

ESTUDO DA APLICAÇÃO DE
TÉCNICAS DE TUNING EM SISTEMAS

COMPUTACIONAIS

Trabalho de Conclusão de Curso

Engenharia da Computação

Alberis Garcês de Castro
Orientador: Prof.ª Maria Lencastre Pinheiro de Menezes Cruz

ii

Universidade de Pernambuco
Escola Politécnica de Pernambuco

Graduação em Engenharia de Computação

ALBERIS GARCÊS DE CASTRO

ESTUDO DA APLICAÇÃO DE
TÉCNICAS DE TUNING EM SISTEMAS

COMPUTACIONAIS

Monografia apresentada como requisito parcial para obtenção do diploma de
Bacharel em Engenharia de Computação pela Escola Politécnica de Pernambuco –

Universidade de Pernambuco.

Recife, dezembro de 2011.

iii

De acordo

Recife

____/___________/_____

Orientador da Monografia

(Na versão final esta página deve ser substituída pela folha de aprovação
digitalizada.)

iv

Este trabalho é dedicado a
Deus que é aquele que nos dá toda a capacidade,

 meus pais Agnes e Maurício que me fizeram chegar até aqui com muito esforço,
 minha avó Silvia que contribuiu muito com minha educação e formação,

 minha esposa muito amada Shyrlene que está sempre ao meu lado e
 minhas três filhas queridas Kamylla, Ana Júlia e Maria Alice.

v

Resumo
Melhoria de desempenho em sistemas e bancos de dados é um assunto que

exige atenção nos sistemas computacionais modernos que tendem a ser cada vez

mais complexos a nível de funcionalidades e utilização de recursos de hardware e

software. Tuning, ou ajuste de desempenho, é uma área de grande importância com

diversas técnicas e metodologias disponíveis para se alcançar a otimização. É

possível executar consultas SQL (Structured Query Language) de maneira mais

eficiente com a aplicação de técnicas de tuning. Este trabalho aborda algumas das

principais técnicas que visam melhorar o desempenho do sistema computacional

como um todo e em especial o banco de dados. As metodologias de tuning foram

aplicadas em um sistema de rastreamento de veículos que ao longo do seu

desenvolvimento apresentou vários problemas de desempenho. Estes, foram

analisados e os fatores causadores identificados e corrigidos utilizando-se de

algumas técnicas de otimização de hardware, software e modificação da estrutura da

base de dados e suas consultas SQL. Os resultados obtidos após estas alterações

apresentam uma melhoria significativa de desempenho de várias funcionalidades da

aplicação. Concluiu-se que o processo de otimização é uma tarefa importante e

contínua que se inicia no projeto de design da aplicação e abrange várias áreas de

um sistema, tais como: hardware, software, banco de dados e arquitetura do projeto.

vi

Abstract
Performance improvement in systems and databases is an issue requiring

attention in modern computer systems that tend to be increasingly complex in terms

of functionality and use of hardware and software. Tuning, or performance tuning, is

an area of great importance with various techniques and methodologies available to

achieve optimization. You can run SQL (Structured Query Language) more efficiently

by applying techniques of tuning. This work discusses some key techniques to

improve the performance of the computer system as a whole and especially the

database. The tuning methods were applied to a system for tracking vehicles that

along its development presented several performance problems. These were

analyzed and the causative factors identified and corrected using some optimization

techniques for hardware, software and modifying the structure of the database and

your SQL statements. The results obtained after these changes have a significant

performance improvement of several features of the application. It was concluded

that the optimization process is an important and ongoing task that begins in the

design of application design in several areas of a system, such as hardware,

software, database design and architecture.

vii

Sumário
Capítulo 1 Introdução 1

1.1 Objetivos 3

1.2 Metodologia 3

1.2.1 Revisão geral sobre o tema abordado 4

1.2.2 Tuning de consultas SQL 4

1.2.3 Definição do estudo de caso 4

1.2.4 Aplicação das técnicas estudadas 4

1.2.5 Resultados da aplicação das técnicas de otimização 4

1.3 Estrutura do Documento 5

Capítulo 2 Fundamentação Teórica 7

2.1 Visão Geral de Otimização 7

2.1.1 Quando Realizar Tuning 8

2.2 Projetando e Desenvolvendo para o Desempenho 10

2.2.1 Opções de Investimento de Hardware 10

2.2.2 Tuning de Hardware 11

2.2.3 Tuning de Software 13

2.3 Tuning em SGBDs 15

2.4 Estrutura do SGBD Oracle 10g 17

2.4.1 A Instância Oracle 19

2.4.2 PGA 20

viii

2.4.3 Componentes de Memória da SGA 20

2.4.4 Processos de Segundo Plano 22

Capítulo 3 Tuning de Declarações SQL 25

3.1 O Otimizador Oracle 25

3.2 Índices 27

3.3 Hints 30

3.3.1 Classificação dos Hints 31

3.3.2 Sintaxe dos Hints 32

3.3.3 Tipos de Hints 33

3.3.4 Usando Hints 35

Capítulo 4 Estudo de Caso 44

4.1 O Sistema 44

4.2 Realizando Tuning do Hardware 46

4.3 Realizando Tuning do Software 48

4.4 Realizando Tuning da Instância 52

4.5 Realizando Tuning de Declarações SQL 53

Capítulo 5 Conclusão 63

5.1 Dificuldades Encontradas 64

5.2 Trabalhos Futuros 64

Bibliografia 66

ix

Índice de Figuras
Figura 1. SGBA como interface entre aplicação e a base de dados.Erro! Indicador

não definido.

Figura 2. Arquitetura básica de um sistema de banco de dados [10]. 17

Figura 3. Arquitetura do Oracle 10g [6]... 19

Figura 4. Componentes do Otimizador Oracle [11]. ... 26

Figura 5. Painel de visualização dos veículos do sistema de rastreamento. 45

Figura 6. Cerca de visualização do sistema de rastreamento. 51

Figura 7. Visão da rota percorrida por um veículo. ... 57

Figura 8. Visão do gráfico de velocidade veicular. ... 59

x

Índice de Tabelas
Tabela 1. Resultados obtidos no estudo de caso. ... 60

xi

Tabela de Símbolos e Siglas
DBA – Data Base Administrator

I/O – Input / Output

SGBD – Sistema Gerenciador de Banco de Dados

SQL – Structured Query Language

RAM – Random Access Memory

RAC – Real Application Clusters

Alberis Garcês de Castro 1

Capítulo 1
Introdução

Na última década, a sociedade tem vivenciado um grande avanço

tecnológico. Neste contexto, sistemas de informações cada vez mais complexos têm

sido desenvolvidos para atender às necessidades crescentes das empresas com

relação a organização e tratamento das informações. É natural que neste processo

evolutivo os dados se tornem cada vez mais valiosos e críticos. Grande parte das

empresas depende cada vez mais de seus sistemas e suas bases de dados para

funcionar de forma eficiente, e para produzir resultados organizados e selecionados

de forma confiável. Conseqüentemente, empreendimentos que manipulam grande

volume de informações requerem que estas sejam armazenadas em sistemas de

gerenciamento de bancos de dados com características compatíveis com esta atual

realidade. O armazenamento da informação também evoluiu do simples

processamento de transações isoladas, ou sistemas de arquivos do próprio sistema

operacional, para o gerenciamento de banco de dados cada vez maiores e com

níveis de complexidade e controle mais elevados.

A motivação para o desenvolvimento deste trabalho originou-se a partir da

experiência com aplicações que exigem tempo de resposta muito curto e possuem

tabelas de histórico de informações em sua base que crescem rapidamente,

chegando a causar lentidão no sistema. Pode-se citar como exemplo um sistema de

rastreamento veicular, responsável por monitorar milhares de veículos de um país.

Este sistema armazena as informações de posicionamento geográfico, velocidade,

movimentação e direção para todos os veículos rastreados. Estas informações são,

para cada veículo, verificadas a cada minuto e gravadas no banco de dados do

sistema. Aplicações como esta possuem tabelas que crescem dezenas de milhares

de registros mensalmente. A realização de consultas nestas tabelas, com volume de

informação muito elevado, gera tempos de resposta muito acima do esperado pelo

software da aplicação cliente. Este atraso é um gargalo inaceitável para uma

aplicação que requer uma resposta em tempo real, ou no máximo em alguns

segundos.

Alberis Garcês de Castro 2

O administrador de banco de dados – o DBA – precisa acompanhar o

desempenho do SGBD (Sistema Gerenciador de Banco de Dados). Nesse

monitoramento o administrador utiliza geralmente técnicas de otimização que

possibilitam a realização de ajustes na forma de funcionamento do banco, afim de

que o mesmo possa manter-se operando de forma satisfatória. A busca pela

melhoria do desempenho envolve várias disciplinas, desde o ajuste de configuração

de cada SGBD, a escolha de um plano de execução para uma consulta, chegando

até mesmo à escolha de uma infraestrutura adequada para que a otimização possa

acontecer.

O conjunto de técnicas e práticas que visam melhorar o desempenho do

SGBD é denominado de tuning. De acordo com [2], a tradução literal da palavra

tuning seria sintonia ou ajuste fino de alguma coisa para que funcione melhor.

Conforme [3]: “Tuning diz respeito ao ajuste do SGBD para melhor utilização dos

recursos, provendo um uso eficaz e eficiente do SGBD”.

Existem muitos recursos e técnicas de tuning disponíveis para serem usadas

em aplicações de bancos de dados. Porém, a escolha do mais indicado, para a

solução do problema em estudo, é tarefa difícil. Determinadas técnicas resolvem

problemas pontuais do sistema, mas acabam por gerar novos problemas em outras

partes do mesmo. Além disso, existe pouco material disponível na língua portuguesa

sobre esse tema. Este trabalho terá o foco em técnicas de tuning, disponibilizando

conteúdo cuja intenção é servir como fonte de consulta e apoio à tomada de

decisões e geração de relatórios analíticos, colaborando assim para aprimorar e

agilizar os processos internos de uma organização.

A seguir serão apresentados os objetivos deste trabalho e a metodologia

utilizada para alcançar esses objetivos. Por fim será apresentada a estrutura de todo

o documento.

Alberis Garcês de Castro 3

1.1 Objetivos
Este trabalho se propõe a desenvolver um estudo das técnicas de tuning mais

utilizadas e realizar um estudo de caso, com embasamento teórico, que auxilie na

melhor compreensão e uso das técnicas de tuning. A otimização e tuning é uma

disciplina muito abrangente e com pouco material específico, disponível, relacionado

a estudos comparativos. Neste trabalho, a partir da experiência do autor com um

sistema real, busca-se contribuir para geração e disponibilização de resultados que

possam servir de fonte de consulta e aprendizado para pessoas que desejem ter

maior conhecimento na área de tuning.

As metas específicas realizadas para alcançar o objetivo proposto foram:

 Estudo detalhado das principais técnicas de tuning de aplicações e banco de

dados, utilizadas tanto para o monitoramento proativo quanto para a eliminação

de gargalos que diminuem o desempenho da aplicação.

 Abordagem de forma ampla do tuning automático de SQL, aprofundando o

funcionamento do otimizador do SGBD e o gerenciamento das estatísticas que o

SGBD Oracle [4] pode proporcionar.

 Abordagem de técnicas de otimização de declarações SQL, detalhando o uso de

ferramentas para otimizar a execução de queries.

 Realização de um estudo de caso aplicando as técnicas estudadas em um

sistema real.

1.2 Metodologia
A metodologia empregada para a execução do projeto foi dividida em cinco

pontos detalhados a seguir.

Alberis Garcês de Castro 4

1.2.1 Revisão geral sobre o tema abordado

 Revisão bibliográfica da literatura sobre as diferentes técnicas de

tuning.

1.2.2 Tuning de consultas SQL

 Estudo sobre diferentes técnicas de otimização de queries, com o

aprofundamento do funcionamento das principais técnicas: indexação e

hints. A sintaxe de criação e utilização de índices e dos principais tipos

de hints será exibida, bem como exemplos de uso destes recursos.

1.2.3 Definição do estudo de caso

 O sistema estudado tomou como base de estudo um sistema real que

trata de uma solução para rastreamento de veículos de uma empresa

privada. Os dados são referentes ao posicionamento dos veículos dos

clientes, e foram fornecidos apenas em caráter de estudo. Por uma

questão de sigilo, nada será exibido além dos resultados obtidos com a

aplicação das técnicas e parte da estrutura de tabelas da base de

dados.

1.2.4 Aplicação das técnicas estudadas

 De acordo com o estudo realizado foram selecionadas as técnicas que

se adéquam a realidade do sistema em estudo.

 Aplicação das técnicas estudadas.

1.2.5 Resultados da aplicação das técnicas de otimização

 Análise dos dados resultantes obtidos pela aplicação das técnicas.

 Apresentação dos resultados.

Alberis Garcês de Castro 5

O SGBD utilizado neste projeto foi o Oracle 10g Express Edition, que é de

propriedade da Oracle. Este foi escolhido por que possui um conjunto de

recursos de otimização amplo.

A ferramenta de interface com a base de dados escolhida foi o Toad for

Oracle, que é de propriedade da Quest Software. A mesma foi escolhida por

ser de fácil utilização e interface amigável, além de possuir o SQL Monitor

como aplicativo adicional que permitirá observar, com precisão, o tempo de

execução de cada query que será estudada.

1.3 Estrutura do Documento
O presente trabalho foi dividido em seis capítulos conforme a seguir:

 Capítulo 1: Introdução

Contém todo o texto introdutório sobre a monografia, abordando a

motivação, objetivos e metas.

 Capítulo 2: Fundamentação teórica

Reúne os principais conceitos necessários para a compreensão do

trabalho proposto. Apresenta os fundamentos da otimização de

sistemas computacionais e seus diferentes tipos.

 Capítulo 3: Tuning de declarações SQL

Apresenta as técnicas de tuning de declarações SQL, baseadas no

conjunto de ferramentas que o Oracle 10g Express Edition provê. O

capítulo foca na utilização das técnicas de indexação e hints,

discorrendo sobre sua forma de utilização e quando o uso de cada tipo

de técnica é indicado.

 Capítulo 4: Estudo de caso

Alberis Garcês de Castro 6

Apresenta os resultados obtidos a partir da utilização das técnicas de

tuning no sistema em estudo.

 Capítulo 5: Conclusão

Finaliza o trabalho, apresentando algumas conclusões, dificuldades

encontradas e possíveis trabalhos futuros.

Alberis Garcês de Castro 7

Capítulo 2
Fundamentação Teórica

Este capítulo aborda as características gerais da otimização de sistemas

computacionais e provê informações acerca de tuning de base de dados Oracle.

2.1 Visão Geral de Otimização
Tuning de desempenho de uma aplicação é um tema bastante abrangente

que envolve desde a escolha de um hardware apropriado até a modelagem do

software. O ajuste do desempenho requer uma modificação na configuração inicial

do sistema. Conforme [4], esta nova configuração do sistema envolve alocar

recursos de forma a manter as funcionalidades iniciais disponíveis, operando

corretamente e com velocidade de resposta satisfatória para o propósito ao qual o

sistema se destina.

O fator que impulsiona a realização de tuning é a identificação do gargalo

mais significativo para que sejam realizadas as mudanças apropriadas, visando

reduzir ou até mesmo eliminar o feito provocado pelo gargalo. Em geral este ajuste é

executado de forma reativa, ou seja, quando o problema surge trabalha-se para

encontrar a melhor solução para eliminá-lo, ou enquanto o sistema ainda está na

fase de desenvolvimento ou após sua implantação.

Uma forma eficaz para saber quando é necessário realizar tuning é ter um

parâmetro de desempenho estabelecido, que possa ser usado para comparação

caso surja um problema de desempenho. A maioria dos administradores (DBAs)

conhece bem o seu sistema e isso torna possível a identificação de períodos de pico

de utilização. Por exemplo, um DBA pode identificar que os períodos de pico do seu

sistema ocorrem nos intervalos de 09h00min às 10h00min e de 14h30min às

15h00min. Além disso, pode verificar que o período de menor atividade é de

00h00min as 06h00min.

Alberis Garcês de Castro 8

É importante identificar esses momentos de alta carga e se possível instalar

uma ferramenta de monitoramento que reúna dados de desempenho para aqueles

intervalos. O ideal é que esta coleta de informação seja configurada na fase inicial

da produção do sistema, e que sempre sejam feitos ajustes de acordo com os dados

obtidos. Os dados recolhidos podem incluir as seguintes informações:

 Estatísticas da aplicação (volumes de transação e tempos de

resposta);

 Estatísticas do sistema operacional;

 Estatísticas de hardware (discos rígidos, memória e dispositivos de

I/O);

 Estatísticas de rede.

2.1.1 Quando Realizar Tuning

Existem dois tipos distintos de tuning:

 Monitoramento pró-ativo

Geralmente ocorre em intervalos regulares e pré-definidos, onde os

resultados das estatísticas de desempenho são examinados e

comparados com padrões estabelecidos para avaliar se o

comportamento do sistema foi modificado. Monitoramento pró-ativo

também pode ser chamado de ajuste pró-ativo.

Normalmente este monitoramente não resulta em modificações na

configuração do sistema e sim expõe um problema grave que está se

desenvolvendo. Em algumas situações, um profissional especializado

pode analisar e identificar problemas potenciais sozinho, porém a

utilização de ferramentas de monitoramento é essencial.

Realizar ajustes pró-ativos no sistema quando aparentemente não há

degradação do desempenho pode ser uma atividade perigosa,

resultando em modificações desnecessárias que podem surtir um

Alberis Garcês de Castro 9

efeito contrário ao esperado. Para realizar tuning algumas etapas

devem ser seguidas, conforme apresentado em [4].

Monitoramento é normalmente parte de um exercício de planejamento

de capacidade, onde o uso de recursos é examinado para observar a

forma como o aplicativo está sendo utilizado e a forma como o

aplicativo usa o banco de dados e os recursos do host.

 Eliminação de gargalos

De acordo com [4], geralmente um gargalo implica em um problema de

desempenho da aplicação. O ajuste deve fazer parte do ciclo de vida

de uma aplicação, através da análise, projeto, codificação, produção e

estágios de manutenção planejada. Porém, algumas vezes o ajuste é

deixado para o momento após o sistema ser posto em produção. Nesta

condição, o ajuste torna-se um exercício de combate reativo ao

surgimento de problemas, onde o gargalo mais importante é

identificado e todos os esforços são direcionados para sua eliminação.

A finalidade do tuning é diminuir o consumo de recursos ou reduzir o

tempo de processamento de uma operação. Em geral, os problemas

de desempenho são geralmente o resultado da disputa para, ou o

esgotamento de, alguns recursos do sistema causados pelo uso

excessivo de um recurso específico. Este recurso se torna o gargalo do

sistema. Quando um recurso está esgotado, o sistema é incapaz de se

redimensionar para níveis mais altos de desempenho, podendo até

parar de funcionar corretamente.

Muitas vezes, a forma mais eficaz de solucionar um problema de

gargalo é modificar a aplicação ou a maneira como o aplicativo é

usado. Mudanças no SGBD e nas configurações de hardware do host

também podem ser necessárias.

Alberis Garcês de Castro 10

2.2 Projetando e Desenvolvendo para o
Desempenho

Para que o sistema tenha um bom desempenho, é necessário iniciar a análise

durante a fase de design e continuar ao longo da vida do aplicativo. Para que seja

mais fácil ajustar o sistema durante a produção é preciso considerar com cuidado os

problemas de desempenho durante a fase inicial do projeto. Caso algum problema

de desempenho seja detectado provavelmente mudanças no projeto de design da

aplicação serão necessárias com a finalidade de aperfeiçoar o sistema.

2.2.1 Opções de Investimento de Hardware

Atualmente, existe a disponibilidade de processamento de alta potência, e

unidades de disco e memórias de custo relativamente baixo. Com isso, existe uma

tendência a se comprar mais recursos de hardware para melhorar o desempenho

imediato, assim que algum problema relacionado a este assunto surge.

No entanto, qualquer aumento de desempenho alcançado pelo upgrade do

hardware deve ser considerado como um alívio em curto prazo para um problema

imediato. Se a demanda e as taxas de carga na aplicação continuarem a crescer, é

muito provável que o mesmo problema surja em um momento futuro quando a

melhoria do recurso de hardware não mais atender a demanda do sistema.

Existem ainda situações em que o hardware adicional não melhora o

desempenho do sistema. Sistemas mal projetados executam mal, não importa

quanta memória, disco rígido ou processador adicional sejam alocados para suprir a

necessidade da aplicação. Para que isto não ocorra, a aplicação precisa ter a

capacidade de processar mais carga de trabalho com o aumento proporcional dos

recursos.

De acordo com [9], antes de se investir em compra de hardware

complementar, é necessário se certificar, por exemplo, que não exista serialização

ou threading única, que é um único fluxo de controle seqüencial dentro de um

programa, acontecendo dentro do aplicativo. Este tipo de ajuste, a longo prazo,

tornasse mais valioso para aumentar a eficiência da aplicação.

Alberis Garcês de Castro 11

2.2.2 Tuning de Hardware

Uma vez detectada a real necessidade de se fazer tuning de hardware, deve-

se levar em consideração o dimensionamento do hardware, planejamento da

capacidade e design do hardware, bem como sua configuração.

Escolher o recurso correto é uma decisão importante que se pode tomar para

aperfeiçoar o desempenho do sistema. Na maioria dos casos, o sistema de baixo

processamento vai exigir a adição de novos recursos mais tarde quando, por

exemplo, a quantidade de usuários que o acessam simultaneamente crescer

consideravelmente.

A seguir, de acordo com [4], são abordados os principais componentes de

hardware considerados em um projeto de otimização:

 CPU (Cental Pocessament Unit)

Pode haver uma ou mais CPUs, cada uma com um ou mais núcleos, e

podem variar em poder de processamento de simples unidades de

processamento encontradas em dispositivos móveis (caso o sistema

seja construído para executar em aparelhos celulares) até CPUs de

alta potência (encontradas em servidores).

O dimensionamento dos outros componentes de hardware é

proporcional ao poder de processamento e freqüência de operação das

CPUs do servidor.

 Memória

Servidores de banco de dados e aplicação requerem uma quantidade

de memória considerável para armazenar dados e evitar demoras no

acesso ao disco rígido.

O Oracle armazena informações em caches de memória e no disco

rígido. Acessar a memória é muito mais rápido do que o acesso ao

disco, que leva uma quantidade significativa de tempo. Tipicamente

esta diferença de tempo de acesso é da ordem de dez milissegundos.

Alberis Garcês de Castro 12

 Subsistema de I/O

O subsistema de I/O é composto por vários componentes, incluindo o

barramento de I/O no servidor, o controlador de I/O, o barramento de

I/O no sistema de armazenamento e em última análise, a unidade de

disco. Podem variar entre o disco rígido de um computador pessoal

cliente até arrays de discos de elevado desempenho.

Arrays de discos podem executar milhares de solicitações de I/O a

cada segundo e fornecer disponibilidade através de redundância em

termos de múltiplos caminhos e discos espelhados redundantes.

 Rede

A grande parte dos computadores em um sistema está conectada a

uma rede, que pode variar de uma simples linha de modem a uma

Local Architecture Network - LAN - de alta velocidade interna.

As principais preocupações com as especificações de rede são largura

de banda (volume) e a latência (retardo na velocidade).

De acordo c om [5], algumas perguntas podem ser feitas para ajudar na

escolha do hardware correto:

 Que tipo de aplicativo será executado?

 Quanta processamento será exigido da Cental Processament Unit -

CPU?

 Que tipo e quantas CPUs / núcleos são necessários para suportar a

carga do sistema esperado?

 Qual a quantidade de memória física necessária?

 Será que os servidores devem ser configurados com um Real

Application Cluster (RAC)? Se sim, quantos nós devem haver?

 Qual a velocidade dos componentes de rede?

Alberis Garcês de Castro 13

 Qual o tamanho ideal das unidades de armazenamento?

As respostas a estas e outras perguntas ajudam o administrador do sistema a

decidir qual a configuração ideal de hardware para a aplicação.

2.2.3 Tuning de Software

Da mesma forma que os computadores possuem componentes de hardware

comuns, os aplicativos possuem componentes funcionais. Esta divisão do software

em componentes funcionais nos permite compreender melhor a aplicação e sua

arquitetura.

Alguns componentes do sistema são adquiridos para acelerar a

implementação do aplicativo ou para dar suporte a reusabilidade de componentes

comuns em outras partes da aplicação.

A principal diferença entre componentes de software e de hardware é que

enquanto os componentes de hardware apenas executam uma tarefa, uma parte do

software pode realizar o papel de vários componentes de software. Por exemplo,

uma unidade de disco rígido apenas armazena e recupera dados gravados, mas um

programa cliente pode gerenciar a interface do usuário e executar lógica de

negócios definida na implementação [4].

Para que uma aplicação execute de forma satisfatória e com eficácia, os

componentes de software devem estar bem definidos e interligados de forma a

aperfeiçoar o desempenho da aplicação.

De acordo com [4] a maioria das aplicações possui os seguintes componentes

de software:

 Gerenciador da interface do usuário

Este componente é o mais visível para o usuário do aplicativo que

interage diretamente com o sistema através deste componente.

A coleta de dados do usuário que serão transferidos para a lógica de

negócios é realizada através da interface do usuário. Outras

Alberis Garcês de Castro 14

funcionalidades importantes como a validação dos dados de entrada e

a navegação através de telas, níveis ou estados da aplicação também

são características particulares.

 Implementação de lógica de negócios

Este componente implementa as regras que regem toda a

funcionalidade intrínseca do sistema. Erros cometidos neste nível

podem ser muito caros.

São funcionalidades comuns deste componente: mover um modelo de

dados para uma estrutura de tabelas relacionais, definir restrições na

estrutura de tabelas relacionais e codificação da lógica processual para

implementar as regras de negócio do sistema.

 Gerenciador da requisição do usuário e alocação de recursos

Este componente é implementado em todas as partes do software. No

entanto, existem algumas requisições e recursos que podem ser

influenciados pelo design da aplicação e outros que não podem.

Em um aplicativo multiusuário, a maioria das alocações de recursos

por requisição de usuários são tratadas pelo servidor de banco de

dados ou o sistema operacional. No entanto, em uma aplicação de

grande porte, onde o número de usuários cresce rapidamente; o

administrador do software deve tomar medidas pró-ativas, a fim de

assegurar que nenhum componente de software se tornará

sobrecarregado e instável.

Dentre as funcionalidades deste componente pode-se destacar o

gerenciamento de conexões com o banco de dados, execução de

comandos SQL – Structured Query Language - de forma eficiente,

informações de estado e gestão de clientes e balancear a carga de

solicitações de usuários através de recursos de hardware [4].

 Gerenciador de dados e transações

Alberis Garcês de Castro 15

Este componente está intimamente ligado ao servidor de banco de

dados e ao sistema operacional. Entre suas principais funcionalidades

pode-se destacar o fornecimento do acesso simultâneo aos dados de

forma otimizada e aplicação das regras definidas para os dados.

2.3 Tuning em SGBDs
Os Sistemas de Gerenciamento de Banco de Dados (SGBDs) são programas

com a finalidade de manipulação das informações de um banco de dados [10].

Observando a Figura 1 pode-se notar que o SGBD serve como interface que

gerencia como a aplicação acessará os dados.

Figura 1. SGBA como interface entre aplicação e a base de dados.

Dentre as funções de um SQBD pode-se destacar o armazenamento dos

dados e meta-dados, a eficiência na recuperação de dados armazenados, garantia

que as restrições impostas sobre os dados serão satisfeitas, tratamento correto e

eficiente de acesso simultâneo aos dados armazenados, recuperação contra falhas

e gerenciamento de backups.

Em um SGBD existem alguns recursos que colaboram para a melhoria de

desempenho do sistema. Entre eles pode-se destacar:

 Stored Procedure é um conjunto de instruções implementadas, que,

uma vez armazenadas ou salvas, ficam dentro do servidor pré-

compiladas, aguardando que o usuário do banco de dados invoque sua

execução.

As stored procedures, após salvas no servidor, ficam em uma posição

da memória cache somente aguardando serem chamados para

executarem uma operação. As ações também já ficam pré-carregadas,

Alberis Garcês de Castro 16

dependendo somente dos valores dos parâmetros. Após a primeira

execução, elas se tornam ainda mais rápidas [12].

 Function é bem semelhante a uma stored procedure e sua principal

diferença que a primeira retorna um valor e não pode invocar a

execução da segunda.

 Trigger é um gatilho disparado quando um determinado evento de

inclusão, alteração ou exclusão acontece. Uma trigger pode chamar

uma procedure ou function para executar uma tarefa quando um

evento acontece.

 Os elementos citados podem colaborar para o desempenho do sistema

quando substituem uma parte da regra de negócios que, no caso de sistemas web,

muitas vezes é executada pelo próprio browser do host. Assim a velocidade de

exibição de dados no browser aumenta. Em toda tarefa de tuning é necessário

realizar uma análise detalhada de ganho real que a aplicação pode ter, pois a

criação de triggers, procedures e functions desnecessárias podem comprometer o

desempenho do servidor de banco de dados. Caso haja sobrecarga no servidor,

deve-se considerar uma melhoria no hardware para este fim.

 De acordo com [4], existem outros recursos de tuning em um SGBDs como o

otimizador do SGBD que avalia o melhor plano de execução para a declaração SQL,

índices que são estruturas associadas as tabelas que melhoram a execução das

consultas e hints que são dicas de execução de queries que o desenvolvedor pode

dar ao SGBD ignorando a atuação do otimizador. Estes elementos serão estudados

com detalhes no Capítulo 3 que diz respeito a tuning de declarações SQL.

 De um modo geral todos os recursos citados acima colaboram diretamente

para o melhor desempenho de declarações SQL e podem contribuir para eliminação

de gargalos do sistema quando estas ferramentas são utilizados de forma planejada.

Um SGBD precisa ser bem administrado para que o sistema de banco de dados

funcione de forma eficiente e eficaz. O DBA (Data Base Administrator) é o

profissional responsável pela administração da base de dados [4].

Alberis Garcês de Castro 17

 A Figura 2 exibe a arquitetura básica de um SGBD.

Figura 2. Arquitetura básica de um sistema de banco de dados [10].

2.4 Estrutura do SGBD Oracle 10g
O Oracle Server Database 10g é o SGBD que utilizaremos para estudo no

decorrer desta monografia. Ele permite criar, armazenar, gerenciar e recuperar os

dados no banco de dados. O conhecimento da arquitetura interna do Oracle é de

grande importancia para um bom entendimento das técnicas de otimização e tuning

do SGBD. Para isto, um administrador de banco de dados deve ter uma

compreensão aprofundada da arquitetura de banco de dados.

Uma analogia poderia ser um mecânico tentando consertar um carro que está

com um problema. O técnico não saberia por onde começar, a menos que ele

conheça muito bem quais são os componentes do carro, o que eles fazem, como

eles funcionam e como eles interagem entre si. Isso é muito importante antes que

ele possa começar a procurar uma solução para o problema. O mesmo vale para um

Alberis Garcês de Castro 18

banco de dados; se um usuário apresenta um problema a um DBA, este não poderá

chegar a uma solução correta se não conhecer tudo, dentro do possível, sobre o

banco de dados.

O servidor Oracle consiste em arquivos físicos e componentes de memória. O

Oracle Database 10g é um produto composto por três componentes principais [6]:

 O servidor Oracle

Este é o SGBD Oracle que é capaz de armazenar, gerenciar e

manipular dados. Ele consiste de todos os arquivos, estruturas e

processos que formam o Oracle Database 10g. O servidor Oracle é

composto de uma instância Oracle e um banco de dados Oracle.

 A instância Oracle

Consiste dos componentes de memória do Oracle e os processos de

segundo plano (background process).

 O banco de dados Oracle

Este é o repositório centralizado onde os dados são armazenados.

Possui uma estrutura física que é visível para o sistema operacional

composto por arquivos do sistema operacional e uma estrutura lógica

que é reconhecida apenas pelo servidor Oracle.

A Figura 3 apresenta a arquitetura do banco de dados Oracle 10g, conforme

descrita em [6]. Ele é dividido em componentes de memória que formam a instância

do Oracle e os componentes do banco de dados físico, onde diferentes tipos de

dados são armazenados.

Alberis Garcês de Castro 19

Figura 3. Arquitetura do Oracle 10g [6].

2.4.1 A Instância Oracle

A instância Oracle é composta de alguns componentes de memória e

processos de segundo plano. A instância é criada na memória todas as vezes que o

banco de dados é iniciado, e é associada a apenas um único banco de dados. Os

componentes de memória compartilhados do banco de dados Oracle 10g também

são conhecidos como SGA (Sistem Global Area).

A instância e seus componentes são configurados através de um arquivo

conhecido como o arquivo de parâmetros. No Oracle 10g, existem dois tipos de

arquivos de inicialização, ou seja, os arquivos de parametro spfile e pfile. Nestes

arquivos são definidos os tamanhos de vários buffers e pools do SGA. Também é

possível especificar o nome da instância, o nome do banco de dados e outros

parâmetros relacionados com o tamanho necessário para a instância Oracle [7].

Alberis Garcês de Castro 20

2.4.2 PGA

A PGA (Program Global Area) é um buffer de memória que contém os dados

e informações de controle de uma sessão de um usuário. A PGA é criada e alocada

quando um novo processo é inicializado no servidor. As suas informações

dependem da configuração do Oracle.

Existe uma área de memória PGA para cada usuário que está executando

seus trabalhos no SGBD. Dentro da PGA existem três estruturas: uma contendo um

espaço para a pilha (para armazenar as variáveis e matrizes), outra contendo dados

sobre a sessão do usuário e uma terceira com as informações dos cursores usados.

A PGA não é compartilhada entre os usuários. Ela é única para cada sessão [7].

2.4.3 Componentes de Memória da SGA

A instância do Oracle é composta da área do Sistema Global (SGA) e os

processos de segundo plano. Conforme [4] O SGA é composto pelos seguintes

componentes de memória:

 Redo Log Buffer

É um buffer circular que armazena todas as alterações feitas no banco

de dados. Este conteúdo é transferido periodicamente para a memória

para os arquivos de redo log on-line pelo processo de segundo plano

LGWR (Log Writer).

O conteúdo do redo log buffer é essencial para a recuperação da

instância no caso de falha. O tamanho do redo log buffer é

determinado pelo parâmetro de inicialização log_buffer.

 Database Buffer Cache

É uma área na memória que armazena todos os blocos lidos em disco

para consulta ou modificação. Os blocos que precisam ser modificados

são modificados ainda carregados na memória e são gravados no

disco periodicamente.

Alberis Garcês de Castro 21

O conteúdo do database buffer cache é compartilhado por processos

de múltiplos usuários e é gravado em arquivo de dados no disco pelo

processo de segundo plano DBWR (Database Writer). O tamanho do

database buffer cache padrão é definido pelo parâmetro de

inicialização DB_BLOCK_SIZE e o tamanho dos blocos de informação

pelo DB_BLOCK_SIZE.

 Shared Pool

O conteúdo desta área de memória é compartilhado por vários

usuários e o seu tamanho pode ser definido através do parâmetro de

inicialização SHARED_POOL_SIZE. Dois caches específicos

compõem a shared pool.

O primeiro deles é a lybrary cache que é responsável por armazenar e

reutilizar, sempre que possível, instruções SQL, os planos de execução

das queries e procedimentos armazenados. Este cache impede que

instruções SQL sejam analisadas repetidamente. Isto colabora para

melhorar o desempenho do sistema durante a execução de comandos

SQL.

O último cache da shared pool é o data dictionary cache que é

composto por blocos que mantêm em arquivos de dados informações

lidas do dicionário de dados. As informações normalmente

armazenadas são referentes à conta do usuário, índice de tabela e

outras informações de objetos, privilégios e conteúdo relevante que é

acessado com frequência.

 Large Pool

O parâmetro de inicialização LARGE_POOL_SIZE delimita o tamanho

desta área de memória. É utilizada para tratamento de requisição de

I/O muito grandes feitas pelos processos do servidor.

 Java Pool

Alberis Garcês de Castro 22

Esta é uma área de memória usada para toda a sessão de código Java

específico e pelos dados dentro da máquina virtual Java. Seu tamanho

é configurado através do parâmetro de inicialização

JAVA_POOL_SIZE.

 Streams Pool

É uma área de memória usada pelo produto Oracle Streams para o seu

funcionamento.

O estudo dos componentes da SGA é importante, pois uma aplicação pode

ter problemas de desempenho devido ao mau dimensionamento das áreas de

memória estudadas acima. O DBA precisa conhecer bem os parâmetros de

inicialização para poder corrigir o dimensionamento de cada região de memória

visando eliminar um possível gargalo no sistema determinado por fatores de

dimensionamento que afetam o desempenho da execução da instãncia do SGBD.

2.4.4 Processos de Segundo Plano

Os processos de segundo plano, também conhecidos como background

process de uma instância do Oracle, são responsáveis por executar funções de I/O

assíncronas entre a instância do Oracle e arquivos físicos do banco de dados que

existem no disco rígido. Há cinco processos de segundo plano principais no Oracle

10g [7]. São eles:

 DBWR (Database Writer)

Este é um processo de segundo plano tem como função transferir

blocos modificados, a partir do database buffer cache, para os arquivos

de dados. O DBWR escreve os blocos modificados do database buffer

cache para os arquivos de dados físicos. O DBWR é otimizado para

reduzir os eventos de I/O, por esta causa ele não escreve os dados a

cada comando COMMIT. Geralmente o DBWR escreve os dados para

o disco se muitos dados estão armazenados no database buffer cache

na SGA e não existe espaço livre para novos dados. Os dados menos

Alberis Garcês de Castro 23

recentemente usados são escritos para os arquivos de dados em

primeiro lugar.

 LGWR (Log Writer)

O processo LGWR grava todas as entradas de redo log para o disco.

Os dados de redo log são armazenados em memória no redo log buffer

cache, na SGA. No momento em que uma transação é realizada e

efetivada com o comando commit e o redo log buffer estiver

preenchido, o LGWR escreve as entradas de redo log nos arquivos

apropriados.

 CKPT (Checkpoint)

Em um momento específico, todos os dados do database buffer cache

modificados são escritos em disco pelo processo DBWR; este evento é

chamado de checkpoint. O processo CKPT é responsável por informar

ao processo DBWR o momento de gravar os dados em disco. O DBWR

também atualiza os arquivos de controle do banco de dados para

indicar o checkpoint mais recente. O processo CKPT é opcional, se ele

não estiver presente, o LGWR assume sua responsabilidade.

 SMON (System Monitor)

O processo SMON efetua a recuperação da instância em caso de

falhas, durante a sua inicialização. Em um sistema com múltiplas

instâncias (como na configuração Oracle Parallel Server, por exemplo),

o processo SMON de uma instância também pode executar a

recuperação de outras instâncias que podem ter falhado. Ele também

limpa os segmentos temporários que não estão sendo usados,

liberando memória, e recupera qualquer transação pendente no caso

de uma falha em arquivos físicos ou mesmo no disco. O processo de

recuperação dessas transações é executado pelo processo SMON

quando a tablespace afetada volta a ficar disponível.

 PMON (Process Monitor)

Alberis Garcês de Castro 24

O PMON executa a recuperação do processo de um usuário quando

esse processo falha. Limpa a área de memória e libera os recursos que

o processo do usuário estava usando. O PMON também verifica os

processos servidores e os reinicializa se tiver acontecido qualquer falha

ou travamento.

 ARCH (Archiver)

Este é um processo de segundo plano opcional que copia os arquivos

redo log para fita ou mesmo outro disco, no momento em que um deles

torna-se completo. Esse processo geralmente está presente quando o

banco de dados está sendo utilizado no modo archivelog. Os arquivos

redo log são usados somente para a recuperação de um banco de

dados.

Alberis Garcês de Castro 25

Capítulo 3
Tuning de Declarações SQL

Este capítulo aborda as características gerais da otimização de declarações

SQL para se alcançar um desempenho ótimo das queries.

O conhecimento de técnicas de tuning de declarações SQL é necessário para

se realizar a otimização da base de dados. O DBA precisa ter uma visão global das

possibilidades de gargalos que geram tempos de resposta muito acima do esperado,

pois, em alguns casos, esta latência é decorrente de consultas SQL mal elaboradas

e que podem ser otimizadas utilizando-se de algumas técnicas que serão

comentadas no decorrer deste capítulo.

3.1 O Otimizador Oracle
A função do otimizador Oracle é aperfeiçoar a execução de consultas SQL

visando obter melhor desempenho. Uma declaração SQL pode ser executada,

dependendo da situação, de várias formas diferenciadas, tais como varredura de

índices, full table scan (que é uma varredura completa em todos os registros da

tabela), loops aninhados e joins.

O otimizador Oracle determina qual plano de execução é mais eficiente. Ele

considera os caminhos de acesso disponíveis e a fragmentação da informação

baseado em estatísticas para os objetos do esquema do banco de dados acessados

pela consulta SQL. Ele considera também os hints que são sugestões de otimização

colocadas na instrução SQL [11].

O otimizador de consultas executa as seguintes etapas:

 Gera um conjunto de planos de execução da instrução com base em

caminhos de acesso disponíveis e hits.

Alberis Garcês de Castro 26

 Estima o custo (tempo e uso dos recursos) de cada plano de execução,

baseado em estatísticas do dicionário de dados e na característica de

distribuição e armazenamento das tabelas e índices acessados pela

consulta.

 O otimizador compara o custo dos planos de execução e escolhe um

com o menor custo.

Os componentes do otimizador de queries são exibidos na Figura 4:

Figura 4. Componentes do Otimizador Oracle [11].

O transformador de consultas é o primeiro componente do Otimizador Oracle.

Ele recebe como entrada uma declaração SQL analisada pelo analisador gramatical

do Oracle e o divide em blocos relacionados entre si.

O transformador de consultas tem como objetivo principal realizar a

verificação a respeito da existência de uma maneira ótima para se obter o mesmo

resultado. Se isto existir, ele gera um melhor plano de execução para a query.

Alberis Garcês de Castro 27

Este processo utiliza três técnicas, que podem ser utilizadas combinadamente

ou individualmente. São elas: agrupamento das visões (view merging), eliminarção

de sub-consultas e reescrita da consulta utilizando visões materializadas [4].

O gerador de estimativas pode ser considerado o principal componente do

otimizador, pois é o responsável por indicar o esforço estimado para cada plano

apresentado pelo transformador de consultas. Para gerar a estimativa, o gerador de

estimativas baseia-se em seletividade, cardinalidade e custo da execução.

 Caso o banco de dados possua algumas estatísticas sobre a tabela ou

índice, isto será utilizado para melhorar a precisão da estimativa.

O gerador de planos é o componente que testa os diferentes planos de

execução para uma consulta e escolhe aquele que apresenta o menor custo de

execução e conseqüentemente um melhor desempenho.

3.2 Índices
Conforme descrito em [8], “Os índices são estruturas opcionais associadas a

tabelas que permitem que as consultas SQL sejam executadas mais rapidamente.”.

 Semelhantemente a um índice de um livro, um índice é um objeto

logicamente e fisicamente independente do dado associado à tabela.

A criação dos índices no banco de dados deve ser estudada de acordo com a

real necessidade e a freqüência de utilização dos dados da tabela em estudo pela

aplicação. Os índices podem reduzir bastante o acesso aos recursos de I/O,

contribuindo assim para melhorar o desempenho da aplicação como um todo.

Os índices são objetos importantes para realização de tuning das consultas e

podem ser usados sem a necessidade de reescrever as declarações SQL. No

entanto, podem interferir negativamente no desempenho geral da aplicação se forem

usados de forma incorreta. Não é recomendado o uso de índices em dados que

sofrem constantes modificações. Uma vez criado o índice para uma tabela

específica, o Oracle precisará mantê-lo atualizado, ou seja, operações de

Alberis Garcês de Castro 28

atualização, inserções e exclusões de linhas na tabela, geram conseqüentemente

atualizações no índice associado a ela [8].

Existem vários tipos de índices disponíveis no Oracle, e cada um deles possui

benefícios para determinadas situações. A lista a seguir dá idéias de desempenho

associadas a cada tipo de índice de acordo com [4]:

 Índice B-Tree

Este é o tipo de índice padrão. Ele apresenta um ótimo resultado

quando utilizado para indexar a chave primária da tabela, valores

únicos ou próximos de únicos, ou linhas que estão dentro de uma faixa

de valores como um intervalo de datas por exemplo. São usados como

índices concatenados. Índices B-tree podem ser utilizados para

recuperar dados classificados pelas colunas indexadas.

 Índice Concatenado ou Composto

Um índice concatenado é um índice que é criado sobre múltiplas

colunas em uma tabela. As colunas em um índice concatenado podem

aparecer em qualquer ordem, e através desta ordem é definido se o

índice completo é usado ou não na consulta. A vantagem de uma

chave concatenada é que freqüentemente ela é mais precisa na busca

de um grupo de registros que uma chave única. Ela melhora o

desempenho do índice, pois a combinação de colunas irá apontar para

um menor número de linhas que índices compostos de colunas

individuais.

 Índice Agrupado

Os índices agrupados são mecanismos para armazenar linhas

relacionadas de uma ou mais tabelas no mesmo segmento. Linhas que

têm o mesmo valor chave para o agrupamento são armazenadas

juntas. Na teoria isto irá aumentar a velocidade de junções de tabelas,

porque as linhas a serem unidas estarão armazenadas no mesmo

bloco. Na prática, índices agrupados são bastante limitados e apenas

Alberis Garcês de Castro 29

devem ser usados quando as tabelas são “sempre” referenciadas

juntas.

Algumas das desvantagens de índices agrupados são: full table scan

em apenas uma das tabelas do agrupamento será bastante lento, pois

os blocos para outras tabelas no agrupamento também terão que ser

percorridos; as inserções podem ser lentas por causa do esforço

adicional de manter o agrupamento; os benefícios de desempenho

para as junções podem ser mínimas.

 Índice Bitmap

Este tipo é apropriado para os dados de baixa cardinalidade, ou seja,

colunas com poucos valores distintos, caso contrário muitos bitmaps

precisam ser criados e mantidos. Através de técnicas de compressão,

podem gerar um grande número de rowids com eventos de I/O

mínimos.

Combinar índices bitmap sobre colunas não seletivas permite que

operações de AND e OR sejam executadas de forma eficiente com

eventos de I/O minimos. Índices bitmap são particularmente eficiente

em consultas que utilizam COUNT(), porque a consulta pode ser

satisfeita dentro do índice.

Em um índice bitmap, o Oracle cria um bitmap para cada valor único da

coluna em análise. Cada bitmap contém um único bit (zero ou um) para

cada linha na tabela. Um bit “1” indica que a linha tem o valor

especificado pelo bitmap e um “0” indica que não tem.

O Oracle pode rapidamente percorrer estes bitmaps para encontrar

linhas que satisfazem um critério específico, também pode

rapidamente comparar múltiplos bitmaps para encontrar todas as linhas

que satisfazem aos múltiplos critérios. Podem ser usados em qualquer

ordem e em qualquer combinação, assim são mais flexíveis que um

índice concatenado correspondente, o qual requer o uso de pelo

Alberis Garcês de Castro 30

menos a primeira coluna do índice. Se usado apropriadamente é

bastante compacto, bem mais que o índice concatenado.

O conhimento dos diferentes tipos de índices possíveis do Oracle é

importante para a realização de tuning quando necessário. É importante destacar

que o uso desta técnica, sem uma análise aprofundada e com embasamento teórico,

não garante melhora no desempenho. Realizar tuning com eficiência é saber qual

técnica ele deve usar, em que momento e em quais casos específicos.

Abaixo a sintaxe geral de criação de índices oficial da Oracle é exibida [8]:

CREATE [UNIQUE | BITMAP] INDEX [schema.]index

ON { cluster_index_clause

 | table_index_clause

 | bitmap_join_index_clause

 };

3.3 Hints
Apesar do otimizador de consultas do Oracle realizar um bom trabalho na

escolha da melhor forma de executar uma declaração SQL e no uso de índices para

milhares de consultas realizadas pelo sistema, ele não é perfeito.

O DBA pode saber informações sobre os seus dados que o otimizador não

reconhece. Por exemplo, o administrador do banco de dados pode saber que um

determinado índice é mais seletivo para determinadas consultas. Com base nessas

informações, o DBA pode ser capaz de escolher um plano de execução mais

eficiente que o plano escolhido automaticamente pelo otimizador. Nestes casos o

uso de hints (sugestões) é indicado para forçar o otimizador a usar um plano de

execução ótimo.

Alberis Garcês de Castro 31

O Oracle possui hints que se pode usar para determinadas consultas, de

modo que o otimizador seja desconsiderado, na esperança de conseguir melhor

desempenho para determinada consulta.

Os hints modificam o caminho de execução quando um otimizador processa

uma instrução específica. O parâmetro OPTIMIZER_MODE do arquivo de

parâmetros “init.ora” pode ser usado para modificar todas as instruções no banco de

dados para que sigam um caminho de execução específico, mas um hint para um

caminho de execução diferente substitui qualquer coisa que esteja especificada no

init.ora.

Como em toda a tarefa de análise para realização de tuning, os hints devem

ser utilizados apenas quando houver necessidade. A escolha do plano de execução

feita pelo otimizador, em geral, atende as necessidades de realização de consultas

SQL com um menor custo para a aplicação em geral.

Os hints disponíveis variam de acordo com a versão do banco de dados

instalado. Embora este trabalho focalize apenas os hints que são usados com maior

freqüência, muitos dos hints que não são abordados com detalhes podem oferecer

grandes ganhos de desempenho com um sistema específico.

Hints aplicam-se apenas para otimizações do bloco de uma declaração em

que aparecem. Um bloco de declaração é uma instrução SELECT, UPDATE ou

DELETE simples, uma declaração pai ou subconsulta de uma declaração complexa,

ou uma parte de uma consulta composta.

 Por exemplo, uma consulta composta formada por duas consultas

combinadas pelo operador UNION tem dois blocos, sendo um para cada um das

consultas componentes. Por esta razão, os hints na primeira consulta componente

se aplicam apenas a sua otimização, e não para a otimização da segunda consulta

componente.

3.3.1 Classificação dos Hints

Os hints possuem a seguinte classificação geral:

Alberis Garcês de Castro 32

 Single-table

São especificados em uma tabela ou view. INDEX e USE_NL são

exemplos de hints single-table.

 Multi-table

São semelhantes aos hints single-table, exceto que os hints multi-

tables podem especificar uma ou mais tabelas ou views. LEADING é

um exemplo de hint multi-table.

 Query block

Operam em blocos de query únicos. STAR_TRANSFORMATION e

UNNEST são exemplos de hints query block.

 Statement

São aplicados a todas as declarações SQL. ALL_ROWS é um exemplo

de um hint statement.

3.3.2 Sintaxe dos Hints

Os hints enviam sugestões em uma declaração SQL para o otimizador em

forma de comentário dentro da própria declaração. Um bloco de uma declaração

pode conter apenas um comentário contendo hints após as palavras-chave SELECT,

UPDATE, MERGE ou DELETE.

A seguir são exibidos os dois estilos de comentário que o Oracle suporta em

um bloco de declaração SQL [4].

{DELETE | INSERT | MERGE | SELECT | UPDATE} /*+ hint

[text] [hint[text]]... */

ou

{DELETE | INSERT | MERGE | SELECT | UPDATE} --+ hint

[text] [hint[text]]...

Alberis Garcês de Castro 33

Onde:

 DELETE, INSERT, SELECT, MERGE e UPDATE são palavras-chave

que iniciam um bloco de declaração.

 O símbolo + faz o Oracle interpretar o comentário como uma lista de

hints. O sinal de mais deve vir imediatamente após o delimitador de

comentário.

 hint é um dos hints discutidos nesta seção. Se o comentário possuir

múltiplos hints, então cada um deve ser separado do outro pelo menos

por um espaço em branco.

O Oracle ignora hints que sejam criados de forma incorreta, mas considera

outros hints que sejam definidos corretamente dentro do mesmo comentário.

3.3.3 Tipos de Hints

 Hints de métodos de acesso

Os hints que são agrupados em métodos de acesso permitem que o

otimizador varie o modo como a consulta real é acessada. Esse grupo

de hints é usado freqüentemente, especialmente o hint INDEX. Ele

oferece orientação a respeito de se e como os índices são usados, e

como os índices correspondentes serão mesclados para chegar à

resposta final. Os hints de método de acesso são os seguintes [4]:

 AND_EQUAL CLUSTER FULL

 HASH INDEX INDEX_ASC

 INDEX_COMBINE INDEX_DESC INDEX_FFS

 INDEX_JOIN NO_INDEX RPWID

 Hints de transformação de consulta

Alberis Garcês de Castro 34

Este tipo de hint é útil especialmente em data warehouse onde são

utilizadas tabelas de fato e dimensão. O hint FACT pode forçar

determinada tabela a ser tabela FACT ou principal para uma consulta.

O hint NO_FACT realiza o oposto. O hint STAR é usado apenas para

acessar de modo eficaz a tabela FACT na junção de várias tabelas. Os

hints de transformação da consulta são os seguintes [4]:

 FACT MERGE NO_EXPAND

 NO_FACT NO_MERGE NOREWRITE

 REWRITE STAR USE_CONCAT

 STAR_TRANSFORMATION

 Hints de operação de junção

O agrupamento das operações de junção mostra como as tabelas

mesclam dados. Uma operação de junção, como USE_MERGE ou

USE_HASH, pode ser melhor para apanhar todas as linhas para uma

consulta (vazão), enquanto USE_NL pode ser melhor para apanhar a

primeira linha (tempo de resposta). Os hints de operação e junção são

os seguintes [4]:

 DRIVING_SITE HASH_AJ HASH_SJ

 LEADING MERGE_AJ MERGE_SL

 NL_AJ NL_SJ ORDERED

 PUSH_SUBQ USE_HASH USE_MERGE

 USE_NL

 Usando a execução paralela

O agrupamento de execução paralela aplica-se a bancos de dados

usando a opção paralela. Estes hints redefinem a especificação da

Alberis Garcês de Castro 35

tabela para o grau de paralelismo. Os hints de execução paralela são

os seguintes:

 NOPARALLEL NOPARALLEL_INDEX PARALLEL

 PARALLEL_INDEX PQ_DISTRIBUTE

 Outros Hints

Os hints APPEND e NOAPPEND podem ser usados sem a opção

paralela, mas constantemente são usados com ela. O agrupamento de

cachê diz respeito aos hints que colocarão itens como usados mais

recentemente (CACHE) e usados menos recentemente (NOCACHE).

Os hints são os seguintes [4]:

 APPEND CACHE CURSOR_SHARING_EXACT

 NOAPPEND NO_UNNEST NO_PUSH_PRED

 NOCACHE PUSH_PRED ORDERED_PREDICATES

 UNNEST

3.3.4 Usando Hints

Nesta seção serão exibidos exemplos de utilização de alguns dos hints mais

utilizados no dia-a-dia dos DBAs. Detalhes de outros hints podem ser encontrados

na documentação da Oracle [4] ou em livros específicos deste assunto.

 Especificando múltiplos Hints

Pode-se usar mais de um hint de cada vez, embora isso possa fazer

com que algum ou todos os hints sejam ignorados caso estejam com a

sintaxe errada ou em confronto de lógica de utilização.

Sintaxe:

SELECT /*+ FULL(tabela) CACHE(tabela) */ coluna1,...

Alberis Garcês de Castro 36

A tabela na sintaxe acima corresponde à tabela na qual será realizado

um full table scan e o cache.

Exemplo:

SELECT /*+ FULL(empregado) CACHE (empregado) */

emp_numero, nome, departamento

From empregado

Where departamento = 1;

A especificação de vários hints que entram em conflito entre si faz com

que a consulta não use esses hints.

 Usando um alias

Quando aliases são usados sobre determinada tabela que deseja

aplicar o uso de hint, é necessário especificar o alias e não o nome da

tabela no hint. Se o nome da tabela no hint for especificado quando um

alias for usado, o hint será desconsiderado.

Sintaxe:

SELECT /*+ FULL(A) */ coluna1, from tabela1 as A

 Usando o hint INDEX

Este hint é utilizado para forçar que um ou mais índices sejam

executados para determinada consulta. Pode-se especificar um ou

mais índices com este hint, e o Oracle escolherá um ou mais índices

especificados com base no melhor plano de execução. Caso se queira

especificar apenas um, o otimizador considerará apenas um índice.

Sintaxe:

SELECT /*+ INDEX (tabela indice1, indice2,...) */

coluna1, . . .

Exemplo:

Alberis Garcês de Castro 37

SELECT /*+ INDEX (empregado depart_idx) */

emp_numero, nome, departamento

From empregado

Where departamento = 1;

 Neste exemplo o índice depart_idx será utilizado.

 Usando o hint ORDERED

Este hint faz com que as tabelas sejam acessadas em uma ordem

específica, com base na ordem das tabelas na cláusula FROM da

consulta. Ele pode ser usado para a otimização baseada em custo.

Sintaxe:

SELECT /*+ ORDERED (tabela indice1, indice2,...) */

coluna1, . . .

Exemplo:

SELECT /*+ INDEX (empregado deptno_idx) */

emp_nemero, nome, departamento

From empregado

Where departamento = 1;

 Neste exemplo o índice deptno_idx será utilizado.

 Usando o hint PARALLEL

Este hint faz com que consultas full table scan seja divididas em partes

(o grau de paralelismo) e proceda cada parte com um processo

diferente do sistema operacional. O Grau de paralelismo é aplicado a

cada operação de uma instrução SQL.

É possível especificar o número desejado de servidores simultâneos

que podem ser usados para uma operação paralela. Pode-se

especificar este hint às partes INSERT, UPDATE e DELETE de uma

Alberis Garcês de Castro 38

instrução. É necessário que na criação das tabelas a cláusula

PARALLEL tenha sido utilizada.

Sintaxe:

SELECT /*+ PARALLEL (tabela, DEGREE, INSTANCES) */ ,

. . .

O grau é o número de partes em que a consulta é dividida. A instância

(o segundo número especificado após o grau) representa o número de

instâncias usadas.

Exemplo:

SELECT /*+ INDEX (empregado deptno_idx) */

emp_numero, nome, departamentob

From empregado

Where departamento = 1;

 Neste exemplo o índice deptno_idx será utilizado.

 Usando o hint FIRST_ROWS

Este índice direciona uma consulta para ser otimizada com base na

recuperação mais rápida da primeira linha. Este tipo de índice é muito

útil quando o desenvolvedor faz uma interface para o usuário que

apanha um único registro no banco de dados. E seria uma péssima

opção para sistemas de relatórios, onde um número muito grande de

registros é selecionado.

Este índice é ignorado quando utilizamos as instruções UPDATE e

DELETE, pois todas as linhas recuperadas serão atualizadas ou

excluídas. Também é ignorado quando utilizamos qualquer função de

agrupamento (GROUP BY, DISTINCT, INTERSECT, MINUS, UNION),

pois todas as linhas para o agrupamento precisam ser recuperadas.

Sintaxe:

Alberis Garcês de Castro 39

SELECT /*+ FIRST_ROWS (n) */ coluna1, . . .

Exemplo:

SELECT /*+ FIRST_ROWS (10) */ empno, ename, deptno

From emp

Where deptno = 1;

 Usando o hint RULE

Cada hint que é emitido causa o uso do otimizador baseado em custo,

exceto o hint ROLE que faz com que o otimizador use a otimização

baseada em regra. Isso quer dizer que a distribuição dos dados na

tabela e nos índices não é considerada. Ao invés disto, o otimizador

executa a consulta com base em um conjunto de regras predefinidas

pelo Oracle. Com exceção dos hints DRIVING_SITE e ORDERED,

todos os outros hints serão ignorados quando utilizado o hint RULE.

Sintaxe:

SELECT /*+ RULE */ coluna1, . . .

Exemplo:

SELECT /*+ RULE */ empno, ename, deptno

From emp

Where deptno = 1;

 Usando o hint FULL

Este hint instrui a consulta a desconsiderar o otimizador e realizar uma

varredura completa da tabela. O hint FULL possui uma funcionalidade

diferente, com base na consulta que esta sendo ajustanda. Ele pode

ser usado para forçar uma varredura completa quando uma grande

parte da tabela estiver sendo consultada. O custo da leitura do índice e

das linhas pode ser maior do que simplesmente ler a tabela inteira.

Alberis Garcês de Castro 40

Este hint pode causar um resultado inesperado. Causar uma varredura

de tabela completa pode fazer com que as tabelas sejam acessadas

em uma ordem diferente, pois uma tabela principal diferente é usada.

Isso pode gerar um desempenho melhor, fazendo-o pensar que a

varredura de tabela completa foi o benefício principal, quando a

mudança da ordem da tabela principal foi a causa real do melhor

desempenho.

Sintaxe:

Select /*+ FULL(tabela) */ coluna1, . . .

Exemplo:

SELECT /*+ FULL(emp) */ empno, ename, deptno

From emp

Where deptno = 1;

 Usando o hint LEADING

À medida que a complexidade das consultas aumenta, torna-se mais

difícil descobrir a ordem de todas as tabelas usando o hint ORDERED.

Normalmente pode-se descobrir qual tabela deve ser acessada

primeiro (tabela principal), mas é possível não saber qual tabela

acessar depois dessa. A hint LEADING permite que uma tabela para

controlar a consulta seja especificada. O otimizador descobre qual

tabela usar depois dela. Caso mais de uma tabela seja especificada

com esse hint, ela será ignorada. O hint ORDERED cancela o hint

LEADING.

Sintaxe:

SELECT /*+ LEADING (tabela1) */ coluna1, . . .

Exemplo:

Alberis Garcês de Castro 41

SELECT /*+ LEADING (DEPT) */ emp.empno, ename,

dept.deptno, itemno From emp, dept, orders

Where emp.deptno = dept.deptno and emp.empno =

orders.empno

and dept.deptno = 1 and emp.empno = 7747 and

orders.ordno = 45;

 Usando o hint USE_NL

Este hint normalmente é o modo mais rápido em termos de tempo de

resposta para retornar uma única linha. Contudo, é conseqüentemente

mais lento no retorno de todas as linhas de uma tabela. Este hint faz

com que uma instrução seja processada usando loops aninhados, que

retorna a primeira linha de uma tabela, com base no resultado de outra

tabela. Isso é o oposto de uma junção por mesclagem, que apanha

linhas que correspondem às condições de cada tabela e depois realiza

a mesclagem e isso normalmente leva mais tempo para obter a

primeira linha.

Sintaxe:

Select /*+ USE_NL(tabela indice1, índice2) */

coluna1, . . .

Exemplo:

Select /*+ USE_NL(dept) */ empno, ename, dept.deptno

From emp, dept

Where emp.deptno = dept.deptno and dept.deptno = 1

and emp.empno = 7747;

 Usando o hint APPEND

Alberis Garcês de Castro 42

Este hint é ótimo para ser utilizado quando houver bastante

disponibilidade de espaço no disco rígido. Ele não verifica se existe

espaço dentro dos blocos atualmente usados para instruções, mas, em

vez disso, anexa os dados aos novos blocos. Potencialmente poder-se-

ia desperdiçar espaço, mas a velocidade da busca seria melhorada.

Além disso, se um INSERT tiver paralelismo com o hint PARALLEL,

APPEND será utilizado como padrão. Porém, é possível usar o hint

NOAPPEND para cancelar este comportamento.

Sintaxe:

INSERT /*+ APPEND*/ …

Exemplo:

insert /*+ APPEND */ into emp (empno, deprno) values

(7747,10);

 Usando o hint USE_HASH

Este hint normalmente é o modo mais rápido de unir muitas linhas de

várias tabelas, se existir memória suficiente para esta operação.

USE_HASH é semelhante aos loops aninhados, onde o resultado de

uma tabela é percorrido através do resultado da tabela unida. A

diferença aqui é que a segunda tabela, aquela sendo percorrida, é

colocada na memória. É preciso ter um HASH_AREA_SIZE e

PGA_AGGREGATE_TARGET grande o bastante para que isto

funcione corretamente, caso contrário, a operação ocorrera no disco e

pode não apresentar um bom desempenho.

Sintaxe:

Select /*+ USE_HASH(tabela1) */ coluna1, . . .

Exemplo:

Alberis Garcês de Castro 43

Select /*+ USE_HASH(dept) */ empno, ename,

dept.deptno

From emp, dept Where emp.deptno = dept.deptno

 and emp.empno = 7747;

Alberis Garcês de Castro 44

Capítulo 4
Estudo de Caso

Este capítulo apresenta a aplicação usada na monografia e aborda as

características do resultado da aplicação das técnicas de tuning visando obter um

melhor desempenho.

4.1 O Sistema
O sistema usado como estudo de caso é um aplicativo de rastreamento e

gerenciamento de veículos, máquinas e equipamentos de grande porte. É

responsável pelo rastreamento e gerenciamento de veículos automotores e

máquinas.

Atualmente existem cerca de mil e quinhentos veículos com rastreador

instalado. O sistema utiliza dados enviados pelos rastreadores dos veículos

monitorados. Entre eles, tem-se informações de posicionamento geográfico,

velocidade, aceleração, sensores de movimento, violação, pânico, entre outros. Os

dados são gerados a partir do módulo GPS instalado e das entradas e saídas do

próprio rastreador.

Esses dados são enviados via GPRS como arquivos XML para um servidor

centralizado. As informações chegam ao servidor por um gateway de entrada e os

arquivos são armazenados no servidor.

O banco de dados Oracle utiliza jobs, triggers, procedures e functions para ler

os arquivos XML, processar as informações e armazenar as informações tratadas

nas tabelas do banco de dados.

Cada rastreador envia informação em média a cada trinta segundos. A maior

tabela da base de dados é a tabela que armazena o histórico de posições.

Esta tabela cresce rapidamente, possuindo uma quantidade de registros

Alberis Garcês de Castro 45

muito grande. Diariamente, mil e quinhentos rastreadores geram quatro

milhões e trezentos mil registros na tabela de histórico.

A Figura 5 mostra a tela de visualização da posição atual dos veículos

monitorados na cidade de João Pessoa, na Paraiba. O balão de informações, ver

detalhe na figura, apresenta várias informações sobre o estado atual do veículo. A

API do Google Maps é utilizada nesta interface de visualização:

Figura 5. Painel de visualização dos veículos do sistema de rastreamento.

Alberis Garcês de Castro 46

O sistema possui recursos como traçado de percurso, relatórios de velocidade

por período, relatórios de histórico de posição, cálculos da velocidade média

(realizados dinamicamente por procedures para identificar a média da velocidade

veicular em um dia e horário da semana específico). Para que as informações

necessárias à disponibilização destes recursos sejam geradas, faz-se necessário

consultar com muita freqüência as tabelas de histórico, que possuem um volume de

dados muito grande.

A execução de consultas que utilizam tabelas como esta podem gerar uma

latência inaceitável no sistema web, que se propõe a exibir os dados dos usuários

em tempo real para fins de segurança e de um monitoramento eficaz.

Técnicas de tuning são essenciais para manter o sistema operando de

maneira satisfatória. A seguir serão destacadas algumas técnicas de tuning que

foram utilizadas ao longo do desenvolvimento do sistema estudado para manter um

bom desempenho do sistema apresentado.

4.2 Realizando Tuning do Hardware
No capítulo 2 deste trabalho o assunto tuning de hardware foi abordado,

mostrando que, antes de realizar tuning de hardware, deve-se realizar uma análise

geral do sistema para identificar a real necessidade do investimento em recurso de

hardware adicional.

Para o sistema de rastreamento identificou-se que a capacidade do recurso

de I/O disponível estava insuficiente. Os arquivos XML contendo as informações de

rastreamento eram acumulados no servidor gateway de dados e chegavam a ocupar

toda a capacidade do disco rígido que era de duzentos e cinqüenta gigabytes.

Este gargalo fazia com que a aplicação parasse de gerar novos arquivos XML

com as informações atualizadas de cada rastreador. Este é um exemplo claro de um

gargalo que uma simples otimização de consultas SQL ou uma reestruturação do

software web não poderia resolver.

Alberis Garcês de Castro 47

Foi realizado tuning de hardware com a aquisição de um novo servidor

gateway de dados com capacidade para utilizar os discos rígidos em Raid 0 e com

um terabyte de capacidade cada um. Verificou-se que para este servidor de dados

uma capacidade de memória RAM de oito gigabytes era suficiente, pois a função

deste servidor era basicamente de recebimento das informações dos rastreadores,

criação dos arquivos com a nomenclatura ddmmyyyyhhiiss.xml com as informações

recebidas a cada trinta segundos. O tamanho de cada arquivo gerado fica em torno

de meio megabyte e a memória RAM utilizada é liberada logo após o arquivo ser

criado.

Mesmo com essa nova configuração de hardware do servidor gateway de

dados, a quantidade de arquivos XML gerados crescia linearmente a taxa de um

megabyte por minuto. Considerando-se que por uma questão de desempenho e

segurança da manutenção da disponibilidade do sistema, os discos rígidos não

poderiam ultrapassar setenta e cinco por cento da sua capacidade, ou seja,

setecentos e cinqüenta megabytes, esta capacidade seria ultrapassada dentro de

menos de dezoito meses. O seguinte cálculo foi utilizado para se obter este

resultado:

1 megabyte * 60 * 24 * 30 = 43.200 (megabytes de informação por mês)

750.000 megabytes disponíveis / 43.200 = 17,36 meses

Como estes dados precisam ser mantidos por pelo menos três anos por

questões de auditoria, fez-se necessária a criação de um aplicativo auxiliar que é

executado a cada hora por um arquivo “.bat”. Este aplicativo verifica a data de

criação, que está contida no próprio nome do arquivo. Caso esta data seja superior a

seis meses, o arquivo é removido para outro diretório. Diariamente as informações

deste diretório são compactadas, copiadas para uma fita dat e excluídas do diretório.

Este procedimento garante que o espaço ocupado no dispositivo de I/O do

servidor de dados seja mantido em torno de vinte e cinco por cento ou duzentos e

cinqüenta megabytes.

Uma medida de tuning do tipo monitoramento proativo foi tomada para evitar

a lentidão especificamente do servidor de banco de dados Oracle. Verificou-se que,

Alberis Garcês de Castro 48

com o crescimento contínuo do tamanho da base de dados, os dispositivos de

interface de I/O utilizados supririam a demanda do SGBD por cerca de dois anos

sem a necessidade de adquisição de hardware adicional.

Entretanto, como o número de clientes da empresa detentora do software

está previsto para crescer bastante nos próximos anos, outras duas unidades de

disco rígido foram adquiridas para garantir uma maior segurança frente à demanda

que está por vir. A capacidade dos componentes de I/O passou de quinhentos

gigabytes para um terabyte.

Outra melhoria de hardware realizada no servidor de banco de dados foi a

modificação de memória RAM de quatro gigabytes para oito gigabytes. Este

investimento em hardware foi importante, pois muitas procedures, triggers e

functions do banco de dados são responsáveis por parte da regra de negócios do

sistema.

4.3 Realizando Tuning do Software
Para se realizar tuning do software é necessário considerar o projeto da

aplicação. A otimização do aplicativo é um processo contínuo, pois alguns gargalos

são identificados apenas quando o sistema já está na fase de produção. Nestes

casos as modificações precisam ser feitas sem interromper o serviço, pois isso

geraria uma insatisfação muito grande do usuário cliente.

O projeto do sistema estudado foi feito na linguagem de programação

orientada a objetos PHP seguindo-se o design de aplicação em camadas bem

definidas, entre elas:

 Camada de Interface com o usuário;

 Camada responsável pela regra de negócios da aplicação; e

 Camada de acesso aos dados.

Esta divisão em camadas torna possível ao programador realizar codificações

no código fonte da aplicação com maior rapidez. Sistemas estruturados em uma

Alberis Garcês de Castro 49

única camada tornam a manutenção do código fonte uma tarefa árdua,

principalmente para aplicações de complexidade moderada e alta; a regra de

negócios fica incorporada aos arquivos de interface com o usuário, podendo se

tornar trechos de código muito longos, dificultando a leitura do programador.

Esta preocupação é relevante para a realização de tuning no sentido de que o

desenvolvedor precisa corrigir os gargalos que surgem devido a um problema

referente ao software de forma rápida.

Após a fase de implantação do sistema de rastreamento de veículos, foi

encontrado um problema de gargalo que comprometeu bastante o seu desempenho.

O mapa de visualização dos veículos exibido, na Figura 5, é atualizado a cada trinta

segundos. No momento desta atualização, uma série de procedimentos e cálculos

são executados para confirmar se a posição do veículo sofreu alteração e se os

dados enviados pelos rastreadores são válidos. Esta verificação é necessária porque

existe um percentual de erro na informação do rastreador, que pode ser decorrente

de alterações bruscas de temperatura, variações elevadas na tensão de alimentação

e até mesmo trepidação, no caso do veículo estar transitando em um terreno

acidentado.

Os cálculos e procedimentos que realizam as verificações descritas acima

eram feitos no próprio software da aplicação. Isto exigia muito da aplicação em PHP

e o processamento dependia diretamente dos recursos de hardware da máquina

cliente, pois muitas validações eram feitas pelo browser em Javascrip. Este

processamento local geralmente causava latência no momento de atualizar a tela de

visualização do usuário.

 Realizar tuning de software foi necessário para corrigir o problema descrito

nos parágrafos anteriores. A solução foi remover o processamento do browser do

usuário e criar triggers, procedures e functions no próprio banco de dados Oracle.

Desta forma, o processamento mais crítico foi passado para o servidor de banco de

dados Oracle da aplicação. A execução destas procedures e functions pelo próprio

SGBD melhorou consideravelmente a velocidade de resposta; o problema da

limitação de hardware de cliente passou a não impactar mais a atualização da tela

de visualização de veículos do sistema.

Alberis Garcês de Castro 50

Após esta alteração caso surgisse algum gargalo relativo ao hardware este

estaria no domínio de controle do próprio DBA, que poderia realizar tuning de

hardware no servidor de banco de dados para suprir a deficiência.

Constata-se através das medidas tomadas descritas acima, para a realização

de tuning, que otimizar o software não diz respeito necessariamente a alterar dentro

do próprio software as regras de negócios e forma como os dados são exibidos. No

caso estudado para se otimizar o software o processamento foi transferido para o

SGBD.

Outro caso de otimização do software de rastreamento foi identificado após a

criação do recurso de cercas de visualização. Como podemos observar na Figura 6,

as cercas de visualização são regiões circulares geograficamente definidas pelo

usuário do sistema. O sistema monitora a entrada e/ou saída da região delimitada

pela cerca de um veículo do usuário. O usuário pode parametrizar o sistema para

que um e-mail ou uma mensagem SMS seja enviada para ele, caso ocorra algum

evento de movimentação de entrada e/ou saída na região da cerca.

Alberis Garcês de Castro 51

Figura 6. Cerca de visualização do sistema de rastreamento.

Um aplicativo auxiliar foi desenvolvido na linguagem de programação em

Delphi. A função deste aplicativo é verificar de acordo com os últimos registros de

informação de um veículo, se o mesmo entrou ou saiu na região geográfica

delimitada pela cerca. Na ocorrência de um dos dois eventos o aplicativo envia uma

mensagem de e-mail ou SMS, conforme definido no cadastro do usuário para o e-

mail de usuário cadastrado.

Entretanto, o aplicativo precisava aguardar a confirmação de recebimento do

e-mail para finalizar o processo. Isso gerou certa lentidão da ordem de alguns

minutos no envio dos e-mails. Como não era um gargalo tão crítico, a sua eliminação

foi deixada para outro momento, pois outras implementações precisavam ser

desenvolvidas.

Contudo, uma nova funcionalidade foi incorporada ao envio de e-mails. Agora

o usuário recebe notificações via e-mail e/ou SMS de ocorrência de velocidade limite

Alberis Garcês de Castro 52

excedida e de violação dos diversos sensores do veículo, que na prática são as

entradas e saídas do rastreador. Este novo recurso sobrecarregou significativamente

o aplicativo responsável pelo envio de e-mails aumentando o gargalo, e fazendo o

atraso passar da ordem de segundos para horas.

O ideal é que o tuning em geral seja aplicado no momento do monitoramento

pró-ativo, contudo na prática a demanda das empresas faz com que a prioridade

seja entregar as solicitações dos usuários em detrimento da otimização do sistema.

O caso especificado anteriormente serve como exemplo do que acontece na

prática no dia-a-dia empresarial. Neste ponto, o tuning pró-ativo não se aplicava

mais. Uma situação crítica de gargalo precisava ser solucionada.

A solução de otimização foi eliminar o uso do aplicativo de envio de e-mails e

foram criadas novas tabelas no banco de dados que armazenavam os dados dos

emails criados. Quando um novo registro é inserido nesta tabele uma trigger é

disparada e chama uma procedure que envia o email para o destinatário

correspondente.

A diferença no desempenho se dá pelo fato de que para cada registro inserido

na tabela a trigger chama uma nova instância da procedure, e os e-mails são

enviados em paralelo. Neste caso o paralelismo garantiu uma melhoria significativa

de desempenho, e os e-mails são enviados na ordem em segundos.

4.4 Realizando Tuning da Instância
No caso do sistema de rastreamento desenvolvido, boa parte da regra de

negócio foi transferida para o SGBD, como se pode notar no texto da seção anterior.

Dessa forma, faz-se necessário o constante monitoramento do desempenho do

SGBD Oracle para prevenir possíveis gargalos em outras partes do sistema.

Quando novos procedimentos são delegados à instância, novos gargalos

podem surgir. O DBA precisa saber avaliar até que ponto é vantajoso, em termos de

desempenho, usar o SGBD para realizar procedimentos em cima dos próprios

dados. A experiência pessoal com o sistema em estudo produziu ótimos resultados

Alberis Garcês de Castro 53

em termos de melhoramento de desempenho na utilização do SGBD da forma

descrita anteriormente.

Conforme visto no capítulo 2, realizar tuning da instância da base de dados

Oracle pode ser necessário, dependendo do sistema. Otimizar a instância resume-se

basicamente em definir os parâmetros adequados para os seus componentes de

memória e processos de segundo plano. É importante que os buffers e pools da

SGA sejam bem definidos nos arquivos de parâmetros pfile e spfile para garantir um

bom desempenho da execução da instância.

Para o sistema em estudo, a configuração padrão de memória para os seus

componentes de memória e processos de segundo plano foi adotada. Na

configuração padrão o próprio SGBD gerencia o tamanho dos seus componentes de

memória e os redimensionam se for necessário.

4.5 Realizando Tuning de Declarações SQL
A seguir exibiremos o script de criação das principais tabelas da base de

dados de nosso estudo. Por questões de sigilo, a empresa detentora do software

não nos autorizou a exibição da estrutura completa. Porém, para o nosso estudo, as

tabelas abaixo representam bem, e de forma adequada, a lógica da base de dados

do sistema de rastreamento:

CREATE TABLE TB_RASTREADORES
(
 ID INTEGER,
 DATA_ULTIMA_ATUALIZACAO DATE,
 SITUACAO VARCHAR2(255 BYTE),
 ATIVO INTEGER
)
TABLESPACE USERS
PCTUSED 0
PCTFREE 10
INITRANS 1
MAXTRANS 255
STORAGE (
 INITIAL 64K
 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0

Alberis Garcês de Castro 54

 BUFFER_POOL DEFAULT
)
LOGGING
NOCOMPRESS
NOCACHE
NOPARALLEL
MONITORING;

CREATE TABLE TB_VEICULO
(
 ID INTEGER,
 ID_EMPRESA INTEGER,
 FROTA VARCHAR2(255 BYTE),
 PLACA VARCHAR2(255 BYTE),
 MODELO VARCHAR2(255 BYTE),
 CHASSI VARCHAR2(255 BYTE),
 RENAVAM VARCHAR2(255 BYTE),
 SITUACAO VARCHAR2(255 BYTE),
 ATIVO INTEGER
)
TABLESPACE USERS
PCTUSED 0
PCTFREE 10
INITRANS 1
MAXTRANS 255
STORAGE (
 INITIAL 64K
 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
LOGGING
NOCOMPRESS
NOCACHE
NOPARALLEL
MONITORING;

CREATE TABLE TB_HISTORICO_POSICAO
(
 ID INTEGER,
 ID_RASTREADOR INTEGER,
 DATA_POSICAO DATE,
 LATITUDE INTEGER,
 LONGITUDE INTEGER,
 DIRECAO VARCHAR2(255 BYTE),
 SATELITE INTEGER,
 CEP INTEGER,

Alberis Garcês de Castro 55

 ENDERECO VARCHAR2(255 BYTE),
 NUMERO INTEGER,
 BAIRRO VARCHAR2(255 BYTE),
 CIDADE VARCHAR2(255 BYTE),
 UF VARCHAR2(2 BYTE),
 ATIVO INTEGER
)
TABLESPACE USERS
PCTUSED 0
PCTFREE 10
INITRANS 1
MAXTRANS 255
STORAGE (
 INITIAL 64K
 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
LOGGING
NOCOMPRESS
NOCACHE
NOPARALLEL
MONITORING;

As tabelas de veículo, rastreador e histórico das posições dos rastreadores

são umas das principais tabelas do sistema de rastreamento estudado. Para um

melhor entendimento os relacionamentos serão descritos a seguir.

Um veículo pode possuir um ou mais rastreadores instalados. As informações

dos rastreadores são armazenadas na tabela de histórico de posição. Esta última

tabela cresce continuamente e em média quatro milhões e duzentos mil registros

diariamente, considerando-se mil e quinhentos veículos monitorados.

A realização de uma simples consulta de informações entre intervalo de datas

para um rastreador na tabela de histórico de posição chega a durar trinta segundos.

Um atraso como este para a exibição dos dados em um relatório já é um gargalo que

gera transtorno.

Porém, a situação torna-se mais crítica quando o mapa de visualização

gerencial precisa executar consultas para obter as informações necessárias para

exibir o veículo na tela.

Alberis Garcês de Castro 56

Este gargalo foi resolvido com a criação de uma nova tabela cujo script de

criação é exibido a seguir:

CREATE TABLE TB_ULTIMA_POSICAO_VEICULO
(
 ID INTEGER,
 ID_RASTREADOR INTEGER,
 DATA_ULTIMA_POSICAO DATE,
 VELOCIDADE INTEGER,
 MODELO VARCHAR2(255 BYTE),
 FROTA VARCHAR2(255 BYTE),
 SATELITE INTEGER,
 LATITUDE INTEGER,
 LONGITUDE INTEGER,
 NUMERO INTEGER,
 UF VARCHAR2(2 BYTE),
 CIDADE VARCHAR2(255 BYTE),
 BAIRRO VARCHAR2(255 BYTE),
 DIRECAO VARCHAR2(255 BYTE),
 IGNICAO VARCHAR2(255 BYTE),
 ENDERECO VARCHAR2(255 BYTE),
 PLACA VARCHAR2(255 BYTE),
 CEP INTEGER,
 ATIVO INTEGER
)
TABLESPACE USERS
PCTUSED 0
PCTFREE 10
INITRANS 1
MAXTRANS 255
STORAGE (
 INITIAL 64K
 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
LOGGING
NOCOMPRESS
NOCACHE
NOPARALLEL
MONITORING;

Esta tabela guarda um registro para cada rastreador. Esses registros são

atualizados no mesmo momento em que o novo registro é inserido na tabela de

histórico de posição dos veículos.

Alberis Garcês de Castro 57

Desta forma evita-se que seja realizado um full table scan para retornar as

posições onde a data de última posição for máxima para cada rastreador. O custo

computacional de uma atualização em um registro e uma busca na tabela de últimas

posições dos veículos é milhares de vezes menor do que o custo computacional

para realizar a consulta na tabela de histórico de posições com centenas de milhares

de registros.

Neste caso foi realizado tuning na estrutura da base de dados visando um

melhor desempenho da aplicação como um todo.

Contudo, a tabela de histórico de posição dos veículos é essencial para a

geração de relatórios e desenho no mapa do traçado de rota dos veículos como

exibido na Figura 7.

Figura 7. Visão da rota percorrida por um veículo.

Para otimizar a execução das queries que utilizam a tabela de histórico de

posição de veículos foram criados alguns índices visando diminuir o tempo de

execução das queries.

Alberis Garcês de Castro 58

Abaixo o script de criação de um índice composto é exibido para as colunas

id_rastreador e data_posicao da tabela de histórico de posição:

CREATE INDEX IND_HISTORICO_POSICAO
 ON TB_HISTORICO_POSICAO
 USING BTREE (ID_RASTREADOR, DATA_POSICAO);

Foi criado um índice composto do tipo B-Tree e foi escolhido pois apresenta

um ótimo resultado quando utilizado para indexar a chave primária da tabela, valores

únicos ou próximos de únicos, ou linhas que estão dentro de um intervalo de datas

ou outro tipo de faixa de valores [4].

Em conjunto com o índice hints serão utilizados hints para garantir que o

otimizador do Oracle fará uso do índice criado. Abaixo uma declaração SQL que

realiza uma consulta na tabela de histórico de posição dos veículos é exibida.

SELECT /*+ INDEX (TB_HISTORICO_POSICAO
IND_HISTORICO_POSICAO)*/
 ID_RASTREADOR,
 LATITUDE, LONGITUDE,
 DATA_POSICAO, VELOCIDADE
FROM TB_HISTORICO_POSICAO
WHERE ID_RASTREADOR = 4321 AND DATA_POSICAO
 BETWEEN
 TO_DATE('dd/mm/yyyy hh24:mi:ss','30/11/2011 12:30:00')
 AND TO_DATE('dd/mm/yyyy hh24:mi:ss','01/12/2011 00:30:00');

A utilização de índices e hints nas consultas críticas do sistema melhoraram o

desempenho das declarações SQL. A consulta acima sem o uso desas técnicas

levava em torno de trinta a cinquenta segundos para ser executada na base de

dados do sistema. Já com o uso das técnicas de indexação e hints este tempo foi

reduzido para cerca de dez segundos.

Este foi um ganho considerável de desempenho principalmente na tela de

exibição da traçado da rota dos veículos e nos relatórios, como por exemplo, os

relatórios de histórico de velocidade do veículo.

Outra funcionalidade do sistema que melhorou com o uso de índices e hints

foi o gráfico de velocidade veicular que exibe o desenvolvimento da velocidade do

Alberis Garcês de Castro 59

veículo ao longo de um dia escolhido. Este gráfico chegava a demorar um minuto

para poder ser visualizado, após a aplicação da técnica de tuning ele pode ser

visualizado torno de doze segundos. O gráfico citado pode ser visto na Figura 8.

Figura 8. Visão do gráfico de velocidade veicular.

A seguir é exibida a Tabela 1 onde são mostrados os resultados obtidos a

partir da aplicação de técnicas de otimização de desempenho para solucionar

problemas comentados nesta seção.

Alberis Garcês de Castro 60

Tabela 1. Resultados obtidos no estudo de caso.

Problema Tuning Solução
Analise do

Resultado

Capacidade de I/O insuficiente.

Arquivos XML ocupavam todo o

espaço do disco rígido no servidor

gateway.

Problema

de

Hardware

Solução em

Hardware

Aquisição de um novo

servidor gateway

capacidade para utilização

discos rígidos em Raid 0 e

com um terabyte de

capacidade cada um.

O sistema voltou a operar

normalmente. A solução

garantiu que a curto prazo

o servidor não pararia

mais por questões de

capacidade.

Apesar da solução anterior a

quantidade de arquivos continuava

crescendo linearmente. O espaço

ocupado nos discos rígidos não

poderia ultrapassar 75% da sua

capacidade. Isto ocorreria em menos

de 18 meses. Dados deviam ser

mantidos por pelo menos três anos.

Problema

de

Hardware

Solução em

Software

Criação de um aplicativo

executado a cada hora, que

verifica a data de criação,

caso ela seja > 6 meses, o

arquivo é removido para

outro diretório. Diariamente

o backup deste diretório é

feito em fita e as

informações antigas

excluídas.

Procedimento garante que

o espaço ocupado no

dispositivo de I/O do

servidor de dados seja

mantido em torno de 25%.

Número de clientes da empresa tem

previsão de crescer bastante nos

próximos anos. A capacidade dos

dispositivos de I/O do servidor de

banco de dados não seria suficiente.

Problema

de

Hardware

Solução em

Hardware

Duas unidades de disco

rígido foram adquiridas para

garantir uma maior

segurança na manutenção da

disponibilidade do sistema.

A capacidade dos

componentes de I/O

passou de quinhentos

gigabytes para um

terabyte, permitindo que o

sistema comporte o dobro

de novos clientes.

Os cálculos e procedimentos que

realizam as verificações necessárias

para a exibição do mapa de

visualização eram feitos no próprio

browser do host. O desempenho

dependia do hardware do cliente.

Problema

de Software

Solução em

SGBD

Remover o processamento

do browser do usuário e

criar triggers, procedures e

functions no próprio banco

de dados Oracle.

A execução destas

procedures e functions

pelo SGBD reduziu o

tempo de resposta; a

configuração de hardware

de cliente passou a ter um

impacto mínimo na

visualização do mapa.

Alberis Garcês de Castro 61

Aplicativo auxiliar feito em Delphi

com a função de enviar email estava

sobrecarregado por conta da

quantidade de emails para serem

enviados seqüencialmente.

Problema

de Software

Solução em

SGBD

Aplicativo eliminado.

Criadas novas tabelas que

armazenam os dados dos

emails. O paralelismo no

envio de emails foi

incorporado com a criação

de uma trigger que dispara

procedure o envio do email

no momento da inserção.

A solução reduziu o atraso

do envio de emails de

cerca de uma hora para

alguns segundos.

Consultas simples na tabela de

histórico podem durar mais de meio

minuto. A situação era crítica, pois o

mapa de visualização precisava

consultar na tabela para exibir as

informações na tela.

Problema

de

SGDB

Solução em

SGBD

Criação de uma nova tabela

que guarda a informação da

última posição de cada

veículo. Estes registros são

apenas atualizados.

O custo da atualização em

um registro e uma busca

na tabela de últimas

posições é milhares de

vezes menor do que o

custo para consultar na

tabela de histórico com

milhões de registros.

Apesar da solução anterior,

pesquisar na tabela de histórico de

posições ainda é necessário para a

exibição de vários relatórios.

Problema

de

SGDB

Solução em

SGBD

Criação de índices para a

tabela de histórico de

posição e hints para uso dos

índices.

Consultas simples na

tabela de histórico

reduziram em média 75%

do tempo de execução.

Observa-se que, para o tipo de sistema estudado, a distribuição de problemas

de hardware (43%), software (28%) e SGDB (28%) mostra uma predominância dos

problemas de hardware e mais especificamente de capacidade de armazenamento

das informações. Isto se deve ao fato da quantidade de dados manipulados pela

aplicação em estudo ser grande.

Para outros tipos de sistemas, posivelmente os problemas de hardware não

sejam tão numerosos. Isto vai depender do hardware inicial escolhido. No caso

estudado o número de clientes cresceu acima do esperado e o dimensionamento de

hardware não atendeu a demanda dos usuários. Este comportamento não é comum

a todos os tipos de sistemas. Consequentemente, espera-se que as otimizações do

Alberis Garcês de Castro 62

SGBD possuam maior percentual de resolução na maioria dos sistemas

computacionais desenvolvidos..

Já nas observações dos recursos utilizados para solucionar os problemas

podemos observar a seguinte distribuição: hardware (28%), software (14%) e SGBD

(57%). Todos os problemas de desempenho relacionados a software e SGBD foram

solucionados realizando-se tuning no SGBD. Já os problemas de hardware foram

solucionados com técnicas de tuning de software ou do próprio hardware.

Nota-se que a utilização dos recursos do próprio SGBD resolveu a maior

parte (57%) dos problemas de otimização. Posivelmente em outros tipos de sistema

a predominância do tuning de SGBD seja mais expressiva.

As técnicas de tuning de SGBD utilizadas se distribuíram da seguinte forma:

 Utilização de procedures, triggers e functions em conjunto (50%)

 Utilização de índices e hints (25%)

 Alteração na estrutura da base de dados (25%)

Ao longo deste projeto esparava-se uma maior predominância de otimizações

de SGBD na utilização de índices e hints. Portanto, as características da base de

dados estudada não permitia a aplicação de uma maior diversidade deles.

Possivelmente, para bases com estruturas diferentes, com maior número de tabelas,

relacionamentos e junções, o uso de índices e hints possa ser bem mais explorado.

 Em contrapartida, a utilização de triggers, procedures e functions para

transferir parte da regra de negócio do sistema para o SGBD foi bastante explorada.

Espera-se que seja também para sistemas web em geral onde o custo do

processamento do browser do cliente possa trazer lentidão demasiada.

Alberis Garcês de Castro 63

Capítulo 5
Conclusão

Este trabalho abordou a temática de tuning de sistemas computacionais com

ênfase em sua aplicação em banco de dados. Foi feito um levantamento de algumas

técnicas de tuning onde os seguintes tópicos principais foram abordados:

 tuning de hardware;

 tuning de software,

 tuning da instância Oracle e

 tuning de declarações SQL.

Sobre estes itens, discutiu-se acerca de suas principais características e

procurou-se focar em aspectos de utilização de tuning e em quais situações a

otimização deve ser aplicada buscando-se eliminar, ou no mínimo reduzir, gargalos

que surgem ao longo do desenvolvimento de um sistema.

No que se refere ao tuning da instância, explorou-se detalhes como o

funcionamento do otimizador Oracle na escolha do plano de execução de uma

declaração SQL. A arquitetura do SGBD Oracle 10g foi detalhada e recursos como

componentes de memória e processos de segundo plano relevantes na temática de

desempenho da instância foram abordados.

Características específicas de melhoria de desempenho de declarações SQL,

como utilização de índices e hints, foram detalhados. Para facilitar o entendimento

destes recursos, mostrou-se a sintaxe específica de cada um dos tipos mais usados

de índices e hints do Oracle, bem como exemplos práticos de sua utilização.

Um estudo de caso mostrou como as técnicas abordadas foram aplicadas na

prática ao longo do projeto de desenvolvimento de um sistema computacional. O

sistema estudado é uma aplicação web de rastreamento e monitoramento de

Alberis Garcês de Castro 64

veículos em tempo real que utiliza o banco de dados Oracle e, como é comum em

sistema de complexidade mediana, apresentou vários problemas de desempenho e

necessidades de redimensionamento de recursos. Ao longo do projeto diversas

medidas foram tomadas visando garantir um monitoramento de veículos eficiente e

em tempo real.

Na aplicação estudada utilizaram-se técnicas de otimização de hardware,

software, banco de dados e declarações SQL. Este fato reforça a nossa conclusão

de que realizar tuning é uma tarefa que abrange o sistema em todas as suas partes.

Não basta ao DBA focar seus esforços em otimização de consultas SQL em

detrimento das outras áreas como estrutura da aplicação, dimensionamento de

recursos de hardware e software. O ideal para se realizar um estudo da melhoria de

desempenho e eliminação de gargalos de um sistema é analisar o sistema em todas

as suas partes componentes e saber como elas se inter-relacionam. Desta forma é

possível chegar a soluções mais eficientes.

5.1 Dificuldades Encontradas
Uma das barreiras encontrada ao longo do projeto foi a dificuldade de mostrar

na prática, de forma mais detalhada, a aplicação de uma maior diversidade de hints

para a aplicação em estudo. Este fato foi decorrente da característica estrutural da

base de dados estudada, pois cada tipo de hint é aplicável a consultas com

características específicas como foi descrito no texto deste trabalho.

Apenas alguns tipos de hints são aplicáveis às consultas abordadas neste

projeto e isso foi um fator de impedimento para que o seu uso fosse abordado em

nosso estudo de caso com maior aprofundamento.

5.2 Trabalhos Futuros
Uma proposta de trabalho futura seria a utilização de técnicas de tuning,

especificamente na otimização de queries de forma mais aprofundada. Para isto

Alberis Garcês de Castro 65

sugere-se utilizar uma base de dados com maior complexidade e diversidade em

seus relacionamentos.

Outros trabalhos podem proseguir na obtenção de estatísticas de otimização

de hardware, e SGBD em outros tipos de sistemas computacionais. Produzindo

assim material comparativo em relação a este trabalho.

Alberis Garcês de Castro 66

Bibliografia
[1] NORBERTO,E. UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL.

Introdução a Banco de Dados. Disponível em

http://www.dct.ufms.br/~edson/bd1/db1.pdf (PDF) pp. 1. Acessado em 10 de

novembro de 2011.

[2] Dicionário Bab la. Tradução. Disponível em http://pt.bab.la/dicionario/ingles-

portugues/tuning. Acessado em 17 de novembro de 2011.

[3] BAPTISTA, C. de S. Administração de Sistemas de Gestão de Banco de

Dados, 2008. Disponível em:

www.dsc.ufcg.edu.br/~baptista/cursos/ABD/ADM1.ppt. Acessado em 22 de

setembro de 2011.

[4] Oracle® Database Performance Tuning Guide, 10g Release 1 (10.1). Part No.

B10752-01. December 2003.

[5] WHALEN, E. Performance Tuning Oracle RAC on Linux. Disponível em

http://www.perftuning.com/files/pdf/Performance%20Tuning%20Oracle%20RA

C%20on%20Linux.pdf. Acessado em 19 de novembro de 2011.

[6] VILLALBA, C. Disponível em http://carlos.syr.edu/oracle-database-

architecture. Acessado em 20 de novembro de 2011.

[7] SAUDINO FILHO, G. A arquitetura do Oracle. Disponível em

http://www.linhadecodigo.com.br/Artigo.aspx?id=99. Acessado em 20 de

novembro de 2011.

[8] VALIATI, P. Índices no Oracle – Parte 1. Artigo da SQL Magazine, edição 36.

[9] UNIVERSIDADE FEDERAL DE CAMPINA GRANDE. Disponível em

http://www.dsc.ufcg.edu.br/~jacques/cursos/map/html/threads/threads1.html.

Acessado em 06 de dezembro de 2011.

Apêndice A

Alberis Garcês de Castro 67

[10] UNIVERSIDADE DE SÃO PAULO. Disponível em

http://www.ime.usp.br/~andrers/aulas/bd2005-1/aula5.html. Acessado em 06

de novembro de 2011.

[11] RONCONI, V. O otimizador Oracle para desenvolvedores – Parte II –

Otimizador baseado em custos. Disponível em

http://www.linhadecodigo.com.br/Artigo.aspx?id=737. Acesado em 06 de

dezembro de 2011.

[12] BIANCHI, W. Introdução às Stored Procedures com SQL Server 2000/2005.

Disponível em http://www.devmedia.com.br/post-2213-Introducao-as-Stored-

Procedure-com-SQL-Server-2000-2005.html. Acessado em 07 de dezembro

de 2011.

