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 Resumo 

 

O sucesso da heurística de otimização por enxame de partículas (PSO) 

como otimizador de único objetivo tem motivado a sua aplicação em outras 

áreas. Uma dessas é a de Problemas com Múltiplos Objetivos (MOP). 

Problemas de otimização com múltiplos objetivos são bastante comuns em 

diversas áreas do conhecimento. Devido a isso, muitas propostas para 

melhorar a convergência das soluções, têm sido propostas. Muitas variações 

no algoritmo MOPSO padrão foram propostas, visando alterações na equação 

de atualização de velocidade do PSO e inserção de fatores de mutação. Outras 

propostas visaram modificações na estrutura do Arquivo Externo e no processo 

de seleção de líderes cognitivos e sociais. Neste trabalho, uma nova técnica 

para o MOPSO é proposta, com o propósito de melhorar a convergência das 

soluções, através da criação de um Gerenciador de Arquivo Externo e Executor 

de Decisões. A busca por melhores soluções sem que o enxame fique 

estagnado em regiões onde se encontram soluções sub-ótimas é também um 

dos principais propósitos desta técnica, visando melhorar a capacidade de 

convergência de exploração do enxame e fornecer maior qualidade à solução 

obtida. Comparações com as técnicas já existentes também são realizadas, 

cujos resultados das simulações demonstram que a técnica proposta 

apresenta, em diversos casos, melhores resultados que as técnicas 

encontradas na literatura como MOPSO-CDR e MOPSO. Por fim, estudos 

foram realizados, analisando o comportamento da técnica no início das 

iterações, percebendo-se a sua alta capacidade de convergência. 
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 Abstract 

 

 The success of Particle Swarm Optimization (PSO) heuristic as single-

objective optimizer has motivated its application in other areas. One of them is 

Multi-Objective Optimization Problems (MOP). Optimization problems are very 

common in many areas of knowledge, thus many proposals to improve the 

convergence of External Archive’ solutions have been proposed. Many 

variations on MOPSO standard algorithm were proposed focusing in changes 

on PSO velocity update equation and the insertion of mutation factors. Other 

proposals focused in modifications on External Archive structure and in the 

leaders selection process. In this work, a new MOPSO technique is proposed to 

improve the solutions’ convergence, through the creation of an External Archive 

Manager and a Decision Executer. The search for best solutions avoiding 

stagnation is one of the main purposes of this technique, aimed to improve the 

exploration convergence capability of the swarm and provide high quality 

solutions. Comparisons with well known techniques were performed, where the 

simulations’ results have shown that our proposal out performed in many cases 

well known techniques such as MOPSO-CDR and MOPSO. At last, we 

performed, an analysis in the beginning of the search process and we checked 

a superior convergence capacity of our proposal. 
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Capítulo 1 

Introdução 

 

Encontrar soluções para problemas com múltiplas variáveis sempre foi uma 

tarefa árdua. Por esse mesmo motivo, existe uma atenção relevante da 

comunidade científica para desenvolver e aperfeiçoar algoritmos matemáticos 

complexos com o intuito de tentar resolver problemas de maneira rápida e 

precisa. 

Uma das técnicas mais conhecidas e usadas nos campos de otimização e 

busca é o Particle Swarm Optimization (PSO) [1]. Esta técnica foi desenvolvida 

por James Kennedy e Russel Eberhart [2] em 1995 e foi inspirada no 

comportamento social de bandos de pássaros em busca de alimento. 

Basicamente, o algoritmo resume-se à modelagem da atualização das posições e 

velocidade de cada indivíduo do bando em modelos pré-definidos de 

comunicação. 

A popularidade do PSO foi alcançada devido a sua simplicidade e a sua 

capacidade de gerar soluções precisas de forma rápida. O seu sucesso como 

otimizador de funções de único objetivo tem motivado a extensão e aplicação 

desta técnica bio-inspirada em outros tipos de problemas [3]. Devido à sua rápida 

convergência, o PSO tem sido bastante aplicado no contexto de problemas multi-

objetivos. 

Em muitos casos, o processo de otimização apresenta mais que um objetivo e 

esses objetivos podem ser conflitantes [1]. No caso de Problemas Multi-Objetivos 

(MOP, do inglês Multi-Objective Problems), a solução considerada ótima ou 

adequada é um vetor de soluções onde cada solução responde a um objetivo. 

Um dos grandes desafios é definir o conjunto de soluções que são 

consideradas adequadas para os problemas em questão. O processo que 

determina a melhor condição de uma solução em relação à outra é fundamentado 

no conceito matemático de dominância. Uma solução x é considerada melhor que 
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 y se x domina y, ou seja, para cada objetivo a ser atendido, x apresenta as 

melhores soluções para cada um deles. 

Diante dos desafios que o campo de MOP proporciona, vários trabalhos vêm 

sendo desenvolvidos propondo estratégias com o objetivo de tornar o 

comportamento das soluções mais distribuído e contínuo. 

1.1. Objetivos 
Este trabalho de conclusão de curso tem como objetivo o desenvolvimento de 

uma nova técnica inspirada no algoritmo MOPSO-CDR, desenvolvido por 

Santana, Pontes e Bastos-Filho [4]. 

O MOPSO-CDR com Especiação (MOPSO-CDRS) utiliza uma abordagem 

alternativa ao CDR no processo de escolha do líder social e cognitivo. 

A técnica desenvolvida apresenta um processo de análise das soluções não 

dominadas no Arquivo Externo (AE). Este processo estuda a convergência das 

soluções do AE, de modo a tentar identificar anomalias e tomar as decisões 

necessárias para saná-las. 

A escolha dos líderes depende da análise feita no AE. Dependendo do 

sintoma avaliado após a aplicação das métricas no arquivo externo, pode-se 

tomar a seguintes decisões: 

1. Manter a escolha dos líderes proposto pelo MOPSO-CDR; 

2. Dividir o enxame em grupos ou sub-enxames e atribuir a cada sub-enxame 

tarefas específicas. 

 

Espera-se que com essa melhoria possam-se obter melhores resultados 

quanto ao espalhamento e espaçamento das soluções no arquivo externo. 
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 1.2. Estrutura do Documento 

Este trabalho esta organizado em capítulos, detalhados a seguir: 

 

O Capítulo 2 introduz o conceito da técnica de otimização por enxame de 

partículas. Será discutida a teoria fundamental da proposta, sua estrutura 

clássica, e também as principais variações na equação de atualização da 

velocidade. 

O Capítulo 3 apresenta os conceitos básicos da área de otimização multi-

objetivo, mostra as funções de teste e as métricas de desempenho que foram 

implementadas neste trabalho. 

O Capítulo 4 aborda a aplicação da técnica PSO em problemas com múltiplos 

objetivos. Além disso, serão apresentadas algumas técnicas, encontradas na 

literatura, que implementam esta combinação, uma delas sendo o MOPSO-CDR, 

base deste trabalho, que será vista com mais detalhes. 

O Capítulo 5 detalha sobre a proposta do trabalho, o MOPSO-CDR com 

Especiação, enfatizando as mudanças realizadas e o algoritmo desenvolvido, 

incluindo a nova abordagem de seleção dos líderes cognitivo e social. 

O Capítulo 6 mostra a configuração, conjunto de funções de teste e métricas, 

necessários para a realização das simulações; os resultados obtidos, suas 

análises e comparação com outras técnicas. 

No Capítulo 7 são apresentadas as conclusões, contribuições e listados 

alguns possíveis trabalhos futuros. 
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 Capítulo 2 

Inteligência de Enxames e PSO  

 

Neste capítulo serão abordados os conceitos básicos da técnica PSO e 

algumas das principais equações de atualização de velocidade. 

2.1. Otimização por Enxame de Partículas 
A idéia dos algoritmos de otimização baseados em enxames de partículas 

iniciou-se com estudos a respeito do comportamento de bandos de pássaros, 

quais regras os regiam, e como poderiam mudar o curso de forma tão repentina e 

sincronizada [5]. O PSO foi proposto após a simulação de modelos sociais 

simplificados baseados em observações feitas nos bandos de aves à procura de 

alimento. 

Um enxame pode ser definido com um conjunto de indivíduos que interagem 

localmente entre si, regidos por um comportamento global, buscando a solução 

para problemas de forma distribuída [6]. 

Atualmente, na maioria das implementações do PSO, as partículas movem-se 

no espaço de busca sendo guiadas por uma combinação entre a melhor posição 

encontrada pela partícula e a melhor posição encontrada pela vizinhança em que 

ela está inserida. Esta vizinhança é definida como um conjunto de partículas com 

as quais a partícula em análise pode se comunicar, podendo este conjunto se 

estender para todo o enxame ou não. O que define esta comunicação entre as 

partículas é a topologia de comunicação entre elas; este capítulo mostrará, de 

forma breve, duas topologias consideradas base de todas as outras: Anel e 

Estrela.  

Cada partícula está sob influência de três forças que podem ser representadas 

matematicamente como vetores, a saber: 

a) Vetor inércia: representa o movimento atual da partícula, ou seja, a 

velocidade atual. Na equação (1) está representado por ������������; 
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 b) Vetor cognitivo: representa a componente cognitiva da partícula, uma 

relação entre a posição atual e a melhor posição encontrada por aquela 

partícula. Na equação (1) é representado pelo termo ��������  	  
������; 

 

c) Vetor social: representa a influência do enxame em uma determinada 

partícula. É uma relação entre a melhor posição encontrada pelo enxame e 

a posição atual da partícula. Na equação (1) é representado pelo termo ��������  	  
�����
. 

 

Um esquema gráfico pode ser observado na Figura 1, onde 
� 	�
��������� representa a 

posição atual da partícula e 
� 	���
�������������� representa a posição da partícula após o 

processo de atualização da velocidade, que é determinante na atualização da 

posição. 

 

 

 

 

 

 

 

 

 

Figura 1.  Vetores que influenciam o movimento das partículas. 

 

O algoritmo do PSO apresenta como passo inicial a inicialização aleatória das 

posições e velocidades das partículas. Cada partícula i é representada por três 

vetores: 

a. Sua posição em um espaço de busca D-dimensional: 
� �  �
��, 
��, … , 
���; 
b. A melhor posição que a partícula � encontrou durante o processo de 

busca: �� ����� �  ����, ���, … , ����; 


� 	���
�������������� 
Vetor Cognitivo 

Vetor Inércia 


� 	�
��������� 

Vetor Velocidade 

Vetor Social 
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 c. A sua velocidade atual: �� ���� �  ����, ���, … , ����. 

 

As partículas então se movem no espaço de busca à procura da melhor 

solução possível. A cada iteração o algoritmo atualiza as posições e velocidades 

das partículas usando as equações (1) e (2). 

 ���	���
���������������� �  ������������ � �����������������  	  
������������ �  ������������������  	  
�����������
, (1)  
 
��	���
���������������� �  
����������� �  ������������. (2)  
 

No algoritmo original, �� e �� são constantes com valor igual a 2,0, �� e �� são 

números aleatórios entre 0 e 1, a cada iteração para cada partícula e cada 

dimensão. O vetor ��� é a melhor posição encontrada pela melhor partícula no 

enxame. 

 O algoritmo PSO define a existência de uma condição de parada para a 

execução do processo, sendo esta determinada pela quantidade de iterações que 

o algoritmo deve executar ou através de um limiar de aceitação, ou seja, se o 

enxame chegou até um ponto cujo desempenho não melhore significativamente. 

Além da definição da condição de parada, deve-se pré-definir o número de 

partículas do enxame, a literatura costuma utilizar de 20 a 50 partículas. Para 

cada intervalo t e para cada partícula i do enxame, o algoritmo deve avaliar a 

velocidade e posição usando as equações (1) e (2); atualizar o vetor de posição 
�� da partícula i com os valores encontrados; calcular o fitness (desempenho) da 

partícula i e atualizar os valores de ��� e ���.  

Este algoritmo pode ser facilmente entendido observando-se a Figura 2. No 

início do algoritmo, o enxame é inicializado, e com o passar das iterações, a 

posição, velocidade, pbest e gbest das partículas são atualizados, de modo que 

no fim do algoritmo cada partícula apresenta uma solução para o problema 

proposto. 
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 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.  Fluxograma do algoritmo Clássico do PSO. 

 

2.2. Peso de Inércia e Fator de Constrição 

Um fenômeno freqüentemente observado nos enxames que utilizavam o 

algoritmo clássico é a “explosão” de velocidades. Facilmente uma partícula 

adquiria uma velocidade muito alta muito rapidamente, o que a levava a oscilar 

entre os extremos do espaço de busca. 

Foi proposto, por Eberhart e Kennedy [7], um mecanismo que estabelece um 

limite para a velocidade das partículas ���
������������. Foi observado, no entanto, que a 

determinação do valor ���
 não era nada trivial, e a escolha errada para este 

valor poderia implicar em uma diminuição do desempenho. Por exemplo, espaços 

de busca maiores demandavam valores maiores que ���
������������ para garantir a 

N 

S 

S 

N 

Inicializar enxame: 
• Posição 
• Velocidade 

Atualizar posição e 
velocidade 

Calcular fitness  

Atualizar pbest e 
gbest Atualizou enxame? 

Total de iterações? 

Fim do 
algoritmo 
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 exploração e espaços de busca menores exigiam menores valores para evitar o 

problema da “explosão” de velocidades. 

O peso de inércia e fator de constrição [8] foram introduzidos com a intenção 

de se remover completamente o conceito de velocidade limite, tentando-se evitar 

a “explosão” da velocidade das partículas. A idéia foi de ponderar a velocidade 

anterior da partícula no processo de atualização de sua velocidade. A equação de 

velocidade pode ser reescrita na forma da equação (3) para comportar o conceito 

de peso de inércia (representado por ω): ���	���
���������������� �  ������������� �  �����������������  	  
������������ �  ������������������  	 
�����������
. (3)  
 

Diversos estudos foram realizados sobre os efeitos dos valores de ω sobre a 

atualização de velocidade. Os resultados obtidos com a variação da inércia com o 

passar do tempo demonstram uma convergência mais rápida do que os mesmos 

obtidos com valores de inércia estáticos.  

Sugere-se que durante o processo de otimização, ω iniciando com valores 

altos próximos a 1,0 encoraja as partículas a uma exploração maior do espaço de 

busca (exploração em amplitude) e eventualmente esses valores vão 

decrescendo (abaixo de 1,0), focando assim os esforços do enxame na melhor 

área encontrada durante a exploração (exploração em profundidade) [9].  

O fator de constrição, conceito similar ao peso de inércia, consiste na 

introdução de um novo parâmetro χ, derivado das constantes existentes na 

equação de velocidade. A escolha destas constantes influencia na velocidade de 

convergência e na capacidade do algoritmo de encontrar a solução ótima. Pelo 

fato de cada problema a ser solucionado necessitar de constantes específicas, a 

idéia do fator de constrição é balancear a influência das constantes, independente 

do problema. O parâmetro χ é calculado de acordo com a equação (4), 

χ �  2�2 	  � 	  ��� 	  4��,  (4)  

� � �� �  ��. (5)  

 

Foi demonstrado por Clerc e Kennedy [8] que para valores de ��e �� tal que � � 4, o enxame converge lenta e espiralmente para a solução. Ao passo que 
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 quando � � 4 a convergência é rápida e garantida para um ótimo local. Por 

simplicidade, assume-se o valor de � � 4,1 e conseqüentemente �� e �� iguais a 

2,05 para assegurar convergência. Para aplicar o fator de constrição à equação 

de atualização de velocidade, esta precisa ser reescrita na forma da equação (6). 

 ���	���
���������������� �  !" ������������ �  �����������������  	 
������������ �  ������������������  	  
�����������
 #. (6)  

 

Outro fator muito importante e responsável por grande parte do sucesso ou 

fracasso no processo de otimização é a forma como as partículas se comunicam. 

A seção 2.3 trata do conceito de estruturas de comunicação entre partículas ou 

topologias. 

 

2.3. Topologias Básicas 

Algoritmos inteligentes baseados em enxames, e conseqüentemente 

semelhantes ao PSO, são algoritmos que tentam mapear comportamentos sociais 

em um ambiente computacional controlado. As partículas que compõem o 

enxame precisam de alguma forma, propagar as informações que conseguem 

coletar, caso contrário, os referidos algoritmos não poderiam se apoiar no 

conceito de sociedade, pois as partículas estariam “voando” pelo espaço de 

busca à procura de soluções sendo influenciadas apenas por sua própria 

experiência. 

Neste cenário, as topologias, que definem as regras de como as partículas 

devem se comunicar, desempenham um papel importantíssimo, influenciando 

completamente o comportamento do enxame. 

As topologias mais conhecidas e utilizadas são as topologias estrela e anel [2] 

apresentadas na Figura 3. 

A topologia estrela, Figura 3 (a), foi a primeira a ser proposta. Nesta topologia 

cada partícula pode se comunicar com qualquer outra partícula do enxame. 

Conseqüentemente, uma partícula é influenciada por todas as outras partículas, 

pois estaria recebendo informações de todo o enxame, este modelo também é 

conhecido $%&'(.  
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 Na topologia anel, Figura 3 (b), também conhecida como )%&'(, cada partícula 

se comunica apenas com seus vizinhos diretos. Uma decorrência direta desta 

diferença entre os modelos de comunicação é que a topologia global apresenta 

um desempenho superior à topologia em anel em problemas uni-modais 

(problemas com apenas uma solução ótima), enquanto que problemas 

multimodais (problemas com várias soluções ótimas ou sub-ótimas) são melhores 

tratados com a topologia em anel. Isso se deve ao fato de enxames com topologia 

em anel explorarem melhor o ambiente, não atraindo todas as partículas para 

uma solução sub-ótima rapidamente, o que é bastante interessante para 

problemas multimodais. 

 

Figura 3.  Topologias (a) Estrela e (b) Anel. 

 

Vale salientar que na maioria das aplicações reais do PSO não se conhece 

bem o problema a ser resolvido, muito menos se sabe quantas soluções 

satisfatórias ele pode ter. Conseqüentemente, utilizar a topologia global pode ser 

muito arriscado se a solução ótima for necessária. No entanto, aplicar a topologia 

em anel geralmente leva a uma convergência mais lenta, pois num enxame de N 

partículas, uma partícula pode ter de esperar de uma a N/2 iterações para 

indiretamente receber informações da melhor partícula do enxame, enquanto que 

na topologia global, após a primeira iteração todas as partículas já têm 

conhecimento da melhor solução obtida pelo enxame.  
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 Capítulo 3 

Otimização Multi-Objetivo 

 

Este capítulo introduz alguns conceitos básicos, da área de otimização com 

múltiplos objetivos, considerados fundamentais para o melhor entendimento deste 

trabalho. Além disso, serão apresentadas algumas funções de teste (problemas a 

serem solucionados) e métricas de desempenho, que auxiliam na análise do 

retorno gerado pelo algoritmo. 

3.1. Conceitos Básicos 
Em contraste com a otimização de um único objetivo, a Otimização Multi-

Objetivos (MOO, do inglês Multi-Objetive Optimization), diferentemente do PSO, 

possui vários objetivos a serem solucionados e sua principal meta é obter um 

conjunto de soluções bem distribuído e diverso. MOO pode ser definido como o 

problema de encontrar um vetor de variáveis de decisão que satisfazem 

restrições e otimizam um vetor de funções cujos elementos representam as 

funções objetivo. Um problema genérico na otimização multi-objetivo contendo 

um número de objetivos a serem minimizados como mostrados em (6), por 

exemplo, e restrições a serem satisfeitas como apresentados em (7)(8) pode ser 

escrito da seguinte forma: 

Minimizar  *	
�
 +  ,*��
��, *��
��, … , *��
��-, (7)  
 

Sujeito a:   
 $�	
�
 .  0   � � 1,2, … , �, (8)  

 0�	
�

�  0   1 � 1,2, … , �. (9)  

 

onde 
� �  ,
�, 
�, … , 
�-� é o vetor de variáveis de decisão, *� 2  3� 4 3, � �1, … , 5 são as funções objetivo e $�, 0�  2  3� 4 3, � � 1, … , �, 1 � 1, … , � são as 

funções de restrição do problema. 
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 Em problemas de otimização multi-objetivo existe um conjunto de soluções 

equivalentes consideradas superiores ao restante das soluções e são 

consideradas incomparáveis na perspectiva de múltiplas funções objetivo. Estas 

soluções são chamadas de não dominadas ou soluções do Pareto-ótimo. Cada 

uma delas apresenta resultados, para pelo menos um dos objetivos, melhor do 

que os resultados das soluções restantes. 

Para facilitar o entendimento do conceito de dominância seguem algumas 

definições: 

 

Definição 1. Dados dois vetores 
�, 6�  7  3�, se diz que 
�  .  6� se 
�  .  6� para 

todo � � 1, … , 5, e que 
� 89:;<= 6� (
�  >  6�) se 
�  .  6� e 
�  ?  6�. A Figura 4 mostra 

um caso de relação de dominância em problemas de minimização com dois 

objetivos *� e *�. 

 

 

Figura 4.  Relação de dominância em um espaço bi-objetivo. 

 

Definição 2.  Se diz que um vetor de variáveis de decisão 
�  7 @ A  3� é não 

dominado com respeito a @, se não existe outro 
� ′  7 @ tal que *��
� ′�  >  *��
��. 

 

Definição 3. Diz-se que um vetor de variáveis de decisão 
��  7 B A  3� (B é 

uma região alcançável) é considerado Pareto-ótimo  se 
�� não é dominado em 

relação a B. 

    solução 
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 Definição 4. O conjunto de soluções do Pareto-ótimo  C� é definido por: C� �  D
�  7 B | 
� é G� C�H&(I 	 ó(��IK. 
 

Definição 5. O Pareto Front CB� é definido por: CB� �  L*��
�� 7  3�  | 
�  7  C�M. 
 

A Figura 5  mostra um caso particular de Pareto Front para problemas de dois 

objetivos. 

 

Figura 5. Conjunto de soluções do Pareto Front. 

 

Cada problema de múltiplos objetivos apresenta um Pareto-ótimo associado, 

que representa o conjunto de soluções ótimas que melhor o soluciona. Deste 

modo, um processo de otimização multi-objetivo deve seguir duas premissas. A 

primeira é determinar o conjunto de soluções do Pareto Front a partir do conjunto B de todos os vetores de variáveis de decisão que satisfaçam (7) e (8); de modo 

que este se assemelhe com o Pareto-ótimo esperado, já que matematicamente, o 

Pareto-ótimo é a imagem do conjunto de soluções do Pareto Front no espaço de 

objetivos [1].  

A segunda premissa consiste em encontrar soluções que apresentem 

diversidade, ou seja, que sejam bem distribuídas entre os objetivos. Na prática, 

Soluções dominadas 
Soluções do Pareto Front 
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 nem todo conjunto de soluções do Pareto Front é normalmente o desejável ou 

alcançável. 

 

3.2. Métricas para Cálculo de Desempenho 

As métricas são equações matemáticas com a função de quantificar a 

qualidade do Pareto gerado após a execução do algoritmo. Serão abordadas 

quatro métricas neste trabalho: Hypervolume, Spacing, Maximum Spread e 

Coverage. Cada uma destas métricas extrai diferentes aspectos do Pareto obtido. 

 

3.2.1. Hypervolume 

A métrica Hypervolume foi proposta por Zitzler e Thiele [10] e é definido pela 

área pela área ocupada pelo Pareto Front obtido (NO�) (área embaixo da curva). 

De modo a explicar o conceito, será adotado uma otimização com dois objetivos. 

Considerando um retângulo limitado pelo ponto �P��Q����; P��Q����� que pertence ao 

Pareto Front e a origem. Supondo que cada ponto no Pareto gera um retângulo 

no espaço de objetivos, o Hypervolume corresponde à área formada pela união 

de todos os retângulos, como é mostrado na Figura 6. 

 

Figura 6.  Retângulos necessários para cálculo do Hypervolume. 

 

É possível generalizar a aplicação desta métrica para problemas com n-

objetivos usando da equação: 
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 RS �  TU ��

�

| 
�  7  CB�V, (10) 

 

onde 
� é um vetor de soluções não dominadas contido em CB� e �� é o 

Hypervolume determinado pelos componentes de 
� e a origem. Sendo HV a 

união de todos os hypervolumes calculados. 

 

3.2.2. Spacing 

O objetivo é medir a variância da distância entre as soluções não dominadas 

que são adjacentes e que pertencem ao Pareto Front. O cálculo desta métrica é 

realizado usando-se a seguinte equação 

W �  X 1Y 	 1 Z�[\ 	 [�
�,�

���

 (11) 

 

onde [� � ��Y��]*�
��
�� 	 *�

��
��] � ]*�
��
�� 	 *�

��
��]
, �, 1 � 1, … , Y, 1 ? �;   [\ é a 

distância média entre todas as soluções adjacentes e Y é o número de soluções 

não dominadas do Pareto Front. O valor igual a zero significa que todas as 

soluções do Pareto Front estão espaçadas de forma eqüidistante. 

 

3.2.3. Coverage 

Esta métrica foi proposta por Zitzler e Thiele [10] [11] [12] e realiza o 

mapeamento do par ordenado �^, _�, sendo ^ e _ dois paretos, no intervalo ,0, 1- 
de acordo com 

`�^, _� �  |D% a _; b� a ^; � c %K||_| .  
(12) 

 

O valor de `�^, _� � 1 significa que todas as soluções do Pareto Front _ são 

fracamente dominadas pelas soluções do Pareto Front ^. Por outro lado,  
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 `�^, _� � 0 significa que nenhuma das soluções do Pareto Front _ é fracamente 

dominada pelas soluções do Pareto Front ^. Esta métrica é interessante, pois 

permite a comparação entre paretos gerados por algoritmos diferentes, baseando-

se na dominância entre suas soluções. 

 

3.2.4. Maximum Spread 

Proposta por Zitzler [11], esta técnica calcula a máxima extensão abrangida 

pelas soluções não dominadas do pareto. Usando problema com dois objetivos, o 

valor do Maximum Spread corresponde à distância euclidiana entre as duas 

soluções mais distantes. Esta métrica é calculada de acordo com 

dW �  X Z ���
���
� *�

� 	  ��Y���
� *�

� 
�
�

���

, (13) 

 

onde Y é número de soluções no Pareto Front e d é o número de objetivos em 

um dado problema. Valores de Maximum Spread maiores indicam melhor 

desempenho e maior diversidade [4]. 
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 Capítulo 4 

Abordagens de PSO para MOP 

 

Este capítulo tem como objetivo mostrar algumas abordagens da técnica de 

otimização baseada em enxames em problemas de múltiplos objetivos. Serão 

apresentados algoritmos que obtiveram resultados significativos com esta nova 

idéia; entre eles o MOPSO-CDR que será estudado mais profundamente, pois, é 

nele que este trabalho é fundamentado.  

 

4.1. PSO aplicado a Problemas Multi-Objetivo 

Como foi visto no Capítulo 2, o PSO é uma técnica cujo objetivo é solucionar 

problemas de único objetivo; de modo que para aplicá-lo em MOP o seu formato 

original deve ser alterado. 

No contexto de problemas com vários objetivos existem três pontos a serem 

alcançados [11]: 

1. Maximizar o número de elementos pertencentes ao Pareto. 

2. Minimizar a distância do Pareto Front produzido pelo algoritmo em 

relação ao verdadeiro Pareto Front do problema. 

3. Maximizar o espalhamento das soluções encontradas, de modo a se 

obter um vetor de soluções uniforme e bem distribuído. 

 

Ao se utilizar o PSO neste novo contexto, surgem algumas dúvidas técnicas 

referentes à adaptação que deve ser feita ao seu algoritmo [13]: 

1. Como selecionar partículas para serem usadas como líderes, de modo 

a dar preferência às soluções não dominadas? 

2. Como armazenar as soluções não dominadas encontradas durante o 

processo de busca, de modo a reportar as soluções não dominadas de 

todo o passado? 
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 3. Como manter diversidade no enxame de modo a evitar convergência 

para uma única solução? 

 

No PSO, o líder que cada partícula utiliza para atualizar sua posição é 

determinado através da relação de vizinhança entre as partículas. No caso de 

problemas de otimização multi-objetivo, cada partícula teria um conjunto de 

diferentes líderes a disposição, do qual apenas um seria selecionado para 

atualizar a sua posição. O conjunto de líderes é armazenado em um Arquivo 

Externo. O AE é um repositório das soluções não dominadas encontradas durante 

o processo de busca, e ao se chegar no ponto de parada do algoritmo, as 

soluções nele contidas são as soluções que compõe o Pareto Front. 

A Figura 7 apresenta o pseudo-código do algoritmo genérico da aplicação de 

PSO em MOP. Os processos que foram adicionados ao algoritmo do PSO estão 

marcados em itálico. 

Após o enxame ser inicializado, o conjunto de soluções não dominadas, 

proveniente do enxame, é inserido no arquivo externo. Baseado em alguma 

política de qualidade, como por exemplo, o Crowding Distance e roleta, é 

selecionado um líder para cada partícula do enxame, sendo utilizado com $%&'( 

na equação (1), e este passo se repete a cada iteração. 

Outro detalhe importante acontece na atualização do �%&'( das partículas. 

No caso do PSO a atualização acontece da seguinte forma, no caso de problemas 

de minimização: 

'& *�(Y&''�
�� �  *�(Y&''��%&'(��. 

Já nesta proposta, o �%&'( só é atualizado se a nova posição dominar o �%&'( 

armazenado. Após a atualização da posição e velocidade do enxame, o algoritmo 

se repete até o ponto de parada. 
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 Figura 7. Pseudo-código do algoritmo genérico do PSO em MOP. 

 

4.2. Trabalhos Relacionados 

A área de MOP combinada com PSO possui, basicamente, dois campos que 

são bastante pesquisados e que apresentam bastante influência no resultado final 

[3]: 

1. Seleção e atualização de líderes; 

2. Geração de diversidade. 

Nesta seção serão mostradas algumas técnicas que propõem idéias e 

melhorias nestas duas áreas citadas. 
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 4.2.1. CSS-MOPSO 

Este algoritmo foi proposto por Chiu [14] e apresenta uma peculiaridade, que é 

a ausência do componente cognitivo da equação (1) e a presença de dois 

componentes sociais. 

A seleção do $%&'(� é realizada se baseando no ângulo e entre a datum line, 

linha que conecta o membro do arquivo e um datum point � (ponto formado pela 

intersecção das linhas perpendiculares de duas soluções extremas provenientes 

do conjunto de soluções), e a linha que conecta a partícula e o membro do 

arquivo externo que está sendo verificado. O membro do arquivo externo que 

apresente o menor ângulo com a partícula será alocado como seu $%&'(�. A 

Figura 8 (a) ilustra o processo de escolha do $%&'(� descrito anteriormente. 

 

Figura 8.  Estratégia de escolha do (a) $%&'(� e (b) $%&'(�. Figura adaptada de 

Chiu [14]. 

 

A seleção do $%&'(� é feita de acordo com a escolha de uma das soluções do 

vetor de soluções para um objetivo selecionado aleatoriamente *� em cada 

iteração. Todas as partículas são ordenadas pelo seu valor de fitness de *�. Após 

isso, a cada partícula será dado um número serial. Para todas as partículas 

pares, o membro do arquivo mais próximo delas cujo valor de fitness de *� é maior 

que o da partícula, será alocado como o $%&'(� da partícula. O mesmo acontece 

para as partículas ímpares, o membro do arquivo mais próximo delas cujo valor 

(a) (b) 
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 de fitness de *� é menor que o da partícula, será alocado como o $%&'(� da 

partícula. A Figura 8 (b) ilustra a estratégia de escolha do $%&'(� para o objetivo *�. 

 

4.2.2. MOPSO 

Este algoritmo foi proposto por Coello [15], e é baseado na idéia de se ter um 

arquivo externo em que cada partícula depositará suas experiências a cada 

iteração. Nesta proposta, o espaço de objetivos explorado é dividido em 

hipercubos. Cada hipercubo recebe um valor de *�(Y&'' que depende do número 

de partículas inseridas nele. 

 A seleção do líder social de cada partícula é feita através de uma técnica 

chamada Roulette Wheel. Através dela, é escolhido o hipercubo, e dentro deste, 

escolhe-se uma partícula de forma aleatória, que esteja dentro do seu escopo 

para ser a líder. Nesta técnica também há o operador de mutação aplicado às 

posições das partículas. 

 

4.2.3. MOPSO-CDLS 

Proposta por Tsou [16] e baseada na proposta de Raquel [17], esta técnica 

utiliza o conceito de Crowding Distance (CD), utilizando-o como mecanismo para 

selecionar líderes do arquivo externo. O CD avalia o quão distante as partículas 

estão umas das outras, isso se torna importante na análise de como estão 

distribuídas as soluções. Na Figura 9, são mostradas regiões com partículas em 

seu interior. As partículas que se localizam em regiões mais populosas possuem 

CD maior, ou seja, uma maior quantidade de partículas próximas. 

Existem duas possíveis situações na escolha dos líderes social e cognitivo: 1) 

o líder social é aleatoriamente escolhido entre 10% das soluções com maior 

Crowding Distance, se a partícula é dominada por pelo menos uma das soluções; 

caso contrário, o líder é escolhido aleatoriamente utilizando todas as soluções do 

arquivo externo.  

2) O líder cognitivo de cada partícula é atualizado se a nova posição domina o 

atual �%&'(, se forem incomparáveis, uma das duas é escolhida aleatoriamente. 
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 Esta proposta utiliza um mecanismo de busca local no Arquivo Externo com o 

objetivo de melhorar as habilidades de busca em amplitude e ainda aumentar a 

convergência. 

 

Figura 9. Distribuição das soluções no Arquivo Externo. 

 

4.2.4. m-DNPSO 

Este algoritmo foi proposto por Hu e Eberhart [18], e tem como característica a 

solução de um objetivo a cada passo usando um esquema similar à da ordenação 

lexográfica [19]. 

Os múltiplos objetivos são divididos em dois grupos: *� e *�. *� é definido como 

o objetivo da vizinhança e *� como o objetivo de otimização. A seleção destes 

grupos é arbitrária. 

Para selecionar o líder social, o algoritmo tem que calcular a distância da ��H(í�G)�� para todas as outras partículas considerando *�. Usando esta 

informação, as � partículas mais próximas são selecionadas, onde � é o 

tamanho da vizinhança. Finalmente, o líder social é definido pela melhor solução 

em termos de *� valores entre � vizinhos. 

O líder cognitivo é atualizado apenas quando uma nova solução domina sua 

atual posição. Nesta proposta o Arquivo Externo também é responsável pelo 

armazenamento de soluções não dominadas. 
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 Esta apresenta dois pontos negativos: a ordenação lexográfica tende a ser útil 

apenas no escopo de apenas dois objetivos, além de que a ordem na escolha dos 

objetivos pode influenciar na performance do algoritmo. 

Na próxima seção será abordado outro algoritmo, MOPSO-CDR, que também 

combina a técnica PSO com MOP, porém, diferente dos citados acima, este será 

estudado com mais detalhes, pois é nele que se fundamenta este trabalho. 

 

4.3. Detalhamento do MOPSO-CDR 

Este algoritmo foi desenvolvido por Santana, Pontes e Bastos-Filho [4], e é 

fundamentado no algoritmo MOPSO. Além disso, o mesmo incorpora técnicas 

como Crowding Distance e Roulette Wheel, vistas nas seções anteriores, para 

auxiliar nos processos de escolha do líder social ($%&'() e para prevenir um 

número excessivo de soluções não dominadas no Arquivo Externo. Além disso, o 

MOPSO-CDR apresenta um novo procedimento na atualização do líder cognitivo 

(�%&'(). O pseudocódigo do algoritmo desta proposta é mostrado a seguir: 

 

 

Figura 10. Pseudo-código do algoritmo do MOPSO-CDR. 

 



 

 

 

24 

ESCOLA POLITÉCNICA DE 

PERNAMBUCO 

 4.3.1. Seleção do Líder Social 

Em problemas com múltiplos objetivos a escolha apropriada do líder social é 

de fundamental importância, pois afeta a capacidade de convergência e 

distribuição das soluções ao longo do pareto. 

Todas as soluções não dominadas estão presentes no Arquivo Externo, e 

estas são as possíveis candidatas a serem utilizadas como $%&'( de alguma 

partícula do enxame. O MOPSO-CDR ordena, antes de cada iteração, as 

soluções presentes no arquivo externo utilizando como parâmetro o CD. 

Como cada partícula do enxame realiza sua atualização de velocidade e 

posição, faz-se necessária a seleção do líder social, sendo esta realizada por 

meio da aplicação da roleta, onde as soluções do arquivo externo com menor CD 

apresentam mais chances de serem selecionadas. 

 

4.3.2. Seleção do Líder Social Cognitivo 

A regra que define a substituição do �%&'( ou líder cognitivo também é 

bastante importante para a convergência e eficiência do algoritmo [4]. Foi 

desenvolvido no MOPSO-CDR uma nova estratégia para este processo. De 

acordo com a nova proposta, o �%&'( só é atualizado se a posição atual da 

partícula dominá-lo; se a relação entre eles for incomparável, a escolha é feita 

utilizando-se o Arquivo Externo. O arquivo externo é necessário, pois, neste caso, 

a idéia é identificar a solução, presente nele, mais semelhante (aplica-se a 

distância euclidiana) do �%&'( e mais semelhante do 
�. Deste modo, verifica-se 

qual das duas soluções apresenta menor CD; caso a solução mais próxima da 

posição atual 
� tenha sido a de menor CD, o �%&'( tem seu valor atualizado para 

esta posição, caso contrário o �%&'( é mantido. 

 

4.3.3. Turbulência 

PSO apresenta como principal característica o fato de apresentar alta 

velocidade de convergência. Porém, este comportamento pode ser prejudicial 

para otimização multi-objetivo, pois o algoritmo pode convergir para um falso 
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 Pareto Front. O operador de mutação pode ajudar a evitar este problema através 

do aumento da habilidade exploratória das partículas [4]. 

O operador utilizado neste algoritmo é o mesmo utilizado no MOPSO [15] e é 

aplicado a cada iteração com influência limitada. No início, todas as partículas são 

afetadas, porém com o passar das iterações esta interferência diminui. 

 

4.3.4. Arquivo Externo 

Como foi visto nas seções anteriores, o principal objetivo do arquivo externo é 

atuar como repositório de soluções não dominadas que foram encontradas ao 

longo do processo de busca. 

De modo a evitar excesso de soluções armazenadas no AE, decisões devem 

ser tomadas quanto à sua inserção e remoção.  Deste modo, faz-se uso de um 

Gerenciador do processo de atualização do arquivo externo. A Figura 11 mostra 

todos os possíveis casos que podem ocorrer no repositório. 

 

 

Figura 11. Casos possíveis para o AE. 
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 O Caso 1 mostra o momento em que uma nova solução Ns entra no AE vazio. 

No Caso 2, o arquivo externo possui uma solução S1, e a nova solução Ns, pelo 

fato de ser dominada por S1 não é adicionada ao repositório. Já o Caso 3 mostra 

que a solução candidata Ns é incomparável em relação S1, logo, S1 é mantida no 

repositório e Ns adicionada. O Caso 4 mostra que a Ns é incomparável em 

relação às soluções S1 e S4, e domina as soluções S2 e S3 retirando-as do 

arquivo externo. O último caso apresenta a situação em que Ns é incomparável a 

todas as soluções do arquivo externo, deste modo, foi inserida no arquivo 

externo, apresentado em duas dimensões para exemplificar o Pareto formado 

com as soluções presente. 

O Gerenciador, ao receber uma demanda de soluções a serem adicionadas, 

deve analisar se estas não são dominadas pelas soluções do arquivo externo, as 

candidatas que forem dominadas não serão adicionadas, e as soluções presentes 

no Arquivo Externo que forem dominadas serão removidas. 

O Arquivo Externo apresenta um limite quanto ao número de soluções que 

devem habitá-lo, deste modo, se o número exceder, aquelas que possuírem 

menor CD serão removidas do repositório.  
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 Capítulo 5 
A Nova Abordagem, MOPSO -CDR com 
Especiação 
 

 Este capítulo tem o objetivo de apresentar a proposta deste trabalho o 

MOPSO-CDR com especiação (MOPSO-CDRS), uma abordagem nova 

fundamentada no algoritmo MOPSO-CDR, analisado anteriormente. 

 

5.1. Alterações Propostas 

Para a construção do trabalho foi utilizada a base do algoritmo MOPSO-CDR. 

A filosofia deste algoritmo quanto à seleção de líderes social e cognitivo, 

utilizando conceitos de Crowding Distance e roleta, gerou resultados bastante 

positivos.  

Com o objetivo de melhorar ainda mais os resultados obtidos pelo MOPSO-

CDR, foram incorporados novos passos ao algoritmo. 

Uma das mudanças propostas foi a inserção de um Gerenciador de arquivo 

externo. Este Gerenciador avalia como as soluções estão se comportando com o 

passar das iterações. Como foi visto no Capítulo 3, as métricas de cálculo de 

desempenho geram informação a respeito da distribuição e espaçamento das 

soluções presentes no Arquivo Externo.  

Outra mudança proposta foi a criação de um tomador de decisões baseado no 

desempenho do pareto. Este é responsável pela análise das informações geradas 

pelo Gerenciador do Arquivo Externo e por tomar decisões de modo a tentar 

melhorar o desempenho na busca de melhores soluções para os objetivos.  

Estas decisões estão relacionadas com a forma pela qual a seleção dos 

líderes será realizada, e nesta abordagem existem duas: 

 

1. Seleção de líderes adotando forma básica, mesma que no MOPSO-

CDR. 
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 2. Seleção de líderes adotando a Especiação. 

 

A primeira opção mantém a forma como é feita a seleção dos líderes social e 

cognitivo do MOPSO-CDR, citado nas seções 4.3.1 e 4.3.2 respectivamente. 

A segunda opção divide o enxame, de modo que cada sub-enxame tenha uma 

responsabilidade específica. A proposta de particionamento do enxame tem o 

objetivo de dividir tarefas; supondo que haja Y objetivos a serem solucionados, 

serão criados Y � 1 sub-enxames com o mesmo número de partículas. O sub-

enxame adicional se comportará baseado no MOPSO-CDR, enquanto cada um 

dos Y restantes será responsável em solucionar um objetivo. A Figura 12 mostra 

o processo de especiação do enxame para o caso de dois objetivos *� e *�, com 

um total de 21 partículas. Como foi dito anteriormente, cada sub-enxame terá o 

mesmo número de partículas, logo, para este caso, cada sub-enxame apresenta 

7 partículas. 

 

 

 

 

 

 

 

 

 

 

 

Figura 12. Ilustração do processo de Especiação do enxame. 

 

Esta mudança interferiu diretamente na seleção dos líderes. Nas seções 5.2 e 

5.3 serão mostradas, com detalhes, as alterações implementadas na escolha dos 

líderes no caso com Especiação e na seção 5.4 serão apresentados o 

Gerenciador do Arquivo Externo, e o processo para a tomada de decisões. 

Soluciona Objetivo �� 

Soluciona Objetivo �� 

MOPSO-CDR 
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 5.2. Seleção do Líder Social 

Na sessão anterior, foi mencionado que o MOPSO-CDRS apresenta uma 

entidade responsável pela tomada de decisões: manter o funcionamento normal 

do MOPSO-CDR ou utilizar a especiação. Caso a primeira seja escolhida, o 

processo de seleção dos líderes social e cognitivo é mantido. Caso contrário, o 

líder social deixa de ser escolhido através de CD e roleta, e passa a utilizar 

especiação. 

Lembrando que o $%&'( é utilizado no processo de atualização de velocidade 

e posição das partículas; se a partícula em questão pertence a um agrupamento 

cujo objetivo é otimizar o objetivo *�, será buscada, no Arquivo Externo, a solução 

que melhor soluciona *�, sendo esta utilizada como líder social da partícula em 

questão. A Figura 13 mostra a idéia da seleção do líder social, de modo que a 

solução que apresenta o melhor resultado para grupo de partículas responsável 

pelo objetivo *� foi escolhida. 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 13. Seleção do líder social com Especiação. 

  

*� 

*� 

Arquivo Externo Enxame *� 

Líder social 

*� 

MOPSO-CDR 
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 5.3. Seleção do Líder Cognitivo 

O líder cognitivo ou �%&'( também é utilizado na atualização de velocidade e 

posição das partículas, porém, a forma como este deve ser atualizado é o 

diferencial. O MOPSO-CDRS propõe a seguinte mudança. 

Caso o fitness do �%&'( e o fitness da posição atual da partícula analisada 

sejam considerados incomparáveis, verifica-se qual das duas apresentam o menor 

fitness para o objetivo atribuído ao grupo em que a partícula está inserida. A 

Figura 14 mostra um exemplo onde se tem os valores de fitness do �%&'( e da ��H(í�G)� �. Caso a partícula pertença a um sub-enxame cuja responsabilidade é 

solucionar o objetivo *�, de acordo com a figura, como o fitness de seu �%&'( 

apresenta um melhor valor para este objetivo, logo, este é mantido. Caso o 

objetivo a ser solucionado fosse o *�, o fitness da ��H(í�G)�� é melhor que o do �%&'(	�

�����������������. Neste caso, a posição armazenada no �%&'(	�


����������������� seria substituída pela 

posição atual da partícula. 

 

2,0 3,4 ... 5,7 
 

2,1 3,1 ... 4,3 
 

Figura 14. Fitness do ������������������������� e fitness da posição atual da ��H(í�G)� �. 
 

5.4. Analisando o Arquivo Externo e Tomando 

Decisões 

Existe uma série de requisitos que devem ser atendidos ao se retornar um 

Pareto Front no final da execução do algoritmo. Com o uso das métricas de 

desempenho, torna-se fácil a quantização destas características. Deste modo, 

tentando-se aperfeiçoar as soluções do Arquivo Externo, foi desenvolvido o 

Gerenciador de Arquivo Externo, sendo este responsável por supervisionar o 

������������������������� 


����� 
*� *� *� 
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 comportamento das soluções através da aplicação das métricas de desempenho 

a cada iteração. 

Além do Gerenciador, foi criado um Executor ou Tomador de Decisões. Esta 

aplicação recebe a análise feita pelo Gerenciador e verifica qual decisão deve ser 

tomada para que se possa melhorar a convergência do pareto. 

Como foi dito na seção 5.1, o Executor é responsável pela escolha do estado 

em que o algoritmo deve estar em um dado momento; podendo migrar entre dois 

estados: 1) o estado Básico utilizado pelo MOPSO-CDR e 2) o estado de 

Especiação. 

 

Figura 15. O Executor decide entre os estados: (1) MOPSO-CDR ou Básico, e (2) 

Especiação para fazer a seleção dos líderes. 

 

 A tomada de decisão do Executor é influenciada pelos valores obtidos através 

da aplicação das métricas Spacing e Maximum Spread, estudadas no Capítulo 3. 

Portanto, no caso do estado Básico, o Gerenciador do Arquivo Externo analisa o 

spreading do pareto; caso a variação do resultado desta métrica seja considerada 

insignificante, ou seja, não apresente melhora com o passar das iterações, o 

Executor muda para o estado de Especiação. Neste estado, o Gerenciador passa 

a analisar o spacing do Pareto, caso este, em um dado momento, também 

apresente estagnação na variação, o Executor muda para o estado Básico. 

Executor

EspeciaçãoBásico
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 A Figura 16 mostra o aspecto que deve ser analisado pelo Gerenciador 

quando o algoritmo adota o estado Básico. No início da análise, o Pareto 

apresenta deficiências quanto ao spreading mostrado na Figura 16 (a), porém, 

com o passar das iterações o Pareto tende a um melhor espalhamento, mostrado 

na Figura 16 (b).  

 

 

 

Figura 16. No estado Básico, o Gerenciador tem o objetivo de analisar o pareto 

quanto ao spreading de modo a auxiliar na sua convergência. (a) Representa o 

Pareto com pouco espalhamento, já (b) mostra o Pareto com melhor grau de 

convergência em relação ao spreading. 

 

A Figura 17 encaixa-se no momento em que o algoritmo está no estado de 

Especiação. No início, o Pareto apresenta um espaçamento desuniforme entre as 

soluções, como mostra a Figura 17 (a). À medida que novas soluções vão sendo 

encontradas e adicionadas ao AE, a uniformidade entre as soluções se torna cada 

vez maior, aperfeiçoando cada vez mais o Pareto gerado. A Figura 17 (b) mostra 

um Pareto com soluções espaçadas uniformemente.  

 

*� 

*� 

(b) (a) 

*� 

*� 
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Figura 17. No estado Especiação, o Gerenciador tem o objetivo de analisar o 

pareto quanto ao spacing de modo a auxiliar na sua convergência. (a) Representa 

o Pareto com espaçamento irregular entre as soluções, já (b) mostra a 

regularidade de espaçamento entre as soluções do Pareto, ou seja, melhor taxa 

de spacing. 

 

Para se definir o percentual de estagnação das soluções aplicou-se o desvio 

padrão sobre os resultados gerados pelo Gerenciador para uma dada métrica. De 

forma empírica, foi determinado o limiar de estagnação igual a 0,1%, ou seja, se o 

desvio padrão gerado for menor que este limiar, o Executor muda o estado do 

algoritmo.  

Suponha o seguinte exemplo: O estado atual do sistema é Básico e este 

estado está sendo mantido a 1000 iterações. Como no estado Básico o 

Gerenciador é responsável pela análise do Maximum Spreading, para cada 

iteração foi gerado um valor que representa o spreading do Pareto naquele 

momento. O Executor aplica o desvio padrão sobre esses 1000 valores de 

spreading gerados e verifica se o resultado é menor que o limiar de estagnação, 

caso seja menor o Executor muda o estado do algoritmo para Especiação. Deste 

modo, o Gerenciador passa a analisar o spacing do pareto e o mesmo processo 

se repete. 

 

(a) (b) 
*� 

*� *� 

*� 
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 5.5. Algoritmo 

Como foi dito nas seções anteriores, novos processos foram adicionados à 

rotina do MOPSO-CDR. De acordo com a Figura 18, percebem-se as mudanças, 

em itálico, que foram efetuadas no algoritmo base. 

 

 

Figura 18. Pseudo-código do algoritmo do MOPSO-CDRS. 

 

 A primeira mudança a ser analisada é h(�)�i�H &'(�[I _á'��I. O algoritmo 

necessita de um estado inicial para que a escolha do líder seja fundamentada, 

deste modo, foi definido como estado default o estado Básico. Outros dois pontos 

bastante importantes que sofreram mudanças foram: 1) W&)&��IY�H )í[&H 'I���) e 

2) ^(G�)�i�H �%&'(; estes dependem da escolha feita pelo Executor em relação a 

que estado será utilizado: Básico ou Especiação. 
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 Outra novidade desta proposta é apresentada nos passos ^Y�)�'�H ��H&(I G'�Y[I �é(H���' e ^(G�)�i�H &'(�[I. As métricas de análise de 

pareto costumam ser utilizadas no fim do algoritmo para verificar as 

características do pareto front gerado. No algoritmo proposto, a cada iteração, o 

pareto gerado é avaliado (aplicando-se métricas) de modo que este possa ser 

ajustado. 

Supondo que o estado atual aplicado seja o Básico, deste modo, aplica-se a 

métrica respectiva, a cada iteração, e analisa-se o comportamento das soluções 

em relação ao spreading. O Executor supervisiona a melhora da taxa de 

spreading de forma incremental; ao perceber que esta taxa apresenta uma 

variação insignificante, ou seja, menor que 0,1%, o mesmo aciona a mudança de 

estado. 

No estado Especiação, executam-se os mesmos passos citados no estado 

Básico, porém, o objetivo é analisar o spacing do Pareto. Caso a taxa de spacing 

sature, o Executor aciona a mudança de estado.  
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 Capítulo 6 

Experimentos 

 

Este capítulo visa apresentar o arranjo experimental e a análise dos 

resultados obtidos utilizando o MOPSO-CDRS. Também é realizada comparação 

com outras técnicas, citadas na sessão 4.2. Serão descritos os detalhamentos dos 

arranjos experimentais, as funções de teste, métricas utilizadas para avaliação de 

desempenho do arquivo externo, parâmetros de simulação e por fim a 

apresentação e discussão dos resultados. 

 

6.1. Arranjo Experimental 

6.1.1. Funções de Teste 

O trabalho desenvolvido por Deb [20] auxiliou na identificação de 

características que podem causar dificuldades no processo de convergência do 

Pareto Front e na manutenção da diversidade da população. Ao todo foram 

identificadas seis características: 1) multi-modalidade, 2) influência de mínimos e 

máximos locais, 3) ponto ótimo isolado, sendo estas três bastante conhecidas no 

campo de problemas de único objetivo, 4) convexidade ou não convexidade, 5) 

descontinuidade, 6) não uniformidade. 

Para cada uma das seis características mencionadas, uma função de teste 

correspondente foi criada seguindo a orientação proposta por Deb [20]. 

De modo a facilitar a explicação das funções de teste, o estudo foi restrito a 

dois objetivos, já que este número de objetivos é suficiente para refletir os 

aspectos essenciais de otimização multi-objetivo. Além disso, apenas problemas 

de minimização são considerados. 

As funções de teste são estruturadas obedecendo à mesma regra, sendo esta 

composta por três funções *�, $, 0 ,8-: 
Minimizar  m�
� �  ,*��
��, *��
�-; 
 

(14) 
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 Sujeito a *��
� � $�
�, … , 
��0�*��
��, $�
�, … , 
���; 
 

onde 
 � �
�, … , 
��. 

(15) 
 

(16) 
 

A função *� é uma função da primeira variável de decisão apenas, $ é uma 

função que utiliza as � 	 1 variáveis restantes, e os parâmetros de 0 são as 

funções *� e $. As funções de teste diferem nestas três funções, no número de 

variáveis � e nos valores que as variáveis podem receber. 

A primeira função de teste é a ZDT1. Sua característica é a presença de um 

Pareto Front com comportamento convexo como mostra a Figura 19. 

 

 

Figura 19. Representação gráfica da função ZDT1. 

 

A ZDT1 é definida matematicamente pelas funções: *��
�� �  
�, 
 $�
�, … , 
�� � 1 � 9 o ∑ 
� �� 	 1�⁄�

��� , 
 0�*�, $� � 1 	 �*� $⁄ . 

(17) 
 

(18) 
 

(19) 

 

As funções a seguir, exceto ZDT5 e ZDT6, apresentam � � 30 e  
� 7 ,0, 1-. 
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 A segunda função é a ZDT2, e diferente da primeira apresenta um Pareto 

côncavo como mostra a Figura 20. 

 

 

Figura 20. Representação gráfica da função ZDT2. 

 

As funções que a define são mostradas a seguir: *��
�� �  
�, 
 $�
�, … , 
�� � 1 � 9. ∑ 
� �� 	 1�⁄�

��� , 
 0�*�, $� � 1 	 �*� $⁄ ��. 

(20) 
 

(21) 
 

(22) 
 

A característica de descontinuidade é representada pela ZDT3. Seu Pareto 

Front apresenta uma série de partes convexas não contínuas como mostra a 

Figura 21. 

 

As funções que a define são mostradas a seguir: *��
�� �  
�, 
 $�
�, … , 
�� � 1 � 9. ∑ 
� �� 	 1�⁄�

��� , 
 0�*�, $� � 1 	 �*� $⁄ 	 �*� $⁄ �sin �10v*��. 

(23) 
 

(24) 
 

(25) 
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 A introdução da função '&YI em 0 causa descontinuidade no Pareto Front. 

 

Figura 21. Representação gráfica da função ZDT3. 

 

A função ZDT4 tem a característica de ser multimodal, apresentando 21� 

paretos front locais: *��
�� �  
�, 
 $�
�, … , 
�� � 1 � 10�� 	 1� � ∑ �
�

� 	 10cos �4v
����
��� , 

 0�*�, $� � 1 	 �*� $⁄ . 

(26) 
 

(27) 
 

(28) 

 

onde 
�, … , 
� 7 ,	5,5-. O Pareto-ótimo é formado com $�
� � 1, e o melhor 

Pareto Front com $�
� � 1,25. 
 A Figura 22 mostra a disposição das soluções no contexto da função ZDT4. 

 

A última função de teste é a ZDT6, e inclui dificuldade causada pela não 

uniformidade do espaço de busca: *��
�� �  1 	 exp�	4
�� '�Y��6v
��, 
 $�
�, … , 
�� � 1 � 9. ��∑ 
�

�
��� � �� 	 1�⁄ ��.��, 

 0�*�, $� � 1 	 �*� $⁄ ��, 

(32) 
 

(33) 
 

(34) 
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 onde � � 10, 
� 7 ,0, 1-. O Pareto Front está formado com $�
� � 1 e apresenta 

comportamento côncavo como mostra na Figura 23. 

 

 

Figura 22. Representação gráfica da função ZDT4. 

 

 

Figura 23. Representação gráfica da função ZDT6. 
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 6.1.2. Métricas de Cálculo de Desempenho 

As métricas utilizadas nesta experimentação são Hypervolume, Spacing, 

Coverage, e Maximum Spread citadas na sessão 3.2. Cada uma das técnicas 

experimentadas teve o seu Pareto Front analisado através da aplicação de cada 

uma das métricas citadas acima, possibilitando melhora na investigação das 

características de cada arquivo externo.  

 

6.1.3. Parâmetros de Simulação 

Cada técnica apresenta seu próprio conjunto de parâmetros. No caso do 

MOPSO, a taxa de mutação é 0,5, o número de divisões para o grid adaptativo é 

30 e o fator de inércia diminui linearmente de 0,4 a 0,0 [15]. No MOPSO-CDLS o 

fator de inércia diminui linearmente de 0,9 a 0,4 [16]. No m-DNPSO o valor de � � 10 e o fator de inércia é gerado aleatoriamente em cada iteração no intervalo 

[0,5; 1,0] [4]. O CSS-MOPSO adota como desvio padrão para a mutação 

Gaussiana o valor 0,01 e o fator de inércia diminui linearmente de 0,9 a 0,4 [14]. 

No MOPSO-CDR é utilizado uma taxa de mutação de 0,5 e o fator de inércia 

diminui linearmente de 0,4 a 0,0. O MOPSO-CDRS apresenta a mesma 

configuração do MOPSO-CDR, porém, pelo fato de haver a análise estatística 

quanto à melhora significativa, em relação às métricas Spacing e Maximum 

Spreading, do pareto, adota-se como limite de saturação 0,1%. 

Em todos os casos foram utilizadas 20 partículas no enxame e limite de 200 

soluções no arquivo externo. 200.000 cálculos de fitness foram executados em 

cada simulação. As constantes de aceleração cognitiva e social igual a 1,49445, 

quando aplicadas. Para validar os resultados, cada simulação foi executada 30 

vezes e os seus resultados são apresentados em termos da média e desvio 

padrão. 

As simulações foram executadas em uma máquina com processador Intel 

Dual-Core, 2GB de memória RAM, rodando o sistema operacional Windows XP 
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 6.2. Resultados 

6.2.1. Comparação MOPSO-CDRS com demais Técnicas 

Para realizar a comparação entre o MOPSO-CDRS e as demais técnicas foi 

necessário realizar simulações para cada técnica envolvida no contexto de todas 

as funções de teste. As simulações geram como saída o resultado da aplicação 

das métricas no Pareto Front de cada técnica. 

A Tabela 1 mostra o valor das métricas de cada técnica para a função ZDT1. 

Como se pode observar tanto a métrica Hypervolume como Spacing, no caso do 

MOPSO-CDRS, é superior a todas com relação à média e apresentou um baixo 

desvio padrão. Já em relação à Maximum Spread, o valor é menor que o obtido 

nas demais técnicas, o que não significa dizer que o resultado é pior, e sim que 

devido a convergência, as partículas dos extremos terminaram se aproximando 

reduzindo o valor do spreading. Quanto à análise do Coverage, fica perceptível a 

grande vantagem da técnica proposta em relação às quatro primeiras técnicas, já 

em relação ao MOPSO-CDR, o MOPSO-CDRS apresenta 88% de dominância e 

é dominado em 3% dos casos. 

 

Tabela 1. Resultado da simulação para a função ZDT1 com 200.000 chamadas. 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO 0,36 (0,002) 0,0046 (5E-4) 1,425 (0,005) 1,0 (0,0) 0,0 (0,0) 

m-DNOPSO 0,713 (0,053) 0,0457 (0.014) 1,54 (0,065) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDLS 0,39 (0,003) 0,0042 (6E-4) 1,44 (0,005) 1,0 (0,0) 0,0 (0,0) 

CSS MOPSO 0,34 (0,002) 0,0023 (1E-4) 1,42 (0,002) 0,99 (0,003) 0,0 (0,0) 

MOPSO CDR 0,33 (3E-5) 0,0033 (2E-4) 1,41 (0,0) 0,88 (0,0034) 0,03 (0,023) 

MOPSO CDRS 0,31 (2E-5) 0,0027 (1E-4) 1,38 (0,0) 

   

A Tabela 2 mostra o valor das métricas relacionadas à função ZDT2. MOPSO-

CDRS, para o caso de Hypervolume e Maximun Spread apresentou um 

comportamento similar ao MOPSO-CDR, porém em Spacing alcançou melhor 

resultado. O MOPSO-CDRS superou todas as outras técnicas em Coverage. Em 
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 relação ao MOPSO-CDR apresentou dominância de 72%, sendo dominado em 

apenas 19,5% dos casos. 

 

Tabela 2. Resultado da simulação para a função ZDT2 com 200.000 chamadas. 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO 0,69 (0,001) 0,006 (0,001) 1,396 (0,015) 1,0 (0,0) 0,0 (0,0) 

m-DNOPSO 0,94 (0,06) 0,054 (0,017) 1,29 (0,037) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDLS 0,716 (0,003) 0,006 (0,001) 1,39 (0,004) 1,0 (0,0) 0,0 (0,0) 

CSS MOPSO 0,674 (0,001) 0,0035 (7E-4) 1,41 (8E-4) 0,978 (0,021) 0,0 (0,0) 

MOPSO CDR 0,66 (3E-5) 0,0033 (2E-4) 1,41 (0,0) 0,72 (0,036) 0,195 (0,023) 

MOPSO CDRS 0,656 (3E-5) 0,0029 (2E-5) 1,41 (0,0) 

   

A Tabela 3 apresenta os valores referentes à função ZDT3. Para as métricas 

Hypervolume e Spacing o MOPSO-CDRS apresentou melhora em relação à 

média e conseguiu reduzir bastante o desvio padrão em relação a todas as outras 

técnicas. No caso do Maximun Spread houve similaridade. Em relação ao 

Coverage, o MOPSO-CDRS obteve bons resultados, sendo dominado em 22% 

pela MOPSO-CDR. 

 

Tabela 3. Resultado da simulação para a função ZDT3 com 200.000 chamadas. 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO 0,950 (0,004) 0,005 (4E-4) 1,976 (0,008) 1,0 (0,0) 0,0 (0,0) 

m-DNOPSO 1,296 (0,088) 0,045 (0,016) 2,068 (0,146) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDLS 1,006 (0,009) 0,006 (9E-4) 1,988 (0,015) 1,0 (0,0) 0,0 (0,0) 

CSS MOPSO 0,953 (0,008) 0,003 (7E-4) 1,983 (0,006) 0,999 (8E-4) 0,0 (0,0) 

MOPSO CDR 0,920 (1E-4) 0,0033 (2E-4) 1,967 (2E-5) 0,69 (0,0056) 0,22 (0,034) 

MOPSO CDRS 0,94 (6E-5) 0,0025 (0,0) 1,95 (9E-5) 

   

A Tabela 4 mostra os valores para a função ZDT4. O MOPSO-CDRS obteve 

resultados similares em relação ao MOPSO-CDR no caso Hypervolume e 

Spacing, porém obteve resultado satisfatório em relação ao Maximum Spread 
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 reduzindo média e o desvio padrão, devido à redução da distância entre as 

soluções extremas. O MOPSO-CDRS obteve vantagem absoluta em relação ao 

Coverage, dominando quase por completo todas as outras técnicas. 

 

Tabela 4. Resultado da simulação para a função ZDT4 com 200.000 chamadas. 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO 0,631 (0,526) 0,006 (0,0014) 1,54 (0,18) 0,68 (0,210) 0,2 (0,18) 

m-DNOPSO 2,157 (0,935) 0,04 (0,037) 1,94 (0,29) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDLS 4,82 (0,2174) 0,005 (9E-4) 2,7 (0,46) 1,0 (0,0) 0,0 (0,0) 

CSS MOPSO 5,38 (0,008) 0,005 (0,0012) 2,8 (0,525) 0,999 (8E-4) 0,0 (0,0) 

MOPSO CDR 0,57 (0,26) 0,0033 (3E-4) 1,52 (0,109) 0,9 (3E-4) 0,015 (2E-3) 

MOPSO CDRS 0,56 (0,012) 0,0025 (2E-4) 1,38 (2E-4) 

 

  

 

A Tabela 5 apresenta os valores referentes à função ZDT6. O MOPSO-CDRS 

apresenta uma melhora significativa em média e desvio padrão em relação ao 

MOPSO-CDR em todas as métricas, no caso do Maximum Spreading houve 

redução da distância das soluções extremas, resultando na diminuição do valor. 

Porém, apenas em Spacing obteve melhora em relação ao MOPSO. O Coverage 

do MOPSO-CDRS, para esta função, apresenta dominância razoável em relação 

às técnicas MOPSO e CSS-MOPSO, 48% e 41,7% respectivamente. As técnicas 

restantes são dominadas pela MOPSO-CDRS com valores acima de 88%. 

 

Tabela 5. Resultado da simulação para a função ZDT6 com 200.000 chamadas. 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO 1,261 (0,386) 0,129 (0,122) 3,180 (1,4) 0,48 (0,102) 0,32 (0,0034) 

m-DNOPSO 1,279 (0,506) 0,126 (0,108) 3,203 (1,732) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDLS 1,717 (0,519) 0,186 (0,145) 4,632 (1,816) 0,89 (2E-3) 0,09 (2E-4) 

CSS MOPSO 2,051 (0,697) 0,234 (0,153) 5,571 (2,046) 0,417 (0,004) 0,002 (2E-3) 

MOPSO CDR 1,670 (0,3) 0,088 (0,056) 4,636 (1,053) 0,88 (0,0034) 0,03 (0,023) 

MOPSO CDRS 1,345 (0,46) 0,078 (2E-3) 3,233 (0,034) 
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 6.2.2. Comparação entre MOPSO-CDRS e MOPSO-CDR com número de 

iterações reduzido 

Também foram realizadas simulações reduzindo-se de 200.000 chamadas da 

função fitness para 100.000 chamadas, com o objetivo de avaliar o desempenho 

das técnicas MOPSO-CDR e MOPSO-CDRS na primeira metade de uma 

simulação considerada completa. As tabelas a seguir seguem o mesmo padrão 

das que foram mostradas anteriormente.  

Devido ao alto grau de convergência, o Pareto gerado apresenta redução da 

distância entre as soluções extremas, acarretando na redução do spreading para 

todas as funções. 

A Tabela 6 mostra que o comportamento do pareto front das duas técnicas é 

bastante parecido, porém o pareto da MOPSO-CDRS domina o da CDR em 

13,5% e é dominado em 0,5% dos casos. 

 

Tabela 6. Resultado da simulação para a função ZDT1 com 100.000 chamadas. 

 

A Tabela 7, da mesma forma que a anterior, apresenta grande similaridade 

entre os paretos das duas técnicas. O MOPSO-CDRS obteve um percentual de 

dominância de 14,5% e não foi dominado pelo MOPSO-CDR. 

 

Tabela 7. Resultado da simulação para a função ZDT2 com 100.000 chamadas. 

 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO CDR 0,36 (0,002) 0,0035 (0,002) 1,43 (0,001) 0,135 (0,0034) 0,005 (0,023) 

MOPSO CDRS 0,36 (0,002) 0,0029 (0,002) 1,41 (0,001) 

  

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO CDR 0,76 (0,001) 0,0043 (0,007) 1,43 (0,005) 0,145 (0,0032) 0,0 (0,0) 

MOPSO CDRS 0,72 (0,0023) 0,0042 (0,02) 1,42 (0,02) 
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 A Tabela 8 apresenta a superioridade do MOPSO-CDRS, em todas as 

métricas, em relação ao MOPSO-CDR. O Coverage obtido pela técnica mostra 

que esta dominou a concorrente em 74,5% dos casos, sendo dominada em 

apenas 1%. 

 

Tabela 8. Resultado da simulação para a função ZDT3 com 100.000 chamadas. 

 

A Tabela 9 mostra que MOPSO-CDRS atinge ótimo desempenho quando 

compete com MOPSO-CDR no início da simulação, para a função ZDT4. A técnica 

proposta superou a concorrente em todas as métricas, dominando-a 100%. 

 

Tabela 9. Resultado da simulação para a função ZDT4 com 100.000 chamadas. 

 
 

A Tabela 10 mostra que, exceto em Spacing, a MOPSO-CDRS apresentou 

melhor desempenho em relação à concorrente. Seu pareto dominou em 67% e foi 

dominado em apenas 12%. 

 

Tabela 10. Resultado da simulação para a função ZDT6 com 100.000 chamadas. 

 

De acordo com os resultados apresentados para o número de chamadas 

reduzido, no caso de funções mais simples, o MOPSO-CDRS e o MOPSO-CDR 

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO CDR 0,93 (0,008) 0,0036 (0,032) 1,97 (0,019) 0,745 (0,001) 0,01 (0,034) 

MOPSO CDRS 0,912 (0,034) 0,0027 (1E-4) 1,96 (0,004) 

  

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO CDR 4,88 (2,61) 0,74 (0,56) 16,49 (8,79) 1,0 (0,0) 0,0 (0,0) 

MOPSO CDRS 2,23 (1,32) 0,08 (0,05) 11,44 (5,39) 

  

Algoritmo Hypervolume Spacing Max. Spread Cover CDRS,* Cover *, CDRS 

MOPSO CDR 2,05 (0,2) 0,17 (0,071) 6,03 (1,34) 0,67 (0,56) 0,12 (0,78) 

MOPSO CDRS 1,8 (0,16) 0,189 (0,0017) 5,89 (0,59) 
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 obtiveram convergência similar, porém, para o caso de funções mais complexas 

como a ZDT4 e ZDT6 ficou clara a superioridade do Pareto gerado pela técnica 

proposta. Nestas duas funções, as soluções encontradas pelo MOPSO-CDR 

foram dominadas em 100% e 67% respectivamente. Além do Coverage, as 

demais métricas obtiveram uma melhora significativa em relação à obtida pelo 

MOPSO-CDR. 

 

6.2.3. Comparação entre MOPSO-CDRS e MOPSO-CDR quan to ao tempo 

de execução 

Além da análise em relação à eficácia, foi feito um comparativo entre o 

MOPSO-CDRS e o MOPSO-CDR quanto ao tempo gasto para a execução destes 

algoritmos para cada função objetivo. De acordo com a Tabela 11, que mostra a 

comparação com 100.000 chamadas, percebe-se um aumento considerável no 

tempo de execução do MOPSO-CDRS. Este aumento pode ser associado ao 

grande processamento realizado pelo Gerenciador de arquivo externo e pelo 

Executor de decisões. Estas duas entidades são responsáveis por muitas 

consultas ao arquivo externo, tornando a técnica proposta mais custosa que o 

MOPSO-CDR. 

 

Tabela 11. Tempo de execução, em segundos, dos algoritmos MOPSO-CDRS e 

MOPSO-CDR para cada função objetivo usando-se 100.000 chamadas. 

 

  

O MOPSO-CDR também foi executado se utilizando 200.000 chamadas para 

verificar se, mesmo com um número de chamadas maior, o seu tempo de 

execução se mantém inferior ao do MOPSO-CDRS. A Tabela 12 mostra que 

mesmo com o aumento do número de chamadas, o MOPSO-CDRS apresenta um 

Algoritmo ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

MOPSO CDR 37,681 35,566 42,683 2,372 4,381 

MOPSO CDRS 112,250 107,887 117,475 30,969 33,053 
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 tempo de execução superior, chegando-se a conclusão que é mais eficaz e 

eficiente a utilização do MOPSO-CDR com 200.000 chamadas do que o MOPSO-

CDRS com 100.000 chamadas. 

 

Tabela 12. Tempo de execução, em segundos, dos algoritmos MOPSO-CDRS 

usando 100.000 chamadas e MOPSO-CDR usando 200.000 chamadas para cada 

função objetivo. 

 

  

Algoritmo ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

MOPSO CDR 54,356 76,89 75,34 5,98 9,76 

MOPSO CDRS 112,250 107,887 117,475 30,969 33,053 
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 Capítulo 7 

Conclusões e Trabalhos Futuros 

 

Este trabalho apresenta uma nova técnica aplicada em problemas multi-

objetivos (MOP), com o objetivo de melhorar o desempenho e comportamento das 

soluções presentes no Pareto Front, e contribuir com avanços na área de 

Otimização Multi-Objetivo. 

Neste capítulo, serão feitas algumas considerações sobre os resultados dos 

experimentos realizados em relação à nova técnica proposta neste trabalho, como 

também sobre as contribuições aos estudos realizados na área de MOO e por fim 

os possíveis trabalhos futuros para extensão deste trabalho. 

 

7.1. Contribuições 

Fica claro que com o aparecimento de problemas cada vez mais complexos, é 

necessário fazer modificações nas técnicas de otimização a fim de se obter um 

melhor desempenho na busca de soluções adequadas. Este trabalho contribui 

com os estudos que vêm sendo realizados recentemente na busca por novas 

modificações e variações na heurística de otimização por enxame de partículas 

(PSO) aplicado a problemas com múltiplos objetivos.  

Este trabalho estende o algoritmo MOPSO-CDR, propondo uma abordagem 

que agrega um analisador de arquivo externo, alterando a proposta do algoritmo 

de acordo com a análise realizada. Esta alternativa se torna uma alternativa 

eficiente apresentando um melhor desempenho em comparação a algumas 

técnicas presentes na literatura, citadas na sessão 4.2, assim contribuindo com 

avanços nas pesquisas de técnicas de otimização. 

Tais contribuições foram provadas pelos experimentos realizados que 

demonstram os estudos comparativos entre a nova técnica MOPSO-CDRS e as 

técnicas existentes por meio de simulações envolvendo funções de teste, bastante 

utilizadas para avaliação de desempenho na literatura. 
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 A técnica proposta, utilizando o número total de simulações adotado, 

apresenta uma sensível melhora de desempenho em relação à sua principal 

concorrente, o MOPSO-CDR; já em relação às técnicas restantes, a melhora é 

bastante superior. 

Com a redução do número de iterações, utilizando-se metade do total, foi 

constatada a superioridade do MOPSO-CDRS em relação ao MOPSO-CDR. 

Observou-se que o MOPSO-CDRS forma um Pareto Front que apresenta um 

percentual de dominância significativo em relação ao seu concorrente, ou seja, no 

início da simulação o seu Pareto converge mais rapidamente. 

 

7.2. Conclusão 

Este trabalho apresenta uma nova técnica de otimização aplicada a problemas 

de busca e otimização com múltiplos objetivos. Esta técnica foi inspirada na 

estrutura algorítmica do MOPSO-CDR. De acordo com os resultados dos 

experimentos, mostrados no Capítulo 6, o MOPSO-CDRS obteve melhores 

soluções que os seus concorrentes, gerando um Pareto Front mais distribuído e 

compacto. 

A criação do Gerenciador do arquivo externo, cuja função é analisar o 

comportamento das soluções, e do permutador de comportamento baseado em 

desempenho, que muda a proposta do algoritmo dinamicamente baseado no 

Spacing ou Maximum Spreading, contribuiu para a melhora da convergência do 

enxame e conseqüentemente no melhor desempenho do Pareto. 

Os resultados apresentados no Capítulo 6 mostram que a técnica proposta, 

com tempo de iterações total, apresentou convergência superior a todas as outras 

citadas. Além disso, simulando-se com número de iterações reduzido à metade, 

para funções de teste mais complexas, o MOPSO-CDRS obteve maior grau de 

convergência, gerando um Pareto Front com percentual de dominância superior 

ao do MOPSO-CDR. 

Por fim, pode-se concluir que novos mecanismos, o Gerenciador de arquivo 

externo e o permutador de comportamento baseado em desempenho, foram 

propostos com a introdução da técnica MOPSO-CDRS. Os estudos iniciais 
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 validados pelos experimentos realizados neste trabalho demonstram que a técnica 

MOPSO-CDRS é uma alternativa eficaz para a resolução de problemas de busca 

e otimização por enxame de partículas com múltiplos objetivos, além de 

apresentar convergência satisfatória com um número menor de iterações. O ponto 

negativo da técnica proposta é o seu tempo de execução; embora o resultado 

gerado seja melhor que o do MOPSO-CDR, a mesma demora o dobro ou mais do 

tempo para finalizar a simulação. 

 

7.3. Trabalhos Futuros 

Como trabalho futuro, pode-se fazer uma análise em relação ao limiar de 

saturação. O MOPSO-CDRS utiliza o limiar fixo igual a 0,1% e quando este limiar 

é ultrapassado, o comportamento do algoritmo muda. Um estudo poderia ser feito 

na determinação de um valor ótimo para o limiar ou implementar uma proposta de 

limiar variável. 

Outro possível trabalho futuro seria estudar a influência de outras métricas no 

desempenho do arquivo externo, de modo a introduzi-las para análise no 

Gerenciador. 

O MOPSO-CDRS, quando está no modo Especiação utiliza o MOPSO-CDR 

como técnica em um dos agrupamentos gerados, um estudo futuro seria substituir 

o MOPSO-CDR por outra técnica, bem fundamentada na literatura, para verificar 

sua interferência no desempenho do Pareto. 

 De modo a tentar sanar o problema encontrado, o tempo de execução do 

algoritmo, pode-se refatorar o código desenvolvido ou aperfeiçoar os mecanismos 

de análise do arquivo externo e tomada de decisões. 

Além das possibilidades acima, pode-se incorporar ainda mais objetivos e 

analisar o desempenho do MOPSO-CDRS em relação às demais técnicas. 
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