UPE - POLI
o (é\COIVID
POL' Engenharia de Computaqéc;

GRADUAGA

UMA PROPOSTA DE
TRANSFORMACAO AUTOMATIZADA
PARA GERACAO DE PROGRAMAS
PARALELOS A PARTIR DE LEIS
ALGEBRICAS APLICADAS A
PROGRAMAS SEQUENCIAIS

Trabalho de Conclusao de Curso

Engenharia da Computacéao

Rafael Ferreira da Silva
Orientadora: Prof2. Tarciana Dias

ddd

&

IDAL
MBL

i

\IVERSIDADE
NAMBUCO

UNI
DE PERN

Universidade de Pernambuco
Escola Politécnica de Pernambuco
Graduacao em Engenharia de Computacéao

RAFAEL FERREIRA DA SILVA

UMA PROPOSTA DE
TRANSFORMACAO AUTOMATIZADA
PARA GERACAO DE PROGRAMAS
PARALELOS A PARTIR DE LEIS
ALGEBRICAS APLICADAS A
PROGRAMAS SEQUENCIAIS

Monografia apresentada como requisito parcial para obtencao do diploma de
Bacharel em Engenharia de Computacao pela Escola Politécnica de Pernambuco —
Universidade de Pernambuco.

Recife, maio 2012.

L4
Escola Politécnica de Pernambuco __J

Graduacao em Engenharia de Computagio POl
Projeto de Final de Curso ESCOLA POLITECNICA
DE PERNAMBUCO

MONOGRAFIA DE FINAL DE CURSO

= Avaliacdo de defesa (cépia do aluno)

No dia 19 de 6 de 2012, as 10:00 horas, reuniu-se para deliberar a defesa da
monografia de conclusdao de curso do discente RAFAEL FERREIRA DA SILVA,
orientado pelo professor Tarciana Dias da Silva, sob titulo Uma proposta de
transformagao auomatizada para geracdo de programas paralelos a partir de leis
algébricas aplicadas a programas sequenciais, a banca composta pelos professores:
Maria Lencastre Pinheiro de Menezes Cruz
Tarciana Dias da Silva

Apbés a apresentagdo da monografia e discussdo entre os membros da Banca, a
mesma foi considerada:
X Aprovada _ Aprovada com Restricdes* ~ Reprovada

e foi-lhe atribuida nota: LS H (W L e
*(Obrigatério 0 preenchimento ¢o campo abaixo com comentdrios para 0 autor)

O discente tera dias para entrega da versao final da monografia a contar da
data deste documento.

&’(fm d Q:é#r’ & Xﬂ,

Maria Lencastre Pinheiro de Menezes Cruz

TARCIANA DIAS DA SILVA

A0S meus pais.

Agradecimentos

Gostaria primeiramente de agradecer a minha mae, meu pai, meu irméao, e a
toda minha familia, que estiveram sempre me apoiando e incentivando para que eu

cumprisse mais este objetivo.

Agradeco a minha orientadora, professora Tarciana Dias, por sua dedicacéao,

pelas suas idéias, conselhos e além de tudo, por ser uma Gtima professora.

Agradeco a todos meus amigos pela constante preocupacdo e

acompanhamento, durante esses anos de graduacéao.

Agradeco aos meus colegas, e também ao amigos de trabalho, pela

compreensao, incentivo, divertimento e torcida.

Por fim, agradeco a todas as pessoas que, de alguma forma, contribuiram
para que a realizacdo deste trabalho fosse possivel.

A todos, meu muito obrigado!

Rafael Ferreira da Silva

Resumo

A realizacdo de computacédo paralela em sistemas computacionais sempre foi
um desafio no desenvolvimento de cédigo. Desenvolvedores e pessoas em geral
pensam de forma sequencial e, normalmente, o objetivo maior na constru¢cao de um
software € a sua adequacgédo ou resolucdo de um problema num dominio de negécio
ou contexto especifico. Pouco se pensa em relacdo ao aproveitamento efetivo pelo
software dos recursos computacionais disponiveis para sua execucdo. Além disso,
mesmo que o desenvolvedor se disponha a construgdo de um codigo paralelizavel,
considerando as limitagbes para um compilador ou interpretador em fazé-lo, ha a
dificuldade da transformacdo manual do coédigo sequencial para uma forma
paralelizada, e auséncia de mecanismos que o facam sem alterar a seméntica dos
cadigos transformados. Este trabalho propde uma abordagem de transformacéo
automatizada de um codigo sequencial em paralelizado, baseada em estratégias de
normalizacdo e paralelizacdo de codigo, construidas a partir de leis algébricas.
Houve também uma preocupacdo em relacdo a nao alteracdo da semantica original
na transformacéo de tal c6digo, mas esta limitou-se a realizagdo dos mesmos testes

de benchmarking a que foram submetidos cédigos originais (sem a transformacao).

Palavras-chave: Paralelizacao, Leis Algébricas, Normalizacao,

Automatizacéo, Java.

vi

Abstract

The use of parallel computing in computer systems have always been a
challenge in code development. Systems developers and people in general usually
think sequentially and, normally, the main goal in software development is its
suitability or solving a problem in a business domain or specific context. In general,
system developers do not consider the effective use of the computational resources
provided to a particular software execution. Furthermore, even if the systems
developer is willing to build a parallel code, considering the compiler or interpreter
limitations, it is difficult to transform manually a sequential code into a parallel code,
and the lack of mechanisms to do it without changing the semantics of the
transformed codes. In this work is proposed an approach to automatically transform a
seqguential code into a parallel one, based on normalization and code parallelization
strategies developed using algebraic laws. Moreover, in order to check the
consistence of the transformed code (i.e the semantic of the sequential and parallel

code is the same), it was executed the same benchmark tests for both strategies.

Keywords: Parallelization, Algebraic Laws, Normalization, Automation, Java.

Vii

Sumario

CAPITULO 1 INTRODUGAOoiiieecte et ettt 1
1.1 MOTIVACAO E CARACTERIZACAO DO PROBLEMAcouiiiiieiiieiieeieeete et ea e 1
A O 1 | 11V @ 1 T 3
1.2.1 ODJELIVOS GEIAISceieeiiiiiiiiie e e eee ettt e e e e e e e ettt s s e e e e e e eeeteeb e e e e aaaeeeesnns 3
1.2.2 Objetivos ESPECITICOS ...coeiiieeeeeieeeeeeeeie e 4
1.3 ESTRUTURA DA MONOGRAFIA......uitttiieeiteetttaeeetaeeetaeeetseaetseeaneeeaneeeaaeeeannns 4
CAPITULO 2 FUNDAMENTACAO TEORICA........coiceevet e, 6
2.1 TRABALHOS RELACIONADOS.eutttttttteeetetteeessseessseessesessesseseesssssssssssssssssssssessees 6
2.2 PARALELIZAGAO. ...ttt ettt sttt sttt ettt sttt et ettt et et e e e e e e e e 7
2.2.1 Processos de paralelizacao.............ciieieeiiiiieiiiiies e 8
2.2.2 Desempenho em programas paralelos............cccceveiieeiiiieiiiiiiiie e, 10
2.2.3 Ferramentas de paralelizag8o ... 13
2.3 LEIS DE NORMALIZAGAO E PARALELIZAGAOcvvvvtiiieiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeesnenes 15
CAPITULO 3 AUTOMATIZACAO DAS LEIS.....c.coiiiiiies e, 17
3.1 ABORDAGENS PARA TRANSFORMAGAO......cuuiiiieiieiiieeie e ee e e et e e e e e eens 18
B.L.L JAVACC. .t e e e e b e e eea e aaeaes 19
3.2 IMPLEMENTAGAOtttttttttteteteeeeeeeeee ettt ettt ettt et ettt et et s st s s st e ittt e s et e e s e e e et e e e e e e e e e e e e e e e 20
3.2.1 Leis de NOrMaliZAGA0cccceeeeeeeeiiiiiie e e ee et e e e e et e e e e e e eeaenes 20
3.2.2 Leis de ParalelizaGaocoouvvuuuiiiiiiieeeeeeeeece e 22
3.2.3 DIfICUIAAAES ... 25
3.3 RESULTADOS. ...ttt 26
CAPITULO 4 ESTUDOS DE CASOooeviiieeeeiteees ceeeteeeeete e ee st eaeareenaeaveanens 31
4.1 METODOLOGIA. ... ttuittteeet et e et et e et e e et e et e e aa et e et e et e e et e et e e e e ea e et e aeaeeaneeens 31
4.2 ALGORITMO IDEA e 32
4.3 SERIES DE FOURIERuutuitiiiiiiiiiiiiiiiiiiiii e 33
CAPITULO 5 CONCLUSAO E TRABALHOS FUTUROS.......... wooeeveieieicreenenne, 34
5.1 CONSIDERAGOES FINAIS. .. .ottt e e e e e et e e e et e et e e e eaneeens 34
5.2 TRABALHOS FUTUROScttttttiitetetitietteteeeeeeeeeeeeeeeeeeeeeeeessssssssssssssssesesssssssseeeseees 35

BIBLIOGRAFIA

Indice de Figuras

FIGURA 1. INSTRUGCOES SERIAIS VERSUS PARALELAScccvvvviiiiiiaeeeeeeeeeesnnnnnnaaeeeeaaeenannns 9
FIGURA 2. CALCULO DE SPEEDUPcvtuuiiitietttnaeeeiaeestsseatseessneessnaesssnaesssnaessnnaessnnaaees 10
FIGURA 3. GRAFICO DE SPEEDUPuuuuutiieeeeseetttttsnaseaeasseesssssnnnnaaessesssssssnnaaaeeeeeesnnnnns 11
FIGURA 4. SPEEDUP MAXIMO SEGUNDA A LEI DE AHMDALuuuuiiseeeeeseeeiininnneeeeeseeannnnns 13
FIGURA 5. LEI4 — ALTERAGAO DE VISIBILIDADE DO ATRIBUTO DE PROTECTED PARA PUBLIC .
.. 21

FIGURA 6. LEI46 — FATORACAO DE LACO .uuuiiuiiieii e et e e e et e e e et e et e et e eeneeenaesanaesnnaes 23
FIGURA 7. LEI47 — DIVISAO DAS ITERAGOS DO LAGOceevveeiiiiiiiaeeeeeeeeeessnnnnnseeeaaeeennnnns 23
FIGURA 8. LEI48 — FORK = JOIN .ttttutuuutseeeeeseeettunnnaasseessesessssnnnnaeeeesesssssnnnnaaeeaseenmnnnns 25
FIGURA 9. DIAGRAMA DAS CLASSES DE SAIDA PARA O ALGORITMO IDEAcccevvviis 26
FIGURA 10. TEMPO DE EXECUCAO MEDIO NAS DIFERENTES IMPLEMENTACOES DO IDEA....27
FIGURA 11. SPEEDUPS NAS DIFERENTES IMPLEMENTAGOES DO IDEA.........ccoiiiiieieiees 27
FIGURA 12. DIAGRAMA DAS CLASSES DE SAIDA PARA AS SERIES DE FOURIER 28
FIGURA 13. TEMPO DE EXECUGAO MEDIO NAS DIFERENTES IMPLEMENTAGCOES DAS SERIES DE
FOURIER ... e e et e et e e et e e e e e aaas 29
FIGURA 14. SPEEDUPS NAS DIFERENTES IMPLEMENTACOES DAS SERIES DE FOURIER........ 29
FIGURA 15. DIAGRAMA DAS CLASSES DE ENTRADA DO BENCHMARK IDEAccooeviivinnnen 33
FIGURA 16. DIAGRAMA DAS CLASSES DE ENTRADA DO BENCHMARK SERIES DE FOURIER.....33

Indice de Tabelas

TABELA 1. EXEMPLIFICAGAO DA LEI DE AMDAHL ...oeeevvveeeivieeceveeee e

TABELA 2. DADOS DE EXECUCAO DO BENCHMARK IDEAcceevveneen.

TABELA 3. DADOS DE EXECUCAO DO BENCHMARK SERIES DE FOURIER

Xi

Tabela de Simbolos e Siglas

ATL - Atlas Transformation Language

CPU - Central Processing Unit

EMF - Eclipse Modeling Framework

GFLOPS - Giga Floating-point Operations Per Second
IDEA - International Data Encryption Algorithm

JGB - Java Grande Benchmark Suite

JIT - Just-In-Time

JRPM - Java Runtime Parallelizing Machine

MDE - Modelagem de Dominio Especifico

Xii

Capitulo 1

Introducao

Normalmente escolhidos como a melhor opcdo para computacdo de alto
desempenho, os sistemas de processamento paralelo se mostram com dificuldades
para serem inseridos no cotidiano do desenvolvimento de software. Com varias
arquiteturas paralelas criadas [1] [2], e mesmo com uma otimizacdo de desempenho
nessas arquiteturas, o uso de processamento paralelo aparece com pouca
frequéncia no desenvolvimento, mesmo com o0 aumento dos processadores e 0
otimo custo/beneficio proporcionado. Parte deste problema se deve a dificuldade de

implementacéo por parte do programador nesse tipo de sistema.

O capitulo introdutério da monografia esta dividido em quatro se¢cdes: a Secao
1.1 mostra a motivagdo da realizacéo deste trabalho, além de apresentar o problema
abordado pelo mesmo. Na Secéo 1.2 € mostrado trabalhos similares ao apresentado
nesta dissertacdo. Em seguida, na Secao 1.3 é apresentada a possivel solucdo do
problema e o0s objetivos deste trabalho. Por fim, na Secdo 1.4 a estrutura do

documento é descrita.

1.1 Motivacéo e Caracterizacao do Problema

Durante muitos anos, microprocessadores baseados em uma Unica unidade
central de processamento (CPU), tais como os da familia Intel Pentium e a familia
AMD Opteron, lideraram o aumento de desempenho e as reducdes de custos na
computacdo, com a possibilidade de execucdo de bilhdes de operacbes de pontos
flutuantes por segundo (GFLOPS — Giga Floating-point Operations Per Second) [3].
Esta evolucdo comecou a estagnar por conta de limitagdes como o consumo de
energia e dissipacao de calor, o que limita a quantidade de atividades que podem
ser feitas em um ciclo de clock dentro de uma unica CPU. Dessa forma, a industria
tem mudado para modelos onde unidades de processamento multiplo sdo usadas

em cada chip para aumentar o poder de processamento.

7

Tradicionalmente, a maioria das aplicacdes de software € escrita como
programas sequenciais, e a execucao dos programas pode ser facilmente entendida
navegando-se passo-a-passo pelos programas. Historicamente, durante a era dos
microprocessadores baseados em uma unica CPU, usuéarios e desenvolvedores
estavam acostumados ao aumento de desempenho de suas aplicagcdes ocorrer
naturalmente a cada nova geracdo de microprocessadores, o0 que ndo € mais valido
nos dias de hoje pelos motivos ja apresentados acima. Os usuarios, por sua vez,
demandam ainda mais melhorias e poder de processamento criando assim um ciclo

positivo para a industria da computagéo.

Logo, sdo os programas paralelos que irdo de fato usufruir dos ganhos de
performance a cada nova geragido dos microprocessadores de hoje. E observada
uma clara evolugcédo no poder de processamento computacional com a consolidacao
das arquiteturas multicore poderosas, grids computacionais, entre outros. O
incentivo ao desenvolvimento de programas paralelos tem sido chamado como a

revolucao da concorréncia [4].

Gracas ao poder alcancado com a computacdo paralela, ha uma tendéncia
cada vez maior no aumento da demanda computacional. Como exemplos de
aplicacbes que exigem alto poder de computacdo, temos as renderizacdes
tridimensionais, previsdo de movimentos de corpos celestes, estudos de
sequenciamento genético, sismicos e meteoroldgicos. Com isso, diversas
possibilidades computacionais foram criadas para a resolucdo destes problemas,
tais como a utilizacdo de unidades de processamento grafico, estruturas de clusters
de computadores, a criagcdo de supercomputadores, e até de computadores
pessoais que possuem mais de um nucleo de processamento para processamento

paralelo de processos.

Durante o desenvolvimento de programas, em geral, o foco maior é nas suas
funcionalidades, no negdcio da aplicacdo, na legibilidade do programa. Desta forma,
0s programas séo desenvolvidos e testados de forma sequencial. Questdes como a
sua paralelizacdo ou otimizacdo de seu processamento e, consequentemente,
melhor aproveitamento dos recursos disponiveis, nem sempre sdo levados em

consideracdo. Isto € deixado a cargo dos compiladores das respectivas linguagens

e/ou maquinas virtuais, que muitas vezes, ficam bastante limitados a conseguir fazer

uma paralelizagao efetiva.

A principal questdo que vem a tona nesse aspecto € a semantica do
programa (se esta vai ser ou nao alterada). Desenvolver aplicacdes concorrentes e
paralelas é, portanto, um desafio para os desenvolvedores, mesmo porque, tais
programas podem apresentar problemas classicos como race conditions, nao-
determinismo, deadlocks e livelocks, que ndo sdo observados em sua forma

sequencial.

Portanto, ha uma clara motivagdo para processos, técnicas e ferramentas,
que oferecam aos desenvolvedores um suporte sistematizado e, preferencialmente,
automatico, sem que 0S mesmos se preocupem com estas questdes especificas de

programacao concorrente e paralela.

1.2 Objetivos

O objetivo deste trabalho é desenvolver uma solucéo inicial que venha a
auxiliar os desenvolvedores em efetuar a paralelizacdo de codigos, diminuindo o
tempo com estas atividades, e deixando-os com um maior foco no projeto, e ndo na

implementacgéo das técnicas de paralelizacao.

1.2.1 Objetivos Gerais

Fazer a automatizacdo da aplicacdo das leis algébricas, que possui como
meta paralelizar um programa Java normalizando o seu cédigo, e aplicando em
seguida leis de paralelizacdo. A também um cuidado em ndo prejudicar a
produtividade do desenvolvedor, nem mudando a forma que eles desenvolvem
programas hoje, e fazendo com que 0s recursos computacionais, disponiveis em
arquiteturas distribuidas e multicore, possam ser aproveitados da melhor forma pelo
software. A verificacdo da manutencdo da semantica do programa original é feita a
partir da realizagdo dos mesmos testes de benchmarking nos programas originais e
nos programas transformados. Vale salientar que néo é o foco deste trabalho atestar
de forma inquestionavel que ndo houve alteracdo em absoluto da seméntica dos
programas. Isto requer um requinte maior no que diz respeito a formalizacdo da

solucéo a fim de se elaborar provas formais ou matematicas que possam atestar

3

isso. Além disso, um estudo mais aprofundado da seméntica de Java seria
necessario — pelo que consta na literatura ainda ndo ha uma definicdo padronizada
da semantica de Java — e isto requer um tempo de dedicacdo bem superior ao

disponivel para um trabalho de conclusao de curso.

1.2.2 Objetivos Especificos

Para isto, 0s seguintes objetivos especificos foram tracados:

 Tornar a nossa abordagem um apoio a automatizacdo o processo de

normalizacéo e paralelizacéo;

» Utilizar algoritmos pré-definidos como estudos de caso;
* Projetar e desenvolver uma solucdo que seja capaz de efetuar a
transformacao de codigo sequencial em paralelo, de acordo com estudos

de caso;

* Analisar os resultados para validacdo, repetindo o0s testes de
benchmarking no cédigo gerado pela nossa abordagem, a fim de atestar
gue de fato ndo houve mudanca em relacdo ao comportamento do

programa original.

1.3 Estrutura da Monografia

Este documento foi dividido em cinco capitulos, contando com este, tendo os

restantes resumidos a seguir:
» Capitulo 2: Fundamentacao Tedrica

RelUne o0s principais conceitos necessarios para a fundamentacdo tedrica e
compreensao do trabalho proposto. Para tal, sdo explicados os conceitos de
paralelizacdo, e os principais conceitos acerca das leis algébricas. Também seri
visto o conceito das leis algébricas de normalizacdo e de paralelizacdo, que séo

utilizadas para efetuar a transformacao do cédigo sequencial em paralelo.

» Capitulo 3: Transformac&o Automatica de Codigo

Neste capitulo é apresentada uma abordagem para incorporacgéo das leis algébricas
de normalizagéo e de paralelizagdo em um programa sequencial, a fim de ter como

resultado o mesmo programa de forma paralela.
e Capitulo 4: Estudo de Caso e Resultados

Contém todos os resultados, com os estudos de caso realizados, que visaram a
validacdo do modelo desenvolvido. Os resultados serdo analisados para extracdo de

conclusdes.
» Capitulo 5: Conclusdes e Trabalhos Futuros

Apresenta a conclusdo do trabalho, enfatizando as contribuicbes realizadas e

enunciando possiveis trabalhos futuros.

Capitulo 2

Fundamentacao Teorica

Este capitulo consiste na apresentacdo dos conceitos basicos necessarios para o
entendimento do estudo realizado. Primeiramente, apresentaremos alguns trabalhos
relacionados a nossa abordagem. Também sera exposto como se da a
paralelizacdo, seguindo com o seu processo e forma de se mensurar o desempenho
de tal paralelizacdo. Também seréa introduzido a forma de paralelizacdo que foi feito

nesse trabalho, através das leis algébricas de normalizacdo e paralelizacéo.

2.1 Trabalhos Relacionados

Algumas abordagens tém sido propostas para explorar paralelismo implicito
em Java, tais como [5] [6] [7] [8], cujo foco é o nivel de cddigo fonte e bytecode,
introduzindo-se cadigo extra na aplicacdo, ou através de ferramentas adicionais em
tempo de execucgdo. Mais detalhes desses tipos de ferramentas, serao explicados na

secao 2.2.3.

O trabalho descrito em [9] aborda a paralelizacdo de programas sem
modificar a semantica do programa, sendo aplicada em cima de um algoritmo pré-
existente. Tendo assim, como foco, permitir que o programa seja estruturado de
maneira correta para a paralelizagdo, com base nas leis de normalizacéo, e entéo,
aplicar as regras de paralelizacdo que transformara o codigo apenas em sua forma
sintatica, fazendo com que a paralelizacédo seja possibilitada. Esse trabalho utiliza
leis de transformacgao para converter um programa Java em uma forma normal que
utiliza um conjunto restrito de recursos da linguagem. A partir de um programa na
forma normal, sdo utilizadas regras de transformacdo focadas em introduzir
paralelismo. Ap0s a aplicacdo dessas regras, de acordo com a estretégia
desenvolvida, um programa paralelo é produzido. Dois casos de estudo foram
realizados para validar a abordagem: calculo de séries de Fourier e o algoritmo de
criptografia IDEA. Ambos os coédigos foram obtidos do Java Grande Benchmark

(JGB). Nosso trabalho pode ser considerado uma extensdo do trabalho descrito em

[9], no sentido de automatizar a aplicagéo das leis algébricas que € feita no referido
trabalho de forma inteiramente manual, diminuindo assim a probabilidade de erros
durante o processo de transformacdo, ja que a interferéncia humana é reduzida. A
execucao dos estudos de caso permite avaliar o éxito da abordagem em melhorar a
performance do codigo original, assim, utilizaremos os mesmos estudos de caso da
proposta manual, pois com isso, teremos os codigos como referéncias para futuras
comparacdes entre uma forma manual, e uma maneira automatizada na

implementacéo das leis de normalizacéo e paralelizacdo, que é a nossa proposta.

2.2 Paralelizacao

Computacgéo paralela ou processamento paralelo constitui-se na exploragao
de eventos computacionais concorrentes, atraves de unidades de processamento
gue cooperam e comunicam-se entre si [10]. Buscar um melhor desempenho é
basicamente a tarefa do processamento paralelo, principalmente para aplicagbes
gue necessitam de uma maior poténcia computacional, mas muitas vezes se
encontram em sua forma sequencial, ndo aproveitando todos 0s recursos

disponiveis.

Existem varios tipos de exploracdo de eventos concorrentes, comecgando pelo
hardware, onde o paralelismo pode existir nas unidades funcionais que compdem a
CPU. Ja sob as instrugbes de maquina, o paralelismo pode ser obtido através de
ambientes de paralelizacdo automatica, onde a partir de um programa sequencial
um programa paralelo é gerado, tendo o compilador como responsavel por isso. O
paralelismo pode ser explorado também, em um nivel intermediario, pelo uso de

procedimentos de programas paralelos, que serdo executados concorrentemente.

O aumento de desempenho no processo computacional, utilizando o
paralelismo em niveis de instrucbes de maquina e procedimentos, € algo factivel.
Porém, uma solucdo altamente empregada € a divisdo do trabalho a ser realizado,
em um nivel mais alto, em tarefas, que serdo executadas concorrentemente. Tendo
iIsso em mente, basicamente, uma aplicacdo paralela € um conjunto de tarefas que

interagem entre si para realizar um determinado trabalho.

Em termos gerais, essa paralelizacdo pode aparecer de trés formas [11]:

» Paralelizacdo explicita, onde o programador explicita as tarefas a serem

executadas em paralelo, e a forma como elas devem cooperar entre si;

7 hY

» Paralelizagdo implicita, onde o paralelismo € restrito a semantica de
alguns comandos e construcfes. Neste caso, o programador ndo precisa

descrever como se dara a sequencializa¢ao;

» Paralelizagcdo automatica, onde o programador utiliza uma linguagem
sequencial tradicional, e o compilador é responsavel por efetuar

automaticamente o paralelismo.

Cada uma dessas formas ainda apresentam fatores que nao foram resolvidos
satisfatoriamente. A paralelizacdo explicita, define de forma manual como se dara a
paralelizacdo, em outras palavras, o programador ir4 considerar fatores para definir
a arquitetura paralela do sistema, e muitas vezes, acaba se afastando da propria
l6gica do programa. Apesar de se ter um maior controle com o uso da paralelizacéo
explicita, ha um custo para isso: o desenvolvimento acaba sendo mais lento, e
muitas vezes, quando o algoritmo possui alguma modificacdo em curso, a validade

dessa paralelizacdo, acaba sendo prejudicada.

Com o0 uso restrito a semantica de alguns comandos e construcdes, a
paralelizacdo implicita exige que o programador aprenda uma linguagem nova, e
descreva o seu algoritmo nessa linguagem. Em grande parte, a linguagem escolhida
nao possui uma eficiéncia tdo boa, principalmente fora do contexto na qual é usada
para especificar uma arquitetura paralela. Além do que, as duas formas
apresentadas possuem um grande problema, de que um programa que ja esta
consolidado e foi testado em sua forma sequencial, possivelmente ndo podera ser
levado para sua forma paralela, se mantendo com a mesma estabilidade. Com isso,
temos o conceito de paralelizacdo automatica, que tenta resolver este problema.
Porém, os métodos de paralelizacdo automatica ndo se difundiram, por ndo terem
apresentado resultados com grandes efeitos. Mas ainda representa uma area

promissora, e € onde o contexto do nosso trabalho se insere.

2.2.1 Processos de paralelizacéo

Etapas chave podem ser definidas no processo de paralelizacéo:
primeiramente, € necessario fazer a deteccdo e extracdo das dependéncias de

8

dados de um programa, que por ventura, irdo impedir que o paralelismo possa ser
alcancado; em seguida, deve-se eliminar qualquer tipo de dependéncia
desnecessaria, tendo em vista que ird diminuir o acoplamento, facilitando a
paralelizacdo. Um grande namero de técnicas ja foram propostas na literatura [12]
gue se propdem com sucesso eliminar algumas das dependéncias, que em grande
parte, ocorrem devido a falhas na propria implementacdo dos algoritmos. Por fim,
necessario analisar se o programa em questao sera ou nao paralelizado, de acordo

com as informacdes obtidas até entéo.

O processo de paralelizacdo tenta, por fim, fazer com que o programa

aproveite 0os multiplos processadores de uma maquina, diminuindo o tempo

despendido.
tS
fts | (1-Ntg
Sequéncial ‘ Paralelizavel
(@) Um processador’ ‘ ‘ { } """"""" ’ ‘ ' [
| |
(b) Multiplos ’ / ' \
processadores /
i
l
-~ p processadores
< e i

. (-Ntlp
P

Figura 1. InstrucOes seriais versus paralelas

Na figura 1, vemos a execucao de um codigo, que possui parte sequencial, e
parte cabivel de paralelizacdo. Em (a) a execugdo ocorre com apenas um
processador, ficando de forma sequencial toda a execugdo, mesmo que parte
daquele codigo pudesse ter sido executado em paralelo, gastando com isso um
tempo t;. Ja em (b), utilizando multiplos processadores, vemos que a parte que era

factivel de paralelizacdo, teve o seu tempo de execucdo bastante reduzido, de

acordo com os processadores utilizados, p.

Porém, ha casos em que as dependéncias existentes nao permitem a
execucao de parte do programa de forma paralela, nesses casos o programa devera

ser executado sequencialmente.

2.2.2 Desempenho em programas paralelos

Uma das formas de se definir se um programa deve ser executado em sua
forma paralela ou sequencial € avaliar o desempenho e verificar qual o melhor. O
célculo do speedup é uma das formas de se fazer isso, ele nada mais é do que a
razdo do tempo de execucdo de um algoritmo sequencial, executado em um
processador de maquina paralela T(n), pelo tempo de execucdo do algoritmo

paralelo em p processadores da maquina paralela T(n,p), como visto na Figura 2.

Figura 2. Célculo de speedup

O speedup nos da um indicador da velocidade por usarmos uma maquina

paralela. De forma geral, temos: 0 < S(n,p) < p.

Se S(n,p) = p, teremos um speedup linear, que ocorre raramente, pois grande
parte das solugbes paralelas colocam algum tipo de sobrecarga na distribuicdo de

carga e comunicacéo entre processos.

Se houver grande sobrecarga da paralelizacdo teremos o chamado
slowdown, uma situacdo indesejavel, pois haveria um melhor desempenho com uma
forma sequencial, com execucdo T(n), sendo menor que a execucédo de forma

paralela T(n,p). Teriamos T(n) < T(n,p) e S(n,p) < 1.
Em suma, temos para os speedups:

* S(n; p) <1, slowdown, situagéo indesejavel,
e 1< S(n; p) <p, sublinear, comportamento geral;

e S(n; p) =p, linear, ideal, ndo existe sobrecarga;

10

* S(n; p) > p, supralinear, situagédo possivel;

SpeedUp
S(n) = Tserial/Tparalelo

9

8

7

6

5

4

3

2

1 —— —.\ -

0 1 Thread 2 Threads 4 Threads 8 Threads
~+=Ideal ' 1 2 4 ' 8

-@-Programa 1/ 0,842701775 1,18782224 1,302648719 0,669613614
Programa 2| 0,764678503 0,764174608 0,760598779 0,752966853

=¢=|deal =m=Programa 1 Programa 2

Figura 3. Gréfico de speedup

Na Figura 3, temos trés cendrios de execucdo de programas paralelos, que
refletem de forma sucinta e visual, o que se foi explicado até agora. Em azul, e
marcado como circulo, o chamado “Ideal”, temos a situacdo em que de acordo com
o numero de threads utilizadas para a execucdo, temos um maior ganho no speedup
sem nenhuma perda, seria 0 speedup linear, porém, essa situacdo nem sempre
reflete a realidade na execucdo dos programas paralelos. Na segunda situacéo,
temos em vermelho, e marcado como quadrado, a execucao do chamado “Programa
1”, que mostra um aumento de speedup de acordo com o nimero de threads, até um
certo ponto, apos isso, o desempenho pode ficar, por vezes, pior do que a execucao
sequencial do programa (0,66 para 8 threads e 0,84 para 1 thread). Por fim, temos o
“Programa 2”, em vermelho, e marcado como tridngulo, que ndo possui uma grande

variagdo de speedup, mesmo com o0 aumento na quantidade de threads.

Outras medidas que podem ser utilizadas, s&o: eficiéncia e tomadas de
tempo, que aprimoram a utilizagdo dos processos em um programa paralelo em
relacdo a um programa sequencial, e avalia o desempenho de programas, com um

tipo de cronémetro.

11

Com esse tipo de analise, foi formulada a lei de Amdahl [13], mostrando que o
speedup obtido ao se paralelizar um programa é limitado. Segundo a lei, 0 ganho de
desempenho que pode ser obtido melhorando uma determinada parte do sistema é
limitado pela fracdo de tempo que essa parte é utilizada pelo sistema durante a sua
operacdo. Em forma de exemplo, para um melhor entendimento, faremos uma
analogia com a situacao do pintor de estacas. Na situacao, temos trés passos para
a pintura das estacas: a primeira, € preparar apenas a tinta, gastando-se 30
segundos; na segunda, efetuar a pintura de fato, gastando mais 300 segundos; e na
terceira e ultima, 30 segundos para esperar a tinta secar. Nota-se que o passo 2, é
factivel de ser executado em paralelo, ao contrario dos passos 1 e 3, que sO podem

ser efetuados de forma sequencial.

Tabela 1. Exemplificacdo da lei de Amdahl

Pintores Tempo Speedup
1 30 + 300 + 30 = 360 1.0
2 30 + 150 + 30 = 210 1.7
10 30 +30 +30 =90 4.0
100 30+3+30=63 5.7
00 30+0+30=60 6.0

Analisando a tabela 1, vemos que, mesmo elevando o niumero de pintores
para as estacas, existem etapas que independente da quantidade de pintores, terdo
sempre 0 mesmo tempo de execucgao, sdo as partes sequenciais. Da mesma forma
acontece no numero de threads utilizadas em um programa. Tendo f como a fracéo
de operacbes em uma computacédo que deve ser executada sequencialmente, onde
0<f <1, temos o seguinte grafico com o speedup maximo, segundo a lei de
Amdabhl:

12

20 f=100%
16 -
s
0 124
% f=95%
8 8
Q f=90%
n
4 f=80%

4 8 12 16 20
Numero de processadores, p

Figura 4. Speedup maximo segunda a lei de Ahmdal

Com isso, a lei de Amdahl desencoraja a utilizagdo massiva de paralelismo.
Em [14] é visto que, para programas rodando com um certo numero de nucleos, ndo
€ recomendado dividir tal programa em um numero de processos maior que o de

nucleos.

2.2.3 Ferramentas de paralelizacao

Diversas séo as ferramentas que automatizam o processo de transformacgao
de um algoritmo que esta em sua forma sequencial em uma forma paralelizavel. Os
niveis em que tais ferramentas trabalham sao diversos, desde refatoracbes até

transformacdes de bytecode.

Uma proposta semelhante ao do presente estudo € o da utilizacdo da
biblioteca j.u.c. (java.util.concurrent). Ela faz a transformagdo automatica para o
programador de um cdédigo sequencial em um paralelizavel [15]. Aborda também
fatores como a otimizacdo da escalabilidade, e threads seguras, para deixar um
programa concorrente, além da utilizacdo de algoritmos divide-and-conquer. Porém,
de antemdo, os programadores necessitariam alterar a arquitetura do codigo
existente para usar o j.u.c., tarefa que acarretaria na mudanca de muitas linhas de
cbdigo, e grande chance de erro, pois 0os programadores poderiam fazer mal uso de
tal biblioteca. No estudo, ndo seria necessario o uso de “anota¢cfes” no codigo por
parte do programador, utilizaria-se uma heuristica de procura por blocos de cédigos
especificos, transformando-os para a utilizacdo do j.u.c., fazendo a paralelizacéo

internamente em seu codigo.

13

Existem situacfes em que a modificacdo ocorre em um nivel mais baixo,
como em [7], com a utilizacdo de técnicas baseadas em transformacao de bytecode
e execucdo paralela de métodos. No trabalho, enfatiza-se que sO funciona com
alguns tipos de aplicacao, com tarefas livres de sincronizagéo (loosely-synchronous
tasks). O termo “semi”, do estudo referido diz respeito a necessidade de escolha de
quais das regras de transformacdo serdo aplicadas (se é necessario a criacdo de
thread ou ndo, que tipos de métodos devem ser paralelizados, paralelizagdo de for,
etc). O que é feito € a insercdo de codigo quando a classe esta sendo carregada
pelo JVM, manipulando o bytecode. O estudo também deixa claro que so é eficiente
em aplicacbes que sdo naturalmente paralelizaveis (i.e. well-engineered object-
oriented applications, com uma estrutura modular, encapsulamento). Programas com
estruturas complexas precisam sofrer modificacbes no codigo fonte, sendo
preparadas para a paralelizagdo. O trabalho cita como limitacdo o processo de
descoberta das classes e métodos que precisam ser paralelizados (e os respectivos

erros nessas descobertas).

Paralelizacdo dindmica em nivel de hardware € outro tipo de proposta [8],
utilizando o Jrpm (Java runtime parallelizing machine), que é utilizado com um
multiprocessador com suporte a thread (SLT). Com isso, em tempo real, sao
analisados os melhores loops (cada loop viraria uma thread) e trechos de cddigos
para serem paralelizados. Quando sado selecionados, tal parte do codigo é
recompilada dinamicamente para rodar em paralelo, sem interferéncia do
programador. Opera em nivel assembly (trabalhando com registradores), e o
trabalho também cita que seria possivel utilizar formas de marcar manualmente
partes do codigo para serem paralelizados, assim como sera abordado mais adiante

neste trabalho.

O estado da arte se encontra em Application Programming Interface’s (API's),
conjunto de rotinas e padrées, como o OpenMP (Open Multi-Processing). E
constituido por varias diretivas de compilador, rotinas de biblioteca e variaveis de
ambiente. Elas expressam o paralelismo, e modificam em tempo de execuc¢ao, no
comportamento da aplicagdo. O OpenMP permite acrescentar simultaneidade aos
programas escritos em C, C++ e Fortran, sobre a base do modelo de execucéao fork-

join. Além disso, é um modelo de programacédo portavel e escalavel que proporciona

14

aos programadores uma interface simples e flexivel para o desenvolvimento de

aplicacoes paralelas.

2.3 Leis de normalizacao e paralelizacao

A normalizacéo e paralelizacéo, em forma de leis, tenta formalizar a aplicacédo
das mesmas no contexto do desenvolvimento de software. Tais leis sdo baseadas
em leis algébricas, que definem equacdes que estabelecem equivaléncias entre
elementos de uma linguagem, o que € bastante util na concepcdo de provas e
verificacdo de sistemas. Leis algébricas para linguagens de programacédo adotam
um principio também utilizado na matematica [16], onde a teoria é feita de acordo
com leis axiomaticas. Exemplos podem ser vistos na aritmética, como a simetria na
utilizacdo das operacdes de multiplicacdo (xxy=y xx) € adicdo (x+y=y+x). A
normalizacdo € uma estratégia de reducdo que transforma um programa em uma
forma normal, que utiliza um conjunto limitado de caracteristicas de uma linguagem.
As leis de paralelizacdo fornecem meios de aumentar o desempenho de um

algoritmo sequencial, explorando o uso dos multiplos processadores disponiveis.

Como ja foi dito, este trabalho € uma extensdo do trabalho feito em [9],
portanto, as leis utilizadas para a elaboragdo deste estudo, foram retiradas do
mesmo trabalho, que ja sofreu adaptacdes de outros trabalhos, como a abordagem
[17]. As leis seguem uma convencdo que obedece as condi¢cbes exigidas por cada
uma delas, chamadas de provisos. Condicbes marcadas com («) precisam ser
seguidas quando a transformacdo € efetuada em ambas as direcdes; Condi¢cdes
marcadas com (—), precisam ser seguidas quando a transformacdo ocorre da
esquerda para a direita, e as marcadas com («), quando ocorrer da direita para a

esquerda.

Conceitos de atributos, construtores e declaracdo de meétodos, também sao
representadas nas leis, por ads, cnds e mds, respectivamente. Em seguida, &
utilizada a notacdo cds para a representacdo de um conjunto de classes, assim
como Main é a Unica classe que possui 0 método main no sistema. Para representar
um tipo a letra T € utilizada, enquanto que para representar a relacdo de subtipo

entre classes o simbolo < é utilizado. E considerado que todas as declaragdes
internas de classes séo feitas dentro de um pacote padrao, analogamente a Java.

15

Para demonstrar como se déo essas representacdes, serd apresentado um

exemplo com a lei 1 do trabalho [9]. O objetivo da lei & fazer eliminacdo ou
introducéo de uma classe, representada por cd,, mostrada a seguir:

Lei 1. (eliminacéo / introducéo de classe)
cds cd; Main = cds Main

provisos

(—) A classe declarada em cd; néo é referenciada em cds ou Main;

(<) (1) O nome da classe declarada em cd, é diferente de todas as classes
declaradas em cds;

(2) A superclasse de cd, é Object ou alguma declarada em cds.

Na lei apresentada, a eliminacdo da classe ocorrerd da esquerda para a
direita, enquanto a introducdo da classe ocorrera da direita para a esquerda. Porém,

para que elas acontecam os provisos devem ser satisfeitos. No primeiro caso, uma
condicdo apenas é apresentada, a de que para eliminar cd, ela ndo deve ter sido

referenciada no conjunto de classes cds. Enquanto que para a segunda situacao
existem duas condicdes: (1) ndo deve haver uma classe, no conjunto de classes cds

ou Main, que possua 0 mesmo nome da classe que esta sendo inserida, no caso
cdq; (2) A superclasse da classe a ser inserida cd;, deve ser ou Object ou alguma

que ja tenha sido declarada no conjunto de classes cds. O Object estd sendo

considerado como uma classe valida, pois € a classe padrao utilizada por Java.

16

Capitulo 3

Automatizacao das leis

Este capitulo aborda a principal contribui¢cdo deste trabalho, ou seja, como foi dada a
automacao das leis de normalizacdo e paralelizacdo, com base em Java. Ela foi
escolhida para tal transformacéao por se tratar da linguagem base para concepcéo
das leis, e dos estudos de caso escolhidos para a validagdo também terem sido
implementados em Java. A linguagem também possui varias caracteristicas [18] que

se mostram pertinentes ao nosso estudo, como:

» Simples e orientado a objetos — a orientacdo a objetos € o paradigma
dominante atualmente, o0 que torna essa caracteristica muito
importante;

* Robusto — compila, e em tempo de execucao garante a confiabilidade
do programa,;

» Distribuido e seguro — Java foi criado para ser executado em
ambientes distribuidos, por isso ja incorpora diversos aspectos de
seguranca,;

» Interpretado, portavel e arquitetura neutra — utiliza uma maquina virtual
para executar o bytecode (o coédigo compilado de java), que é
independente de plataforma, e prové a portabilidade para ser
executado em diferentes plataformas;

» Alto desempenho — técnicas como a compilacdo just-in-time (JIT),
permite que codigos criticos de desempenho sejam compilados para
codigo nativo, acelerando a sua execucdo e diminuindo os overheads
causados pela interpretacéo;

 Dinamico — classes sdo carregadas apenas quando necessarias, €
novas classes podem ser adicionadas de acordo com a evolugéo do
sistema;

* Processamento paralelo — possui um suporte embutido para
programacao concorrente, permitindo o desenvolvimento de processos

executando paralelamente.

17

3.1 Abordagens para transformacao

Uma das abordagens analisadas, para a execucao do presente trabalho, foi a
de se trabalhar com os conceitos de modelo e metamodelo utilizando o Eclipse
Modeling Framework (EMF), que proporciona o desenvolvimento de aplicacdes

envolvendo modelagem de dominio especifico (MDE).

O EMF é um framework de auxilio na modelagem e geracéo de codigo para o
desenvolvimento de aplicagdo e ferramentas baseadas em modelos bem
estruturados. Um ponto importante € que sua plataforma é open-source, dando
oportunidade aos desenvolvedores criarem novas ferramentas para integra-las ao

framework [19].

Os modelos podem ser descritos também usando uma sintaxe de Java com
anotacdes ou documentos XML. Um destaque para essa plataforma € que ela
fornece uma série de padrbes que permitem uma grande interoperabilidade entre as
diversas ferramentas que podem ser integradas ao framework EMF. A modelagem
dos metamodelos se da através de uma das ferramentas que déo suporte a sua
criacdo, chamada Xtext. Nela, a linguagem é definida através de um metamodelo,
onde este é descrito usando uma sintaxe concreta que se assemelha com a
descricdo de uma graméatica. A linguagem e o motor de transformacdo para a
implementagcdo das regras de transformacgao para a execucao das transformacgoes,
sao feitos através de ATL (Atlas Transformation Language). Porém, essa proposta
nao foi implementada neste projeto, devido a falta de experiéncia com esse tipo de
solucdo, onde seria necessario um estudo prévio além do tempo previsto, se

caracterizando como um possivel tépico de pesquisa futura.

Outra abordagem analisada, e também a que foi escolhida, foi a de se
trabalhar em cima do parser existente da linguagem Java. A escolha dessa
abordagem se deu pelo simples fato da experiéncia em se trabalhar com
compiladores, onde além de tornar a implementacdo da proposta viavel, nos daria
uma maior possibilidade de referéncias por parte da comunidade académica, assim
como foi mostrado anteriormente na secdo 2.2.3, onde foram apresentadas
abordagens que utilizam a fase de compilagéo para a transformacgao. Para efetuar a
geracado do parser, foi obtida a gramatica do Java com a Sun, e entdo foi escolhido

um gerador de analisador sintatico aberto para a linguagem Java, o JavaCC.

18

3.1.1 JavaCC

O programa JavaCC é um gerador de analisador sintatico que produz cédigo
Java. Ele permite que uma determinada linguagem seja definida de maneira simples,
por meio de uma notacdo semelhante a EBNF. Como saida produz o cédigo-fonte
de algumas classes Java, que implementam os analisadores léxico e sintatico para
aquela linguagem. Prové também maneiras de incluir, junto & definicdo da
linguagem, cédigo Java para por exemplo, construir-se a arvore de derivacdo do

programa analisado.

Apesar disso, para nossa solucédo, iremos apenas resgatar o cédigo que é
retornado, apos a geracdo da arvore. O JavaCC define uma linguagem propria para
descricdo, em um Unico arquivo, do analisador Iéxico e do analisado sintético.
Iniciando com o analisador Iéxico, esta linguagem permite que cada token seja
definido na forma de uma expresséao regular. Um arquivo de especificacdo JavaCC
contém trés blocos: opcbes do JavaCC, classes do parser e gramatica da

linguagem, com a¢cbes semanticas associadas.

O primeiro bloco, opcional, contém um conjunto de op¢des que definem como
o JavaCC ira gerar o parser, como: se sera sensivel ao case, se gerara todas as
classes usuais, se havera checagem de ambiguidade na gramatica, etc. O bloco
seguinte define qual é o nome da classe do parser e implementa sua chamada. O
restante da especificacdo JavaCC contera a especificacado dos tokens da linguagem
e da sua gramatica. O JavaCC produz entdo o analisador Iéxico e sintatico do
compilador, ndo necessitando de uma implementacdo ou de ferramentas extras.

Entretanto, o JavaCC gera analisadores sintaticos descendentes, o0 que o
limita as classes gramaticais LL(k) (excluindo, por exemplo, recursividade a
esquerda). Porém, nosso trabalho ndo chega ao nivel de complexidade que
necessitaria de tal transformacédo. Como ja foi dito, apesar de gerar também uma
arvore, a saida do JavaCC que nos interessa € a geracdo do proprio codigo em
Java, que, ao passar pelas modificacdes feitas no parser com os conceitos das leis
algébricas, nos retornara a saida da transformacéo automatica, que sera levada para
os testes de benchmarking para comparacdo com as outras abordagens ja
efetuadas com os estudos de caso.

19

3.2 Implementacao

Para efetuar a implementacédo da transformacéo foi seguida uma heuristica,
definindo quais leis deveriam ser aplicadas no contexto do caso de uso escolhido
para validacdo. Algumas dessas leis ndo séo aplicaveis nesse contexto, o que nos
leva a ndo implementa-las, por ora, e logo, ndo seréo descritas. Na transformacao
manual, foram analisadas véarias dessas leis que nado teriam transformacdo com os
estudos de caso, porém, por se tratar de uma proposta manual, foram feitas
modificacbes que ndo seguem o0 emprego de algumas leis da forma que é

especificada pelos provisos, incluindo ou abstraindo alguns.

No caso de uma proposta automatizada, tais mudangas a priori ndo sao
factiveis, o que nos coloca em uma abordagem seguindo com conformidade a
implementacdo das leis, que muitas vezes ndo nos proporciona a otimizacao
desejada, que poderia ser feita manualmente. Em contrapartida, o tempo
despendido para empregar as leis em uma proposta manual € maior com relacéo a
uma abordagem automatizada ja implementada, o que nos colocaria em uma zona
de impasse, sobre qual das propostas utilizar em uma aplicacéo real. Tal escolha se
devera ao fato de qual fator ird predominar como mais critico, se o tempo de
execugcdo do algoritmo ou o tempo de emprego para a implementacdo desse
algoritmo. A ideia base da implementacao foi tentar transformar cada lei que seria
empregada, dentro dos conceitos da linguagem Java, que foi escolhida como padréo
para 0 nosso estudo. Assim, seria feita uma analise de como se daria a
implementac&o de cada lei, dentro do Java. Isso foi facilitado devido a forma com
que as leis, tanto de normalizagcdo, quanto as de paralelizacdo, sédo expressas,
bastante préximo do que seria aproveitado para a implementacdo da solucdo de
fato. Em base para explicar a abordagem das leis nos algoritmos, utilizaremos a
implementagédo do estudo de caso IDEA e suas classes, que serdo melhor
apresentadas no capitulo 4, como analogia para exemplificagao.

3.2.1 Leis de Normalizagéo

Primeiramente serd seguida uma estratégia de normalizacdo, com as leis de
normalizacdo vistas em [9], para depois se seguir com as leis de paralelizacao.

Temos a aplicacéo da lei 1, vista na se¢ao 2.2, inserindo uma nova classe chamada

20

de _Object. A lei 2, aplicada em cima dos provisos, visa modificar a hierarquia das
classes utilizando a nova classe criada, como uma nova superclasse raiz, onde
todas as classes que nao herdarem de outra classe explicitamente, ou seja, que
herdam de Object, irdo agora herdar de _Object. Para 0 nosso estudo de caso, a
classe que se enquadra nessa situacdo é a IDEATest, que agora tera uma nova

superclasse.

Apés introduzir uma nova superclasse raiz, todos os atributos terdo suas
visibilidades alteradas para publicas, ou seja, aquelas que englobam as visibilidades:
default, protected e private, agora possuirdo a visibilidade public, respectivamente
correspondem as leis 3, 4 e 5. Todas as trés leis foram implementadas, porém, para
o estudo de caso, ndo haveria necessidade da aplicacdo da lei 4, ja que ndo existe
nenhum atributo com a visibilidade protected, e logo, néo foi aplicada, porém ainda
foi implementada. Um cuidado ao ter sido aplicada a lei 5 € um proviso com relacéo
a visibilidade private, de acordo com a heranca dada pela classe onde o atributo
esta inserido, que vai limitar o escopo de visibilidade dentro dessa heranca. A
modificacdo no parser que permitiu a implementacao de tais leis, foi com uma
verificagao feita no retorno dos tokens de visibilidade para os atributos, retornando a
visibilidade public na leitura desses tokens, mas, apenas para os atributos que

pertencem a classe, ou seja, globais.

class C' extends D { class C' extends D {
protected 1" a; ads public T a; ads
cnds —cds,Main cnds

mds mds

Figura 5. Lei 4 — Alteragéo de visibilidade do atributo de protected para public

A lei 6, passa os atributos de uma subclasse para a sua respectiva
superclasse, até chegar na superclasse raiz, que na nossa situacdo é a nova classe
criada anteriormente, _Object. Um cuidado ao se implementar essa lei, aos provisos
em ambos o0s sentidos, se da na preocupacao que o atributo que for movido da
subclasse para a superclasse (ou vice-versa, dependendo do sentido) ndo podera se
encontrar na respectiva superclasse, deixando o algoritmo inconsistente em termos

de escopo semantico.

21

As leis 8, 9 e 10, ocorrem de maneira analogas as leis 3, 4 e 5, vistas
anteriormente, porém, ao invés de se manipular a visibilidade dos atributos, essas
leis manipulam a visibilidade dos métodos. A lei 8 foi aplicada para os Unicos
métodos com modificador default, buildTestData, freeTestData e Do. A lei 9 é
implementada, porém nao € aplicada pela auséncia da visibilidade protected nos
métodos. Ja a lei 10 foi aplicada normalmente. O enquadramento do parser se deu
da mesma forma de como foi feita com os atributos, fazendo a verificacdo de como o

token de visibilidade seria lido pelo parser, e retornado para a arvore sintatica.

A lei 14 faz a mudanca dos métodos de uma classe, movendo-as para a sua
superclasse, tendo cuidado mais uma vez, com relagdo ao escopo de nomes, que
nao podem possuir 0 mesmo nome de meétodo, a ndo ser nos casos de sobrecarga
(métodos com 0 mesmo nome e assinatura diferente). Para o estudo de caso, foi
feita essa passagem apenas da classe IDEATest, para a classe _Object. Com isso,
a classe IDEATest agora nao possuira nenhum método ou atributo, tendo em vista a
aplicacao das leis 6 e 14. Uma analise pertinente aos seus provisos diz respeito a
criacdo de um novo proviso, englobando a situacdo para quando os métodos fossem
derivados de uma interface ou de uma classe abstrata, e como tal proviso nao
existe, os métodos ndo podem ser passados para cima, foi o caso do IDEARunner e
do JGFCryptBench. Essa analise foi feita na proposta manual, entre varias outras
situacdes que foram efetuadas para a aplicacdo manual das leis, tendo em vista a
adequacao ao estudo de caso para um melhor resultado. Tais modificacbes néo
entram como escopo para este trabalho, pois nele as leis estdo sendo
implementadas sem modificagcbes com relagdo aos provisos, 0 que pode vir a
influenciar na comparacdo dos resultados, que sera visto adiante. Para efetuar a
aplicacado dessas leis, foi criada uma nova classe temporaria, sem conteudo, e
deixando-a como a nova IDEATest, em contrapartida, o _Object fica com os dados
do antigo IDEATest, e dos atributos das outras classes que foram passados para o

mesmao.

3.2.2 Leis de Paralelizagao

Iniciada pela lei 45, que prega a modificacdo da ordem dos comandos, é um
passo bastante (til para agrupar comandos relacionados, colocando-os em sua

ordem de dependéncia, facilitando sua execucdo em diferentes threads. Entretanto,

22

para aplicar esta lei os comandos precisam ser independentes, pois assim
poderemos garantir uma maior consisténcia semantica na execucao das threads.
Para 0 nosso caso, a ordem dos comandos j& estava numa sequéncia apropriada.
Se mudéssemos a ordem implicaria na mudanca de semantica do programa, ja que

os comandos dependiam de outros comandos imediatamente anteriores.

Lacos que possuem comandos independentes no seu corpo podem manter
uma paralelizagéo, tendo duas formas de se iniciar tal paralelizagdo: paralelizar todo
o laco, ou paralelizar cada iteracdo. Dividi-lo em dois lacos, cada um contendo
comandos relacionados, aumenta a possibilidade de serem executados em threads

multiplas.

for(init; cond; incr) {

for(init; cond; incr) |{ cmdsy
cmdsy; }
cmds, for(init; cond; incr) {
} cmds,

Figura 6. Lei 46 — Fatoracdo de laco

Na figura 7, os provisos deixam claro que, na transformacgédo da esquerda
para a direita, o comando 1 (c¢cmds;) devera ser independente do comando 2
(cmds,), assim como ambos os comandos, deverao ser independentes da condicao
do lagco (cond). Porém, a lei 46 ndo foi aplicada, pois ndo ha independéncia de
comandos dentro do loop. Essa lei também ndo foi implementada, devido a
dificuldade em se destacar comandos independentes de uma maneira automatizada,

e ainda mesmo, de maneira manual, com alguma forma de marcacéo.

Ainda em se tratando de lagos, a lei 47 divide o lago original, onde cada novo

laco criado ir4 executar uma parte da iteracao do laco original.

for(int i =K; 1 < J; 1 =1+1inc)
for(int i = K; i < F; i=1i+inc)| _ cmds;
cmds; | for(int j=J; j<F; j=j+inc)
cmds;

Figura 7. Lei 47 — Divisao das iterac0s do laco

23

Para implementar a lei 47 foi criada uma heuristica para dividir o lago em dois
novos lacos. O primeiro laco ira ser efetuado até a primeira metade da condicao,
enquanto o segundo laco sera efetuado a partir do fim da primeira metade, até a
segunda metade da condicdo. Na figura 7, se tivessemos K = 0 e F = 8 no primeiro

laco, teriamos J = 8/2, fazendo com que a diviséo dos lacos se dé de forma correta.

A lei 48 especifica a transformagdo necesséria para executar comandos
concorrentemente. A introducéo dessa lei precisa ser feita de forma cuidadosa, para
uma execucao concorrente, por isso ndo foi implementada para ser aplicada de
forma automética. O processo de descoberta, de quais comandos iriam ser
aplicados por essa lei, é algo que ndo vem ao propésito desse estudo, e que é
inclusive uma das principais dificuldades na paralelizacdo de algoritmos. Para fazer
essa aplicacdo de forma semi-automatica, nos fizemos uso do recurso de marcacéo
no codigo, para deixar visivel para a transformacédo quais blocos serdo aplicados

pela lei.

Inicialmente se pensou em fazer tal marcacdo com o uso do annotation do
Java, que faz a demarcacao de algo que pode ser posteriormente interpretadas por
um compilador ou pré compilador que ira realizar alguma tarefa pré definida. Porém,
0 uso de annotation é restrito ao escopo de classes e métodos, o que nos deixa
aquém da aplicagdo da lei, para comandos ou blocos especificos. Com isso, foi
pensada em uma maneira de se marcar o codigo, sem se fazer qualquer influéncia
no codigo, e sem alterar o parser, com 0 uso de comentarios com uma marcacao
especifica, aos mesmos moldes do annotation, utilizando o caractere ‘@’, seguido
da string identificadora, no nosso caso, BeginParallelize e EndParallelize. O parser
original do Java, gerado inicialmente, e que foi modificado por esse estudo,
eliminava todo o tipo de comentario existente, o que ja era esperado no processo de
compilacdo. Como a utilizacdo do parser sera realizada mais uma vez na execucao
do algoritmo, desta vez com o cédigo gerado por nosso estudo, aplicado ao parser
original do Java, ndo ha problemas em se manter os comentarios originais do
algoritmo, tendo em vistas que eles serdo eliminados no processo de compilacéo
“real”, na execugdo do algoritmo. Com isso, conseguimos definir mais uma
contribuicdo do estudo, fazendo com que, em uma fase de pré-compilagdo, seja
possivel definir o que deve ser paralelizado em cada algoritmo que venha a ser
transformado utilizando nossa abordagem.
24

Thread t;
t = new Thread(
new Runnable() {

public void run(){

cmdsy;
= cmdsy }});

t.start();

try {t.join();}

catch(Interrupted Exception e){}
cmdsy

cmdsy

Figura 8. Lei 48 — fork - join

3.2.3 Dificuldades

Um grande problema em implementar as leis aplicando a abordagem, foi a
dificuldade que se teve com a complexidade do parser de uma linguagem como java.
Um primeiro problema, foi o de como se trabalhar individualmente com cada classe,
pois o parser trabalha em cima de uma classe. Como o0s estudos de casos possuiam
mais de uma classe que interagiam entre si, foi selecionada a classe que seria
trabalhada, inicialmente fora do parser, e entdo foi passada para 0 parser,
gerando um novo coédigo. Isso significa dizer que foi necessario definir, de forma
manual, cada classe que iria passar pela transformacdo do parser, mostrando que,
apesar de ser uma proposta automatizada, h4 uma interacdo manual com o
desenvolvedor, definindo tais classes, como ocorreu tanto no estudo de caso IDEA,
com as classes IDEATest e IDEARunner, como para o estudo de caso de séries de

Fourier, com as classes SeriesTest e SeriesRunner.

Outra dificuldade foi em manter a formalidade na construc&o da solugédo. Com
a formalidade das leis algébricas, a abordagem que foi utilizada de alteracdo no
parser nos proporcionou um grande grau de liberdade na implementacdo, porém,
sem um formalismo que nos garantiria uma maior abrangéncia e generalizacao da

solugéo.

Com relacéo as dificuldades na implementacéo, o que se verificou, € ja havia
sido visto em outros estudos de automatizacdo, € que algumas modificacdes néo
sdao triviais de serem feitas de maneira automatica, e acabam tendo que ser feitas de

forma manual, como ocorreu na aplicacao da lei 48.

25

3.3 Resultados

A partir da execucdo da nossa proposta automatizada, foi gerado um novo
conjunto de classes, pos aplicacao das leis algébricas, em conformidade com o que
foi visto até entdo no estudo. Com a geracao das classes ja transformadas, foi feita a
comparacdo de quatro abordagens distintas feitas para os estudos de caso

selecionados, o algoritmo IDEA e as séries de Fourier.

Com o primeiro estudo de caso, as classes JFGTimer, JGFInstrumentor e
JGFCryptBenchSizeA permaneceram inalteradas, pois fazem parte do contexto de
testes do algoritmo, e ndo da implementacéo do algoritmo propriamente dito. Logo, a
alteracdo dos mesmos nao indicaria ganho no estudo, sendo assim, ndo houve a
necessidade de modifica-los. Com isso, ap6s a transformacdo, temos todas as
classes de saida produzidos como resultado desse projeto na Figura 9,
possibilitando uma analise com a Figura 15, que sera vista no proximo capitulo, que

contém o diagrama das classes de entrada do algoritmo IDEA.

+time : double

+ opcount: double
+ calls: long

+ size :int

- start_time : long
-on:bool

JGFTimer JGFCryptBench IDEATest
+ name : String y—
+ opname : String *+JGFrun(: void

+ JGFtidyup(: void

+ JGFvalidate() : void

+ JGFkernel() : void

+ JGFinitialise() : void

+ JGFsetsize() : void

+ JGFCryptBench() : void

_Object

+ start() : void

+ stop(: void

+ addops(: void

+ addtime() : void
+ reset() : void

+ perf() : double

+ longprint() : void
+ print() : void

+ printperf() : void

JGFInstrumentor

- timers : Hashtable
- data : Hashtable

+ addTimer(: void
+ startTimer() : void
+ stopTimer(: void
+ addOpsToTimer(: void
+ addTimeToTimer(: void

+ array_rows :int
+ plain1 : byte[]

+ crypt1 : byte[

+ plain2 : byte[]

+ userkey : shot]
+Z:int)

+ DK :int]

+ datasize :int]
+ size :int

JGFCryptBenchSizeA

+ main :int

IDEARunner
+id :int)

+ key :int]

+ text1 : byte[]
+ text2 : byte[]

+ run() : void

+ Do(: void

+ buildTestData() : void

+ calcEncryptKey(: void
+ calcDecryptKey(: void
+ cipher_idea(: void

+ mul(:int

+invQ :int

+ freeTestData() : void

Figura 9. Diagrama das classes de saida para o algoritmo IDEA

Na Tabela 2, e nas Figuras 10 e 11, apresentaremos os resultados, com suas
respectivas médias de execucao, em segundos, variancia, e speedups obtidos, além
de gréficos para uma melhor visualizacdo dos resultados. Pode se observar tanto na
tabela, como nas figuras, que os resultados obtidos pela LANP AUTOMATIZADO, a

26

proposta deste trabalho, possui menor valor de speedup do que as outras formas

paralelizadas, porém, com um maior com relagéo a forma sequencial.

Tabela 2. Dados de execuc¢éo do benchmark IDEA

IDEA
Forma do Algoritmo Execugbes Soma(s) Meédia(s) Varidncia Speedup Speedup(%)
JGB SERIAL 10 2,332 0,233 1,50667E-05 1,000 0
JGB PARALELO 10 1,441 0,144 3,69889E-05 1,618 61,83%
LANP MANUAL 10 1,596 0,160 2,40444E-05 1,461 46,11%
LANP AUTOMATIZADO 10 1,764 0,176 2,27111E-05 1,322 32,19%

LANP AUTOMATIZADO

Tempo Médio (s) - IDEA

JGB SERIAL 0,233
JGB PARALELO

LANP MANUAL

Figura 10.

Tempo de execugcdo medio nas diferentes implementagdes do IDEA

JGB SERIAL 1
JGB PARALELO 1,618
LANP MANUAL 1,461
LANP AUTOMATIZADO 1,322

Speedup - IDEA

Figura 11. Speedups nas diferentes implementacdes do IDEA

Para o algoritmo das séries de Fourier, as classes JFGTimer,

JGFInstrumentor e JGFSeriesBenchSizeA permaneceram inalteradas, também por

fazerem parte do contexto de testes do algoritmo, e ndo da implementacdo do

algoritmo propriamente dito. Logo, a alteracdo dos mesmos néo indicaria ganho no

27

estudo, sendo assim, ndo houve a necessidade de modifica-los. Da mesma forma
como foi feito para o primeiro estudo de caso, apds a transformacéo, temos todas as
classes de saida produzidos como resultado desse projeto na Figura 12,
possibilitando uma analise com a Figura 16, que sera vista no préximo capitulo,

contendo o diagrama das classes de entrada das séries de Fourier.

JGFTimer SeriesTest
+name : String JGFSeriesBench
+ opname : String + datasize :int]
+time : double +size - int
+ opcount: double . nth;n-ads o
+calls : long —
+size tint +JGFrun() : void
- start_time : long + JGFtidyup(: void g
- on : bool + JGFvalidate() : void —Object
+ start() - void + JGFkernel() : void + array_rows : int
+ stop() : o + JGFinitialise() : void + TestArray : double]

ll) + JGFsetsize() : void :
+addops() : void + JGFSeriesBench() : void +Do() : void
+ addtime() : void + buildTestData() : void
+reset() : void +freeTestData() : void
+ perf() : double
+ longprint() : void JGFInstrumentor
: g::::gé[}’g'gvoid - timers : Hashtable

: - data : Hashtable SeriesRunner
+ addTlmerO :v0|q +id:int
+ startTimer() : void
JGFSeriesBenchSizeA + stopTimer() : void +run() : void
+main - int +addOpsToTimer() : void + Trapezoidintegrate() : double
: + addTimeToTimer() : void + thefunction() : double

Figura 12. Diagrama das classes de saida para as séries de Fourier

Também serdo apresentados 0s resultados, com suas respectivas médias de
execucao, em segundos, variancia, e speedups obditos, além de graficos para uma
melhor visualizacdo dos resultados. Da mesma maneira que o estudo de caso
anterior possuiu um menor speedup, o estudo de caso do célculo das séries de
Fourier também obteve um pior resultado com relagdo as outras formas

paralelizadas, porém, com um resultado mais significativo.

Tabela 3. Dados de execucéo do benchmark séries de Fourier

Séries de Fourier

Forma do Algoritmo Execugbes Soma(s) Média(s) Varidncia Speedup Speedup(%)

JGB SERIAL 10 162,09 16,209 3,168192 1,000 0
JGB PARALELO 10 90,748 9,075 0,367079511 1,786 78,61%
LANP MANUAL 10 95,772 9,577 0,3318944 1,692 69,24%
LANP AUTOMATIZADO 10 97,775 9,778 0,8630425 1,658 65,77%

28

Tempo Médio (s) - Séries de Fourier

JGB SERIAL 16,209
JGB PARALELO
LANP MANUAL

LANP AUTOMATIZADO

Figura 13. Tempo de execucdo médio nas diferentes implementacées das séries

de Fourier

Speedup - Séries de Fourier

JGB SERIAL 1
JGB PARALELO 1,786
LANP MANUAL 1,692
LANP AUTOMATIZADO 1,658

Figura 14. Speedups nas diferentes implementacfes das séries de Fourier

Como pbde ser observado nas figuras e tabelas, nossa solucdo obteve piores
resultados de speedups, tanto com relacdo a proposta manual, aplicando as leis
algébricas, quanto com a versdo paralela do algoritmo disponibilizado pelo JGB,
porém, melhores resultados que a versdo sequencial. Para o primeiro estudo de
caso, com o algoritmo IDEA, houve uma diferenca significante de speedup da nossa
proposta (32,19%), com relacdo a proposta manual (46,11%), entretanto, para o
segundo estudo de caso, com as séries de Fourier, houve uma maior proximidade

da nossa solucao automatizada (65,77%), a manual (69,24%).

Outro ponto a ser ressaltado sdo as modificaces feitas nas leis e provisos
em uma proposta manual, tentando se adequar aos diversos algoritmos, o que néo
ocorre na abordagem automética deste estudo, podendo entdo, influenciar nos

resultados, devido as aplicacdes das leis ndo estarem exatamente iguais.

29

Com esses resultados, nos acreditamos que 0 menor speedup encontrado por
nossa solucdo € compensado pelo menor esforco que serd necessario para
paralelizar os algoritmos, levando em conta jA a implementacdo que foi feita por

nossa abordagem automatizada, com relacdo a uma proposta manual.

30

Capitulo 4

Estudos de Caso

Este capitulo mostra a metodologia e os estudos de caso utilizados para validar a
transformacao efetuada por nossa abordagem. O primeiro estudo de caso escolhido
foi o algoritmo de encriptacdo e decriptacdo IDEA (International Data Encryption
Algorithm) [20], e o segundo, o calculo de coeficientes de uma série de Fourier. Os
codigos foram obtidos do Java Grande Benchmark (JGB) [21], que apresenta secdes
de benchmarks, alguns deles contendo versdes sequenciais e paralelas. Os
resultados provenientes dos experimentos foram comparados aos obtidos pelo

préprio JGB, e pela proposta de transformacao manual.

4.1 Metodologia

Para realizar o estudo de caso, inicialmente obtivemos o mesmo cédigo de
entrada que foi utilizado na proposta manual [9], a fim de comparar os resultados. O
algoritmo possui trés diferentes tamanhos de entrada de dados para o teste de
benchmark, mas foi escolhido 0 mesmo da proposta manual, o0 menor, também para

uma melhor visualizacdo de comparacao.

Os algoritmos foram utilizados como entrada para a aplicacdo das leis de
normalizagdo e paralelizagdo, que foi feita de forma automética. Como ja era
esperado, a aplicacdo dessas leis em um algoritmo de automatizacdo se mostrou
muito complicado em alguns casos, assim como foi visto na implementacdo manual

desse algoritmo.

Para checar se a transformacéo esta preservando o comportamento correto
do algoritmo, foi utilizado o mecanismo de validacdo baseado em teste, do proprio
JGB, que compara os resultados com um conjunto de valores, e caso eles nao
correspondam, uma mensagem de erro € exibida. No algoritmo executado em
paralelo foi necessario escolher o niumero de threads que sédo executadas. Como
sera descrito mais a frente, a maquina que efetuara o processamento possui dois

nacleos, por isso, com 0s conceitos vistos em [14], nds executaremos 0s algoritmos

31

em duas threads, o que nos dara uma visualizacdo nao tdo longe de uma execucéo

sequencial, e um bom parametro de comparacao.

ApoOs finalizada a transformacédo do codigo, foi feita uma comparacdo de
acordo com o tempo de execucdo dentre as varias versdes do codigo. Foram
consideradas quatro fontes de codigo para a comparacao: (i) o codigo original, em
sua forma sequencial (JGB SERIAL), (i) a versdo paralela (JGB PARALELO),
ambos fornecidos pelo JGB, (iii)) a proposta paralela utilizando as leis algébricas de
normalizacdo e paralelizacdo de forma manual (LANP MANUAL) [9], e (iv) a
proposta deste trabalho, utilizando leis algébricas de normalizacéo e paralelizacdo
de forma automatizada (LANP AUTOMATIZADO).

Para obter o tempo de execucdo de cada um foi utilizado o cronémetro do
proprio JGB, que conta o tempo que foi despendido para a execucao do algoritmo.
Para uma melhor visualizacdo, sera apresentado os speedups de cada execucao
com relacdo ao codigo original, que esta na forma sequencial. Para calcular o tempo
de execucdo, cada versdo do codigo foi executado dez vezes, e com os valores
obtidos por cada verséao, foi efetuada uma média aritmética que serviu de base para

a comparacao das versoes.

Os testes foram executados em um Intel Core i3 2310m, com 8GB de RAM,
rodando o Ubuntu 12.04, e o JDK 7. O ambiente foi mantido da mesma forma para a
execucao das quatro versdes do algoritmo testado, para evitar a influéncia de fatores

externos.

4.2 Algoritmo IDEA

O benchmark IDEA executa o algoritmo de encriptacdo e decriptacdo IDEA
(International Data Encryption Algorithm) em um array de trés milhdes de bytes
gerados aleatoriamente. Seguindo a estratégia de normalizacdo utilizada neste
estudo, foi introduzida uma superclasse _Object, fazendo com que a classe
IDEATest herdasse dessa nova classe. Para a execucdo dos testes foi utilizada a
classe JGFCryptBenchSizeA, além de outras duas classe uteis JGFTimer e

JGFInstrumentor.

32

JGFTimer

+ name : String

+ opname : String
+time : double

+ opcount: double
+ calls : long

+ size @int

- start_time : long

- on:bool

+ start() : void

+ stop() : void

+ addops(: void

+ addtime() : void
+ reset() : void

+ perf() : double

+ longprint() : void
+ print() : void

+ printperf() : void

JGFCryptBench

- datasize :int]
- size @int
+ nthreads :int

+ JGFrun() : void

+ JGFtidyup(: void

+ JGFvalidate() : void

+ JGFkernel() : void

+ JGFinitialise() : void

+ JGFsetsize() : void

+ JGFCryptBench() : void

JGFInstrumentor

- timers : Hashtable
- data : Hashtable

JGFCryptBenchSizeA

+ main :int

+ addTimer(: void
+ startTimer() : void
+ stopTimer() : void
+ addOpsToTimer() : void
+ addTimeToTimer() : void

IDEATest

~array_rows : int
~plain1 : byte]
~crypt1 : byte[l
~plain2 : byte[
~userkey : shot]
~Z:int]
~DK:int]

~Do(: void

~ buildTestData() : void
- calcEncryptKey() : void
- calcDecryptkey() : void
- cipher_idea() : void
-mul(:int

-inv(Q :int
~freeTestData() : void

IDEARunner
~id :int]
~key :int]
~text1 : byte[]
~text2 : byte[]

+ run() : void

Figura 15. Diagrama das classes de entrada do benchmark IDEA

4.3 Séries de Fourier

No estudo de caso seguinte, foi feito com o benchmark séries de Fourier, que
calcula os primeiros 10.000 coeficientes de Fourier, com base na funcdo f(x) =
(x+ 1)*, no intervalo 0-2. Analogamente ao feito no primeiro estudo de caso, foi
introduzida uma superclasse _Object, fazendo com que a classe SeriesTest
herdasse dessa nova classe. Também para a execugdo dos testes, foi utilizada a
classe JGFSeriesBenchSizeA, além de outras duas classe uteis, JGFTimer e
JGFInstrumentor.

JGFSeriesBench SeriesTest
- - datasize : int] ~array_rows : int
JGFTimer - size :int + TestArray : double[l

+ name : String
+ opname : String
+time : double
+ opcount: double

+ nthreads : int —’/f--‘D Do0 - void

+ JGFrun(: void ~ buildTestData(: void
+ JGFtidyup(: void ~freeTestData() : void
+ JGFvalidate() : void

+ cgllsl :'Iong + JGFkernel() : void
+size: !nt) + JGFinitialise() : void
S staft_tlme long + JGFsetsize() : void JGFSeriesBenchSizeA
- on:bool + JGFSeriesBench(: void inint
+ p
+ startQ : void i
+ stop(: void
+addops(: void JGFInstrumentor

+ addtime() : void
+ reset() : void

+ perf() : double

+ longprint(: void
+ printQ : void

+ printperf(: void

SeriesRunner
~id :int

- timers : Hashtable
- data : Hashtable

+ addTimer(Q : void
+ startTimer() : void
+ stopTimer(: void
+ addOpsToTimer(: void
+ addTimeToTimer(: void

+ run() : void
- Trapezoidintegrate() : double
- thefunction() : double

Figura 16. Diagrama das classes de entrada do benchmark séries de

Fourier

33

Capitulo 5

Conclusao e Trabalhos Futuros

Neste ultimo capitulo, serdo apresentadas todas as contribuicdes realizadas a partir
deste trabalho, conclusdes finais sobre os resultados da abordagem proposta e, por
fim, apresentar possiveis melhorias e trabalhos futuros.

5.1 Consideracoes Finais

Neste trabalho, abordamos como um programa sequencial em Java pode ser
transformado em um paralelo automaticamente, através das leis algébricas. Em
nosso trabalho foi visto que a utilizacdo de tal transformacéo automatizada, com leis
algébricas aplicadas em Java, se mostrou bastante complicada. A estrutura dos
codigos de entrada facilitou o trabalho de transformacdo, assim, trabalhar com
cadigo de forma controlada, facilitou a automacédo da mesma, mas que de qualquer
forma, vicia a implementacéo, de acordo com o estudo de caso.

Dentro dos estudos de caso, com o algoritmo de encriptacdo e decriptacao
IDEA, e o de célculo das séries de Fourier, foram comparados os resultados de
speedup e tempo de execugao, as propostas implementadas manualmente, tanto as
providas pelo JGB, como seguindo a mesma abordagem desse estudo, através de
leis algébricas. Como foi visto, nossa proposta teve um pior desempenho com
relacdo as duas propostas manuais apresentadas, mas teve um resultado
significante com relacdo a proposta sequencial do algoritmo. Vale salientar, que os
testes foram efetuados limitando o niumero de threads a serem executadas, e que
com um maior numero de threads possivelmente resultados melhores seriam
alcancados, mas nao traria a mesma visibilidade, ja que a forma sequencial nao teria

proveito de tal nimero de threads.

34

5.2 Trabalhos Futuros

A exploracdo da proposta através do parser foi uma das muitas abordagens
que poderia ter sido levada a diante para desenvolver uma solucdo para o estudo.
Essa abordagem garante uma customizacdo, que talvez outras ndo nos desse em
tdo pouco tempo, porém o formalismo alcancado ainda ndo € o desejado para o
estudo.

A extensibilidade da solucdo é um ponto que deve ser seguido como guia
para visar as pesquisas futuras, pois € algo que é almejado na implementacéo de
uma solucdo automatizada, partindo de antem&o com estudos de caso. Porém, que
idealmente seja extensivel inicialmente para algoritmos que tenham caracteristicas
semelhantes aos estudos de caso, e futuramente, abranger um maior nimero de
tipos de algoritmos. Trabalhar com correcbes e o melhoramento do algoritmo, além
desenvolver uma nova alternativa mais formal, para ser comparada com a

desenvolvida nesse estudo, sdo possiveis pesquisas futuras.

Linguagem formal como Circus [22], fornece um melhor mecanismo para se
trabalhar com transformacdes. Semelhante a isso foi feito com OhCircus [23],
trabalhando-se com conceitos como engenharia de modelos, onde se faz uso se
diversas ferramentas auxiliares, que ajudam na verificagdo da consisténcia e
corretude dos modelos. Como visto na sec¢éo 4.1., uma das ferramentas, o xtext, nos
da suporte na criacdo de modelos, enquanto outra ferramenta chamada ATL, faz a
descricdo e automacéao das regras de refinamento. Todas essas ferramentas podem
ser integradas ao Eclipse Modeling Framework (EMF), que € uma plataforma que
auxilia o desenvolvimento de tais modelos, de aplicagbes envolvendo modelagem de

dominio especifico (MDE).

Com trabalhos ja feitos utilizando essa abordagem, obtendo sucesso com tal
formalismo, e com o crescimento da utilizagao de linguagens formais como Z e CSP,
nos leva a crer que 0 prOXimo passo seria partir para uma abordagem utilizando
refinamentos formais, que permitem a criagdo de sistemas ditos corretos por

construcao.

35

Bibliografia

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

R. W. Hockey and C. R. Jesshope, “Parallel Computer,” 1988.

R. N. Ibbett and N. P. Tophan, “Architecture of High Performance Computers
II,” pp. 1-5, 83-108, 141-68, 1989.

D. KIRK and W. HAW, “Programming Massively Parallel Processors, A Hands-
on Approach”, 2010.

H. SUTTER and J. LAURUS, “Software and the Concurrency Revolution,” p.
54-62, 2005.

B. BRADEL, J. BRADEL, and S. TAREK, “Automatic trace-based
parallelization of java programs,” In ICPP ’07: Proceedings of the 2007
International Conference on Parallel Processing, p. 26, Washington, DC, USA,
2007. IEEE Computer Society., 2007.

B. CHAN and S. TAREK, “Run-time support for the automatic parallelization of
java programs,” pp. 91-117, 2004.

P. FELBER, “Semi-automatic parallelization of java applications,” In Robert
Meersman, Zahir Tari, and Douglas C. Schmidt, editors, CooplS/DOA/OD-

BASE, volume 2888 of Lecture Notes in Computer Science, pp. 1369-1383,
2003.

M. K. Chen, “The Jrpm System for Dynamically Parallelizing Java Programs
Kunle Olukotun,” June, p. 9-11, 2003.

R. M. Duarte, “Parallelizing Java Program Using Transformation Laws,” MSc
thesis, CIn, UFPE, 2008.

G. Almasi and A. Gottlieb, “Highly Parallel Computing,” Benjamin/Cummings
Publishing Company Inc., 1994.

R. H. PERROTT, “Parallel Languages and Parallel Programming,” Parallel
Computing 89. North-Holland: Elsevier Science Publishers B.V., pp. 47-58,
1990.

F. C. MOKARZEL and J. PANETTA, “Reestruturacdo Automatica de
Programas Sequenciais para Processamento Paralelo,” Il Simpaosio Brasileiro
de Arquitetura de Computadores - Processamento Paralelo (Il -SBAC-PP),
1988.

36

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

G. Amdahl, “Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities,” AFIPS Conference Proceedings, pp. 483-485,
1967.

J. Kwiatkowski and R. lwaszyn, “Automatic Program Parallelization for
Multicore Processors,” 2002.

D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java code for
concurrency via concurrent libraries,” 2009 IEEE 31st International Conference
on Software Engineering, pp. 397-407, 2009.

H. C. A. R. et al., “Laws of programming,” Commun. ACM, pp. 672-686, 1987.

A. Sampaio and P. Borba, “Transformation laws for sequential object-oriented
programming,” In Lecture Notes in Computer Science : Refinement Techniques
in Software Engineering, pp. 18-63, 2006.

A. Garrido and J. Meseguer, “Formal speci cation and veri cation of java
refactorings,” SCAM, pp. 165-174, 2006.

J. et al. BEZEVIN, “Bridging the MS/DSL Tools and the Eclipse Modeling
Framework,” ATLAS Goup.

B. Schneier, “The idea encryption algorithm,” Dr. Dobb’s Journal, pp. 50-56,
1993.

L. A. Smith, J. M. Bull, and J. Obdrzalek, “A parallel java grande benchmark
suite,” In Supercomputing '01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, 2001.

A. Cavalcanti, A. Sampaio, and J. Woodcock, “A United Language of Classes
and Processes,” In St Eve: State-Oriented vs. Event-Oriented Thinking in Re-
guirements Analysis, Formal Specification and Software Engineering, Satellite
Workshop at FM’03, 2003.

P. R. G. Antonino, “Transformagdes Automatizadas para Herancga de
Processos em OhCircus,” BSc, 2011.

37

