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Resumo

A porcentagem de funcionalidades fornecidas através de soft-
ware pelos mais diversos dispositivos é cada vez maior. Essa
tendéncia tem tornado os softwares maiores e mais complexos.
Em contrapartida, a maior quantidade (de linhas) de cédigo
gera um aumento na probabilidade de falhas sendo propagadas
nas varias fases do desenvolvimento. E comum ainda que parte
dessas funcionalidades seja implementada de maneira concor-
rente, seja visando melhor desempenho ou pela necessidade de
interacao com o usuario ou com outro sistema, por exemplo.
O problema é que a habilidade humana e os testes de soft-
ware mais comuns sao normalmente insuficientes para verificar
a presenca de falhas de concorréncia. Tendo em vista essa di-
ficuldade de verificagdo, este trabalho propoe uma traducao
direta do c6digo de maquina para especificagoes CSP (Com-
municating Sequential Processes), permitindo a andalise formal
de codigo dessa natureza. Foram definidos dois conjuntos de
regras de mapeamento: gerais e de instrucdo. As regras fo-
ram, entao, aplicadas sobre o cédigo x86 de dois estudos de
caso escritos em C. Em seguida, a andlise com a ferramenta
PAT (Process Analysis Toolkit), que utiliza o dialeto CSP#
e permite que sejam feitas verificagoes da especificagao, tais
como deadlock-free e asser¢oes LTL (Linear Temporal Logic)
obteve resultados satisfatorios, identificando corretamente os
problemas conhecidamente nos sistemas verificados.

Palavras-chave: CSP, verificacao formal, Assembly, deadlock.



Abstract

The percentage of functionalities provided by software for vari-
ous devices is increasing. Due to this tremb, software has also
become something bigger and more complex. However, more
(lines of) code produce a higher probability of faults being pro-
pagated in the different stages of development. It is also com-
mon that some of these functionalities get implemented con-
currently, either to improve performance or to provide clean
interaction with the user or another system, for example. The
problem is that human skills and most common software tes-
ting technics are usually not sufficient to verify the presence of
concurrency failures. Given this gap in the verification, this pa-
per proposes a direct translation of the machine code into CSP
(Communicating Sequential Processes) specifications, enabling
the formal analysis of such code. Two sets of mapping rules
were defined: general rules and instruction rules. The rules
were then applied on the x86 codes from two case studies writ-
ten in C. After that, the formal analysis was performed with
the PAT (Process Analysis Toolkit), which uses the dialect
CSP# and allows some assertions about the specification, like
deadlock-free and LTL (Linear Time Logic) assertions obtained
satisfactory results, correctly identifying the problems known
to exist in the verified systems.

Keywords: CSP, formal verification, Assembly, deadlock.
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1 Introducao

A dependéncia por software nos mais diversos dispositivos computacionais encontra-
dos no mercado vem crescendo notadamente. A miniaturizacdo de componentes eletrd-
nicos permitiu embuti-los nos dispositivos em maiores quantidades, fornecendo maior fle-
xibilidade para o desenvolvimento de funcionalidades antes impensadas ou impraticaveis

devido a complexidade para construcao diretamente em hardware.

Carros, por exemplo, carregam consigo dezenas de ECU’s (Electronic Control Units),
que sao unidades eletronicas de controle, responsaveis por diversas funcionalidades ofere-
cidas através de software. Tais unidades estao presentes até nos modelos mais simples e

algumas podem ainda trabalhar em rede (CHARETTE, 2009).

O cenario se repete em outras areas. As aeronaves militares, por exemplo, apresenta-
ram um notavel crescimento no percentual de funcionalidades providas por software para
seus pilotos nas ultimas décadas. Como mostra a Figura 1, o caca F-4, no ano de 1996,
dispunha menos de 10% delas através de software. Ja no F-22, em 2000, esse nimero

alcangava os 80% (DVORAK; LYU, 1996).

Figura 1. Crescimento de funcionalidades providas por software
[Fonte: Adaptado de Dvorak e Lyu (1996)]
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Entretanto, prover mais funcionalidades através de software implica em um aumento

da quantidade de linhas de cédigo. Essas, por sua vez, ocasionam acimulo e propaga-
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¢ao de falhas conforme se avancga nas varias fases do desenvolvimento: levantamento de
requisitos, modelagem, implementacao e testes. Estatisticamente, em um processo de
desenvolvimento bem controlado de larga escala, ¢ comum assumir que havera de 0,1 a 1
defeito residual para cada mil linhas efetivas de codigo, excluindo comentarios e linhas em
branco (DVORAK; LYU, 1996). Logo, principalmente quando aplicado a sistemas criticos,
como € o caso dos freios ou dos airbags de um carro, é bastante importante que essa taxa

seja reduzida ao minimo possivel.

1.1 Qualificacao do Problema

Diferente dos métodos formais, os modelos utilizados na engenharia de software con-
vencional nao fornecem uma maneira sistematica de especificar, desenvolver e verificar

artefatos de software (WING, 1990).

No que diz respeito a verificagao, mesmo passando por testes de caixa-branca, testes
estruturais que buscam problemas logicos diretamente no coédigo fonte e fluxos gerados por
ele, é possivel que outros problemas, como os associados a condigdes de corrida (WING,
1990), passem despercebidos. Isso acontece por que esse tipo de teste, a priori, nao

considera as decisoes de escalonamento feitas pelo processador.

Aquela, porém, é apenas a maneira convencional de fazer a verificagdo de software.
Outra maneira ¢é a utilizacao de métodos formais. Nao tao difundida pela dificuldade de
aplicacao em sistemas grandes e complexos; e pela baixa oferta de mao-de-obra especia-

lizada (WING, 1990).

Um método é formal se tem uma solida base matematica, tipicamente provida por uma
linguagem de especificagao formal. Com ele é possivel avaliar ambiguidade, completude e
consisténcia de um sistema — nao necessariamente computacional. Além disso, devido a

essa base, fornece meios de provar a corretude do sistema modelado (WING, 1990).

Em particular, a linguagem CSP (Communicating Sequential Processes) foi concebida
para descrever sistemas de componentes que interagem entre si. Tais componentes, ou
processos, sao considerados de forma independente e possuem interfaces, pelas quais eles
interagem com o ambiente (SCHNEIDER, 1999). Através de CSP, é possivel descrever
todas as combinagoes de processos sendo executados sequencialmente, paralelamente ou
concorrentemente. Contudo, a adocao de linguagens formais tem certa resisténcia; uma
vez que as equipes de desenvolvimento, normalmente, nao estao familiarizadas com seus

aspectos.
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A descricao formal de modelos CSP passivel de processamento computacional é possi-
bilitada por dialetos que utilizam caracteres apropriados e nota¢des um pouco diferentes
da notacgao tradicional, como CSP#, que é processado, simulado e verificado através da

ferramenta PAT (Process Analysis Toolkit).

Alguns autores ja estudaram e criaram meios de atacar esse problema de verificagao
de sistemas concorrentes. Lima (2011) propds um mapeamento para andlise de c6digos
concorrentes em Java. Em seu trabalho, o mapeamento se dava de instrugoes do bytecode
Java para CSP#, pois o escalonamento de threads, feito pela JVM (Java Virtual Machine),
se da neste nivel. Porém, em algum ponto da execucao, o bytecode seré traduzido para
c6digo de méaquina nativo, pois é o que processador entende. Logo, o mapeamento de

instrugoes tornaria o mapeamento mais abrangente.

Ja a solugdo de Kleine et al. (2011), parte de c6digos de baixo nivel escritos para uma

maquina virtual especializada, transformando-os em cédigo CSP;(Machine ReadableCSP).

Entretanto, a abordagem com &lgebra de processos nao é a tunica possivel. Maus,
Moskal e Schulte (2008) propuseram a verificagao de assembler x86 decorado através de
tradugoes subsequentes até chegar a um modelo de verificagao baseado em um conjunto
de férmulas de primeira ordem e uso de um solucionador SMT (Satisfiability Modulo The-
ories). Porém, quando mal especificadas, suas verificagdes podem ser tarefas indecidiveis,

ou seja, nunca terminam.

Entao, o problema de pesquisa deste trabalho é: como gerar automaticamente

especificagoes CSP a partir de cédigo Assembly?

1.2 Objetivos

O objetivo principal deste trabalho é propor mapeamentos de cédigo Assembly para
um modelo formal CSP que simule o funcionamento do sistema computacional visando
automatizar a verificagdo da presenca, ou auséncia, de falhas decorrentes do uso da pro-

gramacao concorrente oferecida pelo sistema operacional.

1.2.1 Objetivos Especificos

e Definir regras de mapeamento gerais, que modelardo o funcionamento do sistema

computacional e caracteristicas de concorréncia;

e Definir regras de nomenclatura, que atribuirdao nomes aos elementos do cédigo tra-
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duzidos para CSP;

e Definir regras de mapeamento das instrugoes, que transformardao o Assembly em

elementos CSP equivalentes;

e Analisar utilizando PAT a auséncia de deadlocks e a nao-terminacao.

1.3 Resultados e Impactos Esperados

O resultado esperado deste trabalho é um conjunto de regras de mapeamento de

c6digo Assembly para uma especificacao formal equivalente em CSP#.

Espera-se que a transformacao, e posterior verificacao formal, obtida pela aplicacao
de tais regras, fornega aos desenvolvedores de software uma maneira efetiva de reduzir a
quantidade de falhas de um programa antes de sua implantagdo em ambiente de produgao.
Por ser automatizado e nao exigir muita profundidade de conhecimento acerca de métodos
formais, também é esperado que a resisténcia atribuida a utilizacao desta solucao seja

menor do que a de outras abordagens.

1.4 Estrutura da Monografia

Além deste capitulo, o trabalho esta dividido em mais quatro capitulos:

e Capitulo 2 - Referéncial Tedrico: descreve conceitos usados como base para o desen-
volvimento do trabalho. Contém informagoes sobre os fundamentos de CSP, suas
ferramentas e dialetos, 16gica temporal, Assembly, ambiente de execucdo e progra-
macao concorrente. Além disso, discute solugoes diferentes em trabalhos escritos

por outros autores.

e Capitulo 3 - Método de Pesquisa: expoe de que maneira foi realizado o estudo,
a definicdo dos exemplos, a extracao das regras de mapeamento e a andlise dos

resultados.

e Capitulo 4 - Resultados: apresenta o conjunto de regras para traducao de codigo

x86 assembler em comandos CSP# e a aplicagdo do mesmo nos exemplos definidos.

e Capitulo 5 - Consideracoes Finais: analisa o impacto dos resultados obtidos e cita

possiveis trabalhos futuros.



2 Referencial Teorico

Neste capitulo é apresentada a base tedrica necessaria ao entendimento de se¢oes pos-
teriores deste trabalho. Aqui sao discutidos os fundamentos de CSP, as particularidades
de CSP,; e de CSP+# , o framework PAT, alguns conceitos de concorréncia, o codigo de

maquina e a manipulacao de threads em C no ambiente Windows.

2.1 Conceitos Chaves

2.1.1 CSP

A linguagem formal CSP impde uma maneira de analisar o mundo através da especi-
ficacao de composicoes e interacoes entre sistemas independentes. Esse nivel de abstracao
permite que CSP consiga representar nao apenas sistemas computacionais, como qualquer
sistema de uma maneira genérica. Por exemplo, podem-se considerar os departamentos
de uma empresa como subsistemas independentes onde haja certa necessidade de comu-

nicacao entre eles.

O propésito final de CSP é prover uma visao diferente para a andlise e a especifica-
¢ao das diversas possibilidades de intera¢ao entre esses componentes (SCHNEIDER, 1999).
Sendo o processo e o evento os dois mais basicos deles. O primeiro pode ser pensado como
uma caixa preta que fornece interfaces de entrada e de saida. Por exemplo, considerando
uma cafeteira simples que disponibiliza dois tamanhos de café como um processo, tem-se
os botoes “Longo” e “Curto” como interfaces de entrada e a torneira como a de saida.
Nesse caso, o processo “Cafeteira” omite processos internos a ele como o aquecimento da

agua e a coagem do café.

Ja um evento descreve uma acao atomica dentro de um processo, uma transicao entre
seus estados. A interface de um processo é descrita por um conjunto desses eventos.
Portanto, no exemplo da cafeteira a interface pode conter os seguintes eventos: apertar

botao “Curto”; apertar botao “Longo”; despejar café longo; e despejar café curto.
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2.1.1.1 Transicoes

A semantica operacional de CSP define como seu interpretador deve executar as
devidas transigoes entre processos. Por exemplo, tomando um processo definido por
P =a — P’, a tnica acao possivel inicialmente é o acionamento do evento a. Essa execu-
cdo pode ser descrita por (a — P') % P’. O préximo passo P, entdo, seguiria o mesmo

pensamento a partir do processo resultante até que a execucao termine.

2.1.1.2 Términos

Existem dois processos especiais que indicam o término da execucao de um dado
processo. Um deles é STOP, cujo conjunto de eventos de transicdo é vazio, ou seja,
quando se chega a ele, nao é possivel fazer nenhum progresso na execucao. O outro é
denominado SK P, que indica uma terminacao com sucesso. Este, é executado gerando

o evento 4/, isto é, SKIP Y STOP.

2.1.1.3 Pré-fixo

O conjunto de eventos externos de uma especificagado em CSP é denotado por 2. Dado
um processo P, se a € ¥ entdo pode-se escrever um processo em que a — P (leia-se a
entdo P). Como a é o tinico evento habilitado para tal processo, sua execucao é descrita

por: (a — P) % P.

Considerando o caso de uma maquina copiadora que funcione apenas uma vez pri-
meiramente digitalizando o documento para depois imprimi-lo, tem-se o processo descrito
em (2.1), cuja interpretagdo passa por (2.2) e (2.3). Inicialmente (2.2), apenas o evento
digitalizar estd habilitado. Num segundo momento (2.3), o tunico evento habilitado é
TMprimar.

COPIADORA = digitalizar — imprimir — STOP (2.1)

)) digitilifar (

(digitalizar — (imprimir — STOP imprimir — STOP) (2.2)

(tmprimir — STOP) M STOP (2.3)

2.1.1.4 Recursao

A recursao em CSP é usada para descrever processos que podem rodar indefinida-

mente. Por exemplo, um abajur que ¢é ligado diretamente a tomada apresenta apenas dois



2.1 Conceitos Chaves 7

possiveis estados. Sua execucao — que passa por (2.5) e (2.6), depois volta a ser (2.4) —

nunca termina.

ABAJUR = ligar — desligar — ABAJUR (2.4)
(ligar — (desligar — ABAJUR)) lgay (desligar — ABAJUR)) (2.5)

d

(desligar — ABAJUR)) “““%" ABAJUR (2.6)

2.1.1.5 Eventos compostos

Mesmo sendo fendmenos atomicos, os eventos de CSP sao capazes de carregar pedagos
de informagao se utilizando de certa estrutura. Existem dois tipos de construgao que
resultam na composicao de eventos. O mais simples deles é unir um evento simples com

[Tk

uma informagao através do operador “.”, por exemplo, escolher.longo e escolher.curto no

caso da cafeteira.

Outra maneira é utilizando canais de comunicacéo. E possivel definir um conjunto de
valores possiveis na leitura e escrita de um canal declarando explicitamente esse tipo. Por
exemplo, se escolher fosse especificado como um canal, cujo tipo fosse T' = {longo, curto},
entdo o conjunto {escolher.t|t € T} seria o conjunto de eventos associado a este canal

(SCHNEIDER, 1999).

Nao ha limite tedrico para a quantidade de vezes que um evento pode ser composto
pelo operador de composicao, mas ha situagoes em que a quantidade de configuracoes
possiveis impactam na quantidade de estados possiveis e, portanto, na verificacdo do

modelo; ja que se trata de um produto cartesiano entre os tipos compostos.

2.1.1.6 Entrada e saida em canais

A escrita e leitura de valores nos canais é feita, respectivamente, com os operadores
“1” e “?”. Por exemplo, um BUFFER de apenas uma posi¢ao pode dispor dos canais
entrada e saida, ambos do tipo ALCANCE = {0,1,2} descrito por (2.7). Depois de

recebido como entrada, o valor v é escrito no canal saida, disponivel para leitura.

BUFFER = entrada?v — saidalv — BUFFER (2.7)
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2.1.1.7 Escolha

H& duas maneiras de inserir uma escolha entre processos que desencadeiam diferentes
fluxos de execugao. Sao elas a escolha externa e a escolha interna. A primeira, denotada
por PiOP, espera que o ambiente, através do proximo evento executado, decida qual dos
processos tomara o controle. Ha mais de um evento na interface dessa escolha, porém

todos eles exclusivamente pertencentes a interface de um dos processos.

Ja a segunda, denotada por P, P,, toma essa decisao internamente ao processo e sem
a influéncia do ambiente. Ao entrar nele, uma transicao silenciosa acontece decidindo qual
entre os processos seguird sua execucao. Portanto, enquanto o primeiro tipo de escolha é

deterministico, a escolha interna é nao-deterministica.

2.1.1.8 Alfabeto

O alfabeto de um processo P;, denotado por a(P;), é o conjunto de todos os eventos
descritos por esse processo direta ou indiretamente, através das possiveis combinagoes dos

canais de comunicag¢ao. Utilizando o exemplo do BUF F'ER, escreve-se:

a(BUFFER) = {entrada.0, entrada.l, entrada.2, saida.0, saida.1, saida.2} (2.8)

2.1.1.9 Paralelismo

Existem dois operadores em CSP que permitem descrever o comportamento paralelo
de processos. Um deles é o paralelismo alfabetizado, ou com alfabetos, cujo operador é
“I|”. Nesse tipo de paralelismo é necessério especificar como os processos irao interagir.

Isso ¢ feito fornecendo a interface dos processos como em (2.9).

Piiaperllfan) Po (2.9)

Sempre que se chegar a um ponto da execugao onde haja um evento que pertenca a
ambas as interfaces listadas no operador, tal evento s sera habilitado se os dois processos
o tém habilitado simultaneamente. A execucao desse evento (2.10) faz ambos os processos
prosseguirem.

(@ = P))iapeillany(@ = Pa) = Plroyallias Ps (2.10)

O segundo operador de paralelismo é chamado interleaving, simbolizado por “|||”.

Ao contrario do anterior, este operador permite que os processos executem de maneira
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completamente independente uns dos outros (ROSCOE; HOARE; BIRD, 1997), incluindo
casos onde os eventos dos processos possuam 0 mesmo nome, pois o evento sera executado

por apenas um dos deles. Assim, dado que P, % P{, é possivel ober:

Pi||Py = P{||| Py (2.11)

2.1.1.10 Propriedades

Normalmente, depois de elaborada uma especificagao CSP, deseja-se fazer algumas

verificagdes acerca de sua corretude.

A ferramenta PAT oferece a verificacao das seguintes asser¢oes sobre o LTS (Labeled
Transition System — representacao interna dos modelos de entrada durante execucao e

verificacdo) de uma especificacio CSP# (SUN; LIU; DONG, 2011):

e Deadlock-freedom (Auséncia de deadlock): Verifica se nao existem estados que nao

tenham transigoes possiveis — excetuando-se o estado de terminacao com sucesso.

e Divergence-freedom ou Livelock-freedom (Auséncia de livelocks): Verifica se um pro-
cesso nao pode realizar transigoes internas — transigoes que nao sao visiveis — para
sempre, sem exercer nenhuma transicao externa. Deve-se notar que esta ¢ uma

nocao formal e especifica de livelock.

e Deterministic (Deterministico): Checa se ndo existe algum estado em que um mesmo

evento (dois ou mais eventos de mesmo nome) pode levar a dois estados diferentes.
e Nonterminating (Intermindvel): Verifica se nao existe algum estado de terminagao.

e Reachability (Alcangédvel): Visita os estados a procura de um em que o objetivo

desejado ¢ satisfeito.

2.1.2 FDR e CSPy,

FDR (Failures Divergences Refinement checker) ¢ uma ferramenta capaz de fazer
anslise automatica de processos CSP. E também utilizada na verificacdo de parte das
propriedades citadas anteriormente (SCHNEIDER, 1999). Porém, sua func¢ao principal é
de examinar se um processo CSP refina ou nao outro. O refinamento permite saber se

um processo reflete as propriedades de outro sendo que escrito de forma diferente.
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Apesar das combinacoes entre processos CSP ter sido mostrada até aqui através de
seus operadores algébricos, a automatizagao de sua analise exige que a descricao do mo-
delo se pareca mais com uma linguagem de programacgao a fim de ser entendida pelo
computador. Além dos operadores precisarem de uma versao textual, a estruturacao do
contetudo do arquivo, a declaragao de canais e os tipos de dados passados por eles também

devem ser padronizadas (FSE, 2010).

Para isso FDR utiliza o dialeto CSP,; (Machine-Readable CSP), que é um padrao

desenvolvido independentemente — apesar de ter sido primeiramente utilizada por FDR.

2.1.3 PAT e CSP#

PAT, ferramenta utilizada na elaboracao deste trabalho, é um framework para cri-
acao, simulacdo e verificacdo de sistemas concorrentes, probabilisticos e de tempo real.
Interessa para este trabalho apenas o primeiro deles, pois utiliza a linguagem CSP#, que
mescla parte do formalismo de CSP apresentado por Hoare (1985) com facilidades de uma

linguagem imperativa, como atribuicdo e compartilhamento de memoria.

Alguns dos diferenciais do CSP# sao: varidveis compartilhadas; comunicacao assin-
crona através de canais de tamanho definivel; execucdo atémica de processos; suporte a
arrays e outros tipos nao-primitivos como listas e pilhas; suporte a programacao impe-
rativa interna aos eventos; possibilidade de incluir bibliotecas compiladas em C# com
definigoes de tipos e métodos (SUN; LIU; DONG, 2011). Apesar de aparentemente exclusi-
vas, parte dessas funcionalidades é passivel de ser desenvolvida no CSP,, tradicional, mas

pode tornar o modelo nao escaldvel ou de pior legibilidade (CARVALHO et al., 2011).

Diferentemente da especificacao do proprio CSP, CSP# nao assume um ambiente, o
que acaba influenciando na verificagdo de modelos. Por exempo, o Cédigo 2.1 mostra um
caso em que o processo P espera um valor de entrada, mas como nao ha nenhum outro
processo que escreva neste mesmo canal, P nao é livre de deadlock. Em CSP (e em CSP )

isso nao é verdade por que o ambiente estaria disposto a escrever no canal entrada.

Cédigo 2.1: Exemplo mundo fechado de CSP#

channel entrada 0; channel saida O0;

P() = entrada?valor —> saida!valor — P();
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2.1.4 Loégica Temporal

PAT permite fazer asser¢oes formuladas em légica temporal linear (LTL) acerca da
especificagao CSP#. Na logica classica, a avaliacao de formulas se d4 em um estado fixo
de mundo, enquanto que na temporal, em um conjunto de estados (FISHER, 2011). Para
descrever essa navegacao pelo tempo no modelo, a légica temporal extende os operadores
classicos. Por exemplo, a Equagao 2.12 diz que x V y é satisfeito no estado atual, mas que

x Ay é satisfeito no proximo.
(zVy) O (xAy) (2.12)

Isso seria valido, por exemplo, em um sistema que podesse ser representado por um

LTS, como mostra a Figura 2:

Figura 2: Exemplo de uso de LTL em um LTS

d.

(a)x é satisfeito; (b) y é satisfeito; (c) x Ay é satisfeito.

P ,

Tabela 1: Operadores LTL
[Fonte: Adaptado de SUN, LIU e DONG (2011)]

Textual \ Simbdlico \ Explicacao

Xo Oo ¢ deve ser satisfeito no préximo estado

G¢ ou [|¢ Oo ¢ deve ser satisfeito em todos os estados subsequentes
Foou<>o | Oo ¢ deve ser satisfeito em algum estado subsequente

YU¢ Yup 1) é satisfeito até que ¢ seja satisfeito

YR YR ¢ é satisfeito até o primeiro estado em que ¥ é satisfeito

Sao aceitos como entradas para verificagoes LTL em PAT: eventos, proposi¢oes pré-

definidas e expressoes com o conjunto extendido de operadores (SUN; LIU; DONG, 2011).

2.1.5 Ambiente de execucgao

Compiladores de linguagens de programacao que apresentam um nivel de abstracao
mais alto que o cédigo de maquina nativo, como C, devem trabalhar em conjunto com o

sistema operacional para criar um ambiente de execugao apropriado.

Tal ambiente é responsavel, por exemplo, pelo posicionamento e esquema de alocacao

de variaveis descritas no codigo, pela passagem de parametros, pelo mecanismo de acesso
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as variaveis, pela ligacao entre os procedimentos, pelos dispositivos de entrada e saida,

enfim, convengdes utilizadas na execu¢ao (AHO et al., 2006).

2.1.5.1 Armazenamento

A Figura 3 mostra uma subdivisao da memoria em diferentes areas feita por um
compilador de uma “linguagem de von Neumann”. Assim conhecida por trabalharam
em modelos computacionais baseados na arquitetura de von Neumann; cuja principal
caracteristica é de manter em memoria tanto o programa, quanto os dados durante a

execucao.

Figura 3: Organizacao da memoria
[Fonte: Adaptado de Aho et al. (2006)]

® Enderegos menores

Cddigo

Dados estaticos

Heap
b

Memoria livre

(I |

Pilha 1 Enderecos maiores

E importante notar como a parte livre da memoéria é compartilhada pela heap e pela

pilha. Essas areas crescem em diregoes opstas enquanto o programa esta sendo executado.

Normalmente, o armazenamento nessas areas esta relacionado a diferentes finalidades:
na pilha ficam variaveis de escopo local e dados necessarios a ligagao entre procedimentos;
na heap, as variaveis que ocupam espaco sob demanda e podem durar além da vida de

um escopo (AHO et al., 2006).

2.1.5.2 Pilha de execucao

A pilha de execugao é responsavel, principalmente, por viabilizar a criagdo de stack
frames, quadros de pilha, que representam os diferentes escopos de um programa, com o
auxilio de dois registradores: o EBP (Eztended Base Pointer), que aponta para o enderego
da memoria onde se encontra a base atual da pilha; e o ESP (Extended Stack Pointer), que
aponta para o seu topo. O prefixo “FEztended” dado aos registradores no assembler x86

denota que estes possuem 32 ao invés de 16 bits. A medida que os dados sdo empilhados,
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o ESP ¢é decrementado e passa a apontar para um endere¢o de memoria de numeracao

menor.

No decorrer de uma execucao, sao empilhadas tanto variaveis locais como parametros
para outros procedimentos e conteido de registradores, por exemplo, o EIP (Ezxtended
Instruction Pointer), também conhecido por PC (Program Counter). Os dois ultimos
casos, normalmente, sao decorréncia da chamada e retorno de procedimentos, pois o
contetido dos mesmos ¢ alterado com a mudanca de escopo e deve ser restaurado ao

estado anterior.

Nao ha uma divisao exata de como serao divididas as tarefas entre o procedimento
chamador e o procedimento chamado. Pode haver variacao até mesmo para diferentes

implementagoes de compiladores de uma mesma linguagem (AHO et al., 2006).

As convengoes utilizadas pelo GCC (GNU Compiler Collection) na plataforma Win-

dows x64, em que este trabalho foi elaborado, sao as seguintes:

e Os registradores EBX, ESI, EDI, EBP, DS, ES e SS nao podem ter seu valor alte-
rado dentro de uma chamada. Isso significa que, se usados, seus valores devem ser

restaurados antes de retornar;

e Inteiros com tamanho de até 32 bits e ponteiros sao retornados através do registrador

EAX (Eztended Accumulator register);

e Valores de ponto flutuante sao retornados no registrador ST0 — registradores x87
(subconjunto de instrugoes relacionadas a operagoes com ponto flutuante que origi-
nalmente extendiam as x86) que vao de ST0 a ST8 e possuem 80 bits de armazena-

mento;

e Valores do tipo long long int sdo retornados nos dois registradores EDX ( Extended
Data register) e EAX, respectivamente contendo suas partes mais e menos signifi-

cativas;

e O retorno de estruturas por valor pode causar erro de execugao se houver mais de

uma definicdo desse tipo;

e Os parametros sao passados da direita para a esquerda;

O endereco de retorno, passado pela pilha, fica na posicao apontada por ESP.
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Além dessas, a linguagem C permite que na declaragao de uma fungao seja explicitado
qual dentre suas possiveis convencgoes de chamada, referentes a passagem de parametros,

sera usada. Ver Tabela 2.

Tabela 2: Convengoes de chamada em C
[Fonte: Adaptado de MSDN?]

Tipo \ Descricao

stdcall | Fun¢do chamada é responsavel por limpar argumentos da pilha. Gera assem-
bly com nome decorado com a quantidade de bytes de seus argumentos.

cdecl Esta é a convencdo padrao para compilagdo de cédigos-fonte escritos em C.
Funcao chamadora fica responsavel por limpar argumentos passados.

fastcall | Os argumentos sdo passados através dos registradores ECX (Extended Count
register) e EDX quando possivel. Gera assembly com nome decorado com a
quantidade de bytes em argumentos. Func¢do chamada fica responsavel por
limpar seus argumentos.

2.1.5.3 Gerenciamento da Heap

A heap é responsavel pelos dados gravados na memoria por tempo indefinido ou até que
sejam explicitamente desalocados. O gerenciador da heap é o subsistema responsavel pelo
uso dessa parte da memoria. Seu trabalho é o de guardar informagoes sobre partes ainda
livres da memoria, distribuindo-as e retomando-as, através de duas fungoes basicas de
alocar e desalocar. Sempre com a preocupacao de minimizar o espago da heap necessario
a um programa e de maximizar a eficiéncia do mesmo. Porém, nem todos os pedidos
de partes da memoria sao do mesmo tamanho e suas devidas liberagoes acabam gerando

espagos vazios que podem nao ser mais preenchidos posteriormente.

2.1.6 Assembly

O desenvolvimento de software é normalmente feito em linguagens de programacao
que fornecem certo nivel de abstragao ao programador; no sentido de que nao é preciso
conhecer a fundo a linguagem de maquina para poder comandéa-la. Isso favorece princi-

palmente a legibilidade, a portabilidade e a manutenabilidade dos programas.

Porém, um computador é, “a grosso modo”, um circuito digital; o que significa que os
dados manipulados por ele sao representados por sinais eletronicos que assumem apenas
dois estados (HENNESSY; PATTERSON; LARUS, 2000). Portanto, o vocabuldrio de uma

maquina esta restrito ao seu conjunto de instrucoes.

'MSDN Calling Convention Topics: http://msdn.microsoft.com/en-us/library/aa278874(v=vs.60)
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Uma instrucao é uma sequéncia ordenada de bits que determina o fluxo dos dados
de entrada fornecidos. Ha varias categorias de instrugoes, dentre elas as aritméticas, as
de transferéncia de dados e as de desvio condicional e incondicional. Normalmente essas
instrugoes estao associadas a um mnemonico que substitui a necessidade de memorizar a

sequéncia de bits, além de servir como um pequeno nivel de abstracao.

2.1.6.1 Instrucoes

As instrugoes na Tabela 3 sdo um subconjunto das instrugoes disponiveis para As-
sembly x86. Todas as instrugoes encontradas nos exemplos apresentados posteriormente

sao listadas.

2.1.6.2 Diretivas

Um arquivo Assembly contém ao menos trés se¢oes nao necessariamente preenchidas:
de texto, de varidveis estaticas inicializadas e nao inicializadas dispostas nesta ordem.
Contudo, tais secoes podem aparecer de maneira alternada, através do uso explicito de

suas respectivas diretivas text, data e bss (Block Started by Symbol).

A diretiva comm, que também aparece nos exemplos deste trabalho, declara e aloca
memoria nao inicializada na se¢ao bss para um simbolo (JURIC; REICHELT; KOFLER, 2003).
Ja a diretiva globl (ou global) torna um simbolo visivel para todos os demais programas
parciais sendo compilados, ou seja, outros objetos assembly poderao acessa-lo pelo seu

nome.

N6 exemplo do Cédigo 2.2 tanto a varidvel a quanto a b ficardao no segmento bss,
mas, por ja ter sido inicializada, b ja sera taxada como global. Enquanto isso, a variavel

estatica c sera posicionada diretamente em data.

Codigo 2.2: Variaveis estaticas em C

¥)

int xa;
int b = 0;

static int ¢ = 1;
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Tabela 3: Instrucgoes Assembly

Mnemonico \ Operacao

mov Move o contetido do primeiro operando para o segundo.

add Adiciona o primeiro operando ao segundo. Guarda o resultado no
segundo.

sub Subtrai o primeiro operando do segundo. Guarda o resultado no
segundo.

mul Multiplica conteido do registrador A (por exemplo, EAX) pelo
unico operando. Guarda o resultado no operando.

imul Mesmo que mul, mas considera sinal.

dec Decrementa o contetido do tnico operando.

inc Incrementa o contetido do tinico operando.

push Empilha o tnico operando e atualiza o registrador ESP.

pop Desempilha preenchendo o contetiddo do tnico operando.

jmp Desvia a execucao, altera o PC, para o endereco do label.

call Executa um push do PC e um jmp com o argumento (label).

ret Desempilha preenchendo o PC, retornando a execucao para o ponto
anterior. H4 um parametro inteiro opcional que quando passado é
somado ao ESP.

leave Move EBP para ESP e desempilha o valor de EBP antigo.

lea Carrega o valor apontado pelo primeiro operando no segundo.

cmp Faz uma subtragao entre os operandos e atualiza o registrador de
flags.

je Desvia para label quando operandos do c¢mp anterior sao iguais.

jne Desvia para label quando operandos do emp anterior sao diferentes.

jg Desvia para label quando o primeiro operando do c¢mp anterior é
maior.

jge Desvia para label quando o primeiro operando do c¢mp anterior é

maior ou igual.

il

Desvia para label quando o primeiro operando do c¢mp anterior é
menor.

jle

Desvia para label quando o primeiro operando do c¢mp anterior é
menor ou igual.

16
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2.1.7 Concorréncia

2.1.7.1 Condigoes de corrida

Alguns sistemas computacionais possibilitam que multiplas a¢oes sejam realizadas de
forma independente em cima de um mesmo recurso. Se ao menos uma dessas agoes for de

escrita em memoria compartilhada, a integridade desses dados pode ser comprometida.

Condigoes de disputa sao falhas dinamicas, que acontecem em tempo de execugao e
sao dificilmente detectados diretamente no codigo fonte (HENNESSY; PATTERSON; LARUS,
2000). Elas sao decorrentes da natureza multitarefa dos sistemas e da maneira como sao

feitos os escalonamentos pelo sistema operacional.

E comum que uma linha de c6digo fonte seja compilada tornando-se mais de uma linha
de codigo de maquina — nivel onde ocorrem as trocas de contexto entre tarefas. Portanto,
nao ha garantias, por exemplo, de que o valor lido e copiado para um registrador em
um momento nao tenha sido alterado imediatamente depois por outra tarefa, gerando

inconsisténcia no dado do registrador.

Um fator atenuante para esse tipo de falha é que o nimero de combinacoes de entre-

lacamento de tarefas que a geram tende a ser relativamente limitado.

2.1.7.2 Regioes criticas

As secbes, ou regides, criticas sao trechos de cédigo em que tarefas acessam dados
compartilhados, ou seja, que podem gerar condi¢oes de disputa. Uma vez identificada,
ha diversas maneiras de evitar esse tipo de problema restringindo o acesso a mesma para

apenas uma tarefa por vez.

De maneira ideal, o acesso controlado a essas regides deve contemplar: a exclusao
mutua, apenas uma tarefa na regiao; a espera limitada, garantindo que uma tarefa nao
esperarda indefinidamente; a independéncia de outras tarefas, pois apenas tarefas que
desejam entrar na regiao critica devem influenciar na decisao de quem tomara o controle; e
a independéncia de fatores fisicos, porque componentes de hardware nao podem influenciar

na decisao (MAZIERO, 2011).
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2.1.7.3 Impasses

O nao cumprimento de todas as condigoes para acesso seguro aos recursos pode levar
o sistema, ou parte dele, a estados de impasse (MAZIERO, 2011). Esses estados sao
conhecidos, de modo generalizado, como deadlocks. Porém, ha diferentes situacoes de

impasse, todas elas impedindo o progresso da execucao de um programa.

O deadlock é, mais especificamente, um caso no qual a tarefa fica bloqueada esperando

a liberacao ou a obtencao de algum recurso para continuar sua execucao.

Ja o livelock, apesar de parecido com o deadlock, apresenta uma caracteristica impor-
tante. Ao invés de estar presa a um estado, a tarefa fica presa a um conjunto de estados

que nunca progride, como em um laco infinito, tentando obter o recurso.

2.1.7.4 Mutexes

Uma das formas de controlar o acesso a segoes criticas de um programa é através
do uso de mutexes. Pois com eles ¢ possivel marcar uma regiao como ocupada ou livre.
Assim, antes de adentrar uma regiao critica, toda tarefa deve, primeiramente, pedir o
travamento (lock) da mesma aquele mutexr e esperar que ele lhe dé permissdao para isso.
Ao terminar de usa-la, o muter deve ser entdo notificado para que se dé chance as outras

tarefas (MAZIERO, 2011).

Na Figura 4 duas threads t1 e t2 fazem requisi¢oes para entrar na regiao critica onde
poderiam, por exemplo, incrementar ou decrementar o valor de uma varidavel comparti-
lhada. Se tal regiao nao fosse protegida, ambas poderiam ler o mesmo valor inicial, mas

apenas a ultima delas a guardar o novo valor aparentaria ter ocorrido.

Figura 4: Funcionamento do Mutex

t1 t2
.. Requisitar
Requisitar g
Usando RC
Esperando
Obter Liberar

Usando RC

Liberar
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2.1.7.5 Manipulacao de Threads em C no Windows

Threads (linhas de execugdo) sdo as menores unidades de processamento escalonéveis
pelo sistema operacional. FElas sdo internas ao escopo do processo para o qual foram
criadas e compartilham os recursos do mesmo, como memoria e sequéncia de instrucoes.
Desta forma, varias linhas de execu¢ao de um mesmo processo rodam de maneira paralela,

podendo gerar condi¢oes de disputa.

A implementacao de threads varia para cada sistema operacional, fazendo com que sua
chamada também tenha particularidades dependentes do mesmo. Para manipula-las no
ambiente Windows é preciso incluir o cabegalho “windows.h”, que inclui, internamente, o

“winbase.h”, onde estao definidas as funcoes da Tabela 4.

Tabela 4: Funcgoes utilizadas por este trabalho

Nome \ Descricao

CreateThread Cria uma thread.

SuspendThread Suspende a execucao de uma thread

ResumeThread Retoma a execucao de uma thread

EzitThread Finaliza uma thread

CreateMutex Cria um mutex

WaitForSingleObject Espera a liberagao de um objeto (e.g. threads, mutezes)
WaitForMultiple Objects | Espera a liberacao de um ou mais objetos

Para criar threads utiliza-se a funcao CreateThread, que possui seis argumentos, sendo
dois deles opcionais e um de saida, como mostra o Cédigo 2.3. A Tabela 5 mostra
algumas das definicoes da API (Application Programming Interface) do Windows que
aparecem nessa assinatura ou que sao usadas nos exemplos do trabalho posteriormente. As
demais fungoes utilizadas neste trabalho podem ser encontradas na Microsoft Development

Network (MSDN), mais especificamente na area de servigos de sistema?.

Cédigo 2.3: Assinatura da funcao Create Thread

HANDLE WINAPI CreateThread (
_ _in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
__in SIZE_T dwStackSize,
__in LPTHREAD_ START ROUTINE IpStartAddress,
___in_opt LPVOID IpParameter,
__in DWORD dwCreationFlags ,
__out_opt IPDWORD lpThreadld);

2MSDN System Services:
http://msdn.microsoft.com/en-us/library /windows/desktop/ee663297(v=vs.85).aspx
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Tabela 5: Tipos definidos na API de C do Windows
[Fonte: Adaptado de MSDN?]

Tipo \ Descricao

HANDLE Manipulador para um objeto. E um tipo definido por
PVOID.

PVOID/LPVIOD Ponteiro para qualquer tipo (ponteiro para void).

WINAPI Convengao de chamada. Sera substituido por stdcall pelo
pré-processador.

DWORD Inteiro sem sinal de 32 bits.

LPDWORD Ponteiro para um DWORD.

SIZE_T Numero méximo de bytes que um ponteiro pode apontar.

LPSECURITY__ATTRIBUTES Ponteiro para estrutura SECURITY__ATTRIBUTES.

SECURITY__ATTRIBUTES Estrutura que define configuragdes de seguranca para obje-

tos criados por algumas fungées como o Create Thread.
LPTHREAD_START_ROUTINE | Ponteiro para funcdo de callback.

INFINITE DWORD méximo (4294967295).

BOOL/BOOLEAN Byte/inteiro sem sinal. Devem ser TRUE ou FALSE.
TRUE Equivalente ao valor 1.

FALSE Equivalente ao valor 0.

NULL Equivalente a \0.

_in[_opt], _out[_opt] Pré-fixos de pardmetros que apenas servem de informacao.

Serao excluidos pelo pré-processador.

2.2 Trabalhos Relacionados

A idéia de utilizar o cédigo Assembly para fazer verificacao de software ja vem sendo
explorada por outros autores. Essa verificagao é bastante desafiadora. Os motivos incluem
a nao-estruturacao do coédigo, a nao utilizacao de tipos de variaveis, o uso de registradores
para guardar tanto valores quanto enderecos de memoria e o fato de que algumas instru-
¢oes podem alterar o estado do processador (MAUS; MOSKAL; SCHULTE, 2008). Esta se¢ao

mostra trés solugdes que, de certa forma, se assemelham com a idéia deste trabalho.

2.2.1 Vx86

Vx86 (MAUS; MOSKAL; SCHULTE, 2008) é uma ferramenta de andlise estética auto-
matica que verifica a corretude de cédigo Assembly x86 da Intel simulando-o em C e
passando por um provador de teoremas. Basicamente o Assembly decorado é traduzido
para um C também decorado que é entendido e compilado pela ferramenta na qual sua

base foi construida, o VCC ( Verifying C' Compiler).

O VCC (DAHLWEID et al., 2009) é capaz de verificar a corretude parcial de cédigo C

decorado. Isso significa que a verificacdo pode nao terminar, é uma tarefa indecidivel, mas

3SMSDN Windows Data Types: http://msdn.microsoft.com/en-us/library/aa383751
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se alguma resposta for retornada entao a condigao de verificagao requisitada foi provada

ou refutada.

Na verdade o VCC também traduz seu cédigo anotado para outra linguagem, a
BoogiePL, que é uma linguagem simples para propoésito de verificacdo de programas ori-
entados a objetos. Essa, por sua vez, traduz as fungdes em conjuntos de condicoes de
verificagdo em ldgica de primeira ordem e usa o solucionador SMT (Satisfiability Modulo

Theories) 73 para provar a validade dessas férmulas.

As propriedades de boa-formacao passiveis de verificagdo sao: seguranca de memoria,
checa se nenhuma funcao tenta acessar enderecos que nao sao conhecidamente validos;
seguranca de aritmética, verifica auséncia de overflows; seguranca de chamada, testa se
a pilha sempre ¢ limpa depois de cada chamada e se os registradores sao devidamente
salvos antes dela; seguranga de interrupcgao, checa se a pilha é limpa depois de processar

a interrupcao por completo.

Apesar de basear-se no VCC, capaz de fazer verificagoes em cima de c6digos concorren-
tes, o Vx86 s6 faz verificagdo de cddigo Assembly garantidamente sequencial. Portanto,
apesar da similaridade com este trabalho em tentar formalizar a verificacdo de cddigo,

Vx86 nao considera o paralelismo.

2.2.2 LLVM2CSP

LLVM (Low Level Virtual Machine) é uma infraestrutura compiladora desenvolvida
para fornecer informagoes de alto nivel para as transformacoes feitas por compiladores
em tempo de compilagdo, ligagdo, execugao e inatividade entre compilagoes (LATTNER;
ADVE, 2004). Por ser livre de linguagem, vem sendo usada por uma variedade cada vez

maior de compiladores.

O LLVM define uma representacao de cédigo abstrata de baixo nivel com conjunto
de instrugoes parecida com a de um RISC (Reduced Instruction Set Computer), mas que
prové informagoes adicionais como tipos primitivos de linguagens de alto nivel, aritmética

de enderecos tipada, manipulacao de excecoes.

Tomando como base a representacao intermediaria de LLVM para c6digos concorren-
tes escritos originalmente em C ou C++, o LLVM2CSP (LLVM to CSP) desenvolvido por
Kleine et al. (2011) é uma ferramenta para LLVM que extrai modelos CSP tanto para
ferramenta ProBE (Process Behaviour Ezplorer) quanto FDR.
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As instrugoes sao traduzidas em processos sequenciais que terminam. A memoria é
dividida em privada e compartilhada e ambas sdo modeladas como processos separados.
E definido também um processo que simula o escalonamento de tarefas, que, em con-
junto com os processos que descrevem o funcionamento da meméria, forma a seméantica

operacional do LLVM em CSP.

O modelo gerado é dividido em trés partes: uma parte especifica da aplicacao, descreve
o comportamento de threads; outra de dominio especifico, que encapsula conceitos de baixo
nivel como escalonamento; e uma tltima especifica de plataforma, que contém o modelo do
hardware. Algumas dessas partes possuem implementacao pré-definida, enquanto outras

tem os parametros ou sao inteiramente geradas pelo LLVM2CSP.

As asser¢oes sobre o modelo podem ser criadas através da prépria decoragao do codigo
C e aparecerao no arquivo CSPj,; final. Com o modelo em maos, é possivel fazer, por

exemplo, verificagdes de refinamento com FDR ou de férmulas LTL com o ProBE.

2.2.3 Mapeamento de Bytecode Java para CSP#

Lima (2011) prop6s um mapeamento de bytecode Java para CSP# no qual o presente
trabalho foi baseado. Sua justificativa para o uso nao do cédigo fonte em si, mas sim do
bytecode gerado pela JVM ¢é de que escalonamento entre as threads em Java se da neste

nivel.

Neste trabalho foram extraidas regras gerais, regras de nomenclatura e regras de
mapeamento de instrugoes a partir de exeperiéncias na tradug¢ao manual de cédigos usados
como exemplos. Um deles continha um problema de condigdo de corrida utilizado como
demonstracao, o qual conseguiu ser detectado com sucesso através da ferramenta de analise

fornecida pelo framework PAT em cima do modelo gerado.

Porém, uma linha de bytecode Java, pode acabar sendo traduzida em mais de uma
linha de c6digo de maquina na hora da execugao. Surgiu, portanto, a preocupagao quanto
ao que aconteceria a validade dessas verificagoes se parte do bytecode analisado fosse com-
pilado pelo JIT (Just In Time Compiler) ao invés de inteiramente interpretado durante

a execucao.

Quando um método codificado em Java é compilado, a JVM alimenta o JIT com o
bytecode gerado. O JIT, entao, procura entender sua semantica e sintaxe para decidir
se aquela parte do codigo sera otimizada e compilada para cdédigo nativo da plataforma

em que a JVM esta sendo executada. Com isso, a maquina virutal Java nao precisard
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passar por todas as fases novamente para executar aquele trecho de c6digo. Mesmo que a
execuc¢ao do mesmo esteja vinculado de alguma maneira pela JVM com o devido bytecode
que o gerou, a manipulacao de threads é uma funcionalidade normalmente provida pelo
sistema operacional, é ele o responsédvel pelas trocas de contexto que acontecem no(s)

processador(es).
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3 Método de Pesquisa

Este capitulo descreve o método de pesquisa utilizado e como foram elaboradas e
executadas as diferentes etapas da confeccao deste trabalho a fim de alcancar os objetivos

descritos no Capitulo 1.

3.1 Qualificacao do Método de Pesquisa

Como pode ser observado no Capitulo 2, a fundamentacao tedrica necessaria para o
entendimento deste trabalho é extensa. Trata-se de uma pesquisa bibliografica, elaborada

a partir de conceitos ja publicados em livros, artigos, manuais e outros.

3.2 Etapas do Método de Pesquisa

Estudo de CSP: Inicialmente foram estudados desde os conceitos mais basicos de
CSP, como eventos e processos, até os operadores de paralelismo que seriam utilizados
neste trabalho, e dois diferentes dialetos: CSP# e CSP,,;. Apés isso, era necessario definir
para qual desses seria feito o mapeamento, ja que suas implementacoes diferem bastante
tanto em sintaxe quanto no préprio funcionamento. Optou-se, entao, por CSP# prin-
cipalmente pela maior simplicidade nos modelos com o uso de operagoes sobre variaveis
compartilhadas. Outro fator que contribuiu para essa escolha foi a conveniéncia de as
ferramentas de verificacao e desenvolvimento serem partes de um framework executado

na mesma plataforma para qual o Assembly seria gerado — Windows.

Estudo sobre compiladores: Nesta etapa foram estudados aspectos do ambiente de
execugao que estao relacionados as decisoes dos compiladores durante a geragao do cédigo
Assembly a partir de arquivos fonte em linguagens de mais alto nivel. Em especial as con-
vengoes de chamada, a alocagao e crescimento de meméria (heap e pilha), a manipulacao

dos registradores EBP e ESP, entre outros.
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Além disso, apesar de o mapeamento ser a partir do Assembly, os exemplos nao sao
escritos diretamente neste nivel, pois é bastante suscetivel a erros de programacgao e dificil
de manter e de corrigir. Portanto, foi estudado o funcionamento basico do GCC para a

geracao desses codigos a partir de fontes desenvolvidos em C.

Estudo de Assembly: Aqui foram estudados as diversas instrucdes responsaveis
pela real execugao do programa. Seu estudo é importante pois cada uma tem um ou mais
comportamentos que devem ser também diferenciados durante o mapeamento. Muitas
vezes esse comportamento altera implicitamente o estado do processador e sem conhecé-

lo nao é possivel criar um modelo que seja fiel a realidade.

Estudo sobre concorréncia: Como cada sistema operacional fornece seus préprios
meios de manipulagdo de tarefas concorrentes, foi preciso estudar a API especifica da
plataforma Windows para desenvolver os exemplos usados no trabalho. Isso inclui prin-

cipalmente a criagao, suspensao e retomada de threads e a criagao e uso de mutezes.

Estudo de Trabalhos Relacionados: Foram estudadas trés solugoes propostas por
outros autores cujos objetivos eram similares ao deste trabalho. Além de servir como
experiéncia adicional acerca dos problemas a serem enfrentados, o estudo permitiu tragar
algumas vantagens e desvantagens de cada solucao, bem como diferencas das mesmas em

relacdo a apresentada aqui.

Definicao dos exemplos de programa concorrente:  Escolheu-se arbitrariamente
dois problemas classicos de concorréncia como exemplos a serem mapeados e analisados
neste trabalho: produtores/consumidores e o jantar dos fil6fos. Ambos foram desenvolvi-

dos em C e apresentam problemas que, quando reproduzidos, os levam a nunca terminar.

Extragao de regras de mapeamento:  As regras foram extraidas tanto da compila-
¢ao de cddigos mais simples — até mesmo nao-concorrentes — quanto de tradugoes diretas
do Assembly dos proprios exemplos. Assim, a partir dos modelos obtidos, tentou-se esta-
belecer padroes de mapeamento que funcionassem de forma a abrangir o conjunto base

desses codigos em sua completude.



3.2 FEtapas do Método de Pesquisa 26

Analise dos resultados:  Apéds a aplicacdo das regras de mapeamento, os modelos
CSP# sao submetidos a ferramenta de analise fornecida pelo PAT, onde sdo testadas as
propriedades: deadlockfree e non-terminating. A primeira verifica se ha ou nao situacoes
que levam a impasses, que impedem a evolucao do estado do programa. A segunda, se o
programa nunca termina sua execucao; havendo ao menos um caso de terminagao, essa
propriedade ¢ falsa, incluindo um caso de deadlock. Foi utilizada também a verificagdo

por assercoes LTL no exemplo dos filésofos.
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4 Resultados

Este capitulo mostra a representacao de uma maquina x86 em PAT e o conjunto
de regras definido por este trabalho para o mapeamento de cédigo Assembly x86 em
especificagoes CSP#. Em seguida, sao mostrados os resultados das analises feitas sobre as
especificagoes, estas obtidas apds aplicacao das regras nos seguintes exemplos: Produtores

e Consumidores e Jantar dos Fildsofos.

4.1 x86 em PAT

Esta secao define a representacdo de uma maquina x86 no ambiente de PAT para

permitir a tradugao e simulagao/verificagdo de cdédigo Assembly.

4.1.1 Modelo de Memodria

A memoria do sistema serd representada por uma matriz (n+1) x m onde n é o nimero
maximo pré-definido de threads permitidos, incluindo a main, e m é o tamanho um maximo
pré-definido daquele fragmento da memoria. As n primeiras dimensoes sao dedicadas as
pilhas de execucao das threads de identificador correspondente. n é acrescido de um pois
a heap também sera mapeada nesta matriz sempre na ultima dimensao, compartilhada
por todas as threads. Portanto, a estrutura adotada nao admite fragmentos de tamanhos
diferentes. Deve-se, logo, assumir que o fragmento serd do tamanho do maior fragmento

existente no codigo Assembly.

O Cédigo 4.1 mostra também como ¢ inicializada essa matriz, que representa a me-
moéria do computador no modelo em CSP#. As macros definidas no inicio do cédigo sao

substituidas pelo pré-processador do PAT, assim como em uma compilacao de arquivos

C.
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Cédigo 4.1: Memoria

#define MEM SIZE 30;

#define TOTALTHREADS 3;

#define HEAP TOTALTHREADS;

var memory [TOTALTHREADS + 1][MEM SIZE];

4.1.2 Modelo dos Registradores

Para todos os registradores utilizados pelo Assembly (EAX, EBX, ECX, etc) é criado
um vetor com seu nome de forma que sao acessados através do indice, identificador, da

thread.

O Codigo 4.2 mostra como sao declarados e inicializados os registradores no modelo
CSP#. Normalmente os registradores sao inicialmente preenchidos com 0 (zero). Excep-
cionalmente, os registradores ESP e EBP sao inicializados apontando para o tltimo indice
(MEM_SIZE —1). A notagao que aparece nas linhas 4 e 5 inicializam o vetor com o
valor MEM LAST INDEX repetindo-o TOTALTHREADS vezes.

Codigo 4.2: Registradores

#define TOTALTHREADS 3;

#define MEM_LAST INDEX 29;

var eax [TOTALTHREADS];

var ebp = [MEM_LAST INDEX(TOTALTHREADS)];
var esp = [MEM_LAST INDEX(TOTALTHREADS);

Ja o Codigo 4.3 mostra os exemplos de uma instrucao “mov %esp, %ebp”, dentro da

main, e outra “sub $2, %eax”, em uma funcao de thread, usando os registradores.

Codigo 4.3: Uso dos registradores

#define MAIN 0;

var eax [TOTALTHREADS];

_main() = (...) —> _main mov { ebp[MAIN] = esp [MAIN] } — (...);
_function(id) = (...) —> _function_sub.id {eax[id] = eax[id] — 2} —> (...);

Dessa forma, o escalonamento das threads, que salva e restaura estados dos registradores,
pode ser simulado dentro do modelo CSP. A restricdo é nunca utilizar identificadores

diferentes do que esta sendo atualmente executado, pois isso geraria incoeréncia dos dados.

4.1.3 Modelo das Variaveis Globais

Variaveis de escopo global identificadas dentro do cédigo Assembly sao mapeadas

como variaveis de ambiente no CSP# com o mesmo nome e apontam para uma posi¢ao
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especifica da meméria. A identificacao é feita procurando pelas diretivas comm, globl e
bss descritas anteriormente. O assembler faz a distingao dos segmentos data, bss e heap
durante a criagao dessas variaveis. Porém, como isso nao alteraria o comportamento final

das mesmas, decidiu-se que o mapeamento as colocasse sempre na regiao equivalente a

heap.
Codigo 4.4: Identificacao de variaveis globais
.globl _x
.bss
.align 4
_X:
.space 4

(..0)

.comm _y, 16 # 8

No Cédigo 4.4 a varidvel _x de 4 bytes (especificada pela diretiva space na linha 5) e
a variavel _y de 8 bytes (valor apés o # na linha 7) sdo definidas. Apesar da identificagdo
ser diferente, o resultado do mapeamento é o mesmo. Para ambas uma posicao inicial na
heap é reservada. Como _y tem tamanho maior que 4 bytes, e no CSP# nao ha tipos de
64 bits, ha a necessidade de ocupacao de dois espacos, portanto, o indice conseguinte é
pulado para futuras alocagoes, deixando-o livre também para o acesso deslocado através

dessa varidvel.

Identificadas as duas varidveis globais, antes de iniciar a execugao prépria do corpo
de main, o processo principal se comporta como o DefineGlobalVars, que possui eventos
de malloc consecutivos para cada uma das variaveis globais. O CSP# resultante é o
encontrado no Cédigo 4.5. A limpeza no registrador EAX garante que essa manobra nao

afete estados posteriores da execugao.

Cédigo 4.5: Definicao das variaveis globais

var _x;

var _y;
DefineGlobalVars () =

Malloc (MAIN, 12)

; _main_movl { _x = eax[MAIN] } —>
Malloc (MAIN, 12)

; _main_movl { _y = eax[MAIN] } —>
_main_movl { eax[MAIN] = 0 } —> Skip;
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4.1.4 Cbdigo nao mapeado

O coédigo gerado pelo GCC na plataforma Windows acrescenta algumas instrugoes
de alinhamento e configuragao da biblioteca da linguagem que sao desconsideradas para
o escopo deste trabalho. O exemplo de programa em C mostrado no Coédigo 4.6 foi

compilado através do comando “gcc -S” e o Assembly obtido consta no Cddigo 4.7.

Codigo 4.6: Exemplo de programa simples

#include <stdlib .h>

int main (void){

int a, b;
a = 2;
b = 3;

return a + b;}

Codigo 4.7: Resultado da compilacao

.file "ExemploC.c"
.def _____main;y .scl 2; .type 32; .endef
.text
.globl _ main
.def _main; .scl 2; .type 32; .endef

__main:

push %ebp

mov Y%esp , %ebp

sub $24 , %esp

and $—-16, %esp

mov $0, %eax

add $15, %eax

add $15, %eax

shr $4, %eax

sal $4, %eax

mov %eax, —12(%ebp)
mov —12(%ebp ), %eax
call _ _alloca

call _ _main

mov $2, —4(%ebp)
mov $3, —8(%ebp)
mov —8(%ebp), %eax
add —4(%ebp) , %eax
leave

ret

O segmento de c6digo ndo mapeado é o intervalo fechado das linhas [10, 19] — come-
¢ando no and e terminando no call main. E importante observar que o estado dos
registradores EBP e ESP, e da memoria heap nao sao alterados dentro deste bloco; e que,

apesar de ser modificado dentro, a proxima operacao em EAX fora do bloco é de escrita.
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Outro caso de nao mapeamento do c6digo acontece nas linham que sucedem chama-
das externas as funcoes da API do Windows, pois estas usam a convenc¢ao de chamada
stdcall. Logo, internamente, presume-se que tais fungoes retornam usando ret N, onde
N ¢é o espago ocupado pelos parametros em bytes, removendo-os da pilha; portanto, o sub

correspondente aquele retorno, como no Cdodigo 4.8, é excluido do mapeamento.

Codigo 4.8: Exemplo de chamada usando convencao stdcall

call ~ CreateThread@24
sub 24, esp

4.2 Regras de Mapeamento de Chamadas Externas

Todas as chamadas a fungoes que nao sao definidas dentro do mesmo arquivo Assembly
se tornarao processos separados. Para os dois exemplos estudados neste tabalho, as tini-
cas fungoes externas usadas sao: malloc, CreateThread, ResumeThread, SuspendThread,
CreateMutex, WaitForSingleObject e WaitForMultipleObjects. Sao definidas as seguintes
Regras de Chamadas Externas (RCE) para a simulagdo da execugao de codigo x86 no
ambiente de PAT.

4.2.1 RCE 1: Alocacao de Memoria

A alocagdo de memoria heap suporta somente chamadas a funcao malloc. Nao ha
suporte a liberagao de espaco alocado para posterior reutilizagdo, nem ao rearranjo para
compactagao do espago utilizado, pois nao ha gerenciamento de estado para posigoes da
memoria. Alocages consecutivas receberdo enderegos crescentes, comegando de 0 (zero)
dentro da dimensao da memoria compartilhada dedicada a heap. O processo que simula

esse comportamento é mostrado no Cédigo 4.9.

Cédigo 4.9: Alocacgao das variaveis

var current_heap = 0;
Malloc (id, size) =
call _malloc.id {
eax [id] = current__heap;
current__heap = current__heap + size /4;

} — Skip;
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4.2.2 RCE 2: Criagao de Threads

Assim como a alocacdo de memoéria, a chamada ao Create Thread é mapeada como
um processo desenvolvido de modo a simular de maneira razoavel o seu funcionamento.
Ele recebe dois parametros: o nome do procedimento e o identificador da thread que o
chamou. O primeiro parametro é, na verdade, uma macro que relaciona unicamente o
procedimento (label no c6digo) a um nimero inteiro — sempre colocando o sufixo _ Proc
em seu nome. O segundo é usado para modificar o conteido do registrador EAX de quem

cria.

Para simular a espera e retomada das threads, seus estados atuais (threadState) sdo
guardados em um vetor e sao criados canais de comunicacao (ResumeT hread_channel)
para cada uma. O estado da thread usado por ambos os canais pode ser 0 (parada), 1
(executando) ou 2 (terminada). O estado da main é iniciado como 1, enquanto as demais

threads tem valor inicializado em 0. Mais detalhes sao dados na descricao da RCE 3 e da
RCE 4.

O retorno real dessa funcao é um HANDLE para a thread, mas no CSP é retornado
apenas o inteiro identificador da mesma. O fato de ser atomico garante que os dois eventos
sejam comunicados fazendo com que a thread esteja pronta para iniciar sua execugao e o

criador agora esteja pronto para executar sua proxima instrucao simultaneamente.

Os comentarios que aparecem no Codigo 4.10 mostram que o quarto parametro (12
bytes acima de ESP) do CreateThread é empilhado para a nova thread. Em seguida, o
estado da thread passa de parado para executando. A partir de entao, espera-se o inicio

efetivo da sua execucgdo com a sincronizagao do evento start.

Cédigo 4.10: Mapeamento do Create Thread

var threadState = [1, O0(MAX THREADS)];
var current_id = 0;
_ CreateThread (proc, creatorld) =
atomic {

call CreateThread {

current__id+4+;

esp [current_id] = esp[current_id] — 1; //sub 4, %esp

// Passagem 4° do parimetro do CreateThread para func¢ao de CallBack

memory [ current id][esp[current id]] = memory[creatorld][esp[creatorIld] + 3];
esp[current id]——; memory[current id][esp[current id]] = pc _dummy; // push %PC
eax|[creatorld] = current_id; // Coloca id no retorno

} —> setThreadState.id { threadState[id] =1 } —>

start.proc.(eax[creatorld]) —> Skip};
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4.2.3 RCE 3: Suspensao e retomada de execugao de Threads

A presenga de chamadas as funcgoes ResumeThread e Suspend Thread acarreta na adi-
¢ao dos processos pré-definidos descritos no Codigo 4.11, além das variaveis e canais de
controle descritos na RCE 2. As operagoes sao atomicas para garantir que nao haja in-
terferéncia externa a execugao destes processos. A linha onde ocorre a chamada a uma
dessas fungoes é mapeada como seu respectivo processo com o identificador da thread

como parametro.

Cédigo 4.11: Suspensao e retomada

_ ResumeThread (id) =
atomic {
if (threadState[id] = 1) { Skip }
else {
setThreadState.id { threadState[id] =1 } —
ResumeThread_channel[id]!1 —> Skip} };
_ SuspendThread (id) =
atomic{ setThreadState.id { threadState[id] =0 } —>
ResumeThread channel[id]?1 —> Skip };

4.2.4 RCE 4: Esperas

As esperas sao, mais uma vez, referentes a chamadas de fungoes presentes na API do
Windows que sao mapeadas de maneira a simular o comportamento real em processos

pré-definidos. Sao elas o WaitForSingleObject e o WaitForMultiple Objects.

A espera por objetos é usada tanto com mutexes quanto com threads — ambos do tipo
HANDLE —, porém os mapeamentos dos dois casos diferem. Para distingui-los deve-se
atentar ao primeiro parametro (diretamente apontado por ESP durante o empilhamento).
Se tal parametro contém o mesmo endereco apontado pelo resultado de um CreateMutex
anterior e nao houve nenhuma modificacao nele, entao o mapeamento utilizado serd o
exclusivo as esperas por muteres. Nesse caso é comum o aparecimento também de um
ReleaseMutex referenciando o mesmo enderego. Essas chamadas sdo mapeadas apenas em
substitui-las pelos eventos de escrita nos canais LockMutex e ReleaseMutex definidos

no Codigo 4.15.

No exemplo do Cdédigo 4.12, foi criada uma funcao genérica _exemplo que apenas
faz a chamada ao WaitForSingleObject e ao ReleaseMutex. Pode-se ver que mutex é
colocado em EAX, que, em seguida, é empilhado exatamente em ESP — espaco reservado

para o argumento HANDLE da funcao de espera. A tultima linha, mostra que _mutex
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é, na verdade, uma variavel global. Observando a da definicio de —main, vé-se que o

HANDLE apontado por esse endereco é o resultado de um CreateMuter.

Cédigo 4.12: Exemplo de uso WaitForSingleObject em Mutezes

__exemplo:

push %ebp

mov %esp, %ebp

sub $8, %esp

mov $—1, 4(%esp)

mov __mutex, %eax

mov %eax, (%esp)

call _ WaitForSingleObject@8
sub $8, %esp

(...) #Regido protegida pelo _ mutex#
mov __mutex, %eax

mov Yeax, (%esp)

call ~ ReleaseMutex@4

sub $4, %esp

leave

ret

__main:

()

mov $0, 8(%esp)

mov $0, 4(%esp)

mov $0, (%esp)

call ~ CreateMutexA@12

sub $12, %esp

mov Yeax, _ mutex

(.0

.comm _mutex, 16 # 4

Jano Codigo 4.13, a rotina principal cria uma thread (iniciada pela fungao _call Back2)

e espera o final de sua execucao.

Observa-se que na linha 11, EBP — 4 referencia o

HANDLE desta thread; o mesmo passado como argumento para o WaitForSingleObject

na linha 15.
Codigo 4.13: Exemplo de uso WaitForSingleObject em Threads

__main:

(.0

mov $0, 20(%esp)

mov $0, 16(%esp)

mov $1, 12(%esp)

mov $_callBack2, 8(%esp)

mov $0, 4(%esp)

mov $0, (%esp)

call ~ CreateThread@24

sub $24 , %esp

mov %eax, —4(%ebp)

mov $—1, 4(%esp)

mov —4(%ebp) , %eax
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mov %eax, (%esp)

call __WaitForSingleObject@8
sub $8, %esp

leave

ret

O segundo caso — WaitForMultipleObjects — foi introduzido ao mapeamento porque
quando a rotina principal de um programa termina, todas as threads criadas por ela sao
destruidas. Porém, normalmente esse nao é o comportamento desejado. Logo, costuma-
se esperar que tais objetos terminem suas execucoes antes de finalizar o programa por

inteiro.

WaitForMultipleObjects permite que um array de HANDLFEs seja passado, além de
algumas outras configuragdes da espera. Seu mapeamento considera apenas um ende-
reco inicial e um contador. A passagem de tal enderego inicial (address na linha 1
do Codigo 4.14) para o processo é feito de maneira semelhante ao do HANDLE do
WaitForSingleObject. A partir dessas informagoes, considera-se que o conteido desses
espacos de memoéria sejam preenchidos sequencialmente com os identificadores das thre-
ads. Recursivamente, o pardmetro contador (count) decresceo até que seja 1 — caso base
da recursao. Passa-se a esperar, entao, — através dos processos WaitForSingleObject —
pela escrita no canal ResumeThread_channellid] do inteiro 2 (terminagao)— reservado

para o FxitThread.

Cédigo 4.14: Mapeamento de fungoes de espera

_ WaitForMultipleObjects (address , count) =
ifa(count = 1) { _WaitForSingleObject (memory [HEAP|[ address]) }
else { (_WaitForSingleObject (memory [HEAP][ address])
|| _WaitForMultipleObjects(address + 1, count — 1)) };

__ WaitForSingleObject (id) =
ResumeThread_channel[id]?2 —> DoneWaiting —> Skip;

O mapeamento das esperas ignora o argumento relativo ao tempo, gerando sempre
esperas infinitas. Além disso, na espera por mais de um objeto, somente os N primeiros
itens sao considerados, onde N é um parametro passado a esta funcao e mapeado pela

entrada count no processo _ Wait For MultilpeObjects.

Quando, enfim, todas as threads sendo esperadas comunicaram seu término, o evento

DoneW aiting sincroniza e permite que o processo chamador retome o seu andamento.

E importante salientar que CSP# néo implementa a sincronizacéo multipla de canais,

como CSPj,;. Com ela, quando mais de um processo esta esperando a escrita, todos eles
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sdo liberados. Ao invés disso, acontece uma escolha nao-deterministica sobre qual deles

prossegue a execucao; que é o comportamento desejado.

4.2.5 RCE 5: Paralelismo

A necessidade de haver paralelismo entre processos é analisada no coédigo interno a

cada label, onde se procuram chamadas as func¢oes CreateThread ou CreateMutex.

Quando a primeira é detectada, a funcao passada como pardmetro (callBack no caso
do Cédigo 4.15) é mapeada de maneira diferente do usual. Um processo contendo o corpo
da mesma (call Back__Body(id)), mapeamento das instrugdes em si, é gerado e o original
(cal Back(id)) passa a ser esse corpo pré-fixado do evento start.proc.id. O processo na qual
ocorre a chamada (processo Label) também passa a ter um corpo separado (Label Body)
e é descrito como uma composi¢ao paralela de seu corpo com o processo que engloba
a funcao referenciada no CreateThread. Dessa forma a execuc¢ao do corpo da funcao
fica dependendo da sincronizacgao entre os eventos start.proc.id nos diferentes processos.
E definido um alfabeto para a paralelizacio para restringir as possibilidades do evento

composto start, ja que, inicialmente, ele recebe um inteiro qualquer.

H&a um caso especial: quando o CreateThread estd no escopo de uma label para o
qual a execugao incondicionalmente retorna, ou seja, hd uma instrucao jmp para esta ou
alguma label anterior que possa fazer o Create Thread ser chamado mais de uma vez. Para
esta situacdo — normalmente quando ha uma chamada dentro de um lago for ou while no
c6digo fonte — considera-se que o modelo serd executado uma primeira vez para definir
quantas threads (quantas vezes se passa por aquele ponto) estdo sendo criadas para que

se coloque o nimero certo de processos em paralelo e seus respectivos identificadores.

Detectada a presenca da segunda — CreateMutex —, o mesmo mecanismo de separacao
do corpo da funcao é aplicado. Porém, o processo ao qual esse corpo fica em paralelo é o
pré-definido Mutex mostrado no Codigo 4.15. O Create Thread e outras definigoes basicas

foram omitidas pois ja foram mostradas anteriormente.

O evento End é introduzido no final do escopo de quem cria o mutexr para que, via
sincronizac¢ao desses eventos, ele termine sua execugdo com sucesso e nao fique em recursao
indefinidamente, gerando um estado em deadlock onde sempre se espera a escrita no canal

ResumeT hread channel.
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Coédigo 4.15: Mapeamento do paralelismo

#define callback_Proc 1;

#define MAX THREADS 1;

channel LockMutex O0;

channel ReleaseMutex O0;

channel ResumeThread_ channel [TOTALTHREADS] O0;

Mutex () =
LockMutex?id —> ReleaseMutex?id —> Mutex ()
[] End —> Skip;

#alphabet Label Body { proc:{callback Proc}; thread id:{1..MAX THREADS}
@ start.proc.thread id, End };

Label () = Label Body() || Mutex() || callBack(1);
Label _Body () =
a —> b —> _ CreateThread (callback Proc, 0);

b
¢ —> d —> call_CreateMutex —>
e —> f —> End —> Skip;

callBack (id) = start.callback_Proc.id —> callBack Body(id); _ ExitThread(id):
callBack_Body(id) = x —> y —> z —> Skip;

_ ExitThread (id) = ResumeThread__channel [id]!2 —> Skip;

4.3 Regras de Mapeamento de Instrucoes

Esta secao apresenta as regras de mapeamento das instrugdes. Apesar de baseado na
estrutura proposta por Lima (2011), foi considerado desnecessiria a presenga de regras
de nomenclatura. Ja que o proprio compilador nomeia os componentes do Assembly de
maneira razoavel, decidiu-se por usar esses nomes de maneira direta. As seguintes Regras

de Instrugoes (RI) sao definidas.

4.3.1 RI 1: Labels

As labels que aparecem no coédigo sdo mapeadas em um processo de nome equivalente.
H&4 uma excecao: quando essas labels sao usadas como rotinas de inicio de threads —
passando a valer a RCE 5. Sao ignoradas terminac¢oes de nomes de labels decoradas
pelo compilador com alguma informagao. Portanto, —soma@8 gera um processo de nome

__soma.

O processo mapeado recebe um identificador ficticio inteiro nao negativo (Z+4 =
0,1,2,3,...) e unico da thread na qual estd rodando. Considera-se que a rotina principal
do programa é uma linha de execugdo que ostenta o identificador 0 (zero). A partir dela,

as proximas threads criadas obterdo os identificadores consecutivos.
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4.3.2 RI 2: Operagoes Aritméticas

O mapeamento das instrucoes aritméticas é bastante simples, de maneira que essas
sdo apenas traduzidas para operagoes sobre dados (forma imperativa interna aos eventos
de CSP#) e adequadas ao contexto deste trabalho. A Tabela 6 mostra como é feito esse

mapeamento considerando que as instrucoes pertencem a label _main e a thread principal
(MAIN).

Tabela 6: Mapeamento de Instrugoes Aritméticas Basicas

Instrucao \ Mapeamento

add $1, %eax _main_add { eax[MAIN] = eax[MAIN] + 1 }

sub $1, %eax ~main_sub { eax] MAIN| = eaxMAIN] + 1 }

inc Yeax _main_inc { eax MAIN]++ }

dec %eax _main_dec { eax MAIN]-- }

imul %ebx %eax | main imul { eax]MAIN] = ebx[MAIN] * eax[MAIN] }

Embora a aplicacao dessa regra seja direta, ha algumas excecoes. Sempre que as
instrucgoes add ou sub estiverem alterando o valor dos registradores de controle da pilha,
EBP ou ESP — apesar de ser mais comum encontra-las associadas ao ESP —, o valor inteiro
do primeiro operando sera dividido por 4 como na Tabela 7; ja que cada 4 bytes estao

mapeados em apenas uma posicao da memoria no modelo CSP.

Tabela 7: Excecoes de add e sub
Instrucao \ Mapeamento
add $4, %esp | _main_add { esp[MAIN] = esp[MAIN] + 1 }
sub $8, %esp | main sub { esp[MAIN] = esp[MAIN] - 2 }

4.3.3 RI 3: Desvios Condicionais

Instrucoes de desvio condicional utilizam o registrador de flags do processador para
tomar suas decisoes. Internamente, apés fazer a subtragao dos dois operandos, é feito um
teste 1ogico que combina Carry Flag, Zero Flag, Overflow Flag, e Parity Flag a depender

da instrucao, para descobrir se serd ou nao feito o desvio.

Para manter a fidelidade com o Assembly, o desvio condicional do modelo CSP tam-
bém passa pelas duas fases: comparacao (cmp) e desvio. Os resultados de comparagoes
(subtragoes dos operandos) sao guardados em um vetor chamado cmps de tamanho igual

a quantidade de threads possiveis. Entao um desvio condicional no CSP ¢ feito sobre esse
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valor, como mostra a Tabela 8 considerando novamente que se estd no escopo de _main.
As reticéncias indicam que qualquer cédigo que apareca depois do desvio condicional serd
inserida naquele ponto da mesma maneira como vinha sendo feito antes de entrar no

escopo do if-else.

Tabela 8: Desvios Condicionais
Instrucao \ Mapeamento

je Label ifa (cmps|id] == 0) { main then -> Label() }
else { _main_else -> (...) }

jne Label | ifa (cmps[id] != 0) { _main_then -> Label() }
else { main else -> (...) }

jl Label ifa (cmpsfid] < 0) { main then -> Label() }
else { _main_else -> (...) }

jle Label | ifa (cmpsfid] <= 0) { main then -> Label() }
else { main_else -> (...) }

jg Label ifa (cmpsfid] > 0) { _main_ then -> Label() }
else { main else -> (...) }

jge Label | ifa (cmps[id] >= 0) { _main_then -> Label() }
else { main_else -> (...) }

O uso de ifa ao invés de um if simples é devido ao fato de que o tultimo gera nao-
determinismo no modelo. Em CSP#, a avaliacdo da condi¢ao de um if gera um evento
interno (7). Logo, se duas threads diferentes estiverem em momentos de avaliagao de if,
havera uma situacao onde dois eventos iguais (7) levam a estados diferentes. Desta forma,
o modelo CSP# seria nao-deterministico. J& com o ifa, ndo se tem esse problema, pois a

avaliacao da condicao ¢ feita atomicamente com o primeiro evento do ¢f ou do else.

Para que esta decisdo nao afetasse a paridade com o comportamento do cédigo As-
sembly, um evento nomeado _then ou _else prefixado da label atual é sempre colocado

como primeiro o evento apds a comparagao, como um evento dummy.

4.3.4 RI 4: Desvios Incondicionais

O desvio incondicional (jmp) é mapeado simplesmente pondo o processo da label
referenciada imediatamente apds o evento mapeadao da instrucao anterior. Isso fard o

processo atual passar a se comportar como o processo da label.

Apesar de nao ser um desvio, o resultado do mapeamento é o mesmo para quando ha
uma mudanca de label em meio ao codigo Assembly sem que antes haja um retorno ou
desvio incondicional. Para efeito de mapeamento, é como se a declaragao de uma nova

label sob essas condigoes fosse tratado como um jmp para a mesma.
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4.3.5 RI 5: Movimentacao de Dados

A instrucao mov apresenta uma boa quantidade de variagoes possiveis para a copia de
dados entre seus dois argumentos. A Tabela 9 mostra algumas delas com seus respectivos
mapeamentos. E importante frisar que quando um registrador aparece entre parénteses
seu conteudo ¢ tratado como um endereco e o que é realmente copiado é o dado apontado

por ele.

Tabela 9: Instrucao mov
Instrucao \ Mapeamento
mov $0, Yeax Label _mov { eax[id] = 0}
mov $1, (%esp) Label mov { memory][id][esp[id]] =1 }
mov (%eax), %eax | Label _mov { eax[id] = memory[id][eax[id]] }
mov %esp, %ebp | Label _mov { ebp[id] = esp[id] }
mov Yeax, y Label mov { memory[HEAP|[ y] = eax[id] }
mov %eax, y+4 | Label mov { memory[HEAP]| y + 1] = eax][id] }

A mencao direta a uma variavel global, como _y — definida anteriormente —, € mapeada

como um acesso direto ou deslocado & memoria.

4.3.6 RI 6: Operagoes com a Pilha de Execucao

Além das instrugoes que podem afetar as variaveis de controle da pilha de execucao
vistas até aquivistas até aqui, como o add, o sub e o mov por exemplo, existem outras
mais especificamente relacionadas com esse tipo de operacao. A Tabela 10 mostra como

essas instrugoes sao mapeadas para o CSP#.

H& uma peculiaridade no mapeamento da instrucao call. Como foi dito no Capitulo 2,
ela empilha o valor atual do PC e entdo muda seu valor para o da label argumento. A idéia
inicial deste trabalho era de abstrair o gerenciamento do endereco da préxima instrucao,
pois isso seria desnecessario. Porém, como o call é executado apds o empilhamento dos
argumentos dessa funcao a ser chamada, imediatamente apds o desvio, o ESP estd, na
verdade, apontando para o valor antigo do PC e nao para um dos argumentos. Isso faz
com que o acesso aos parametros precise considerar os 4 bytes do PC guardado na hora de
calcular o deslocamento em cima de EBP. Portanto, apesar de nao ser usado na pratica, o
valor (macro) pc_dummy, de valor convencionado em 999, é sempre empilhada no evento

de call mapeado.

Ja a instrucao ret, também descrita anteriormente, desempilha o PC antigo, fazendo
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a execucao voltar para a instrucao seguinte ao call. Portanto, apesar de nao se fazer nada
com esse antigo valor, também é necessario mapea-la para garantir que o valor de ESP
esteja apontando para o endereco (indice) correto. Além disso, ela é a tnica instrugao que
é mapeada terminando em SK P, pois é sempre a tltima instrucao a aparecer dentro de

um label.

Tabela 10: Instrugdes que atuam sobre a pilha
Instrucao \ Mapeamento
push %ebp | Label push.id { esp[id]--; memory][id][esp[id]] = ebp[id] }
pop %ebp | Label push.id { ebp[id] = memory[id][esp[id]]; esp[id]++ }
call Label2 | call_Label2.id { esp[id]—; memory[id][esp[id]] = pc_dummy } ->

Label2(id)

leave Label leave.id { esp[id] = ebpl[id]; ebp|id] = memorylid][esplid]];
esp[id]++ }

ret Label ret.id { esplid]++ } -> Skip

4.3.7 RI 7: Mé6dulo de 3

Apesar de nao serem facilmente notadas, algumas operacoes de alto nivel sao compi-

ladas de forma a otimizar a sua execucao por parte de um processador especifico.

Essa ideia é bastante utilizada, por exemplo, em instrucoes de multiplicacao e di-
visao. Ja que, respectivamente, adigoes ou subtracgoes sucessivas tornariam o custo de

processamento bastante alto.

A divisao por trés, quando compilada, é substituida por uma multiplicacdo pelo nu-
mero 1431655766 seguido de 31 shifts aritméticos para a direita em um registrador de
64 bits. Realizando-se este calculo, é possivel observar que os 32 bits a esquerda sao o

resultado da divisao.

Como nao ha suporte para inteiros de 64 bits em CSP#, todo o Cddigo 4.16 é subs-
tituido pela operagdo _ M OD3__especial.id{eax[id] = ecx[id] — ((ecx[id]/3) * 3)} durante

0 mapeamento.

Essa substituicao nao afeta o resultado da andlise, pois nao ha alteracdes nos regis-

tradores ESP e EBP, nem na meméria heap.
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Cédigo 4.16: Especial médulo de 3

mov $1431655766 , %eax
imul Yecx

mov Y%ecx , %eax

sar $31, %eax

sub Yeax , %edx
mov Y%edx, %eax
mov Yeax, —4(%ebp)
mov —4(%ebp) , %edx
mov Y%edx, %eax

add Y%eax , %eax

add Y%edx, %eax

sub Y%eax, %ecx
mov Y%ecx , %eax

4.4 Aplicacoes
4.4.1 Exemplo 1: Produtores/Consumidores

Nesta secao as regras definidas até o momento sao utilizadas na pratica para a verifi-
cagao de dois programas com problemas classicos de concorréncia: Produtores/Consumi-

dores e Jantar dos Filosofos.

4.4.1.1 Aplicacao das Regras

Este problema consiste na coordenacao do acesso de tarefas de comportamento si-
métrico a um buffer limitado compartilhado. A tarefa do produtor é de criar itens e
adicioné-los ao buffer, enquanto que a do consumidor é ir busca-los para usar uma tnica
vez. Caso o buffer esteja cheio, deve-se esperar o consumo de um item para retomar
a tarefa de producgdo dos itens. Ja quando estd vazio, o consumidor deve aguardar o

preenchimento para continuar sua execugao (MAZIERO, 2011).

A versao implementada como exemplo para o trabalho contém um erro de concorréncia
conhecido: a depender do escalonamento das tarefas, é possivel que ambas entrem em
estado de suspensao, de onde nunca mais tornarao a executar. Isso acontece, por exemplo,

quando o buffer esta vazio e o consumidor decide se suspender.

Porém, a decisdo e a suspensao nao sao uma operacao atomica. Se antes de ser
suspendida a tarefa for escalonada para o do produtor, um item pode ser produzido e,
com isso, se tentard acordar a tarefa do consumidor (que ainda estd acordada). Como o
produtor s6 acorda o consumidor nesse momento especifico, quando voltar a ser executado,
o consumidor se suspendera. O buffer, entao, ficard totalmente preenchido levando o

produtor também a dormir.
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O Cédigo 4.17 mostra como foi implementada a funcao produzir e a rotina principal,

enquanto o Cédigo 4.18 mostra o Assembly obtido a partir da funcao produzir.

Cédigo 4.17: Fungao produzir

#include <stdio.h>
#include <windows.h>
#define MAXITENS 3
#define IDX_ CONSUMIDOR 0
#define IDX PRODUTOR 1

int itens = 0;

HANDLE threads [2];

produzir (void* parametros){
while (1){
if (itens = MAXITENS)

SuspendThread (threads [IDX PRODUTOR] ) ;

itens++;

if(itens = 1)
ResumeThread (threads [IDX CONSUMIDOR] ) ;

int main(void){
threads [IDX CONSUMIDOR]| = CreateThread (NULL, O,
threads [IDX_PRODUTOR] = CreateThread (NULL, O,

(void*)consumir, NULL, 0, NULL);
(void*)produzir, NULL, 0, NULL);

WaitForMultipleObjects (2, threads, TRUE, INFINITE);

}
Cédigo 4.18: Produzir compilado
_ produzir:
push %ebp
mov Y%esp, %ebp
sub $8, %esp
L2:
cmp $3, _itens
jne L4
mov __threads+4, %eax
mov %eax, (%esp)
call _ SuspendThread@4
sub $4, %esp
L4:
inc __itens
cmp $1, _itens
jne L2
mov __threads, %eax
mov Yeax, (%esp)
call _ ResumeThread@4
sub $4, %esp
Jjmp L2
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A esse Assembly foram aplicadas as regras listadas na Tabela 11, gerando o CSP#
do Cédigo 4.19, que é uma versao preliminar do processo, ja que outros processos ainda
podem interferir na traducao do mesmo para CSP#. Nesse caso em especifico, a main

realmente ird altera-lo.

Tabela 11: Aplicacao das regras em “produzir”
Linha \ Regra

1 RI'1

2 RIG6

3 RI 5

4 RI 2

) RI1

6e7 RI 3

8e9 RI5

10 RCE 3

11 Nao mapeada
12 RI'1

13 RI 2

14e15 | RI 3

16e17 | RI 5

18 RCE 3

19 Nao mapeada
20 RI 4

O mapeamento do consumidor se assemelha bastante ao do produtor e, por isso,
nao sera exposto aqui, mas pode ser encontrado no Apéndice A.1. Passa-se entdo ao
mapeamento da versao compilada da rotina principal. No Codigo 4.20, o intervalo fechado
das linhas [11,20] nao gera especificagdo alguma. Além dessas, as linhas {28,37,44} que

sucedem chamadas externas a API, também sdo descartadas.

A parte os mapeamentos similares aos aplicados na funcdo produzir, a rotina do
Codigo 4.20 utiliza as seguintes regras: RCE 2 nas linhas 27 e 36; RCE 5 para execugao
paralela das threads; RCE 4 na linha 43; RCE 1 devido as varidveis globais nas linhas
[1,5] e 47 — como mostrado no Cédigo 4.5.

O Codigo 4.21 mostra as mudancgas no processo _ produzir € _main, que passaram
a ter um corpo e a serem paralelos no processo que os englobava originalmente. Como
dito na RCE 5, é definido o alfabeto de paralelismo, limitando as possibilidades do inteiro
recebido pelo evento composto start. E importante atentar para o fato de que o processo

_produzir antes definido, passa a ser chamado _produzir_Body devido a regra RCE 2.
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Cédigo 4.19: Produzir em CSP#

_produzir(id) =

_produzir_push.id {memory[id]|[esp[id]] = ebp[id]; esp[id]——} —
_produzir_mov.id {esp[id] = ebp[id]} —>
_produzir_sub.id {esp[id] = esp[id] — 2} —>
L2(id);
L2(id) =
L2 cmpl.id { cmps[id] = 3 — memory [HEAP][ itens] } —>
ifa (cmps[id] != 0)
{ L2_then.id —> L4(id) }
else
L2_ else.id —>
L2 mov.id {eax[id] = memory [HEAP][ threads + 1]} —>
_ SuspendThread (eax [id])
;L4 (id)
L4(id) =
L4_inc.id { memory [HEAP|[ itens]++ } —>
L4 cmp.id { cmps[id] = 1 — memory [HEAP|[ _itens]| } —>
ifa (cmps[id] != 0)
{ L4then.id —> L2(id) }
else

L4else.id —>

L4 mov.id {eax[id] = memory [HEAP][ threads]} —>
_ ResumeThread (eax [id])
;L2(id)

)

A especificagdo completa (Codigo A.3) foi submetida a verificagdo pela ferramenta
PAT. Sabe-se que o cédigo fonte original deste exemplo foi desenvolvido de maneira que
nunca deveria chegar ao fim — ha um lago que deveria deixar as tarefas do produtor e
do consumidor rodando para sempre. Deseja-se, portanto, que ele seja um programa

intermindvel (nonterminating) e, é claro, com auséncia de deadlocks (deadlockfree).

A Figura 5 mostra, que a verificagdo falhou em ambas as assertivas.

4.4.1.2 Analise da Especificacao

Analisando com cuidado o Codigo 4.22, que contém o rastro dos eventos ocorridos
até o acontecimento do deadlock, e considerando apenas os fatos mais relevantes chega-
se ao motivo da falha. Lembrando que o nimero apds o nome dos eventos é apenas o

identificador da thread na qual estes atuam.

1. Consumidor se suspende (setThreadState.1);
2. Produtor produz e acorda consumidor (ResumeT hread_channel[1].1);

3. Consumidor consome e verifica que deve dormir (L7 _cmpl.1 e L7_else.1);
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Cédigo 4.20: Assembly da rotina principal dos Produtores/Consumidores

1 | .globl __itens

2 .bss

3 .align 4

4 | _itens:

5 .space 4

6 .text

7 | _main:

8 push Y%ebp

9 mov Y%esp, %ebp

10 sub $40, %esp

11 and $—-16, %esp

12 mov $0, %eax

13 add $15, %eax

14 add $15, %eax

15 shr $4, %eax

16 sal $4, %eax

17 mov %eax, —4(%ebp)

18 mov —4(%ebp) , %eax

19 call ~_alloca

20 call __ main

21 mov $0, 20(%esp)

22 mov $0, 16(%esp)

23 mov $0, 12(%esp)

24 mov $__consumir, 8(%esp)
25 mov $0, 4(%esp)

26 mov $0, (%esp)

27 call _ CreateThread@24
28 sub $24 , %esp

29 mov Y%eax, _ threads

30 mov $0, 20(%esp)

31 mov $0, 16(%esp)

32 mov $0, 12(%esp)

33 mov $__produzir, 8(%esp)
34 mov $0, 4(%esp)

35 mov $0, (%esp)

36 call _ CreateThread@24
37 sub $24 , %esp

38 mov Y%eax, _ threads+4
39 mov $—-1, 12(%esp)

40 mov $1, 8(%esp)

41 mov $_threads, 4(%esp)
42 mov $2, (Y%esp)

43 call _ WaitForMultipleObjects@16
44 sub $16 , %esp

45 leave

46 ret

a7 .comm _threads, 16 # 8
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Cédigo 4.21: Mapeamento da main dos Produtores/Consumidores

#define consumir_Proc 1;
#define produzir_ Proc 2;

_main() = DefineGlobalVars(); _main Body() || _consumir(l) || _produzir(2);

#alphabet _main Body { proc:{produzir_Proc,consumir_Proc}; thread_id:{1..TOTALTHREADS}
@ start.proc.thread_id };

_main_Body () =
_main_push { memory [MAIN][esp [MAIN]] = ebp[MAIN]; esp [MAIN]-— } —>

_main_mov { ebp[MAIN] = esp [MAIN] } —>

_main_sub { esp [MAIN] = esp [MAIN] — 10 } —>

_main_mov { memory [MAIN][esp [MAIN] + 5] =0 } —>

_main_mov { memory [MAIN][esp [MAIN] + 4] =0 } —>

_main_mov { memory [MAIN][esp [MAIN] + 3] =0 } —>

_main_mov { memory [MAIN][esp [MAIN] + 2] = consumir_Proc } —>
_main_mov { memory [MAIN]|[esp [MAIN] + 1] =0 } —>

_main_mov { memory [MAIN]|[esp [MAIN]] =0 } —>

_ CreateThread (consumir_Proc, MAIN)
;_main_mov { memory [HEAP][ threads] = eax[MAIN] } —>
_main_mov { memory [MAIN][esp [MAIN] + 5] =0 } —>

_main_mov { memory [MAIN]|[esp [MAIN] + 4] =0 } —>

_main_mov { memory [MAIN][esp [MAIN] + 3] =0 } —>

_main_mov { memory [MAIN][esp [MAIN] + 2] = produzir_Proc } —>
_main_mov { memory [MAIN][esp [MAIN] + 1] =0 } —>
_main_mov { memory [MAIN][esp [MAIN]] = 0
_ CreateThread (produzir__Proc, MAIN)
;_main_mov { memory [HEAP|[ __threads + 1

-
I
\

= eax [MAIN] } —>

]
_main_mov { memory [MAIN][esp [MAIN] + 3] -1} -
_main_mov { memory [MAIN][esp [MAIN] + 2] =1 } —>
_main_mov { memory [MAIN][esp [MAIN] + 1] = _threads } —>
_main_mov { memory [MAIN][esp [MAIN]] =2 } —>

__WaitForMultipleObjects (__threads, 2)
;_main_leave{

esp [MAIN] = ebp [MAIN];

ebp [MAIN] = memory [MAIN] [ esp [MAIN]];

_produzir(id) =
start .produzir_ Proc.id —>
__produzir_ Body (id);
__ExitThread (id);
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Figura 5: Janela da analise do Exemplo 1

@ Verification - ProdutorConsumidor.csp [ESSEEE
Assordions — — Estados Visitados:121
© 1 _main) deadockies Total de Transicbes:126
Q2 :monmmaing Tempo:0,1250517s
Memodria Estimada:9961,288KB

Estados Visitados:121
Total de Transi¢cOes:126
Tempo:0,0242358s

« 1 » Meméria Estimada:9807,56KB
Selected Assertion

_main() nonteminating

Simuate Winess Trace

Options

Admissible Behavior Al + Timed out after (minutes) 1205

Verification Engine First Witness Trace v  Generate Witness Trace W]
Output

|| [==Verification Result ~

The Assertion (_main() nonteminating) is NOT wvalid. |
The following trace leads to a teminating situation. —
<nit -> call_malloc.MAIN -> _main_mowvl -> call_malloc.MAIN -> _main_movl -> _main_movi ->
|_main_pushl -> _main_movl -> _main_subl -> _main_mowvl -> _main_movl -> _main_movl ->
|_main_movl -> _main_movl -> _main_mowl -> call_Create Thread -> set ThreadState -> start.1.1->

main mavl -> main movi -> main movl -> main mavl -> main mavl -> main mavl ->

Ready
12

4. Produtor produz e “acorda” o consumidor suspenso ([if((threadState[l] == 1))]);
5. Consumidor se suspende(setT hreadState.l);

6. Produtor produz mais dois itens e dorme (setThreadState.2).

Codigo 4.22: Trace do deadlock no Exemplo 1

The Assertion (_main() deadlockfree) is NOT valid .

The following trace leads to a deadlock situation.

init —> call _malloc .MAIN —> main_mov —> call_malloc .MAIN —> (...) —> _main_mov —>
call_CreateThread —> setThreadState —> start.l.1 —> _main_mov —> _main_mov —> (...) —>
_main_mov —> _main _mov —> call CreateThread —> setThreadState —> start.2.2 —>
_main_mov —> _main_mov —> _main_mov —> _main_mov —> _main_mov —> _ consumir_push.l —>
__consumir_mov.l —> _ consumir_sub.l1 —> L7 cmp.1 —> L7_else.1 —> L7 _mov.1l —>
setThreadState.1 —> _ produzir_push.2 —> _ produzir_ mov.2 —> _ produzir_sub.2 —>

L2 _cmp.2 —> L2_then.2 —> L4_inc.2 —> L4 cmp.2 —> L4else.2 —> L4 mov.2 —>

[if!((threadState[1] = 1))] —> setThreadState.l —> ResumeThread channel[1].1 —>
L9 dec.1 —> L9 cmp.1 —> L9_then.1 —> L7 _cmp.l1 —> L7_else.1 —> L2_cmp.2 —> L2 then.2 —>
L4 inc.2 —> L4 cmp.2 —> L4else.2 —> L4 mov.2 —> [if((threadState[l] = 1))] —

L7 mov.1 —> setThreadState.l —> L2 cmp.2 —> L2 then.2 —> L4 inc.2 —> L4 cmp.2 —>
L4then.2 —> L2 cmp.2 —> L2 then.2 —> L4_inc.2 —> L4 _cmpl.2 —> L4then.2 —> L2 cmp.2 —>
L2 else.2 —> L2 _mov.2 —> setThreadState.2

Ao fazer o mesmo para o caso da assercao monterminating, percebe-se que o rastro é

o idéntico ao anterior. Pois PAT considera que um deadlock é um caso de terminacao.
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4.4.2 Exemplo 2: Jantar dos Filésofos

4.4.2.1 Aplicagao das regras

Mais um problema classico, o Jantar dos Filosofos foi originalmente proposto por
Djikstra e a ideia é que existem filosofos na mesa que alternam seu comportamento entre
meditar e comer. Porém, para um deles comer é preciso que obtenha ambos os talheres,
que sao compartilhados, na sua esquerda e na sua direita. O Exemplo deste trabalho
considerou o nimero de trés filésofos, como na Figura 6. Convencionou-se que o garfo a
esquerda de um filésofo tem o mesmo indice que ele e que o garfo a direta tem o indice

conseguinte.

Figura 6: Jantar dos filésofos

Filésofo 1

Filésofo 2

Filésofo 3

A implementacao deste exemplo deixa margem para a ocorréncia de um livelock. E
possivel acontecer de os trés filosofos pegarem o talher a sua esquerda, impedindo uns aos
outros de obter ambos os talheres para comer. Nao é possivel, portanto, sair do while ao

qual cada um deles esta preso.

Cédigo 4.23: Obtencao do talher direito

#define N 3
#define DIR(i) (((i)+1) %)
void pegarTalherDir (int filNum){
int i = DIR(filNum );
BOOL pegou = 0;
while (pegou = FALSE){
WaitForSingleObject (Mutex, INFINITE);
if (garfos[i] = 0){
garfos[i] = 1;
pegou = TRUE;
}

ReleaseMutex (Mutex ) ;

i34
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O Codigo 4.23 mostra a funcao que representa pegar o talher da direita, cuja compila-

¢ao gera gera o Assembly do Codigo 4.24. A aplicagao das regras linha-a-linha é descrita

na Tabela 12.

Codigo 4.24: Assembly da obtengao de talher direito

_pegarTalherDir:

L7:

L9:

L6:

push
mov
sub
mov
inc
mov
imul
mov
sar
sub
mov
mov
mov
mov
add
add
sub
mov
mov

mov

cmp
jne
mov
mov
mov
call
sub
mov
cmp
jne
mov
mov
inc
mov

mov

mov
mov
call

sub

jmp

leave

ret

%ebp

Y%esp, %ebp
$24 , %esp
8(%ebp), %ecx
Yecx
$1431655766 , %eax
Yecx

Y%ecx, %eax
$31, %eax
Yeax , %edx
Y%edx, %eax
%eax, —4(%ebp)
—4(%ebp) , %edx
Y%edx, %eax
Yeax, %eax
Yedx, %eax
Y%eax, %ecx
Y%ecx , %eax
Y%eax, —4(%ebp)
$0, —8(%ebp)

$0, —8(%ebp)

L6

$—1, 4(%esp)

_ Mutex, %eax

%eax, (%esp)

_ WaitForSingleObject@8
$8, %esp

—4(%ebp) , %eax

$0, _garfos(,%eax,4)
L9

—4(%ebp) , %edx
8(%ebp), %eax

Teax

Y%eax, _ garfos(,%edx,4)
$1, —8(%ebp)

_ Mutex, %eax
Y%eax, (%esp)
__ReleaseMutex@4
$4 , %esp

L7




4.4 Aplicacoes

Tabela 12: Aplicacao das regras em “pegarTalherDir”

Linha \ Regra
1 RI 1
2 RI 6
3 RI 5
4 RI 2
5 RI 5
6 RI 2
7al9 RI 7
20 e 21 RI 5
22 RI 1

23 ¢ 24 RI 3
25,26 ¢ 27 | R1 5

28 RCE 4
29 Nao mapeada
30 RI5

31 e 32 RI 3
33 e 34 RI 5

35 RI 2

36 e 37 RI 5

38 RI1

39 e 40 RI5

41 RCE 5

42 Nao mapeada
43 RI 4

44 RI1

45 e 46 RI 6




10
11
12

13

4.4 Aplicacoes 52

As demais fungoes do programa possuem mapeamento similar ao feito para “pegar-

TalherDir” e, portanto, ndo sdo expostas nesta Secao.

Assim como no exemplo anterior, passa-se ao mapeamento da rotina principal (Co-
digo 4.25) — cujo Assembly pode ser visto no Apéndice A.2 — onde sdo identificadas e
aplicadas as regras de criagao de threads, paralelismo (mutex e threads), varidveis globais,

alocacao de memoria e espera.

Cédigo 4.25: Rotina principal do problema dos filosofos

int garfos[N];
HANDLE threads [N];
HANDLE Mutex ;
int main(){
int i;
intx f;
Mutex = CreateMutex (NULL, FALSE, NULL);
for(i = 0; i < N; i++){

f = malloc(sizeof(int));
*f = 1
threads[i] = CreateThread (NULL,0, (voidx)filosofo , f,0,NULL);

}
WaitForMultipleObjects (N, threads, TRUE, INFINITE); }

Apos a compilagao, a aplicacao das regras de mapeamento deixa clara a interferéncia
da main no procedimento de label _ filosofos e, indiretamente, nos que sao chamados in-
ternamente por ele: _pegarTalher Esq, pegarTalherDir, comer, devolverTalherEsq

e devolverTalherDir.

4.4.2.2 Analise da Especificacao

Finalizado o mapeamento, a especificagdo completa (Cédigo A.6) foi verificada uti-
lizando as mesmas asser¢oes do exemplo passado: deadlockfree e nonterminating. Aqui,
porém, além de se desejar que o programa seja livre de deadlocks, espera-se que o programa

sempre termine.

Ja foi dito anteriormente nesta Secdo, que a implementacdo deste exemplo deixa
margem para a ocorréncia de livelock. Esse tipo de falha nao é um estado de deadlock em

CSP, entao nao ¢é encontrada através da assercao deadlockfree.

Como ja foi dito no Capitulo2, os livelocks em CSP estao associados a realizacoes
sucessivas de transi¢oes internas, sem a comunicacao de eventos visiveis em uma recursao
infinita. Portanto, como o mapeamento nao gera nenhum evento escondido, é esperado

que a verificacdo se o processo é divergencefree seja valida.
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Apesar de deixar o sistema indefinidamente em execucao, esse livelock também nao é
encontrado via assercao nonterminating. Pois apesar de este caso especifico ser intermina-
vel, em havendo ao menos um caso em que termine — seja por deadlock ou por finalizacao

natural — o resultado sera que a asser¢ao ¢ invalida.

Ha, ao menos, duas maneiras de detectar esta falha através de LTL. De ante-mao,
sabe-se que todos os filésofos devem comer. Entao, pode-se perguntar a ferramenta de
verificagao se nao ha nenhum estado futuro em que os trés garfos estao com trés diferentes
filosofos. Outra alternativa é perguntar se, para todos os identificadores das threads, o
evento call__comer.id é realizado em algum ponto de qualquer execucao. FEssas opcoes

esta descritas no Codigo 4.26.

Cédigo 4.26: Assercoes LTL

#define objetivo (memory[HEAP][ garfos] =— 1 &&

memory [HEAP][ _garfos + 1] = 2 && memory [HEAP][ garfos + 2] = 3);
#assert _main() |= !(<> objetivo);
#assert _main() |= (<> call_comer.1) && (<> call_comer.2) && (<> call_comer.3);

A Figura 7 mostra o resultado das verificagdes feitas para este exemplo. Nao foram
encontrados rastros que levassem a deadlocks. Analisando o rastro provido pela verificagao
de nonterminating, percebe-se que este representa uma execu¢ao em que O programa

terminou com sucesso.

Figura 7: Janela da analise do Exemplo 2

f &) Verification - Filosofos.csp M
Assertions — Estados Visitados:6379600
@ 1 _man{ deadockiros Total de Transicbes:24143837
02 :mainl}nornenmnaing Temp?:_1330,_8718763s
8 3 _main) I= (<> call_comer. 1}34(<> call_comer 284(<> cal_comer 3) Memoria Estimada:804682,88KB
4

_main() |= (<> objetivo)

Estados Visitados:822

Total de Transicbes:821
Tempo:0,1268655s

Memodria Estimada:16484,752KB

< m ¢

Selected Assertion
_main{ I= (< objetiva) Estados Visitados:11704
[ = ] [ e ] [ = ——— Total de Transicbes:31034
J Tempo:2,1406416s
Options Memoria Estimada:16288,248KB
Admissible Behavior Al ~ Timed out after (ninutes) 1201
Verification Engine First Witness Trace1 ~  Generate Witnegs Trace # Estados Visitados:7910934
! Output Total de Transicdes:29833751

~es+e+s*Verification Resuit Tempo:1775,2841797s

The Assertion (main() I= !(<> objetivo))is NOT valid. Memoria Estimada:237275,28KB
A counterexample is presented as follows.

<init -> call_malloc. MAIN -> _main_mowl -> call_malloc.MAIN -> _main_movl -> _main_mowvl ->
_main_movl -> _main_movl -> _main_movl -> call_CreateMutex -> _main_movl -> _main_mowl ->
L14_cmpl -> L14_else -> L14_movl -> call_malloc.MAIN -> L14_mowl -> L14_movl -> L14_movl ->
114 movl-> 114 mavl -> | 14 mavl -> 1 14 mavl -> | 14 mavl -> 1 14 mavl -> | 14 mavl -> 1 14

=

Verification Completed
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A veficagao de alcance do estado definido por “objetivo” falha, ou seja, existe ao menos
uma combinacao de transi¢oes que leva aquele estado. O rastro mostra que cada um dos
filbsofos tem o garfo a sua esquerda. Também falhou a assercao de que todos as threads

realizam o evento call__comer.id em algum ponto da execucao.
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5 Consideracoes Finais

Este capitulo apresenta as conclusoes acerca dos resultados e de sua obtengao, bem

como possiveis trabalhos futuros para melhoria de algumas das caracteristicas observedas.

5.1 Conclusoes

Neste trabalho de conclusao de curso foi proposto um conjunto de regras de mape-
amento de c6digo concorrente escrito em Assembly x86 para especificagoes CSP#. A
aplicagao dessas regras possibilita o uso do poder da verificagao formal a partir do calculo
de processos e da maior confiabilidade que os testes de software comuns, ji que estes
nao investigam a fundo todas as possiveis combinagoes de escalonamento entre tarefas,

podendo dar como correto um cédigo passivel de deadlock por exemplo.

Além disso, o fato de PAT permitir que o modelo resultante de um mapeamento
também possa ser alvo, além das assercoes usuais de CSP, de verificagcoes LTL, como

mostrado no segundo exemplo, garante um poder de verificacdo ainda maior.

Os objetivos descritos no Capitulo 1 foram atingidos e se apresentou uma solucao
candidata ao problema de pesquisa antes exposto, mas apesar dos bons resultados obtidos
com o desenvolvimento deste estudo, algumas limitacoes estao presentes. Dentre elas,

destacam-se:

1. Quantidade de exemplos: O pouco tempo disponivel para a confeccdo do trabalho
limitou a quantidade de exemplos a serem explorados. Isso implicou em uma menor
quantidade de instru¢oes mapeadas e em uma variedade de situacoes relativamente

pequena em se falando de programagcao concorrente;

2. Especificidade do Assembly de origem: Apesar de a maioria das linguagens Assembly
possuirem instrucoes de mesma finalidade, qualquer diferenga, por menor que seja

(sintaxe, nome de instrugao, entre outros), pode levar & impossibilidade ou inconsis-
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téncia da aplicacao das regras mostradas no Capitulo 4. Ha, portanto, a limitacao
quanto ao alvo do mapeamento ser apenas o Assembly x86 para a plataforma Win-
dows. Contudo, esta é uma plataforma de larga abrangéncia. O que motivou a

escolha da mesma;

3. Tipo inteiro de CSP#: O inteiro de CSP# nao permite que algumas operagoes co-
muns em codigo de maquina sejam reproduzidas, especialmente devido a problemas
de overflow em uma multiplicacdo entre niimeros muito grandes — maiores que 32

bits;

4. Natureza manual da aplicacdo das regras: As regras de mapeamento devem ser
aplicadas manualmente. Entao, ainda se corre o risco de uma falha humana interferir
no resultado da analise. Além disso, devido a extensao dos codigos de maquina, é

preciso bastante tempo para se concluir um trabalho manual de mapeamento;

5. Tamanho do modelo CSP gerado: E claro que este depende do cédigo de entrada
para aplicacao das regras, mas o fato do mapeamento ser, a grosso modo, uma linha
de codigo para uma operacao em CSP# pode tornar a verificagdo um tanto lenta.
Como ha mais de um processo CSP em paralelo, a possibilidade de combinagoes no
“escalonamento” torna-se muito grande, exigindo maior esforco computacional. O
ideal seria detectar as regioes do codigo que podem gerar eventuais problemas de

concorréncia e restringir o paralelismo a esta(s) parte(s);

6. Dificil de detecgao de livelocks: A deteccao de livelocks nao se tornou um proce-
dimento automatizado. Portanto, o nao conhecimento de suas possibilidades de

ocorréncia em certo codigo pode levar a crer em falsa auséncia dos mesmos.

5.2 Trabalhos Futuros

Os seguintes trabalhos futuros sao pertinentes, vistas as limitagoes desta pesquisa:

1. Realizar mapeamento de mais diferentes exemplos: Isso poderia gerar situagoes em
que o conjunto de regras atual nao seria capaz de mapear, gerando novas regras e,

consequentemente, aumentando a abrangéncia da abordagem;

2. Criar uma ferramenta para aplicacao automatizada: Dessa forma, os modelos gera-
dos seriam mais confiaveis, pois nao dependeriam da acao humana, além de aumen-

tarem significativamente a velocidade de aplicacao das regras;
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3. Detectar regides criticas no Assembly: Isso ocasionaria numa reducao da quantidade
de estados, pois paralelismo seria, entdo, limitado a essas regioes. Atualmente,
varios dos estados considerados nao geram condigoes de corrida e apenas tornam a

verificacdo mais demorada;

4. Gerar verificagoes automaticas para desvios: Os desvios condicionais ou incondici-
onais podem gerar estados de livelock no programa. O ideal seria que o seu mapea-
mento gerasse uma verificacao adicinal para esses casos, por exemplo, verificando se
a comparac¢ao de um desvio condicional que pule para uma label anterior a corrente

permite que se saia desse laco em algum ponto no futuro.
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APENDICE A - Cédigos-fonte e
Mapeamentos dos

Exemplos

Os codigos Assembly apresentam algumas instrugoes com nomeagao diferente do res-
tante do trabalho, pois sdo transcri¢oes diretas dos arquivos gerados para uma maquina

alvo que usa a versao de 64 bits do Windows.

A.1 Exemplo 1: Produtores e Consumidores
A.1.1 C(Cbdigo fonte em C

Codigo A.1: Produtores e Consumidores Completo

#include <stdio.h>
#include <stdlib .h>
#include <windows.h>
#define MAXITENS 3
#define IDX_ CONSUMIDOR 0
#define IDX PRODUTOR 1
int itens = 0;

HANDLE threads [2];

produzir (void* parametros){
while (1) {
if (itens = MAXITENS)
SuspendThread (threads [IDX PRODUTOR] ) ;

itens++;
if (itens = 1)
ResumeThread (threads [IDX CONSUMIDOR] ) ;
}
}
void consumir(void* parametros){
while (1) {
if (itens = 0)

SuspendThread (threads [IDX CONSUMIDOR] ) ;

itens ——;
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if (itens = MAXITENS — 1)
ResumeThread (threads [IDX PRODUTOR] ) ;
}
}
int main(void){
threads [IDX CONSUMIDOR] = CreateThread (NULL, 0, (voidx*)consumir, NULL, 0, NULL);
threads [IDX PRODUTOR] = CreateThread (NULL, 0, (voidx)produzir, NULL, 0, NULL);
WaitForMultipleObjects (2, threads, TRUE, INFINITE);

}

A.1.2 Assembly x86

A compilagao do Cédigo A.1 a partir do comando “gcc -S ProdutorConsumidor.c’

resulta no x86 seguinte:

Cédigo A.2: x86 Produtores e Consumidores

)

.file "ProdutorConsumidor.c"
.globl __itens

.bss

.align 4
__itens:

.space 4

.text
.globl _ produzir

.def _produzir; .scl 2; .type 32; .endef
_ produzir:

pushl  %ebp

movl Y%esp , %ebp

subl $8, %esp

L2:
cmpl $3, _itens
jne L4
movl __threads+4, %eax
movl Yeax, (%esp)
call _ SuspendThread@4
subl $4, %esp

L4:
incl __itens
cmpl $1, _itens
jne L2
movl __threads, %eax
movl Yeax, (%esp)
call ~ ResumeThread@4
subl $4, %esp
jmp L2

.globl _ consumir

.def __consumir ; .scl 2; .type 32; .endef
__consumir:

pushl  %ebp

movl Y%esp, %ebp

subl $8, %esp
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L7:
cmpl
jne
movl
movl
call
subl
L9:
decl
cmpl
jne
movl
movl
call
subl
jmp
.def
.globl __main
.def
__main:
pushl
movl
subl
andl
movl
addl
addl
shrl
sall
movl
movl
call
call
movl
movl
movl
movl
movl
movl
call
subl
movl
movl
movl
movl
movl
movl
movl
call
subl
movl
movl
movl

movl

$0, _itens

L9

__threads, %eax
Yeax, (Y%esp)
_SuspendThread@4
$4 , %esp

__itens

$2, _itens

L7

__threads+4, %eax
Y%eax, (%esp)

_ ResumeThread@4
$4 , %esp

L7

main ; .scl 2; .type

__main; .scl 2; .type 32;

%ebp

Y%esp , %ebp

$40, %esp

$—-16, %esp

$0, %eax

$15, %eax

$15, %eax

$4, %eax

$4, %eax

Yeax, —4(%ebp)
—4(%ebp) , %eax
___alloca

__ main

$0, 20(%esp)

$0, 16(%esp)

$0, 12(%esp)
$_consumir, 8(%esp)
$0, 4(%esp)

$0, (%esp)

_ CreateThread@24
$24 , %esp

Y%eax, _ threads
$0, 20(%esp)

$0, 16(%esp)

$0, 12(%esp)
$_produzir, 8(%esp)
$0, 4(%esp)

$0, (%esp)
__CreateThread@24
$24 , %esp

Y%eax, _ threads+4
$—1, 12(%esp)
$1, 8(%esp)
$_threads, 4(%esp)

32;

.endef

.endef
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movl $2, (Y%esp)

call _ WaitForMultipleObjects@16
subl $16 , %esp

leave

ret

.comm __threads, 16 # 8

A.1.3 CSP#

A aplicagao das regras de mapeamento no Codigo A.2 gera a seguinte especificagao

CSP+#:

Cédigo A.3: CSP# Produtores e Consumidores

#define MEM_SIZE 30;
#define MEM_LAST INDEX 29;
#define MAIN 0;

#define MAX THREADS 2;
#define TOTALTHREADS 3;
#define HEAP TOTALTHREADS;
#define consumir_Proc 1;
#define produzir_ Proc 2;
#define pc_dummy 999;

//Memdria

var memory [TOTALTHREADS + 1][MEM SIZE];

var threadState = [1, 0(MAX THREADS)];
channel ResumeThread channel [TOTALTHREADS| 0;
var cmps |[TOTALTHREADS];

//Contador de criagdo de threads
var current_id = 0;
//Contador de alocag¢do na heap

var current__heap = 0;

//Registradores

var eax [TOTALTHREADS];

var ebp = [MEM_LAST INDEX(TOTALTHREADS) ];
var esp = [MEM_LAST INDEX(TOTALTHREADS);

//Varidveis das seg¢des bss e data
var _ itens;

var _ threads;

_ CreateThread (proc, creatorld) =
atomic{
call CreateThread {
current__id+4+;
esp[current_id] = esp|[current_id] — 1; //sub 4, %esp
// Passagem 3° do pariametro do CreateThread para func¢do de CallBack
memory [ current_id ][ esp[current_id]] = memory[creatorId]|[esp[creatorIld] + 3];

esp [current__id]——; memory[current_id][esp[current_id]] = pc_dummy; // push %PC
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eax[creatorld] = current_id; // Coloca id no retorno
} — setThreadState { threadState[(eax[creatorIld])] =1 } —>
start.proc.(eax[creatorld]) —> Skip

s

_ExitThread (id) =
ResumeThread_channel [id |!2 —> Skip;

Malloc (id , size) =

call_malloc.id {

eax[id] = current_heap;
current__heap = current_ heap + size /4;
} —> Skip;

DefineGlobalVars () =

Malloc (MAIN, 4)

; _main_movl { _itens = eax[MAIN] } —>
Malloc (MAIN, 8)

; _main_movl { _threads = eax [MAIN] } —>
_main movl { eax[MAIN] = 0 } —> Skip;

_ResumeThread (id) =

atomic {

if (threadState[id] = 1) { Skip }
else {
setThreadState.id { threadState[id] =1 } —>

ResumeThread__channel[id]!1 —> Skip

}
s

_SuspendThread (id) =
atomic{ setThreadState.id { threadState[id] =0 } —>
ResumeThread_channel [id]?1 —> Skip

s

_ WaitForMultipleObjects (address, count) =
ifa(count = 1) { _ WaitForSingleObject (memory [HEAP| [ address]) }
else { (_WaitForSingleObject (memory [HEAP][ address])
|| _WaitForMultipleObjects (address + 1, count — 1)) };

_ WaitForSingleObject (id) =
ResumeThread_channel[id]?2 —> DoneWaiting —> Skip;

#alphabet _ produzir { thread_id:{1..TOTALTHREADS} @ start.produzir_Proc.thread_id };

_produzir(id) =
start .produzir_ Proc.id —>
__produzir_ Body (id );
_ExitThread (id );

_produzir_Body (id) =

_produzir_push.id {memory[id][esp[id]] = ebp[id]; esp[id]——} —>
_produzir_movl.id {esp[id] = ebp[id]} —>
_produzir_subl.id {esp[id] = esp[id] — 2} —>

L2(id);
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L2(id) =

L2_cmpl.id { cmps[id] = 3 — memory [HEAP][ _itens] } —>
ifa (cmps[id] != 0)

{ L2 then.id —> L4(id) }

else

{

L2_ else.id —>

L2_movl.id {eax[id] = memory [HEAP][_threads + 1]} —>
_SuspendThread (eax [id])

;L4(id)
b

L4(id) =
L4_incl.id { memory [HEAP][ _itens]++ } —>
L4 _cmpl.id { cmps[id] = 1 — memory [HEAP][ itens] } —>
ifa (cmps[id] !'= 0)
{ L4then.id —> L2(id) }
else
{
L4else.id —>
L4_movl.id {eax[id] = memory [HEAP][ _threads]|} —>
_ ResumeThread (eax [id ])
;L2(id)
I

#alphabet _ consumir { thread id:{1..TOTALTHREADS} @ start.consumir Proc.thread id };
__consumir (id) =

start .consumir Proc.id —>

__consumir_ Body (id);

_ExitThread (id );

__consumir_Body (id) =

_consumir_push.id {memory[id][esp[id]] = ebp[id]; esp[id]——} —>
__consumir_movl.id {esp[id] = ebp[id]} —>

_consumir_subl.id {esp[id] = esp[id] — 2} —>

L7(id);

L7(id) =

L7 cmpl.id { cmps[id] = 0 — memory [HEAP][ itens]} —>

ifa (cmps[id] != 0)

{ L7 _then.id —> L9(id) }

else

{
L7_else.id —>
L7 movl.id {eax[id] = memory [HEAP][ threads]|} —>
_SuspendThread (eax [id])
;L9(1d)
b

L9(id) =
L9_decl.id { memory[HEAP][ _itens]—— } —>
L9 cmpl.id { cmps[id] = 2 — memory [HEAP][ itens] } —>

ifa (cmps[id] != 0)
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147 { L9 _then.id —> L7(id) }

148 else

149 | {

150 L9 else.id —>

151 L9 _movl.id {eax[id] = memory [HEAP][_ threads + 1]} —>
152 _ ResumeThread (eax [id ])

153 ;L7 (id)

154 }s

155

156 | _main() = DefineGlobalVars (); _main Body() || _consumir(l) || _produzir(2);
157

#alphabet _main Body { proc:{produzir_Proc,consumir_Proc};

159 thread_id:{1..TOTALTHREADS} @ start.proc.thread id };
160 | _main_Body () =

161 | _main_pushl { memory [MAIN][esp [MAIN]] = ebp [MAIN]; esp [MAIN]—— } —>
162 | _main movl { ebp[MAIN] = esp [MAIN] } —>

163 | _main_subl { esp [MAIN] = esp [MAIN] — 10 } —>

164 | _main movl { memory [MAIN]|[esp [MAIN] + 5] =0 } —>

165 | _main movl { memory [MAIN]|[esp [MAIN] + 4] =0 } —>

166 | _main_movl { memory [MAIN][esp [MAIN] + 3] =0 } —>

167 | _main_movl { memory [MAIN][esp [MAIN] + 2] = consumir_Proc } —>
168 | _main movl { memory [MAIN][esp [MAIN] + 1] =0 } —>

169 | __main_movl { memory [MAIN][esp [MAIN]] =0 } —>

170 | _ CreateThread (consumir Proc, MAIN)

171 ;_main_movl { memory [HEAP|[ threads] = eax [MAIN] } —>

172 | _main_movl { memory [MAIN][esp [MAIN] + 5] =0 } —>

173 | _main movl { memory [MAIN][esp [MAIN] + 4] =0 } —>

174 | _main_movl { memory [MAIN][esp [MAIN] + 3] =0 } —>

175 _main_movl { memory [MAIN][esp [MAIN] 4+ 2] = produzir_Proc } —>
176 | _main_movl { memory [MAIN][esp [MAIN] + 1] =0 } —>

177 | _main_movl { memory [MAIN]|[esp [MAIN]] = 0 } —>

178 __CreateThread (produzir__Proc, MAIN)

179 ;_main_movl { memory [HEAP][ threads + 1] = eax[MAIN] } —>

180 | _main_movl { memory[MAIN]|[esp [MAIN] + 3] = -1 } —>

181 | _main_movl { memory [MAIN][esp [MAIN] + 2] =1 } —>

182 | _main movl { memory [MAIN]|[esp [MAIN] + 1] = _threads } —>

183 | _main_movl { memory [MAIN][esp [MAIN]] =2 } —

184 _ WaitForMultipleObjects (__threads, 2)

185 ; _main_leave{

186 esp [MAIN] = ebp [MAIN];

187 ebp [MAIN] = memory [MAIN] [ esp [MAIN] ] ;
188 esp [MAIN]——

189 } —> Skip;

190 |#assert _main() deadlockfree;

191 |#assert _main() nonterminating;

A.2 Exemplo 2: O Jantar dos Fil6sofos

A.2.1 Cbdigo fonte em C
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Codigo A.4: Jantar dos Filosofos Completo

#include <stdio.h>
#include <stdlib .h>
#include <windows.h>
#define N 3 //N fildsofos
#define DIR(i) (((i)+1) 9N) //Garfo direita
int garfos[N];
HANDLE threads [N];
HANDLE Mutex ;
void comer (int filNum){ }
void pegarTalherEsq (int filNum){
int i = filNum;
BOOL pegou = 0;
while (pegou = FALSE){
WaitForSingleObject (Mutex, INFINITE);
if (garfos[i] = 0){
garfos[i] = filNum + 1;
pegou = TRUE;
}
ReleaseMutex (Mutex ) ;
}
}

void pegarTalherDir (int filNum){

int i = DIR(filNum);

BOOL pegou = 0;

while (pegou = FALSE) {
WaitForSingleObject (Mutex, INFINITE);

if (garfos[i] = 0){
garfos[i] = filNum + 1;
pegou = TRUE;
}
ReleaseMutex (Mutex ) ;
}
}
void devolverTalherEsq(int filNum){
int i = filNum;
garfos[i] = 0;
}

void devolverTalherDir (int filNum){
int i = DIR(filNum);

garfos[i] = 0;

}
void filosofo (voidx parametros){

//Nimero do filésofo passado como parametro para a thread

int+ filNum = (intx*)parametros;

pegarTalherEsq (*filNum );
pegarTalherDir (xfilNum );
comer (*filNum );
devolverTalherEsq (*filNum );
devolverTalherDir (*filNum );
}
int main(){

int i;
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intx f;
Mutex = CreateMutex (NULL, FALSE, NULL);
for(i = 0; i < N; i++){

f = malloc(sizeof(int));

xf = 1

threads[i] = CreateThread (NULL,0, (voidx)filosofo , f,0,NULL);
}

WaitForMultipleObjects (N, threads, TRUE, INFINITE);
}

A.2.2 Assembly x86

A compilagao do Cédigo A.4 a partir do comando “gcc -S JantarFilosofos.c” resulta

no x86 seguinte:

Cédigo A.5: x86 Jantar dos Filésofos

.file "JantarFilosofos.c"

.text
.globl _ comer

.def _comer; .scl 2; .type 32; .endef
__comer:

pushl  %ebp

movl Y%esp , %ebp

popl Y%ebp

ret

.globl __pegarTalherEsq

.def _pegarTalherEsq; .scl 2; .type 32; .endef
__pegarTalherEsq:

pushl Y%ebp

movl Y%esp , %ebp

subl $24 , %esp

movl 8(%ebp), %eax
movl Y%eax, —4(%ebp)
movl $0, —8(%ebp)

L3:
cmpl $0, —8(%ebp)
jne L2
movl $—1, 4(%esp)
movl _ Mutex, %eax
movl %eax, (%esp)
call __ WaitForSingleObject@8
subl $8, %esp
movl —4(%ebp) , %eax
cmpl $0, _garfos(,%eax,4)
jne L5
movl —4(%ebp) , %edx
movl 8(%ebp), %eax
incl Teax
movl Y%eax, _garfos(,%edx,4)
movl $1, —8(%ebp)
L5:
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movl _ Mutex, %eax
movl Yeax, (Yesp)
call __ReleaseMutex@4
subl $4, %esp
jmp L3

L2:
leave
ret

.globl __pegarTalherDir

.def _pegarTalherDir;
_pegarTalherDir:

pushl Y%ebp

movl Y%esp , %ebp

subl $24 , %esp

movl 8(%ebp), %ecx

incl Yecx

movl $1431655766 , %eax

imull Yecx

movl Y%ecx , %eax

sarl $31, %eax

subl Yeax, Yedx

movl Y%edx, %eax

movl %eax, —4(%ebp)

movl —4(%ebp) , %edx

movl Yedx, %eax

addl Yeax , %eax

addl Y%edx, %eax

subl Yeax, Y%ecx

movl Yecx , Yeax

movl Yeax, —4(%ebp)
movl $0, —8(%ebp)

L7:
cmpl $0, —8(%ebp)
jne L6
movl $—1, 4(%esp)
movl _ Mutex, %eax
movl Yeax, (%esp)
call _ WaitForSingleObject@8
subl $8, %esp
movl —4(%ebp) , %eax
cmpl $0, _garfos(,%eax,4)
jne L9
movl —4(%ebp) , %edx
movl 8(%ebp), %eax
incl Yeax
movl %eax, _garfos(,%edx,4)
movl $1, —8(%ebp)
L9:
movl _ Mutex, %eax
movl Yeax, (Y%esp)
call ~ ReleaseMutex@4
subl $4, %esp
jmp L7
L6:

.type

32;

.endef
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leave

ret
.globl __devolverTalherEsq

.def _devolverTalherEsq;
_devolverTalherEsq:

pushl  %ebp

movl Y%esp , %ebp

subl $4, %esp
movl 8(%ebp), %eax
movl %eax, —4(%ebp)
movl —4(%ebp) , %eax
movl $0, _garfos(,%eax,4)
leave
ret
.globl __devolverTalherDir
.def _devolverTalherDir ;

_devolverTalherDir:
pushl  %ebp
movl Y%esp , %ebp

subl $4, %esp

movl 8(%ebp), %ecx
incl Yecx

movl $1431655766 , %eax
imull Tecx

movl Y%ecx , Y%eax

sarl $31, %eax

subl Y%eax , %edx

movl Y%edx, %eax

movl Yeax, —4(%ebp)

movl —4(%ebp) , %edx
movl Y%edx, %eax
addl Yeax , %eax
addl Y%edx, %eax
subl Yeax , Yecx
movl Y%ecx , %eax
movl %eax, —4(%ebp)
movl —4(%ebp) , %eax
movl $0, _garfos(,%eax,4)
leave

ret

.globl _ filosofo

.def _filosofo; .scl
__filosofo:

pushl  %ebp

movl Y%esp , %ebp

subl $8, %esp

movl 8(%ebp), %eax
movl %eax, —4(%ebp)
movl —4(%ebp) , %eax
movl (%eax), %eax
movl Yeax, (Yesp)
call _pegarTalherEsq
movl —4(%ebp) , %eax

movl (%eax), %eax

.type

.type

.type

32;

32;

32;

.endef

.endef

.endef
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.globl

__main:

L14:

movl
call
movl
movl
movl
call
movl
movl
movl
call
movl
movl
movl
call
leave
ret
.def

__main

.def

pushl
movl
pushl
subl
andl
movl
addl
addl
shrl
sall
movl
movl
call
call
movl
movl
movl
call
subl
movl

movl

cmpl
ig

movl
call
movl
movl
movl
movl
movl
movl
movl

movl

%eax, (%esp)
_pegarTalherDir
—4(%ebp) , %eax
(Yoeax), %eax

Y%eax, (%esp)
__comer

—4(%ebp) , %eax
(%eax), %eax

Yeax, (Yesp)
_devolverTalherEsq
—4(%ebp) , %eax
(%eax), %eax

Y%eax, (%esp)
_devolverTalherDir

main ; .scl

__main; .scl 2;

%ebp

%esp , %ebp
Yebx

$36 , %esp

$—16, %esp

$0, %eax

$15, %eax

$15, %eax

$4, %eax

$4, %eax

%eax, —16(%ebp)
—16(%ebp), %eax
~_alloca
__main

$0, 8(%esp)

$0, 4(%esp)

$0, (%esp)

~ CreateMutexA@12
$12, %esp

Y%eax, _ Mutex
$0, —8(%ebp)

$2, —8(%ebp)
L15

$4, (%esp)
~malloc

Y%eax, —12(%ebp)
—12(%ebp) , %edx
—8(%ebp), %eax
Yeax, (%edx)
—8(%ebp) , %ebx
$0, 20(%esp)
$0, 16(%esp)
—12(%ebp), %eax

.type

.type

32;

32;

.endef

.endef
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movl Y%eax, 12(%esp)
movl $_filosofo , 8(%esp)
movl $0, 4(%esp)

movl $0, (%esp)

call ~ CreateThread@24
subl $24 , %esp
movl %eax, _threads(,%ebx,4)
leal —8(%ebp ), %eax
incl (Yoeax)
jmp L14
L15:
movl $—1, 12(%esp)
movl $1, 8(%esp)
movl $_threads, 4(%esp)
movl $3, (%esp)
call _ WaitForMultipleObjects@16
subl $16 , %esp
movl —4(%ebp) , %ebx
leave
ret
.comm _garfos, 16 # 12
.comm _threads, 16 # 12
.comm _ Mutex, 16 # 4
.def _malloc; .scl 3; .type 32; .endef
A.2.3 CSP#
A aplicagdo das regras de mapeamento no Codigo A.5 gera a seguinte especificagdo
CSP#:

Codigo A.6: CSP# Jantar dos Fildsofos

#define MEM_SIZE 30;
#define MEM_ LAST INDEX 29;
#define MAIN 0;

#define MAX THREADS 3;
#define TOTALTHREADS 4;
#define HEAP TOTALTHREADS;
#define filosofo_Proc 1;
#define pc_dummy 999;

//Memdria

var memory [TOTALTHREADS + 1][MEM_SIZE];
var threadState = [1, 0(MAX THREADS)];
var cmps|[TOTALTHREADS] ;

channel ResumeThread channel [TOTALTHREADS| 0;

//Contador de cria¢ao de threads
var current_id = 0;
//Contador de aloca¢do na heap

var current__heap = 0;
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//Registradores

var esp = [MEM LAST INDEX(TOTALTHREADS)];
var ebp = [MEM LAST INDEX(TOTALTHREADS)];
var eax [TOTALTHREADS];

var ebx [TOTALTHREADS];

var ecx [TOTALTHREADS];

var edx [TOTALTHREADS];

//Varidveis das seg¢ées bss e data
var _ garfos;
var _ threads;

var _ Mutex;

_ CreateThread (proc, creatorld) =
atomic{
call _CreateThread {
current__id++;

esp[current__id] = esp|[current_id] — 1; //sub 4, %esp

// Passagem 3° do pardametro do CreateThread para fung¢ao de CallBack

memory [ current__id |[esp[current_id]] = memory|[creatorld][esp[creatorld] + 3];
esp [current__id]——; memory[current_id][esp[current_id]] = pc_dummy; // push %PC
eax[creatorld] = current_id; // Coloca id no retorno

} — setThreadState { threadState[(eax[creatorId])] =1 } —>

start.proc.(eax[creatorld]) —> Skip

s

__ExitThread (id) =
ResumeThread_channel [id |!2 —> Skip;

Malloc (id , size) =

call _malloc.id {

eax [id] = current_heap;
current__heap = current_ heap + size /4;
} —> Skip;

DefineGlobalVars () =

Malloc (MAIN, 12)

; _main_movl { _garfos = eax [MAIN]; } —>
Malloc (MAIN, 12)

; _main _movl { _threads = eax[MAIN] } —>
_main_movl { eax[MAIN] = 0 } —> Skip;

__ WaitForMultipleObjects (address, count) =
ifa(count = 1) { _WaitForSingleObject (memory [HEAP| [ address]) }
else { (_WaitForSingleObject (memory [HEAP][ address])

|| _WaitForMultipleObjects(address + 1, count — 1)) };

__WaitForSingleObject (id) =
ResumeThread_channel[id]?2 —> DoneWaiting —> Skip;

channel LockMutex 0;

channel ReleaseMutex O0;
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Mutex () =

LockMutex?id —> ReleaseMutex?id —> Mutex ()

[] End —> Skip;
_main() = _main_Body() || Mutex() || (|| x:{1..MAX THREADS} @ _ filosofo (x

#alphabet main Body { proc:{filosofo Proc};
thread id:{1..MAX THREADS} @ start.proc.thread id, End };

_main_Body () =

DefineGlobalVars ();

_main_movl{ memory [MAIN]|[esp [MAIN]-2] = 0 } —>

__main_movl{ memory [MAIN]|[esp [MAIN]-1] = 0 } —>

__main_movl{ memory [MAIN][esp [MAIN]] =0 } —>

call_CreateMutex —>

o o

__main_movl{ eax [MAIN] = _Mutex } —>

__main movl{ memory [MAIN][ebp [MAIN] — 2] =0 } —>
L14();

L14() =

L14_cmpl{ cmps[MAIN]
ifa (cmps[MAIN] < 0)
{

L14_then—> L15()

}

else

{

L14 else —>

L14_movl { memory [MAIN][esp [MAIN]] =4 } —>

Malloc (MAIN, 4)

;L14_movl { memory [MAIN][ebp [MAIN] — 3] = eax[MAIN] } —>

= 2 — memory [MAIN][ebp [MAIN] — 2] } —>

L14_movl { edx [MAIN] = memory [MAIN][ebp [MAIN] — 3] } —>
L14_movl { eax [MAIN] = memory [MAIN][ebp [MAIN] — 2] } —>
L14 movl { memory [HEAP][edx [MAIN]] = eax [MAIN] } —>

L14 movl { ebx [MAIN] = memory [MAIN][ebp [MAIN] — 2] } —>
L14 movl { memory [MAIN][esp [MAIN] + 5] =0 } —>

L14 movl { memory [MAIN][esp [MAIN] + 4] =0 } —>

L14 movl { eax[MAIN] = memory [MAIN][ebp [MAIN] — 3] } —>
L14 movl { memory [MAIN][esp [MAIN] + 3] = eax [MAIN] } —
L14_movl { memory [MAIN][esp [MAIN] + 2] = filosofo_Proc } —>
L14 movl { memory [MAIN][esp [MAIN] + 1] =0 } —>

L14 movl { memory [MAIN]|[esp [MAIN]] =0 } —>

_ CreateThread (filosofo_ Proc , MAIN)

;L14_movl { memory [HEAP][ _threads + ebx [MAIN]] = eax [MAIN] } —>

L14_leal { eax [MAIN] = ebp[MAIN] — 2 } —>
L14 incl { memory [MAIN]|[eax [MAIN]] ++ } —>

L14()
}s
Li5() =
L15 movl { memory [MAIN][esp [MAIN] + 3] = -1 } —>
L15_movl { memory [MAIN][esp [MAIN] + 2] =1 } —>

]
]
L15_movl { memory [MAIN][esp [MAIN] + 1] _threads } —>
L15 movl { memory [MAIN][esp [MAIN]] = 3 } —>

_ WaitForMultipleObjects (__threads, 3)

));
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;L15_movl { ebx [MAIN] memory [MAIN] [ ebp [MAIN] —1] } —>

L15_leave { esp [MAIN] = ebp[MAIN]; ebp[MAIN] = memory [MAIN][esp [MAIN]]; esp [MAIN]—— } —>
L15 ret { esp[MAIN] = esp[MAIN] + 1 } —>

End —>

Skip;

_filosofo (id) =

start . filosofo Proc.id —>
_filoso_Body (id );
_ExitThread (id );

_ filoso__Body (id) =

_ filosofo_pushl.id { esp[id]——; memory[id]|[esp[id]] = ebp[id] } —>
_filosofo_movl.id { ebp[id] = esp[id] } —>

_filosofo_subl.id { esp[id] = esp[id] — 2 } —>

_ filosofo_movl.id { eax[id] = memory[id][ebp[id] + 2] } —>
_filosofo_movl.id { memory[id][ebp[id] — 1] = eax[id] } —>
_filosofo_movl.id { eax[id] = memory[id][ebp[id] — 1] } —>
_filosofo_movl.id { eax[id] = memory [HEAP][eax[id]] } —>
_filosofo_movl.id { memory[id][esp[id]] = eax[id] } —>

call _pegarTalherEsq.id { esp[id]——; memory[id][esp[id]] = pc_dummy } —>
_pegarTalherEsq(id);

_filosofo_movl.id { eax[id] = memory[id][ebp[id] — 1] } —>
_filosofo_movl.id { eax[id] = memory [HEAP][eax[id]] } —>

_ filosofo_movl.id { memory[id][esp[id]] = eax[id] } —>
call_pegarTalherDir.id { esp[id]——; memory[id][esp[id]] = pc_dummy } —>
_pegarTalherDir (id);

_filosofo_movl.id { eax[id] = memory[id][ebp[id] — 1] } —
_filosofo_movl.id { eax[id] = memory [HEAP][eax[id]] } —>
_filosofo_movl.id { memory[id][esp[id]] = eax[id] } —>

call_comer.id { esp[id]——; memory[id][esp[id]] = pc_dummy } —>
_comer(id)

; _filosofo_movl.id { eax[id] = memory[id]|[ebp[id] — 1] } —
_filosofo_movl.id { eax[id] = memory [HEAP]|[eax[id]] } —>
_filosofo_movl.id { memory[id][esp[id]] = eax[id] } —>
call__devolverTalherEsq.id { esp[id]——; memory[id][esp[id]] = pc_dummy } —>

_devolverTalherEsq(id);

_filosofo_movl.id { eax[id] = memory[id]|[ebp[id] — 1] } —
_filosofo_movl.id { eax[id] = memory [HEAP]|[eax[id]] } —>
_filosofo_movl.id { memory[id][esp[id]] = eax[id] } —>

call devolverTalherDir.id { esp[id]——; memory[id]|[esp[id]] = pc_dummy } —>
_devolverTalherDir (id );

_filosofo_leave.id {

esp[id] = ebplid];

ebp[id] = memory[id ][esp[id]];

esp [id]++

} =

_filosofo_ret.id { esp[id]++ } —>

Skip;
__pegarTalherEsq(id) =

_pegarTalherEsq_pushl.id { esp[id]——; memory[id][esp[id]] = ebp[id] }-—>
_pegarTalherEsq _movl.id { ebp[id] = esp[id] } —>

__pegarTalherEsq_subl.id { esp[id] = esp[id] — 6 } —>




183
184
185
186
187
188

189

191
192
193
194
195
196

197

199
200
201
202
203
204

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235

236

A.2 Exemplo 2: O Jantar dos Filésofos

76

_pegarTalherEsq_movl.id { eax[id] = memory[id]|[ebp[id] + 2] } —>
_pegarTalherEsq_movl.id { memory[id][ebp[id] — 1] = eax[id] } —>
_pegarTalherEsq_movl.id { memory[id][ebp[id] — 2] = 0 }—>
L3(id);

L3(id) =
L3 cmpl.id { cmps[id] = 0 — memory[id][ebp[id] — 2] } —>
ifa( cmps[id] != 0 )
{ L3_then.id —> L2(id) }
else
{
L3_else.id —>
L3_movl.id { memory[id][esp[id] + 1] = -1 } —>
L3_movl.id { eax[id] = _Mutex } —>
L3_movl.id { memory[id][esp[id]] = eax[id] } —>
LockMutex!id —>
L3_movl.id { eax[id] = memory[id][ebp[id] — 1] }—>
L3_cmpl.id { cmps[id] = 0 — memory [HEAP][ _garfos + eax[id]] } —>
ifa( cmps[id] != 0 )
{ L3_then.id —> L5(id) }
else
{
L3 else.id —>
L3 _movl.id { edx[id] = memory[id][ebp[id] — 1] } —>
L3_movl. id eax [id] = memory[id]|[ebp[id] + 2] } —>
L3_incl.id eax [id]++ } —>
L3_movl. id memory [HEAP] [ _garfos + edx[id]] = eax[id] } —
L3_movl. id memory [id | [ebp[id] — 2] =1 } —
L5(id)
}
I

. e

L5(id) =

L5 _movl.id { eax[id] = _Mutex }—>

L5_movl.id { memory[id][esp[id]] = eax[id] } —>
ReleaseMutex!id —>

L3(id);

L2(id) =

L2_leave.id {

ebp[id];

ebp[id] = memory[id][esp[id]];
esp [id]++

} =

L2_ret.id { esp[id]++ } —
Skip;

esp [id]

_pegarTalherDir (id) =

_pegarTalherDir_pushl.id { esp[id]——; memory[id]|[esp[id]] = ebp[id]
_pegarTalherDir_movl.id { ebp[id] = esp[id] } —>
_pegarTalherDir_subl.id { esp[id] = esp[id] — 6 } —
_pegarTalherDir_movl.id { ecx[id] = memory[id][ebp[id] + 2] } —>

_pegarTalherDir_incl.id { ecx[id] ++ } —
_MODS3_especial.id { eax[id] = ecx[id] — ((ecx[id]/3)*3) } —>

=
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_pegarTalherDir_movl.id { memory[id][ebp[id] — 1] = eax[id] } —>
_pegarTalherDir_movl.id { memory[id][ebp[id] — 2] =0 } —>
L7(id);
L7(id) =
L7 cmpl.id { cmps[id] = 0 — memory[id][ebp[id] — 2] } —
ifa( cmps[id] != 0 )
{ L7 _then.id —> L6(id) }
else
{
L7_else.id —>
L7_movl.id { memory[id][esp[id] + 1] = -1 } —>
L7 movl.id { eax[id] = _Mutex } —>
L7 _movl.id { memory[id][esp[id]] = eax[id] } —>
LockMutex!id —>
L7 movl.id { eax[id] = memory[id][ebp[id] — 1] } —>
L7 cmpl.id { cmps[id] = 0 — memory [HEAP]|[ garfos + eax[id]] } —
ifa( cmps[id] != 0 )
{ L7 _then.id —> L9(id) }
else
{
L7 else.id —>
L7_movl.id { edx[id] = memory[id][ebp[id] — 1] } —>
L7 movl.id { eax[id] = memory[id][ebp[id] + 2] } —>
L7 incl.id { eax[id]++ } —>
L7_movl.id { memory [HEAP][ garfos + edx[id]] = eax[id] } —>
L7_movl.id { memory[id][ebp[id] — 2] =1 } —>
L9(id)
}
b
L9(id) =
L9 movl.id { eax[id] = _Mutex }—>
L9 movl.id { memory[id][esp[id]] = eax[id] } —>
ReleaseMutex!id —>
L7(id);
L6(id) =
L6_leave.id {
esp[id] = ebplid];
ebp[id] = memory[id][esp[id]];
esp [id]++
} -
L6_ret.id { esp[id]++ } —>
Skip;
_comer(id) =
_comer_push { esp[id]——; memory[id][esp[id]] = ebp[id] } —>
_comer_movl { ebp[id] = esp[id] } —>
_comer_popl { ebp[id] = memory[id][esp[id]]; esp[id]++ } —
_comer_ret { esp[id]++ } —>
Skip:

_devolverTalherEsq(id) =
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291 _devolverTalherEsq_pushl.id { esp[id]——; memory[id][esp[id]] = ebp[id] } —>
202 | _devolverTalherEsq_movl.id { ebp[id] = esp[id] } —>

203 | _devolverTalherEsq subl.id { esp[id]—--} —>

204 | _devolverTalherEsq movl.id { eax[id]| = memory[id][ebp[id] + 2] } —

205 | _devolverTalherEsq_movl.id { memory[id][ebp[id] — 1] = eax[id] } —>

206 | __devolverTalherEsq_movl.id { eax[id] = memory[id][ebp[id] — 1] } —>

207 | _devolverTalherEsq_movl.id { memory [HEAP][ garfos + eax[id]] =0 } —

298 _devolverTalherEsq_leave.id {

299 esp|id] = ebplid];

300 ebp[id] = memory[id][esp[id]];

301 esp [id]++

302 } =

303 _devolverTalherEsq_ret.id { esp[id]++ } —>

304 Skip;

305

306 | devolverTalherDir(id) =

307 _devolverTalherDir_pushl.id { esp[id]——; memory[id][esp[id]] = ebp[id] }—>
308 | __devolverTalherDir_movl.id { ebp[id] = esp[id] } —>

309 | __devolverTalherDir_subl.id { esp[id]-— } —>

310 | _devolverTalherDir_movl.id { ecx[id] = memory[id][ebp[id] + 2] } —

311 _devolverTalherDir_incl.id { ecx[id] 4++ } —>

312 | __MOD3_especial.id { eax[id] = ecx[id] — ((ecx[id]/3)*3) } —>

313 | __devolverTalherDir_movl.id { memory[id][ebp[id] — 1] = eax[id] } —>

314 | _devolverTalherDir_movl.id { eax[id] = memory[id][ebp[id] — 1] } —

315 _devolverTalherDir_movl.id { memory [HEAP][ garfos + eax[id]] =0 } —>

316 _devolverTalherDir_leave.id {

317 esp[id] = ebp[id];

318 ebp[id] = memory[id ][esp[id]];

319 esp [id]++

320 } =

321 _devolverTalherDir_ret.id { esp[id]++ }—>

322 Skip;

323

324 |#assert _main() deadlockfree;

325 |#assert _main() nonterminating;

326 |#assert _main() |= (<> call comer.l) && (<> call comer.2) && (<> call comer.3);
327 |#define objetivo (memory[HEAP][ garfos] =— 1 &&

328 memory [HEAP] [ _garfos + 1] = 2 && memory [HEAP|[ _garfos + 2] = 3);
329 |#assert _main() |= !(<> objetivo);




