1 — exp(—4x,) sin®(6mx,), (32)
g(xZ; =y xm) = 1 + 9 ((Z:ZZ xi)/(m - 1))0'251 (33)
h(fi,g) =1— (f1/g)2, (34)
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onde m = 10, x; € [0,1]. O Pareto Front esta formado com g(x) = 1 e apresenta

comportamento concavo como mostra na Figura 23.
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Figura 22. Representacao grafica da funcdo ZDT4.
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Figura 23. Representacdo grafica da funcao ZDT6.
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6.1.2. Métricas de Calculo de Desempenho

As métricas utilizadas nesta experimentacdo sdo Hypervolume, Spacing,
Coverage, e Maximum Spread citadas na sessao 3.2. Cada uma das técnicas
experimentadas teve o seu Pareto Front analisado através da aplicacdo de cada
uma das métricas citadas acima, possibilitando melhora na investigacdo das

caracteristicas de cada arquivo externo.

6.1.3. Parametros de Simulacao

Cada técnica apresenta seu proprio conjunto de parametros. No caso do
MOPSO, a taxa de mutacao é 0,5, o niumero de divisbes para o grid adaptativo &
30 e o fator de inércia diminui linearmente de 0,4 a 0,0 [15]. No MOPSO-CDLS o
fator de inércia diminui linearmente de 0,9 a 0,4 [16]. No m-DNPSO o valor de
m = 10 e o fator de inércia € gerado aleatoriamente em cada iteragcdo no intervalo
[0,5; 1,0] [4]. O CSS-MOPSO adota como desvio padrdo para a mutacéo
Gaussiana o valor 0,01 e o fator de inércia diminui linearmente de 0,9 a 0,4 [14].
No MOPSO-CDR ¢ utilizado uma taxa de mutagdo de 0,5 e o fator de inércia
diminui linearmente de 0,4 a 0,00 O MOPSO-CDRS apresenta a mesma
configuracdo do MOPSO-CDR, porém, pelo fato de haver a analise estatistica
quanto a melhora significativa, em relacdo as métricas Spacing e Maximum
Spreading, do pareto, adota-se como limite de saturacao 0,1%.

Em todos os casos foram utilizadas 20 particulas no enxame e limite de 200
solugdes no arquivo externo. 200.000 calculos de fitness foram executados em
cada simulacédo. As constantes de aceleracdo cognitiva e social igual a 1,49445,
quando aplicadas. Para validar os resultados, cada simulagéo foi executada 30
vezes e 0s seus resultados sdo apresentados em termos da média e desvio
padrao.

As simulacdes foram executadas em uma maquina com processador Intel

Dual-Core, 2GB de memdéria RAM, rodando o sistema operacional Windows XP
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6.2. Resultados

6.2.1. Compara¢ao MOPSO-CDRS com demais Técnicas

Para realizar a comparacdo entre o MOPSO-CDRS e as demais técnicas foi
necessario realizar simulacdes para cada técnica envolvida no contexto de todas
as fungbes de teste. As simulacdes geram como saida o resultado da aplicagédo
das métricas no Pareto Front de cada técnica.

A Tabela 1 mostra o valor das métricas de cada técnica para a funcdo ZDT1.
Como se pode observar tanto a métrica Hypervolume como Spacing, no caso do
MOPSO-CDRS, é superior a todas com relacdo a média e apresentou um baixo
desvio padréo. Ja em relacdo a Maximum Spread, o valor € menor que o0 obtido
nas demais técnicas, o que nao significa dizer que o resultado € pior, e sim que
devido a convergéncia, as particulas dos extremos terminaram se aproximando
reduzindo o valor do spreading. Quanto a analise do Coverage, fica perceptivel a
grande vantagem da técnica proposta em relacdo as quatro primeiras técnicas, ja
em relacdo ao MOPSO-CDR, o MOPSO-CDRS apresenta 88% de dominancia e

€ dominado em 3% dos casos.

Tabela 1. Resultado da simulacéo para a fungdo ZDT1 com 200.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO 0,36 (0,002) 0,0046 (5E-4) 1,425 (0,005) 1,0 (0,0) 0,0 (0,0)
m-DNOPSO 0,713 (0,053) | 0,0457 (0.014) 1,54 (0,065) 1,0 (0,0) 0,0 (0,0)
MOPSO CDLS | 0,39 (0,003) 0,0042 (6E-4) 1,44 (0,005) 1,0 (0,0) 0,0 (0,0)
CSS MOPSO | 0,34 (0,002) 0,0023 (1E-4) 1,42 (0,002) 0,99 (0,003) 0,0 (0,0)
MOPSO CDR 0,33 (3E-5) 0,0033 (2E-4) 1,41 (0,0) 0,88 (0,0034) 0,03 (0,023)
MOPSO CDRS 0,31 (2E-5) 0,0027 (1E-4) 1,38 (0,0)

A Tabela 2 mostra o valor das métricas relacionadas a funcao ZDT2. MOPSO-
CDRS, para o caso de Hypervolume e Maximun Spread apresentou um
comportamento similar ao MOPSO-CDR, porém em Spacing alcancou melhor

resultado. O MOPSO-CDRS superou todas as outras técnicas em Coverage. Em

42



-

ESCOLA POLITECNICA DE
PERNAMBUCO

relacdo ao MOPSO-CDR apresentou dominancia de 72%, sendo dominado em

apenas 19,5% dos casos.

Tabela 2. Resultado da simulacéo para a fungdo ZDT2 com 200.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO 0,69 (0,001) 0,006 (0,001) 1,396 (0,015) 1,0 (0,0) 0,0 (0,0)
m-DNOPSO 0,94 (0,06) 0,054 (0,017) 1,29 (0,037) 1,0 (0,0) 0,0 (0,0)
MOPSO CDLS | 0,716 (0,003) 0,006 (0,001) 1,39 (0,004) 1,0 (0,0) 0,0 (0,0)
CSS MOPSO 0,674 (0,001) 0,0035 (7E-4) 1,41 (8E-4) 0,978 (0,021) 0,0 (0,0)
MOPSO CDR 0,66 (3E-5) 0,0033 (2E-4) 1,41 (0,0) 0,72 (0,036) 0,195 (0,023)
MOPSO CDRS 0,656 (3E-5) 0,0029 (2E-5) 1,41 (0,0)

A Tabela 3 apresenta os valores referentes a fungcdo ZDT3. Para as métricas

Hypervolume e Spacing o MOPSO-CDRS apresentou melhora em relacdo a

meédia e conseguiu reduzir bastante o desvio padrdo em relacédo a todas as outras

técnicas. No caso do Maximun Spread houve similaridade. Em relacdo ao

Coverage, 0 MOPSO-CDRS obteve bons resultados, sendo dominado em 22%
pela MOPSO-CDR.

Tabela 3. Resultado da simulacéo para a fungdo ZDT3 com 200.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO 0,950 (0,004) 0,005 (4E-4) 1,976 (0,008) 1,0 (0,0) 0,0 (0,0)
m-DNOPSO 1,296 (0,088) 0,045 (0,016) 2,068 (0,146) 1,0 (0,0) 0,0 (0,0)
MOPSO CDLS | 1,006 (0,009) 0,006 (9E-4) 1,988 (0,015) 1,0 (0,0) 0,0 (0,0)
CSS MOPSO | 0,953 (0,008) 0,003 (7E-4) 1,983 (0,006) 0,999 (8E-4) 0,0 (0,0)
MOPSO CDR 0,920 (1E-4) 0,0033 (2E-4) 1,967 (2E-5) 0,69 (0,0056) 0,22 (0,034)
MOPSO CDRS 0,94 (6E-5) 0,0025 (0,0) 1,95 (9E-5)

A Tabela 4 mostra os valores para a funcdo ZDT4. O MOPSO-CDRS obteve

resultados similares em relacdo ao MOPSO-CDR no caso Hypervolume e

Spacing, porém obteve resultado satisfatério em relacdo ao Maximum Spread
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reduzindo média e o desvio padrdo, devido a reducdo da distancia entre as

solucdes extremas. O MOPSO-CDRS obteve vantagem absoluta em relagéo ao

Coverage, dominando quase por completo todas as outras técnicas.

Tabela 4. Resultado da simulacéo para a fungcdo ZDT4 com 200.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO 0,631 (0,526) | 0,006 (0,0014) 1,54 (0,18) 0,68 (0,210) 0,2 (0,18)
m-DNOPSO | 2,157 (0,935) 0,04 (0,037) 1,94 (0,29) 1,0 (0,0) 0,0 (0,0)
MOPSO CDLS | 4,82 (0,2174) 0,005 (9E-4) 2,7 (0,46) 1,0 (0,0) 0,0 (0,0)
CSS MOPSO | 5,38(0,008) | 0,005 (0,0012) 2,8 (0,525) 0,999 (8E-4) 0,0 (0,0)
MOPSO CDR 0,57 (0,26) 0,0033 (3E-4) 1,52 (0,109) 0,9 (3E-4) 0,015 (2E-3)
MOPSO CDRS | 0,56 (0,012) 0,0025 (2E-4) 1,38 (2E-4)

A Tabela 5 apresenta os valores referentes a funcéo ZDT6. O MOPSO-CDRS

apresenta uma melhora significativa em média e desvio padrédo em relacdo ao

MOPSO-CDR em todas as meétricas, no caso do Maximum Spreading houve

reducdo da distancia das solugbes extremas, resultando na diminuicdo do valor.

Porém, apenas em Spacing obteve melhora em relacdo ao MOPSO. O Coverage

do MOPSO-CDRS, para esta funcdo, apresenta dominancia razoavel em relacédo
as técnicas MOPSO e CSS-MOPSO, 48% e 41,7% respectivamente. As técnicas

restantes sdo dominadas pela MOPSO-CDRS com valores acima de 88%.

Tabela 5. Resultado da simulacéo para a fungcdo ZDT6 com 200.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO 1,261(0,386) | 0,129 (0,122) 3,180 (1,4) 0,48 (0,102) 0,32 (0,0034)
m-DNOPSO 1,279 (0,506) 0,126 (0,108) 3,203 (1,732) 1,0 (0,0) 0,0 (0,0)
MOPSO CDLS | 1,717 (0,519) | 0,186 (0,145) 4,632 (1,816) 0,89 (2E-3) 0,09 (2E-4)
CSS MOPSO | 2,051 (0,697) 0,234 (0,153) 5,571 (2,046) 0,417 (0,004) 0,002 (2E-3)
MOPSO CDR 1,670 (0,3) 0,088 (0,056) 4,636 (1,053) 0,88 (0,0034) 0,03 (0,023)
MOPSO CDRS | 1,345 (0,46) 0,078 (2E-3) 3,233 (0,034)
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6.2.2. Comparacao entre MOPSO-CDRS e MOPSO-CDR com numero de
iteracdes reduzido

Também foram realizadas simula¢des reduzindo-se de 200.000 chamadas da
funcao fitness para 100.000 chamadas, com o objetivo de avaliar o desempenho
das técnicas MOPSO-CDR e MOPSO-CDRS na primeira metade de uma
simulacdo considerada completa. As tabelas a seguir seguem o mesmo padrao
das que foram mostradas anteriormente.

Devido ao alto grau de convergéncia, o Pareto gerado apresenta reducao da
distancia entre as solucdes extremas, acarretando na reducéao do spreading para
todas as funcoes.

A Tabela 6 mostra que o comportamento do pareto front das duas técnicas é
bastante parecido, porém o pareto da MOPSO-CDRS domina o da CDR em

13,5% e é dominado em 0,5% dos casos.

Tabela 6. Resultado da simulag&o para a fungcdo ZDT1 com 100.000 chamadas.

Algoritmo | Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS
MOPSO CDR | 0,36 (0,002) | 0,0035(0,002) | 1,43 (0,001) 0,135 (0,0034) 0,005 (0,023)
MOPSO CDRS | 0,36 (0,002) | 0,0029 (0,002) | 1,41 (0,001)

A Tabela 7, da mesma forma que a anterior, apresenta grande similaridade
entre os paretos das duas técnicas. O MOPSO-CDRS obteve um percentual de
dominancia de 14,5% e néo foi dominado pelo MOPSO-CDR.

Tabela 7. Resultado da simulacéo para a fungdo ZDT2 com 100.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread | Cover CDRS,* | Cover *, CDRS
MOPSO CDR 0,76 (0,001) | 0,0043 (0,007) | 1,43 (0,005) | 0,145 (0,0032) 0,0 (0,0)
MOPSO CDRS | 0,72 (0,0023) | 0,0042 (0,02) 1,42 (0,02)

45




-

ESCOLA POLITECNICA DE
PERNAMBUCO

A Tabela 8 apresenta a superioridade do MOPSO-CDRS, em todas as
métricas, em relacdo ao MOPSO-CDR. O Coverage obtido pela técnica mostra
gue esta dominou a concorrente em 74,5% dos casos, sendo dominada em

apenas 1%.

Tabela 8. Resultado da simulac&o para a fungdo ZDT3 com 100.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread | Cover CDRS,* | Cover *, CDRS
MOPSO CDR | 0,93 (0,008) | 0,0036(0,032) | 1,97 (0,019) | 0,745 (0,001) | 0,01 (0,034)
MOPSO CDRS | 0,912 (0,034) | 0,0027 (1E-4) | 1,96 (0,004)

A Tabela 9 mostra que MOPSO-CDRS atinge 6timo desempenho quando

compete com MOPSO-CDR no inicio da simulagéo, para a funcdo ZDT4. A técnica

proposta superou a concorrente em todas as métricas, dominando-a 100%.

Tabela 9. Resultado da simulacéo para a funcdo ZDT4 com 100.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread | Cover CDRS,* | Cover *, CDRS
MOPSO CDR 4,88 (2,61) 0,74 (0,56) 16,49 (8,79) 1,0 (0,0) 0,0 (0,0)
MOPSO CDRS 2,23 (1,32) 0,08 (0,05) 11,44 (5,39)

A Tabela 10 mostra que, exceto em Spacing, a MOPSO-CDRS apresentou
melhor desempenho em relacéo a concorrente. Seu pareto dominou em 67% e foi

dominado em apenas 12%.

Tabela 10. Resultado da simulacéo para a fungdo ZDT6 com 100.000 chamadas.

Algoritmo Hypervolume Spacing Max. Spread | Cover CDRS,* | Cover *, CDRS
MOPSO CDR 2,05 (0,2) 0,17 (0,071) 6,03 (1,34) 0,67 (0,56) 0,12 (0,78)
MOPSO CDRS 1,8 (0,16) 0,189 (0,0017) 5,89 (0,59)

De acordo com os resultados apresentados para o0 numero de chamadas
reduzido, no caso de funcdes mais simples, o MOPSO-CDRS e o MOPSO-CDR
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obtiveram convergéncia similar, porém, para o caso de funcdes mais complexas
como a ZDT4 e ZDT6 ficou clara a superioridade do Pareto gerado pela técnica
proposta. Nestas duas funcdes, as solugbes encontradas pelo MOPSO-CDR
foram dominadas em 100% e 67% respectivamente. Além do Coverage, as
demais métricas obtiveram uma melhora significativa em relacdo a obtida pelo
MOPSO-CDR.

6.2.3. Comparacéao entre MOPSO-CDRS e MOPSO-CDR quan to ao tempo

de execucao

Além da andlise em relagdo a eficacia, foi feito um comparativo entre o
MOPSO-CDRS e o MOPSO-CDR quanto ao tempo gasto para a execugao destes
algoritmos para cada funcao objetivo. De acordo com a Tabela 11, que mostra a
comparacdo com 100.000 chamadas, percebe-se um aumento consideravel no
tempo de execugdo do MOPSO-CDRS. Este aumento pode ser associado ao
grande processamento realizado pelo Gerenciador de arquivo externo e pelo
Executor de decisdes. Estas duas entidades s&o responsaveis por muitas
consultas ao arquivo externo, tornando a técnica proposta mais custosa que o
MOPSO-CDR.

Tabela 11. Tempo de execucédo, em segundos, dos algoritmos MOPSO-CDRS e
MOPSO-CDR para cada fungao objetivo usando-se 100.000 chamadas.

Algoritmo ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MOPSO CDR 37,681 35,566 42,683 2,372 4,381
MOPSO CDRS 112,250 107,887 117,475 30,969 33,053

O MOPSO-CDR também foi executado se utilizando 200.000 chamadas para
verificar se, mesmo com um numero de chamadas maior, 0 seu tempo de
execugcdo se mantém inferior ao do MOPSO-CDRS. A Tabela 12 mostra que

mesmo com o0 aumento do numero de chamadas, 0o MOPSO-CDRS apresenta um
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tempo de execucdo superior, chegando-se a conclusdo que é mais eficaz e
eficiente a utilizagdo do MOPSO-CDR com 200.000 chamadas do que o MOPSO-
CDRS com 100.000 chamadas.

Tabela 12. Tempo de execuc¢éo, em segundos, dos algoritmos MOPSO-CDRS
usando 100.000 chamadas e MOPSO-CDR usando 200.000 chamadas para cada

funcao obijetivo.

Algoritmo ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MOPSO CDR 54,356 76,89 75,34 5,98 9,76
MOPSO CDRS 112,250 107,887 117,475 30,969 33,053
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Capitulo 7

Conclusoes e Trabalhos Futuros

Este trabalho apresenta uma nova técnica aplicada em problemas multi-
objetivos (MOP), com o objetivo de melhorar o desempenho e comportamento das
solugdes presentes no Pareto Front, e contribuir com avancos na area de
Otimizac&o Multi-Objetivo.

Neste capitulo, serdo feitas algumas considera¢ces sobre os resultados dos
experimentos realizados em relacdo a nova técnica proposta neste trabalho, como
também sobre as contribuicdes aos estudos realizados na area de MOO e por fim

0s possiveis trabalhos futuros para extenséo deste trabalho.

7.1. Contribuicbes

Fica claro que com o aparecimento de problemas cada vez mais complexos, &
necessario fazer modificacdes nas técnicas de otimizacdo a fim de se obter um
melhor desempenho na busca de solugbes adequadas. Este trabalho contribui
com os estudos que vém sendo realizados recentemente na busca por novas
modificacdes e variacdes na heuristica de otimizacdo por enxame de particulas
(PSO) aplicado a problemas com multiplos objetivos.

Este trabalho estende o algoritmo MOPSO-CDR, propondo uma abordagem
gue agrega um analisador de arquivo externo, alterando a proposta do algoritmo
de acordo com a analise realizada. Esta alternativa se torna uma alternativa
eficiente apresentando um melhor desempenho em comparacdo a algumas
técnicas presentes na literatura, citadas na sessao 4.2, assim contribuindo com
avangos nas pesquisas de técnicas de otimizacao.

Tais contribuicbes foram provadas pelos experimentos realizados que
demonstram os estudos comparativos entre a nova técnica MOPSO-CDRS e as
técnicas existentes por meio de simulagfes envolvendo fung¢des de teste, bastante

utilizadas para avaliagdo de desempenho na literatura.
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A técnica proposta, utilizando o numero total de simulagbes adotado,
apresenta uma sensivel melhora de desempenho em relagdo a sua principal
concorrente, 0 MOPSO-CDR; ja em relacdo as técnicas restantes, a melhora é
bastante superior.

Com a reducdo do numero de iteracOes, utilizando-se metade do total, foi
constatada a superioridade do MOPSO-CDRS em relagdo ao MOPSO-CDR.
Observou-se que o MOPSO-CDRS forma um Pareto Front que apresenta um
percentual de dominancia significativo em relacdo ao seu concorrente, ou seja, no

inicio da simulacdo o seu Pareto converge mais rapidamente.

7.2. Conclusao

Este trabalho apresenta uma nova técnica de otimizacao aplicada a problemas
de busca e otimizacdo com multiplos objetivos. Esta técnica foi inspirada na
estrutura algoritmica do MOPSO-CDR. De acordo com os resultados dos
experimentos, mostrados no Capitulo 6, o MOPSO-CDRS obteve melhores
solugBes que os seus concorrentes, gerando um Pareto Front mais distribuido e
compacto.

A criacdo do Gerenciador do arquivo externo, cuja funcdo é analisar o
comportamento das solugdes, e do permutador de comportamento baseado em
desempenho, que muda a proposta do algoritmo dinamicamente baseado no
Spacing ou Maximum Spreading, contribuiu para a melhora da convergéncia do
enxame e consequentemente no melhor desempenho do Pareto.

Os resultados apresentados no Capitulo 6 mostram que a técnica proposta,
com tempo de iteracdes total, apresentou convergéncia superior a todas as outras
citadas. Além disso, simulando-se com numero de iteracdes reduzido a metade,
para funcdes de teste mais complexas, 0 MOPSO-CDRS obteve maior grau de
convergéncia, gerando um Pareto Front com percentual de dominancia superior
ao do MOPSO-CDR.

Por fim, pode-se concluir que novos mecanismos, 0 Gerenciador de arquivo
externo e o permutador de comportamento baseado em desempenho, foram

propostos com a introducdo da técnica MOPSO-CDRS. Os estudos iniciais
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validados pelos experimentos realizados neste trabalho demonstram que a técnica
MOPSO-CDRS € uma alternativa eficaz para a resolucédo de problemas de busca
e otimizagcdo por enxame de particulas com mdultiplos objetivos, além de
apresentar convergéncia satisfatéria com um nimero menor de iteracdes. O ponto
negativo da técnica proposta € o seu tempo de execucdo; embora o resultado
gerado seja melhor que o do MOPSO-CDR, a mesma demora o dobro ou mais do

tempo para finalizar a simulacéo.

7.3. Trabalhos Futuros

Como trabalho futuro, pode-se fazer uma analise em relacdo ao limiar de
saturacdo. O MOPSO-CDRS utiliza o limiar fixo igual a 0,1% e quando este limiar
€ ultrapassado, o comportamento do algoritmo muda. Um estudo poderia ser feito
na determinacédo de um valor 6timo para o limiar ou implementar uma proposta de
limiar variavel.

Outro possivel trabalho futuro seria estudar a influéncia de outras métricas no
desempenho do arquivo externo, de modo a introduzi-las para analise no
Gerenciador.

O MOPSO-CDRS, quando esta no modo Especiacao utiliza o MOPSO-CDR
como técnica em um dos agrupamentos gerados, um estudo futuro seria substituir
o0 MOPSO-CDR por outra técnica, bem fundamentada na literatura, para verificar
sua interferéncia no desempenho do Pareto.

De modo a tentar sanar o problema encontrado, o tempo de execugcdo do
algoritmo, pode-se refatorar o cédigo desenvolvido ou aperfeicoar os mecanismos
de analise do arquivo externo e tomada de decisdes.

Além das possibilidades acima, pode-se incorporar ainda mais objetivos e

analisar o desempenho do MOPSO-CDRS em relacdo as demais técnicas.
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