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Resumo

A porcentagem de funcionalidades fornecidas através de soft-
ware pelos mais diversos dispositivos é cada vez maior. Essa
tendência tem tornado os softwares maiores e mais complexos.
Em contrapartida, a maior quantidade (de linhas) de código
gera um aumento na probabilidade de falhas sendo propagadas
nas várias fases do desenvolvimento. É comum ainda que parte
dessas funcionalidades seja implementada de maneira concor-
rente, seja visando melhor desempenho ou pela necessidade de
interação com o usuário ou com outro sistema, por exemplo.
O problema é que a habilidade humana e os testes de soft-
ware mais comuns são normalmente insuficientes para verificar
a presença de falhas de concorrência. Tendo em vista essa di-
ficuldade de verificação, este trabalho propõe uma tradução
direta do código de máquina para especificações CSP (Com-
municating Sequential Processes), permitindo a análise formal
de código dessa natureza. Foram definidos dois conjuntos de
regras de mapeamento: gerais e de instrução. As regras fo-
ram, então, aplicadas sobre o código x86 de dois estudos de
caso escritos em C. Em seguida, a análise com a ferramenta
PAT (Process Analysis Toolkit), que utiliza o dialeto CSP#
e permite que sejam feitas verificações da especificação, tais
como deadlock-free e asserções LTL (Linear Temporal Logic)
obteve resultados satisfatórios, identificando corretamente os
problemas conhecidamente nos sistemas verificados.
Palavras-chave: CSP, verificação formal, Assembly, deadlock.



Abstract

The percentage of functionalities provided by software for vari-
ous devices is increasing. Due to this tremb, software has also
become something bigger and more complex. However, more
(lines of) code produce a higher probability of faults being pro-
pagated in the different stages of development. It is also com-
mon that some of these functionalities get implemented con-
currently, either to improve performance or to provide clean
interaction with the user or another system, for example. The
problem is that human skills and most common software tes-
ting technics are usually not sufficient to verify the presence of
concurrency failures. Given this gap in the verification, this pa-
per proposes a direct translation of the machine code into CSP
(Communicating Sequential Processes) specifications, enabling
the formal analysis of such code. Two sets of mapping rules
were defined: general rules and instruction rules. The rules
were then applied on the x86 codes from two case studies writ-
ten in C. After that, the formal analysis was performed with
the PAT (Process Analysis Toolkit), which uses the dialect
CSP# and allows some assertions about the specification, like
deadlock-free and LTL (Linear Time Logic) assertions obtained
satisfactory results, correctly identifying the problems known
to exist in the verified systems.
Keywords: CSP, formal verification, Assembly, deadlock.
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1 Introdução

A dependência por software nos mais diversos dispositivos computacionais encontra-
dos no mercado vem crescendo notadamente. A miniaturização de componentes eletrô-
nicos permitiu embuti-los nos dispositivos em maiores quantidades, fornecendo maior fle-
xibilidade para o desenvolvimento de funcionalidades antes impensadas ou impraticáveis
devido à complexidade para construção diretamente em hardware.

Carros, por exemplo, carregam consigo dezenas de ECU’s (Electronic Control Units),
que são unidades eletrônicas de controle, responsáveis por diversas funcionalidades ofere-
cidas através de software. Tais unidades estão presentes até nos modelos mais simples e
algumas podem ainda trabalhar em rede (CHARETTE, 2009).

O cenário se repete em outras áreas. As aeronaves militares, por exemplo, apresenta-
ram um notável crescimento no percentual de funcionalidades providas por software para
seus pilotos nas últimas décadas. Como mostra a Figura 1, o caça F-4, no ano de 1996,
dispunha menos de 10% delas através de software. Já no F-22, em 2000, esse número
alcançava os 80% (DVORAK; LYU, 1996).

Figura 1: Crescimento de funcionalidades providas por software
[Fonte: Adaptado de Dvorak e Lyu (1996)]

Entretanto, prover mais funcionalidades através de software implica em um aumento
da quantidade de linhas de código. Essas, por sua vez, ocasionam acúmulo e propaga-
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ção de falhas conforme se avança nas várias fases do desenvolvimento: levantamento de
requisitos, modelagem, implementação e testes. Estatisticamente, em um processo de
desenvolvimento bem controlado de larga escala, é comum assumir que haverá de 0,1 a 1
defeito residual para cada mil linhas efetivas de código, excluindo comentários e linhas em
branco (DVORAK; LYU, 1996). Logo, principalmente quando aplicado a sistemas críticos,
como é o caso dos freios ou dos airbags de um carro, é bastante importante que essa taxa
seja reduzida ao mínimo possível.

1.1 Qualificação do Problema

Diferente dos métodos formais, os modelos utilizados na engenharia de software con-
vencional não fornecem uma maneira sistemática de especificar, desenvolver e verificar
artefatos de software (WING, 1990).

No que diz respeito à verificação, mesmo passando por testes de caixa-branca, testes
estruturais que buscam problemas lógicos diretamente no código fonte e fluxos gerados por
ele, é possível que outros problemas, como os associados a condições de corrida (WING,
1990), passem despercebidos. Isso acontece por que esse tipo de teste, a priori, não
considera as decisões de escalonamento feitas pelo processador.

Aquela, porém, é apenas a maneira convencional de fazer a verificação de software.
Outra maneira é a utilização de métodos formais. Não tão difundida pela dificuldade de
aplicação em sistemas grandes e complexos; e pela baixa oferta de mão-de-obra especia-
lizada (WING, 1990).

Um método é formal se tem uma sólida base matemática, tipicamente provida por uma
linguagem de especificação formal. Com ele é possível avaliar ambiguidade, completude e
consistência de um sistema – não necessariamente computacional. Além disso, devido a
essa base, fornece meios de provar a corretude do sistema modelado (WING, 1990).

Em particular, a linguagem CSP (Communicating Sequential Processes) foi concebida
para descrever sistemas de componentes que interagem entre si. Tais componentes, ou
processos, são considerados de forma independente e possuem interfaces, pelas quais eles
interagem com o ambiente (SCHNEIDER, 1999). Através de CSP, é possível descrever
todas as combinações de processos sendo executados sequencialmente, paralelamente ou
concorrentemente. Contudo, a adoção de linguagens formais tem certa resistência; uma
vez que as equipes de desenvolvimento, normalmente, não estão familiarizadas com seus
aspectos.
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A descrição formal de modelos CSP passível de processamento computacional é possi-
bilitada por dialetos que utilizam caracteres apropriados e notações um pouco diferentes
da notação tradicional, como CSP#, que é processado, simulado e verificado através da
ferramenta PAT (Process Analysis Toolkit).

Alguns autores já estudaram e criaram meios de atacar esse problema de verificação
de sistemas concorrentes. Lima (2011) propôs um mapeamento para análise de códigos
concorrentes em Java. Em seu trabalho, o mapeamento se dava de instruções do bytecode
Java para CSP#, pois o escalonamento de threads, feito pela JVM (Java Virtual Machine),
se dá neste nível. Porém, em algum ponto da execução, o bytecode será traduzido para
código de máquina nativo, pois é o que processador entende. Logo, o mapeamento de
instruções tornaria o mapeamento mais abrangente.

Já a solução de Kleine et al. (2011), parte de códigos de baixo nível escritos para uma
máquina virtual especializada, transformando-os em código CSPM(Machine ReadableCSP ).

Entretanto, a abordagem com álgebra de processos não é a única possível. Maus,
Moskal e Schulte (2008) propuseram a verificação de assembler x86 decorado através de
traduções subsequentes até chegar a um modelo de verificação baseado em um conjunto
de fórmulas de primeira ordem e uso de um solucionador SMT (Satisfiability Modulo The-
ories). Porém, quando mal especificadas, suas verificações podem ser tarefas indecidíveis,
ou seja, nunca terminam.

Então, o problema de pesquisa deste trabalho é: como gerar automaticamente
especificações CSP a partir de código Assembly?

1.2 Objetivos

O objetivo principal deste trabalho é propor mapeamentos de código Assembly para
um modelo formal CSP que simule o funcionamento do sistema computacional visando
automatizar a verificação da presença, ou ausência, de falhas decorrentes do uso da pro-
gramação concorrente oferecida pelo sistema operacional.

1.2.1 Objetivos Específicos

• Definir regras de mapeamento gerais, que modelarão o funcionamento do sistema
computacional e características de concorrência;

• Definir regras de nomenclatura, que atribuirão nomes aos elementos do código tra-
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duzidos para CSP;

• Definir regras de mapeamento das instruções, que transformarão o Assembly em
elementos CSP equivalentes;

• Analisar utilizando PAT a ausência de deadlocks e a não-terminação.

1.3 Resultados e Impactos Esperados

O resultado esperado deste trabalho é um conjunto de regras de mapeamento de
código Assembly para uma especificação formal equivalente em CSP#.

Espera-se que a transformação, e posterior verificação formal, obtida pela aplicação
de tais regras, forneça aos desenvolvedores de software uma maneira efetiva de reduzir a
quantidade de falhas de um programa antes de sua implantação em ambiente de produção.
Por ser automatizado e não exigir muita profundidade de conhecimento acerca de métodos
formais, também é esperado que a resistência atribuída à utilização desta solução seja
menor do que a de outras abordagens.

1.4 Estrutura da Monografia

Além deste capítulo, o trabalho está dividido em mais quatro capítulos:

• Capítulo 2 - Referêncial Teórico: descreve conceitos usados como base para o desen-
volvimento do trabalho. Contém informações sobre os fundamentos de CSP, suas
ferramentas e dialetos, lógica temporal, Assembly, ambiente de execução e progra-
mação concorrente. Além disso, discute soluções diferentes em trabalhos escritos
por outros autores.

• Capítulo 3 - Método de Pesquisa: expõe de que maneira foi realizado o estudo,
a definição dos exemplos, a extração das regras de mapeamento e a análise dos
resultados.

• Capítulo 4 - Resultados: apresenta o conjunto de regras para tradução de código
x86 assembler em comandos CSP# e a aplicação do mesmo nos exemplos definidos.

• Capítulo 5 - Considerações Finais: analisa o impacto dos resultados obtidos e cita
possíveis trabalhos futuros.
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2 Referencial Teórico

Neste capítulo é apresentada a base teórica necessária ao entendimento de seções pos-
teriores deste trabalho. Aqui são discutidos os fundamentos de CSP, as particularidades
de CSPM e de CSP# , o framework PAT, alguns conceitos de concorrência, o código de
máquina e a manipulação de threads em C no ambiente Windows.

2.1 Conceitos Chaves

2.1.1 CSP

A linguagem formal CSP impõe uma maneira de analisar o mundo através da especi-
ficação de composições e interações entre sistemas independentes. Esse nível de abstração
permite que CSP consiga representar não apenas sistemas computacionais, como qualquer
sistema de uma maneira genérica. Por exemplo, podem-se considerar os departamentos
de uma empresa como subsistemas independentes onde haja certa necessidade de comu-
nicação entre eles.

O propósito final de CSP é prover uma visão diferente para a análise e a especifica-
ção das diversas possibilidades de interação entre esses componentes (SCHNEIDER, 1999).
Sendo o processo e o evento os dois mais básicos deles. O primeiro pode ser pensado como
uma caixa preta que fornece interfaces de entrada e de saída. Por exemplo, considerando
uma cafeteira simples que disponibiliza dois tamanhos de café como um processo, tem-se
os botões “Longo” e “Curto” como interfaces de entrada e a torneira como a de saída.
Nesse caso, o processo “Cafeteira” omite processos internos a ele como o aquecimento da
água e a coagem do café.

Já um evento descreve uma ação atômica dentro de um processo, uma transição entre
seus estados. A interface de um processo é descrita por um conjunto desses eventos.
Portanto, no exemplo da cafeteira a interface pode conter os seguintes eventos: apertar
botão “Curto”; apertar botão “Longo”; despejar café longo; e despejar café curto.
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2.1.1.1 Transições

A semântica operacional de CSP define como seu interpretador deve executar as
devidas transições entre processos. Por exemplo, tomando um processo definido por
P = a→ P ′, a única ação possível inicialmente é o acionamento do evento a. Essa execu-
ção pode ser descrita por (a → P ′) a→ P ′. O próximo passo P ′, então, seguiria o mesmo
pensamento a partir do processo resultante até que a execução termine.

2.1.1.2 Términos

Existem dois processos especiais que indicam o término da execução de um dado
processo. Um deles é STOP , cujo conjunto de eventos de transição é vazio, ou seja,
quando se chega a ele, não é possível fazer nenhum progresso na execução. O outro é
denominado SKIP , que indica uma terminação com sucesso. Este, é executado gerando
o evento

√
, isto é, SKIP

√
→ STOP .

2.1.1.3 Pré-fixo

O conjunto de eventos externos de uma especificação em CSP é denotado por Σ. Dado
um processo P , se a ∈ Σ então pode-se escrever um processo em que a → P (leia-se a
então P ). Como a é o único evento habilitado para tal processo, sua execução é descrita
por: (a→ P ) a→ P .

Considerando o caso de uma máquina copiadora que funcione apenas uma vez pri-
meiramente digitalizando o documento para depois imprimi-lo, tem-se o processo descrito
em (2.1), cuja interpretação passa por (2.2) e (2.3). Inicialmente (2.2), apenas o evento
digitalizar está habilitado. Num segundo momento (2.3), o único evento habilitado é
imprimir.

COPIADORA = digitalizar → imprimir → STOP (2.1)

(digitalizar → (imprimir → STOP )) digitalizar−→ (imprimir → STOP ) (2.2)

(imprimir → STOP ) imprimir−→ STOP (2.3)

2.1.1.4 Recursão

A recursão em CSP é usada para descrever processos que podem rodar indefinida-
mente. Por exemplo, um abajur que é ligado diretamente à tomada apresenta apenas dois
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possíveis estados. Sua execução – que passa por (2.5) e (2.6), depois volta a ser (2.4) –
nunca termina.

ABAJUR = ligar → desligar → ABAJUR (2.4)

(ligar → (desligar → ABAJUR)) ligar−→ (desligar → ABAJUR)) (2.5)

(desligar → ABAJUR)) desligar−→ ABAJUR (2.6)

2.1.1.5 Eventos compostos

Mesmo sendo fenômenos atômicos, os eventos de CSP são capazes de carregar pedaços
de informação se utilizando de certa estrutura. Existem dois tipos de construção que
resultam na composição de eventos. O mais simples deles é unir um evento simples com
uma informação através do operador “.”, por exemplo, escolher.longo e escolher.curto no
caso da cafeteira.

Outra maneira é utilizando canais de comunicação. É possível definir um conjunto de
valores possíveis na leitura e escrita de um canal declarando explicitamente esse tipo. Por
exemplo, se escolher fosse especificado como um canal, cujo tipo fosse T = {longo, curto},
então o conjunto {escolher.t|t ∈ T} seria o conjunto de eventos associado a este canal
(SCHNEIDER, 1999).

Não há limite teórico para a quantidade de vezes que um evento pode ser composto
pelo operador de composição, mas há situações em que a quantidade de configurações
possíveis impactam na quantidade de estados possíveis e, portanto, na verificação do
modelo; já que se trata de um produto cartesiano entre os tipos compostos.

2.1.1.6 Entrada e saída em canais

A escrita e leitura de valores nos canais é feita, respectivamente, com os operadores
“!” e “?”. Por exemplo, um BUFFER de apenas uma posição pode dispor dos canais
entrada e saída, ambos do tipo ALCANCE = {0, 1, 2} descrito por (2.7). Depois de
recebido como entrada, o valor v é escrito no canal saída, disponível para leitura.

BUFFER = entrada?v → saída!v → BUFFER (2.7)
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2.1.1.7 Escolha

Há duas maneiras de inserir uma escolha entre processos que desencadeiam diferentes
fluxos de execução. São elas a escolha externa e a escolha interna. A primeira, denotada
por P12P2 espera que o ambiente, através do próximo evento executado, decida qual dos
processos tomará o controle. Há mais de um evento na interface dessa escolha, porém
todos eles exclusivamente pertencentes à interface de um dos processos.

Já a segunda, denotada por P1uP2, toma essa decisão internamente ao processo e sem
a influência do ambiente. Ao entrar nele, uma transição silenciosa acontece decidindo qual
entre os processos seguirá sua execução. Portanto, enquanto o primeiro tipo de escolha é
determinístico, a escolha interna é não-determinística.

2.1.1.8 Alfabeto

O alfabeto de um processo P1, denotado por α(P1), é o conjunto de todos os eventos
descritos por esse processo direta ou indiretamente, através das possíveis combinações dos
canais de comunicação. Utilizando o exemplo do BUFFER, escreve-se:

α(BUFFER) = {entrada.0, entrada.1, entrada.2, saída.0, saída.1, saída.2} (2.8)

2.1.1.9 Paralelismo

Existem dois operadores em CSP que permitem descrever o comportamento paralelo
de processos. Um deles é o paralelismo alfabetizado, ou com alfabetos, cujo operador é
“||”. Nesse tipo de paralelismo é necessário especificar como os processos irão interagir.
Isso é feito fornecendo a interface dos processos como em (2.9).

P1{a,b,c}||{a,b}P2 (2.9)

Sempre que se chegar a um ponto da execução onde haja um evento que pertença a
ambas as interfaces listadas no operador, tal evento só será habilitado se os dois processos
o têm habilitado simultaneamente. A execução desse evento (2.10) faz ambos os processos
prosseguirem.

(a→ P ′1){a,b,c,}||{a,b}(a→ P ′2) a→ P ′1{a,b,c}||{a,b}P
′
2 (2.10)

O segundo operador de paralelismo é chamado interleaving, simbolizado por “|||”.
Ao contrário do anterior, este operador permite que os processos executem de maneira
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completamente independente uns dos outros (ROSCOE; HOARE; BIRD, 1997), incluindo
casos onde os eventos dos processos possuam o mesmo nome, pois o evento será executado
por apenas um dos deles. Assim, dado que P1

a→ P ′1, é possível ober:

P1|||P1
a→ P ′1|||P1 (2.11)

2.1.1.10 Propriedades

Normalmente, depois de elaborada uma especificação CSP, deseja-se fazer algumas
verificações acerca de sua corretude.

A ferramenta PAT oferece a verificação das seguintes asserções sobre o LTS (Labeled
Transition System – representação interna dos modelos de entrada durante execução e
verificação) de uma especificação CSP# (SUN; LIU; DONG, 2011):

• Deadlock-freedom (Ausência de deadlock): Verifica se não existem estados que não
tenham transições possíveis – excetuando-se o estado de terminação com sucesso.

• Divergence-freedom ou Livelock-freedom (Ausência de livelocks): Verifica se um pro-
cesso não pode realizar transições internas – transições que não são visíveis – para
sempre, sem exercer nenhuma transição externa. Deve-se notar que esta é uma
noção formal e específica de livelock.

• Deterministic (Determinístico): Checa se não existe algum estado em que ummesmo
evento (dois ou mais eventos de mesmo nome) pode levar a dois estados diferentes.

• Nonterminating (Interminável): Verifica se não existe algum estado de terminação.

• Reachability (Alcançável): Visita os estados a procura de um em que o objetivo
desejado é satisfeito.

2.1.2 FDR e CSPM

FDR (Failures Divergences Refinement checker) é uma ferramenta capaz de fazer
análise automática de processos CSP. É também utilizada na verificação de parte das
propriedades citadas anteriormente (SCHNEIDER, 1999). Porém, sua função principal é
de examinar se um processo CSP refina ou não outro. O refinamento permite saber se
um processo reflete as propriedades de outro sendo que escrito de forma diferente.
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Apesar das combinações entre processos CSP ter sido mostrada até aqui através de
seus operadores algébricos, a automatização de sua análise exige que a descrição do mo-
delo se pareça mais com uma linguagem de programação a fim de ser entendida pelo
computador. Além dos operadores precisarem de uma versão textual, a estruturação do
conteúdo do arquivo, a declaração de canais e os tipos de dados passados por eles também
devem ser padronizadas (FSE, 2010).

Para isso FDR utiliza o dialeto CSPM (Machine-Readable CSP), que é um padrão
desenvolvido independentemente – apesar de ter sido primeiramente utilizada por FDR.

2.1.3 PAT e CSP#

PAT, ferramenta utilizada na elaboração deste trabalho, é um framework para cri-
ação, simulação e verificação de sistemas concorrentes, probabilísticos e de tempo real.
Interessa para este trabalho apenas o primeiro deles, pois utiliza a linguagem CSP#, que
mescla parte do formalismo de CSP apresentado por Hoare (1985) com facilidades de uma
linguagem imperativa, como atribuição e compartilhamento de memória.

Alguns dos diferenciais do CSP# são: variáveis compartilhadas; comunicação assín-
crona através de canais de tamanho definível; execução atômica de processos; suporte a
arrays e outros tipos não-primitivos como listas e pilhas; suporte à programação impe-
rativa interna aos eventos; possibilidade de incluir bibliotecas compiladas em C# com
definições de tipos e métodos (SUN; LIU; DONG, 2011). Apesar de aparentemente exclusi-
vas, parte dessas funcionalidades é passível de ser desenvolvida no CSPM tradicional, mas
pode tornar o modelo não escalável ou de pior legibilidade (CARVALHO et al., 2011).

Diferentemente da especificação do próprio CSP, CSP# não assume um ambiente, o
que acaba influenciando na verificação de modelos. Por exempo, o Código 2.1 mostra um
caso em que o processo P espera um valor de entrada, mas como não há nenhum outro
processo que escreva neste mesmo canal, P não é livre de deadlock. Em CSP (e em CSPM)
isso não é verdade por que o ambiente estaria disposto a escrever no canal entrada.

Código 2.1: Exemplo mundo fechado de CSP#

1 channel entrada 0 ; channel sa ída 0 ;
2 P( ) = entrada ? va l o r −> sa ída ! va l o r −> P( ) ;
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2.1.4 Lógica Temporal

PAT permite fazer asserções formuladas em lógica temporal linear (LTL) acerca da
especificação CSP#. Na lógica classica, a avaliação de fórmulas se dá em um estado fixo
de mundo, enquanto que na temporal, em um conjunto de estados (FISHER, 2011). Para
descrever essa navegação pelo tempo no modelo, a lógica temporal extende os operadores
clássicos. Por exemplo, a Equação 2.12 diz que x∨ y é satisfeito no estado atual, mas que
x ∧ y é satisfeito no próximo.

(x ∨ y)© (x ∧ y) (2.12)

Isso seria válido, por exemplo, em um sistema que podesse ser representado por um
LTS, como mostra a Figura 2:

Figura 2: Exemplo de uso de LTL em um LTS

(a)x é satisfeito; (b) y é satisfeito; (c) x ∧ y é satisfeito.

Tabela 1: Operadores LTL
[Fonte: Adaptado de SUN, LIU e DONG (2011)]

Textual Simbólico Explicação
Xφ ©φ φ deve ser satisfeito no próximo estado
Gφ ou []φ �φ φ deve ser satisfeito em todos os estados subsequentes
Fφ ou <> φ 3φ φ deve ser satisfeito em algum estado subsequente
ψUφ ψuφ ψ é satisfeito até que φ seja satisfeito
ψRφ ψRφ φ é satisfeito até o primeiro estado em que ψ é satisfeito

São aceitos como entradas para verificações LTL em PAT: eventos, proposições pré-
definidas e expressões com o conjunto extendido de operadores (SUN; LIU; DONG, 2011).

2.1.5 Ambiente de execução

Compiladores de linguagens de programação que apresentam um nível de abstração
mais alto que o código de máquina nativo, como C, devem trabalhar em conjunto com o
sistema operacional para criar um ambiente de execução apropriado.

Tal ambiente é responsável, por exemplo, pelo posicionamento e esquema de alocação
de variáveis descritas no código, pela passagem de parâmetros, pelo mecanismo de acesso



2.1 Conceitos Chaves 12

às variáveis, pela ligação entre os procedimentos, pelos dispositivos de entrada e saída,
enfim, convenções utilizadas na execução (AHO et al., 2006).

2.1.5.1 Armazenamento

A Figura 3 mostra uma subdivisão da memória em diferentes áreas feita por um
compilador de uma “linguagem de von Neumann”. Assim conhecida por trabalharam
em modelos computacionais baseados na arquitetura de von Neumann; cuja principal
característica é de manter em memória tanto o programa, quanto os dados durante a
execução.

Figura 3: Organização da memória
[Fonte: Adaptado de Aho et al. (2006)]

É importante notar como a parte livre da memória é compartilhada pela heap e pela
pilha. Essas áreas crescem em direções opstas enquanto o programa está sendo executado.

Normalmente, o armazenamento nessas áreas está relacionado a diferentes finalidades:
na pilha ficam variáveis de escopo local e dados necessários à ligação entre procedimentos;
na heap, as variáveis que ocupam espaço sob demanda e podem durar além da vida de
um escopo (AHO et al., 2006).

2.1.5.2 Pilha de execução

A pilha de execução é responsável, principalmente, por viabilizar a criação de stack
frames, quadros de pilha, que representam os diferentes escopos de um programa, com o
auxílio de dois registradores: o EBP (Extended Base Pointer), que aponta para o endereço
da memória onde se encontra a base atual da pilha; e o ESP (Extended Stack Pointer), que
aponta para o seu topo. O prefixo “Extended” dado aos registradores no assembler x86
denota que estes possuem 32 ao invés de 16 bits. À medida que os dados são empilhados,
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o ESP é decrementado e passa a apontar para um endereço de memória de numeração
menor.

No decorrer de uma execução, são empilhadas tanto variáveis locais como parâmetros
para outros procedimentos e conteúdo de registradores, por exemplo, o EIP (Extended
Instruction Pointer), também conhecido por PC (Program Counter). Os dois últimos
casos, normalmente, são decorrência da chamada e retorno de procedimentos, pois o
conteúdo dos mesmos é alterado com a mudança de escopo e deve ser restaurado ao
estado anterior.

Não há uma divisão exata de como serão divididas as tarefas entre o procedimento
chamador e o procedimento chamado. Pode haver variação até mesmo para diferentes
implementações de compiladores de uma mesma linguagem (AHO et al., 2006).

As convenções utilizadas pelo GCC (GNU Compiler Collection) na plataforma Win-
dows x64, em que este trabalho foi elaborado, são as seguintes:

• Os registradores EBX, ESI, EDI, EBP, DS, ES e SS não podem ter seu valor alte-
rado dentro de uma chamada. Isso significa que, se usados, seus valores devem ser
restaurados antes de retornar;

• Inteiros com tamanho de até 32 bits e ponteiros são retornados através do registrador
EAX (Extended Accumulator register);

• Valores de ponto flutuante são retornados no registrador ST0 – registradores x87
(subconjunto de instruções relacionadas a operações com ponto flutuante que origi-
nalmente extendiam as x86) que vão de ST0 a ST8 e possuem 80 bits de armazena-
mento;

• Valores do tipo long long int são retornados nos dois registradores EDX (Extended
Data register) e EAX, respectivamente contendo suas partes mais e menos signifi-
cativas;

• O retorno de estruturas por valor pode causar erro de execução se houver mais de
uma definição desse tipo;

• Os parâmetros são passados da direita para a esquerda;

• O endereço de retorno, passado pela pilha, fica na posição apontada por ESP.
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Além dessas, a linguagem C permite que na declaração de uma função seja explicitado
qual dentre suas possíveis convenções de chamada, referentes à passagem de parâmetros,
será usada. Ver Tabela 2.

Tabela 2: Convenções de chamada em C
[Fonte: Adaptado de MSDN1]

Tipo Descrição
stdcall Função chamada é responsável por limpar argumentos da pilha. Gera assem-

bly com nome decorado com a quantidade de bytes de seus argumentos.
cdecl Esta é a convenção padrão para compilação de códigos-fonte escritos em C.

Função chamadora fica responsável por limpar argumentos passados.
fastcall Os argumentos são passados através dos registradores ECX (Extended Count

register) e EDX quando possível. Gera assembly com nome decorado com a
quantidade de bytes em argumentos. Função chamada fica responsável por
limpar seus argumentos.

2.1.5.3 Gerenciamento da Heap

A heap é responsável pelos dados gravados na memória por tempo indefinido ou até que
sejam explicitamente desalocados. O gerenciador da heap é o subsistema responsável pelo
uso dessa parte da memória. Seu trabalho é o de guardar informações sobre partes ainda
livres da memória, distribuindo-as e retomando-as, através de duas funções básicas de
alocar e desalocar. Sempre com a preocupação de minimizar o espaço da heap necessário
a um programa e de maximizar a eficiência do mesmo. Porém, nem todos os pedidos
de partes da memória são do mesmo tamanho e suas devidas liberações acabam gerando
espaços vazios que podem não ser mais preenchidos posteriormente.

2.1.6 Assembly

O desenvolvimento de software é normalmente feito em linguagens de programação
que fornecem certo nível de abstração ao programador; no sentido de que não é preciso
conhecer a fundo a linguagem de máquina para poder comandá-la. Isso favorece princi-
palmente a legibilidade, a portabilidade e a manutenabilidade dos programas.

Porém, um computador é, “a grosso modo”, um circuito digital; o que significa que os
dados manipulados por ele são representados por sinais eletrônicos que assumem apenas
dois estados (HENNESSY; PATTERSON; LARUS, 2000). Portanto, o vocabulário de uma
máquina está restrito ao seu conjunto de instruções.

1MSDN Calling Convention Topics: http://msdn.microsoft.com/en-us/library/aa278874(v=vs.60)
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Uma instrução é uma sequência ordenada de bits que determina o fluxo dos dados
de entrada fornecidos. Há várias categorias de instruções, dentre elas as aritméticas, as
de transferência de dados e as de desvio condicional e incondicional. Normalmente essas
instruções estão associadas a um mnemônico que substitui a necessidade de memorizar a
sequência de bits, além de servir como um pequeno nível de abstração.

2.1.6.1 Instruções

As instruções na Tabela 3 são um subconjunto das instruções disponíveis para As-
sembly x86. Todas as instruções encontradas nos exemplos apresentados posteriormente
são listadas.

2.1.6.2 Diretivas

Um arquivo Assembly contém ao menos três seções não necessariamente preenchidas:
de texto, de variáveis estáticas inicializadas e não inicializadas dispostas nesta ordem.
Contudo, tais seções podem aparecer de maneira alternada, através do uso explícito de
suas respectivas diretivas text, data e bss (Block Started by Symbol).

A diretiva comm, que também aparece nos exemplos deste trabalho, declara e aloca
memória não inicializada na seção bss para um símbolo (JURIC; REICHELT; KOFLER, 2003).
Já a diretiva globl (ou global) torna um símbolo visível para todos os demais programas
parciais sendo compilados, ou seja, outros objetos assembly poderão acessá-lo pelo seu
nome.

Nó exemplo do Código 2.2 tanto a variável a quanto a b ficarão no segmento bss,
mas, por já ter sido inicializada, b já será taxada como global. Enquanto isso, a variável
estática c será posicionada diretamente em data.

Código 2.2: Variáveis estáticas em C

1 int ∗a ;
2 int b = 0 ;
3 stat ic int c = 1 ;
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Tabela 3: Instruções Assembly
Mnemônico Operação
mov Move o conteúdo do primeiro operando para o segundo.
add Adiciona o primeiro operando ao segundo. Guarda o resultado no

segundo.
sub Subtrai o primeiro operando do segundo. Guarda o resultado no

segundo.
mul Multiplica conteúdo do registrador A (por exemplo, EAX) pelo

único operando. Guarda o resultado no operando.
imul Mesmo que mul, mas considera sinal.
dec Decrementa o conteúdo do único operando.
inc Incrementa o conteúdo do único operando.
push Empilha o único operando e atualiza o registrador ESP.
pop Desempilha preenchendo o conteúdo do único operando.
jmp Desvia a execução, altera o PC, para o endereço do label.
call Executa um push do PC e um jmp com o argumento (label).
ret Desempilha preenchendo o PC, retornando a execução para o ponto

anterior. Há um parâmetro inteiro opcional que quando passado é
somado ao ESP.

leave Move EBP para ESP e desempilha o valor de EBP antigo.
lea Carrega o valor apontado pelo primeiro operando no segundo.
cmp Faz uma subtração entre os operandos e atualiza o registrador de

flags.
je Desvia para label quando operandos do cmp anterior são iguais.
jne Desvia para label quando operandos do cmp anterior são diferentes.
jg Desvia para label quando o primeiro operando do cmp anterior é

maior.
jge Desvia para label quando o primeiro operando do cmp anterior é

maior ou igual.
jl Desvia para label quando o primeiro operando do cmp anterior é

menor.
jle Desvia para label quando o primeiro operando do cmp anterior é

menor ou igual.
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2.1.7 Concorrência

2.1.7.1 Condições de corrida

Alguns sistemas computacionais possibilitam que múltiplas ações sejam realizadas de
forma independente em cima de um mesmo recurso. Se ao menos uma dessas ações for de
escrita em memória compartilhada, a integridade desses dados pode ser comprometida.

Condições de disputa são falhas dinâmicas, que acontecem em tempo de execução e
são dificilmente detectados diretamente no código fonte (HENNESSY; PATTERSON; LARUS,
2000). Elas são decorrentes da natureza multitarefa dos sistemas e da maneira como são
feitos os escalonamentos pelo sistema operacional.

É comum que uma linha de código fonte seja compilada tornando-se mais de uma linha
de código de máquina – nível onde ocorrem as trocas de contexto entre tarefas. Portanto,
não há garantias, por exemplo, de que o valor lido e copiado para um registrador em
um momento não tenha sido alterado imediatamente depois por outra tarefa, gerando
inconsistência no dado do registrador.

Um fator atenuante para esse tipo de falha é que o número de combinações de entre-
laçamento de tarefas que a geram tende a ser relativamente limitado.

2.1.7.2 Regiões críticas

As seções, ou regiões, críticas são trechos de código em que tarefas acessam dados
compartilhados, ou seja, que podem gerar condições de disputa. Uma vez identificada,
há diversas maneiras de evitar esse tipo de problema restringindo o acesso à mesma para
apenas uma tarefa por vez.

De maneira ideal, o acesso controlado a essas regiões deve contemplar: a exclusão
mútua, apenas uma tarefa na região; a espera limitada, garantindo que uma tarefa não
esperará indefinidamente; a independência de outras tarefas, pois apenas tarefas que
desejam entrar na região crítica devem influenciar na decisão de quem tomará o controle; e
a independência de fatores físicos, porque componentes de hardware não podem influenciar
na decisão (MAZIERO, 2011).
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2.1.7.3 Impasses

O não cumprimento de todas as condições para acesso seguro aos recursos pode levar
o sistema, ou parte dele, a estados de impasse (MAZIERO, 2011). Esses estados são
conhecidos, de modo generalizado, como deadlocks. Porém, há diferentes situações de
impasse, todas elas impedindo o progresso da execução de um programa.

O deadlock é, mais especificamente, um caso no qual a tarefa fica bloqueada esperando
a liberação ou a obtenção de algum recurso para continuar sua execução.

Já o livelock, apesar de parecido com o deadlock, apresenta uma característica impor-
tante. Ao invés de estar presa a um estado, a tarefa fica presa a um conjunto de estados
que nunca progride, como em um laço infinito, tentando obter o recurso.

2.1.7.4 Mutexes

Uma das formas de controlar o acesso a seções críticas de um programa é através
do uso de mutexes. Pois com eles é possível marcar uma região como ocupada ou livre.
Assim, antes de adentrar uma região crítica, toda tarefa deve, primeiramente, pedir o
travamento (lock) da mesma àquele mutex e esperar que ele lhe dê permissão para isso.
Ao terminar de usá-la, o mutex deve ser então notificado para que se dê chance às outras
tarefas (MAZIERO, 2011).

Na Figura 4 duas threads t1 e t2 fazem requisições para entrar na região crítica onde
poderiam, por exemplo, incrementar ou decrementar o valor de uma variável comparti-
lhada. Se tal região não fosse protegida, ambas poderiam ler o mesmo valor inicial, mas
apenas a última delas a guardar o novo valor aparentaria ter ocorrido.

Figura 4: Funcionamento do Mutex
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2.1.7.5 Manipulação de Threads em C no Windows

Threads (linhas de execução) são as menores unidades de processamento escalonáveis
pelo sistema operacional. Elas são internas ao escopo do processo para o qual foram
criadas e compartilham os recursos do mesmo, como memória e sequência de instruções.
Desta forma, várias linhas de execução de um mesmo processo rodam de maneira paralela,
podendo gerar condições de disputa.

A implementação de threads varia para cada sistema operacional, fazendo com que sua
chamada também tenha particularidades dependentes do mesmo. Para manipulá-las no
ambiente Windows é preciso incluir o cabeçalho “windows.h”, que inclui, internamente, o
“winbase.h”, onde estão definidas as funções da Tabela 4.

Tabela 4: Funções utilizadas por este trabalho
Nome Descrição
CreateThread Cria uma thread.
SuspendThread Suspende a execução de uma thread
ResumeThread Retoma a execução de uma thread
ExitThread Finaliza uma thread
CreateMutex Cria um mutex
WaitForSingleObject Espera a liberação de um objeto (e.g. threads, mutexes)
WaitForMultipleObjects Espera a liberação de um ou mais objetos

Para criar threads utiliza-se a função CreateThread, que possui seis argumentos, sendo
dois deles opcionais e um de saída, como mostra o Código 2.3. A Tabela 5 mostra
algumas das definições da API (Application Programming Interface) do Windows que
aparecem nessa assinatura ou que são usadas nos exemplos do trabalho posteriormente. As
demais funções utilizadas neste trabalho podem ser encontradas naMicrosoft Development
Network (MSDN), mais especificamente na área de serviços de sistema2.

Código 2.3: Assinatura da função CreateThread
1 HANDLE WINAPI CreateThread (
2 __in_opt LPSECURITY_ATTRIBUTES lpThreadAttr ibutes ,
3 __in SIZE_T dwStackSize ,
4 __in LPTHREAD_START_ROUTINE lpStartAddress ,
5 __in_opt LPVOID lpParameter ,
6 __in DWORD dwCreationFlags ,
7 __out_opt LPDWORD lpThreadId ) ;

2MSDN System Services:
http://msdn.microsoft.com/en-us/library/windows/desktop/ee663297(v=vs.85).aspx
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Tabela 5: Tipos definidos na API de C do Windows
[Fonte: Adaptado de MSDN3]

Tipo Descrição
HANDLE Manipulador para um objeto. É um tipo definido por

PVOID.
PVOID/LPVIOD Ponteiro para qualquer tipo (ponteiro para void).
WINAPI Convenção de chamada. Será substituído por stdcall pelo

pré-processador.
DWORD Inteiro sem sinal de 32 bits.
LPDWORD Ponteiro para um DWORD.
SIZE_T Número máximo de bytes que um ponteiro pode apontar.
LPSECURITY_ATTRIBUTES Ponteiro para estrutura SECURITY_ATTRIBUTES.
SECURITY_ATTRIBUTES Estrutura que define configurações de segurança para obje-

tos criados por algumas funções como o CreateThread.
LPTHREAD_START_ROUTINE Ponteiro para função de callback.
INFINITE DWORD máximo (4294967295).
BOOL/BOOLEAN Byte/inteiro sem sinal. Devem ser TRUE ou FALSE.
TRUE Equivalente ao valor 1.
FALSE Equivalente ao valor 0.
NULL Equivalente a \0.
_in[_opt], _out[_opt] Pré-fixos de parâmetros que apenas servem de informação.

Serão excluídos pelo pré-processador.

2.2 Trabalhos Relacionados

A idéia de utilizar o código Assembly para fazer verificação de software já vem sendo
explorada por outros autores. Essa verificação é bastante desafiadora. Os motivos incluem
a não-estruturação do código, a não utilização de tipos de variáveis, o uso de registradores
para guardar tanto valores quanto endereços de memória e o fato de que algumas instru-
ções podem alterar o estado do processador (MAUS; MOSKAL; SCHULTE, 2008). Esta seção
mostra três soluções que, de certa forma, se assemelham com a idéia deste trabalho.

2.2.1 Vx86

Vx86 (MAUS; MOSKAL; SCHULTE, 2008) é uma ferramenta de análise estática auto-
mática que verifica a corretude de código Assembly x86 da Intel simulando-o em C e
passando por um provador de teoremas. Basicamente o Assembly decorado é traduzido
para um C também decorado que é entendido e compilado pela ferramenta na qual sua
base foi construída, o VCC (Verifying C Compiler).

O VCC (DAHLWEID et al., 2009) é capaz de verificar a corretude parcial de código C
decorado. Isso significa que a verificação pode não terminar, é uma tarefa indecidível, mas

3MSDN Windows Data Types: http://msdn.microsoft.com/en-us/library/aa383751
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se alguma resposta for retornada então a condição de verificação requisitada foi provada
ou refutada.

Na verdade o VCC também traduz seu código anotado para outra linguagem, a
BoogiePL, que é uma linguagem simples para propósito de verificação de programas ori-
entados a objetos. Essa, por sua vez, traduz as funções em conjuntos de condições de
verificação em lógica de primeira ordem e usa o solucionador SMT (Satisfiability Modulo
Theories) Z3 para provar a validade dessas fórmulas.

As propriedades de boa-formação passíveis de verificação são: segurança de memória,
checa se nenhuma função tenta acessar endereços que não são conhecidamente válidos;
segurança de aritmética, verifica ausência de overflows; segurança de chamada, testa se
a pilha sempre é limpa depois de cada chamada e se os registradores são devidamente
salvos antes dela; segurança de interrupção, checa se a pilha é limpa depois de processar
a interrupção por completo.

Apesar de basear-se no VCC, capaz de fazer verificações em cima de códigos concorren-
tes, o Vx86 só faz verificação de código Assembly garantidamente sequencial. Portanto,
apesar da similaridade com este trabalho em tentar formalizar a verificação de código,
Vx86 não considera o paralelismo.

2.2.2 LLVM2CSP

LLVM (Low Level Virtual Machine) é uma infraestrutura compiladora desenvolvida
para fornecer informações de alto nível para as transformações feitas por compiladores
em tempo de compilação, ligação, execução e inatividade entre compilações (LATTNER;
ADVE, 2004). Por ser livre de linguagem, vem sendo usada por uma variedade cada vez
maior de compiladores.

O LLVM define uma representação de código abstrata de baixo nível com conjunto
de instruções parecida com a de um RISC (Reduced Instruction Set Computer), mas que
provê informações adicionais como tipos primitivos de linguagens de alto nível, aritmética
de endereços tipada, manipulação de exceções.

Tomando como base a representação intermediária de LLVM para códigos concorren-
tes escritos originalmente em C ou C++, o LLVM2CSP (LLVM to CSP) desenvolvido por
Kleine et al. (2011) é uma ferramenta para LLVM que extrai modelos CSP tanto para
ferramenta ProBE (Process Behaviour Explorer) quanto FDR.
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As instruções são traduzidas em processos sequenciais que terminam. A memória é
dividida em privada e compartilhada e ambas são modeladas como processos separados.
É definido também um processo que simula o escalonamento de tarefas, que, em con-
junto com os processos que descrevem o funcionamento da memória, forma a semântica
operacional do LLVM em CSP.

O modelo gerado é dividido em três partes: uma parte específica da aplicação, descreve
o comportamento de threads; outra de domínio específico, que encapsula conceitos de baixo
nível como escalonamento; e uma última específica de plataforma, que contém o modelo do
hardware. Algumas dessas partes possuem implementação pré-definida, enquanto outras
tem os parâmetros ou são inteiramente geradas pelo LLVM2CSP.

As asserções sobre o modelo podem ser criadas através da própria decoração do código
C e aparecerão no arquivo CSPM final. Com o modelo em mãos, é possível fazer, por
exemplo, verificações de refinamento com FDR ou de fórmulas LTL com o ProBE.

2.2.3 Mapeamento de Bytecode Java para CSP#

Lima (2011) propôs um mapeamento de bytecode Java para CSP# no qual o presente
trabalho foi baseado. Sua justificativa para o uso não do código fonte em si, mas sim do
bytecode gerado pela JVM é de que escalonamento entre as threads em Java se dá neste
nível.

Neste trabalho foram extraídas regras gerais, regras de nomenclatura e regras de
mapeamento de instruções a partir de exeperiências na tradução manual de códigos usados
como exemplos. Um deles continha um problema de condição de corrida utilizado como
demonstração, o qual conseguiu ser detectado com sucesso através da ferramenta de análise
fornecida pelo framework PAT em cima do modelo gerado.

Porém, uma linha de bytecode Java, pode acabar sendo traduzida em mais de uma
linha de código de máquina na hora da execução. Surgiu, portanto, a preocupação quanto
ao que aconteceria à validade dessas verificações se parte do bytecode analisado fosse com-
pilado pelo JIT (Just In Time Compiler) ao invés de inteiramente interpretado durante
a execução.

Quando um método codificado em Java é compilado, a JVM alimenta o JIT com o
bytecode gerado. O JIT, então, procura entender sua semântica e sintaxe para decidir
se aquela parte do código será otimizada e compilada para código nativo da plataforma
em que a JVM está sendo executada. Com isso, a máquina virutal Java não precisará
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passar por todas as fases novamente para executar aquele trecho de código. Mesmo que a
execução do mesmo esteja vinculado de alguma maneira pela JVM com o devido bytecode
que o gerou, a manipulação de threads é uma funcionalidade normalmente provida pelo
sistema operacional, é ele o responsável pelas trocas de contexto que acontecem no(s)
processador(es).
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3 Método de Pesquisa

Este capítulo descreve o método de pesquisa utilizado e como foram elaboradas e
executadas as diferentes etapas da confecção deste trabalho a fim de alcançar os objetivos
descritos no Capítulo 1.

3.1 Qualificação do Método de Pesquisa

Como pode ser observado no Capítulo 2, a fundamentação teórica necessária para o
entendimento deste trabalho é extensa. Trata-se de uma pesquisa bibliográfica, elaborada
a partir de conceitos já publicados em livros, artigos, manuais e outros.

3.2 Etapas do Método de Pesquisa

Estudo de CSP: Inicialmente foram estudados desde os conceitos mais básicos de
CSP, como eventos e processos, até os operadores de paralelismo que seriam utilizados
neste trabalho, e dois diferentes dialetos: CSP# e CSPM . Após isso, era necessário definir
para qual desses seria feito o mapeamento, já que suas implementações diferem bastante
tanto em sintaxe quanto no próprio funcionamento. Optou-se, então, por CSP# prin-
cipalmente pela maior simplicidade nos modelos com o uso de operações sobre variáveis
compartilhadas. Outro fator que contribuiu para essa escolha foi a conveniência de as
ferramentas de verificação e desenvolvimento serem partes de um framework executado
na mesma plataforma para qual o Assembly seria gerado – Windows.

Estudo sobre compiladores: Nesta etapa foram estudados aspectos do ambiente de
execução que estão relacionados às decisões dos compiladores durante a geração do código
Assembly a partir de arquivos fonte em linguagens de mais alto nível. Em especial as con-
venções de chamada, a alocação e crescimento de memória (heap e pilha), a manipulação
dos registradores EBP e ESP, entre outros.
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Além disso, apesar de o mapeamento ser a partir do Assembly, os exemplos não são
escritos diretamente neste nível, pois é bastante suscetível a erros de programação e difícil
de manter e de corrigir. Portanto, foi estudado o funcionamento básico do GCC para a
geração desses códigos a partir de fontes desenvolvidos em C.

Estudo de Assembly: Aqui foram estudados as diversas instruções responsáveis
pela real execução do programa. Seu estudo é importante pois cada uma tem um ou mais
comportamentos que devem ser também diferenciados durante o mapeamento. Muitas
vezes esse comportamento altera implicitamente o estado do processador e sem conhecê-
lo não é possível criar um modelo que seja fiel à realidade.

Estudo sobre concorrência: Como cada sistema operacional fornece seus próprios
meios de manipulação de tarefas concorrentes, foi preciso estudar a API específica da
plataforma Windows para desenvolver os exemplos usados no trabalho. Isso inclui prin-
cipalmente a criação, suspensão e retomada de threads e a criação e uso de mutexes.

Estudo de Trabalhos Relacionados: Foram estudadas três soluções propostas por
outros autores cujos objetivos eram similares ao deste trabalho. Além de servir como
experiência adicional acerca dos problemas a serem enfrentados, o estudo permitiu traçar
algumas vantagens e desvantagens de cada solução, bem como diferenças das mesmas em
relação à apresentada aqui.

Definição dos exemplos de programa concorrente: Escolheu-se arbitrariamente
dois problemas clássicos de concorrência como exemplos a serem mapeados e analisados
neste trabalho: produtores/consumidores e o jantar dos filófos. Ambos foram desenvolvi-
dos em C e apresentam problemas que, quando reproduzidos, os levam a nunca terminar.

Extração de regras de mapeamento: As regras foram extraídas tanto da compila-
ção de códigos mais simples – até mesmo não-concorrentes – quanto de traduções diretas
do Assembly dos próprios exemplos. Assim, a partir dos modelos obtidos, tentou-se esta-
belecer padrões de mapeamento que funcionassem de forma a abrangir o conjunto base
desses códigos em sua completude.
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Análise dos resultados: Após a aplicação das regras de mapeamento, os modelos
CSP# são submetidos à ferramenta de análise fornecida pelo PAT, onde são testadas as
propriedades: deadlockfree e non-terminating. A primeira verifica se há ou não situações
que levam a impasses, que impedem a evolução do estado do programa. A segunda, se o
programa nunca termina sua execução; havendo ao menos um caso de terminação, essa
propriedade é falsa, incluindo um caso de deadlock. Foi utilizada também a verificação
por asserções LTL no exemplo dos filósofos.
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4 Resultados

Este capítulo mostra a representação de uma máquina x86 em PAT e o conjunto
de regras definido por este trabalho para o mapeamento de código Assembly x86 em
especificações CSP#. Em seguida, são mostrados os resultados das análises feitas sobre as
especificações, estas obtidas após aplicação das regras nos seguintes exemplos: Produtores
e Consumidores e Jantar dos Filósofos.

4.1 x86 em PAT

Esta seção define a representação de uma máquina x86 no ambiente de PAT para
permitir a tradução e simulação/verificação de código Assembly.

4.1.1 Modelo de Memória

A memória do sistema será representada por uma matriz (n+1) xm onde n é o número
máximo pré-definido de threads permitidos, incluindo amain, em é o tamanho ummáximo
pré-definido daquele fragmento da memória. As n primeiras dimensões são dedicadas às
pilhas de execução das threads de identificador correspondente. n é acrescido de um pois
a heap também será mapeada nesta matriz sempre na última dimensão, compartilhada
por todas as threads. Portanto, a estrutura adotada não admite fragmentos de tamanhos
diferentes. Deve-se, logo, assumir que o fragmento será do tamanho do maior fragmento
existente no código Assembly.

O Código 4.1 mostra também como é inicializada essa matriz, que representa a me-
mória do computador no modelo em CSP#. As macros definidas no início do código são
substituídas pelo pré-processador do PAT, assim como em uma compilação de arquivos
C.
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Código 4.1: Memória
1 #define MEM_SIZE 30 ;
2 #define TOTALTHREADS 3 ;
3 #define HEAP TOTALTHREADS;
4 var memory [TOTALTHREADS + 1 ] [MEM_SIZE ] ;

4.1.2 Modelo dos Registradores

Para todos os registradores utilizados pelo Assembly (EAX, EBX, ECX, etc) é criado
um vetor com seu nome de forma que são acessados através do índice, identificador, da
thread.

O Código 4.2 mostra como são declarados e inicializados os registradores no modelo
CSP#. Normalmente os registradores são inicialmente preenchidos com 0 (zero). Excep-
cionalmente, os registradores ESP e EBP são inicializados apontando para o último índice
(MEM_SIZE − 1). A notação que aparece nas linhas 4 e 5 inicializam o vetor com o
valor MEM_LAST_INDEX repetindo-o TOTALTHREADS vezes.

Código 4.2: Registradores
1 #define TOTALTHREADS 3 ;
2 #define MEM_LAST_INDEX 29 ;
3 var eax [TOTALTHREADS] ;
4 var ebp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;
5 var esp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;

Já o Código 4.3 mostra os exemplos de uma instrução “mov %esp,%ebp”, dentro da
main, e outra “sub $2,%eax”, em uma função de thread, usando os registradores.

Código 4.3: Uso dos registradores
1 #define MAIN 0 ;
2 var eax [TOTALTHREADS] ;
3 _main ( ) = ( . . . ) −> _main_mov { ebp [MAIN] = esp [MAIN] } −> ( . . . ) ;
4 _function ( id ) = ( . . . ) −> _function_sub . id {eax [ id ] = eax [ id ] − 2} −> ( . . . ) ;

Dessa forma, o escalonamento das threads, que salva e restaura estados dos registradores,
pode ser simulado dentro do modelo CSP. A restrição é nunca utilizar identificadores
diferentes do que está sendo atualmente executado, pois isso geraria incoerência dos dados.

4.1.3 Modelo das Variáveis Globais

Variáveis de escopo global identificadas dentro do código Assembly são mapeadas
como variáveis de ambiente no CSP# com o mesmo nome e apontam para uma posição
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específica da memória. A identificação é feita procurando pelas diretivas comm, globl e
bss descritas anteriormente. O assembler faz a distinção dos segmentos data, bss e heap
durante a criação dessas variáveis. Porém, como isso não alteraria o comportamento final
das mesmas, decidiu-se que o mapeamento as colocasse sempre na região equivalente à
heap.

Código 4.4: Identificação de variáveis globais
1 .g lobl _x
2 .bss
3 .a l ign 4
4 _x :
5 .space 4
6 ( . . . )
7 .comm _y, 16 # 8

No Código 4.4 a variável _x de 4 bytes (especificada pela diretiva space na linha 5) e
a variável _y de 8 bytes (valor após o # na linha 7) são definidas. Apesar da identificação
ser diferente, o resultado do mapeamento é o mesmo. Para ambas uma posição inicial na
heap é reservada. Como _y tem tamanho maior que 4 bytes, e no CSP# não há tipos de
64 bits, há a necessidade de ocupação de dois espaços, portanto, o índice conseguinte é
pulado para futuras alocações, deixando-o livre também para o acesso deslocado através
dessa variável.

Identificadas as duas variáveis globais, antes de iniciar a execução própria do corpo
de main, o processo principal se comporta como o DefineGlobalVars, que possui eventos
de malloc consecutivos para cada uma das variáveis globais. O CSP# resultante é o
encontrado no Código 4.5. A limpeza no registrador EAX garante que essa manobra não
afete estados posteriores da execução.

Código 4.5: Definição das variáveis globais
1 var _x ;
2 var _y ;
3 Def ineGlobalVars ( ) =
4 Malloc (MAIN, 12)
5 ; _main_movl { _x = eax [MAIN] } −>
6 Malloc (MAIN, 12)
7 ; _main_movl { _y = eax [MAIN] } −>
8 _main_movl { eax [MAIN] = 0 } −> Skip ;
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4.1.4 Código não mapeado

O código gerado pelo GCC na plataforma Windows acrescenta algumas instruções
de alinhamento e configuração da biblioteca da linguagem que são desconsideradas para
o escopo deste trabalho. O exemplo de programa em C mostrado no Código 4.6 foi
compilado através do comando “gcc -S” e o Assembly obtido consta no Código 4.7.

Código 4.6: Exemplo de programa simples
1 #include <s t d l i b . h>
2 int main ( void ){
3 int a , b ;
4 a = 2 ;
5 b = 3 ;
6 return a + b ; }

Código 4.7: Resultado da compilação
1 . f i l e " ExemploC.c "
2 . d e f ___main ; . s c l 2 ; . t y p e 32; . e n d e f
3 . t e x t
4 . g l o b l _main
5 . d e f _main ; . s c l 2 ; . t y p e 32; . e n d e f
6 _main :
7 push %ebp
8 mov %esp , %ebp
9 sub $24 , %esp

10 and $−16, %esp
11 mov $0 , %eax
12 add $15 , %eax
13 add $15 , %eax
14 shr $4 , %eax
15 sal $4 , %eax
16 mov %eax , −12(%ebp)
17 mov −12(%ebp ) , %eax
18 c a l l __alloca
19 c a l l ___main
20 mov $2 , −4(%ebp)
21 mov $3 , −8(%ebp)
22 mov −8(%ebp ) , %eax
23 add −4(%ebp ) , %eax
24 leave
25 ret

O segmento de código não mapeado é o intervalo fechado das linhas [10, 19] – come-
çando no and e terminando no call ___main. É importante observar que o estado dos
registradores EBP e ESP, e da memória heap não são alterados dentro deste bloco; e que,
apesar de ser modificado dentro, a próxima operação em EAX fora do bloco é de escrita.
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Outro caso de não mapeamento do código acontece nas linham que sucedem chama-
das externas às funções da API do Windows, pois estas usam a convenção de chamada
stdcall. Logo, internamente, presume-se que tais funções retornam usando ret N , onde
N é o espaço ocupado pelos parâmetros em bytes, removendo-os da pilha; portanto, o sub
correspondente àquele retorno, como no Código 4.8, é excluído do mapeamento.

Código 4.8: Exemplo de chamada usando convenção stdcall
1 ( . . . )
2 c a l l _CreateThread@24
3 sub 24 , esp
4 ( . . . )

4.2 Regras de Mapeamento de Chamadas Externas

Todas as chamadas a funções que não são definidas dentro do mesmo arquivo Assembly
se tornarão processos separados. Para os dois exemplos estudados neste tabalho, as úni-
cas funções externas usadas são: malloc, CreateThread, ResumeThread, SuspendThread,
CreateMutex, WaitForSingleObject e WaitForMultipleObjects. São definidas as seguintes
Regras de Chamadas Externas (RCE) para a simulação da execução de código x86 no
ambiente de PAT.

4.2.1 RCE 1: Alocação de Memória

A alocação de memória heap suporta somente chamadas à função malloc. Não há
suporte à liberação de espaço alocado para posterior reutilização, nem ao rearranjo para
compactação do espaço utilizado, pois não há gerenciamento de estado para posições da
memória. Alocações consecutivas receberão endereços crescentes, começando de 0 (zero)
dentro da dimensão da memória compartilhada dedicada à heap. O processo que simula
esse comportamento é mostrado no Código 4.9.

Código 4.9: Alocação das variáveis
1 var current_heap = 0 ;
2 Malloc ( id , s i z e ) =
3 ca l l_mal loc . id {
4 eax [ id ] = current_heap ;
5 current_heap = current_heap + s i z e /4 ;
6 } −> Skip ;



4.2 Regras de Mapeamento de Chamadas Externas 32

4.2.2 RCE 2: Criação de Threads

Assim como a alocação de memória, a chamada ao CreateThread é mapeada como
um processo desenvolvido de modo a simular de maneira razoável o seu funcionamento.
Ele recebe dois parâmetros: o nome do procedimento e o identificador da thread que o
chamou. O primeiro parâmetro é, na verdade, uma macro que relaciona unicamente o
procedimento (label no código) a um número inteiro – sempre colocando o sufixo _Proc
em seu nome. O segundo é usado para modificar o conteúdo do registrador EAX de quem
cria.

Para simular a espera e retomada das threads, seus estados atuais (threadState) são
guardados em um vetor e são criados canais de comunicação (ResumeThread_channel)
para cada uma. O estado da thread usado por ambos os canais pode ser 0 (parada), 1
(executando) ou 2 (terminada). O estado da main é iniciado como 1, enquanto as demais
threads tem valor inicializado em 0. Mais detalhes são dados na descrição da RCE 3 e da
RCE 4.

O retorno real dessa função é um HANDLE para a thread, mas no CSP é retornado
apenas o inteiro identificador da mesma. O fato de ser atômico garante que os dois eventos
sejam comunicados fazendo com que a thread esteja pronta para iniciar sua execução e o
criador agora esteja pronto para executar sua próxima instrução simultaneamente.

Os comentários que aparecem no Código 4.10 mostram que o quarto parâmetro (12
bytes acima de ESP) do CreateThread é empilhado para a nova thread. Em seguida, o
estado da thread passa de parado para executando. A partir de então, espera-se o início
efetivo da sua execução com a sincronização do evento start.

Código 4.10: Mapeamento do CreateThread
1 var threadState = [ 1 , 0(MAX_THREADS) ] ;
2 var current_id = 0 ;
3 _CreateThread ( proc , c r e a t o r I d ) =
4 atomic {
5 cal l_CreateThread {
6 current_id++;
7 esp [ current_id ] = esp [ current_id ] − 1 ; // sub 4 , %esp
8 // Passagem 4o do parâmetro do CreateThread para função de CallBack
9 memory [ current_id ] [ esp [ current_id ] ] = memory [ c r e a t o r I d ] [ esp [ c r e a t o r I d ] + 3 ] ;

10 esp [ current_id ]−−; memory [ current_id ] [ esp [ current_id ] ] = pc_dummy ; // push %PC
11 eax [ c r e a t o r I d ] = current_id ; // Coloca id no retorno
12 } −> setThreadState . id { threadState [ id ] = 1 } −>
13 s t a r t . proc . ( eax [ c r e a t o r I d ] ) −> Skip } ;
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4.2.3 RCE 3: Suspensão e retomada de execução de Threads

A presença de chamadas às funções ResumeThread e SuspendThread acarreta na adi-
ção dos processos pré-definidos descritos no Código 4.11, além das variáveis e canais de
controle descritos na RCE 2. As operações são atômicas para garantir que não haja in-
terferência externa à execução destes processos. A linha onde ocorre a chamada a uma
dessas funções é mapeada como seu respectivo processo com o identificador da thread
como parâmetro.

Código 4.11: Suspensão e retomada
1 _ResumeThread ( id ) =
2 atomic {
3 i f ( threadState [ id ] == 1) { Skip }
4 else {
5 setThreadState . id { threadState [ id ] = 1 } −>
6 ResumeThread_channel [ id ] ! 1 −> Skip} } ;
7 _SuspendThread ( id ) =
8 atomic{ setThreadState . id { threadState [ id ] = 0 } −>
9 ResumeThread_channel [ id ] ? 1 −> Skip } ;

4.2.4 RCE 4: Esperas

As esperas são, mais uma vez, referentes a chamadas de funções presentes na API do
Windows que são mapeadas de maneira a simular o comportamento real em processos
pré-definidos. São elas o WaitForSingleObject e o WaitForMultipleObjects.

A espera por objetos é usada tanto com mutexes quanto com threads – ambos do tipo
HANDLE –, porém os mapeamentos dos dois casos diferem. Para distingui-los deve-se
atentar ao primeiro parâmetro (diretamente apontado por ESP durante o empilhamento).
Se tal parâmetro contém o mesmo endereço apontado pelo resultado de um CreateMutex
anterior e não houve nenhuma modificação nele, então o mapeamento utilizado será o
exclusivo às esperas por mutexes. Nesse caso é comum o aparecimento também de um
ReleaseMutex referenciando o mesmo endereço. Essas chamadas são mapeadas apenas em
substituí-las pelos eventos de escrita nos canais LockMutex e ReleaseMutex definidos
no Código 4.15.

No exemplo do Código 4.12, foi criada uma função genérica _exemplo que apenas
faz a chamada ao WaitForSingleObject e ao ReleaseMutex. Pode-se ver que _mutex é
colocado em EAX, que, em seguida, é empilhado exatamente em ESP – espaço reservado
para o argumento HANDLE da função de espera. A última linha, mostra que _mutex
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é, na verdade, uma variável global. Observando a da definição de _main, vê-se que o
HANDLE apontado por esse endereço é o resultado de um CreateMutex.

Código 4.12: Exemplo de uso WaitForSingleObject em Mutexes
1 _exemplo :
2 push %ebp
3 mov %esp , %ebp
4 sub $8 , %esp
5 mov $−1, 4(%esp )
6 mov _mutex , %eax
7 mov %eax , (%esp )
8 c a l l _WaitForSingleObject@8
9 sub $8 , %esp

10 ( . . . ) #Região proteg ida pe lo _mutex#
11 mov _mutex , %eax
12 mov %eax , (%esp )
13 c a l l _ReleaseMutex@4
14 sub $4 , %esp
15 leave
16 ret
17 _main :
18 ( . . . )
19 mov $0 , 8(%esp )
20 mov $0 , 4(%esp )
21 mov $0 , (%esp )
22 c a l l _CreateMutexA@12
23 sub $12 , %esp
24 mov %eax , _mutex
25 ( . . . )
26 .comm _mutex , 16 # 4

Já no Código 4.13, a rotina principal cria uma thread (iniciada pela função _callBack2)
e espera o final de sua execução. Observa-se que na linha 11, EBP − 4 referencia o
HANDLE desta thread; o mesmo passado como argumento para o WaitForSingleObject
na linha 15.

Código 4.13: Exemplo de uso WaitForSingleObject em Threads
1 _main :
2 ( . . . )
3 mov $0 , 20(%esp )
4 mov $0 , 16(%esp )
5 mov $1 , 12(%esp )
6 mov $_callBack2 , 8(%esp )
7 mov $0 , 4(%esp )
8 mov $0 , (%esp )
9 c a l l _CreateThread@24

10 sub $24 , %esp
11 mov %eax , −4(%ebp)
12 mov $−1, 4(%esp )
13 mov −4(%ebp ) , %eax
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14 mov %eax , (%esp )
15 c a l l _WaitForSingleObject@8
16 sub $8 , %esp
17 leave
18 ret

O segundo caso – WaitForMultipleObjects – foi introduzido ao mapeamento porque
quando a rotina principal de um programa termina, todas as threads criadas por ela são
destruídas. Porém, normalmente esse não é o comportamento desejado. Logo, costuma-
se esperar que tais objetos terminem suas execuções antes de finalizar o programa por
inteiro.

WaitForMultipleObjects permite que um array de HANDLEs seja passado, além de
algumas outras configurações da espera. Seu mapeamento considera apenas um ende-
reço inicial e um contador. A passagem de tal endereço inicial (address na linha 1
do Código 4.14) para o processo é feito de maneira semelhante ao do HANDLE do
WaitForSingleObject. A partir dessas informações, considera-se que o conteúdo desses
espaços de memória sejam preenchidos sequencialmente com os identificadores das thre-
ads. Recursivamente, o parâmetro contador (count) decresceo até que seja 1 – caso base
da recursão. Passa-se a esperar, então, – através dos processos WaitForSingleObject –
pela escrita no canal ResumeThread_channel[id] do inteiro 2 (terminação)– reservado
para o ExitThread.

Código 4.14: Mapeamento de funções de espera
1 _WaitForMultipleObjects ( address , count ) =
2 i f a ( count == 1) { _WaitForSingleObject (memory [HEAP] [ address ] ) }
3 else { ( _WaitForSingleObject (memory [HEAP] [ address ] )
4 | | _WaitForMultipleObjects ( address + 1 , count − 1) ) } ;
5

6 _WaitForSingleObject ( id ) =
7 ResumeThread_channel [ id ] ? 2 −> DoneWaiting −> Skip ;

O mapeamento das esperas ignora o argumento relativo ao tempo, gerando sempre
esperas infinitas. Além disso, na espera por mais de um objeto, somente os N primeiros
itens são considerados, onde N é um parâmetro passado a esta função e mapeado pela
entrada count no processo _WaitForMultilpeObjects.

Quando, enfim, todas as threads sendo esperadas comunicaram seu término, o evento
DoneWaiting sincroniza e permite que o processo chamador retome o seu andamento.

É importante salientar que CSP# não implementa a sincronização múltipla de canais,
como CSPM . Com ela, quando mais de um processo está esperando a escrita, todos eles
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são liberados. Ao invés disso, acontece uma escolha não-determinística sobre qual deles
prossegue a execução; que é o comportamento desejado.

4.2.5 RCE 5: Paralelismo

A necessidade de haver paralelismo entre processos é analisada no código interno a
cada label, onde se procuram chamadas às funções CreateThread ou CreateMutex.

Quando a primeira é detectada, a função passada como parâmetro (callBack no caso
do Código 4.15) é mapeada de maneira diferente do usual. Um processo contendo o corpo
da mesma (callBack_Body(id)), mapeamento das instruções em si, é gerado e o original
(calBack(id)) passa a ser esse corpo pré-fixado do evento start.proc.id. O processo na qual
ocorre a chamada (processo Label) também passa a ter um corpo separado (Label_Body)
e é descrito como uma composição paralela de seu corpo com o processo que engloba
a função referenciada no CreateThread. Dessa forma a execução do corpo da função
fica dependendo da sincronização entre os eventos start.proc.id nos diferentes processos.
É definido um alfabeto para a paralelização para restringir as possibilidades do evento
composto start, já que, inicialmente, ele recebe um inteiro qualquer.

Há um caso especial: quando o CreateThread está no escopo de uma label para o
qual a execução incondicionalmente retorna, ou seja, há uma instrução jmp para esta ou
alguma label anterior que possa fazer o CreateThread ser chamado mais de uma vez. Para
esta situação – normalmente quando há uma chamada dentro de um laço for ou while no
código fonte – considera-se que o modelo será executado uma primeira vez para definir
quantas threads (quantas vezes se passa por aquele ponto) estão sendo criadas para que
se coloque o número certo de processos em paralelo e seus respectivos identificadores.

Detectada a presença da segunda – CreateMutex –, o mesmo mecanismo de separação
do corpo da função é aplicado. Porém, o processo ao qual esse corpo fica em paralelo é o
pré-definidoMutex mostrado no Código 4.15. O CreateThread e outras definições básicas
foram omitidas pois já foram mostradas anteriormente.

O evento End é introduzido no final do escopo de quem cria o mutex para que, via
sincronização desses eventos, ele termine sua execução com sucesso e não fique em recursão
indefinidamente, gerando um estado em deadlock onde sempre se espera a escrita no canal
ResumeThread_channel.
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Código 4.15: Mapeamento do paralelismo
1 #define cal lback_Proc 1 ;
2 #define MAX_THREADS 1 ;
3 channel LockMutex 0 ;
4 channel ReleaseMutex 0 ;
5 channel ResumeThread_channel [TOTALTHREADS] 0 ;
6 Mutex ( ) =
7 LockMutex? id −> ReleaseMutex ? id −> Mutex ( )
8 [ ] End −> Skip ;
9

10 #alphabet Label_Body { proc : { cal lback_Proc } ; thread_id : { 1 . .MAX_THREADS}
11 @ s t a r t . proc . thread_id , End } ;
12
13 Label ( ) = Label_Body ( ) | | Mutex ( ) | | ca l lBack ( 1 ) ;
14 Label_Body ( ) =
15 a −> b −> _CreateThread ( cal lback_Proc , 0 ) ;
16 c −> d −> call_CreateMutex −>
17 e −> f −> End −> Skip ;
18
19 ca l lBack ( id ) = s t a r t . cal lback_Proc . id −> callBack_Body ( id ) ; _ExitThread ( id ) :
20 callBack_Body ( id ) = x −> y −> z −> Skip ;
21
22 _ExitThread ( id ) = ResumeThread_channel [ id ] ! 2 −> Skip ;

4.3 Regras de Mapeamento de Instruções

Esta seção apresenta as regras de mapeamento das instruções. Apesar de baseado na
estrutura proposta por Lima (2011), foi considerado desnecessária a presença de regras
de nomenclatura. Já que o próprio compilador nomeia os componentes do Assembly de
maneira razoável, decidiu-se por usar esses nomes de maneira direta. As seguintes Regras
de Instruções (RI) são definidas.

4.3.1 RI 1: Labels

As labels que aparecem no código são mapeadas em um processo de nome equivalente.
Há uma exceção: quando essas labels são usadas como rotinas de início de threads –
passando a valer a RCE 5. São ignoradas terminações de nomes de labels decoradas
pelo compilador com alguma informação. Portanto, _soma@8 gera um processo de nome
_soma.

O processo mapeado recebe um identificador fictício inteiro não negativo (Z+ =
0, 1, 2, 3, ...) e único da thread na qual está rodando. Considera-se que a rotina principal
do programa é uma linha de execução que ostenta o identificador 0 (zero). A partir dela,
as próximas threads criadas obterão os identificadores consecutivos.
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4.3.2 RI 2: Operações Aritméticas

O mapeamento das instruções aritméticas é bastante simples, de maneira que essas
são apenas traduzidas para operações sobre dados (forma imperativa interna aos eventos
de CSP#) e adequadas ao contexto deste trabalho. A Tabela 6 mostra como é feito esse
mapeamento considerando que as instruções pertencem à label _main e à thread principal
(MAIN).

Tabela 6: Mapeamento de Instruções Aritméticas Básicas
Instrução Mapeamento
add $1, %eax _main_add { eax[MAIN] = eax[MAIN] + 1 }
sub $1, %eax _main_sub { eax[MAIN] = eax[MAIN] + 1 }
inc %eax _main_inc { eax[MAIN]++ }
dec %eax _main_dec { eax[MAIN]-- }
imul %ebx %eax _main_imul { eax[MAIN] = ebx[MAIN] * eax[MAIN] }

Embora a aplicação dessa regra seja direta, há algumas exceções. Sempre que as
instruções add ou sub estiverem alterando o valor dos registradores de controle da pilha,
EBP ou ESP – apesar de ser mais comum encontrá-las associadas ao ESP –, o valor inteiro
do primeiro operando será dividido por 4 como na Tabela 7; já que cada 4 bytes estão
mapeados em apenas uma posição da memória no modelo CSP.

Tabela 7: Exceções de add e sub
Instrução Mapeamento
add $4, %esp _main_add { esp[MAIN] = esp[MAIN] + 1 }
sub $8, %esp _main_sub { esp[MAIN] = esp[MAIN] - 2 }

4.3.3 RI 3: Desvios Condicionais

Instruções de desvio condicional utilizam o registrador de flags do processador para
tomar suas decisões. Internamente, após fazer a subtração dos dois operandos, é feito um
teste lógico que combina Carry Flag, Zero Flag, Overflow Flag, e Parity Flag a depender
da instrução, para descobrir se será ou não feito o desvio.

Para manter a fidelidade com o Assembly, o desvio condicional do modelo CSP tam-
bém passa pelas duas fases: comparação (cmp) e desvio. Os resultados de comparações
(subtrações dos operandos) são guardados em um vetor chamado cmps de tamanho igual
à quantidade de threads possíveis. Então um desvio condicional no CSP é feito sobre esse
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valor, como mostra a Tabela 8 considerando novamente que se está no escopo de _main.
As reticências indicam que qualquer código que apareça depois do desvio condicional será
inserida naquele ponto da mesma maneira como vinha sendo feito antes de entrar no
escopo do if-else.

Tabela 8: Desvios Condicionais
Instrução Mapeamento
je Label ifa (cmps[id] == 0) { _main_then -> Label() }

else { _main_else -> (...) }
jne Label ifa (cmps[id] != 0) { _main_then -> Label() }

else { _main_else -> (...) }
jl Label ifa (cmps[id] < 0) { _main_then -> Label() }

else { _main_else -> (...) }
jle Label ifa (cmps[id] <= 0) { _main_then -> Label() }

else { _main_else -> (...) }
jg Label ifa (cmps[id] > 0) { _main_then -> Label() }

else { _main_else -> (...) }
jge Label ifa (cmps[id] >= 0) { _main_then -> Label() }

else { _main_else -> (...) }

O uso de ifa ao invés de um if simples é devido ao fato de que o último gera não-
determinismo no modelo. Em CSP#, a avaliação da condição de um if gera um evento
interno (τ). Logo, se duas threads diferentes estiverem em momentos de avaliação de if ,
haverá uma situação onde dois eventos iguais (τ) levam a estados diferentes. Desta forma,
o modelo CSP# seria não-determinístico. Já com o ifa, não se tem esse problema, pois a
avaliação da condição é feita atomicamente com o primeiro evento do if ou do else.

Para que esta decisão não afetasse a paridade com o comportamento do código As-
sembly, um evento nomeado _then ou _else prefixado da label atual é sempre colocado
como primeiro o evento após a comparação, como um evento dummy.

4.3.4 RI 4: Desvios Incondicionais

O desvio incondicional (jmp) é mapeado simplesmente pondo o processo da label
referenciada imediatamente após o evento mapeadao da instrução anterior. Isso fará o
processo atual passar a se comportar como o processo da label.

Apesar de não ser um desvio, o resultado do mapeamento é o mesmo para quando há
uma mudança de label em meio ao código Assembly sem que antes haja um retorno ou
desvio incondicional. Para efeito de mapeamento, é como se a declaração de uma nova
label sob essas condições fosse tratado como um jmp para a mesma.



4.3 Regras de Mapeamento de Instruções 40

4.3.5 RI 5: Movimentação de Dados

A instrução mov apresenta uma boa quantidade de variações possíveis para a cópia de
dados entre seus dois argumentos. A Tabela 9 mostra algumas delas com seus respectivos
mapeamentos. É importante frisar que quando um registrador aparece entre parênteses
seu conteúdo é tratado como um endereço e o que é realmente copiado é o dado apontado
por ele.

Tabela 9: Instrução mov
Instrução Mapeamento
mov $0, %eax Label_mov { eax[id] = 0}
mov $1, (%esp) Label_mov { memory[id][esp[id]] = 1 }
mov (%eax), %eax Label_mov { eax[id] = memory[id][eax[id]] }
mov %esp, %ebp Label_mov { ebp[id] = esp[id] }
mov %eax, _y Label_mov { memory[HEAP][_y] = eax[id] }
mov %eax, _y+4 Label_mov { memory[HEAP][_y + 1] = eax[id] }

A menção direta a uma variável global, como _y – definida anteriormente –, é mapeada
como um acesso direto ou deslocado à memória.

4.3.6 RI 6: Operações com a Pilha de Execução

Além das instruções que podem afetar as variáveis de controle da pilha de execução
vistas até aquivistas até aqui, como o add, o sub e o mov por exemplo, existem outras
mais especificamente relacionadas com esse tipo de operação. A Tabela 10 mostra como
essas instruções são mapeadas para o CSP#.

Há uma peculiaridade no mapeamento da instrução call. Como foi dito no Capítulo 2,
ela empilha o valor atual do PC e então muda seu valor para o da label argumento. A idéia
inicial deste trabalho era de abstrair o gerenciamento do endereço da próxima instrução,
pois isso seria desnecessário. Porém, como o call é executado após o empilhamento dos
argumentos dessa função a ser chamada, imediatamente após o desvio, o ESP está, na
verdade, apontando para o valor antigo do PC e não para um dos argumentos. Isso faz
com que o acesso aos parâmetros precise considerar os 4 bytes do PC guardado na hora de
calcular o deslocamento em cima de EBP. Portanto, apesar de não ser usado na prática, o
valor (macro) pc_dummy, de valor convencionado em 999, é sempre empilhada no evento
de call mapeado.

Já a instrução ret, também descrita anteriormente, desempilha o PC antigo, fazendo
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a execução voltar para a instrução seguinte ao call. Portanto, apesar de não se fazer nada
com esse antigo valor, também é necessário mapeá-la para garantir que o valor de ESP
esteja apontando para o endereço (índice) correto. Além disso, ela é a única instrução que
é mapeada terminando em SKIP , pois é sempre a última instrução a aparecer dentro de
um label.

Tabela 10: Instruções que atuam sobre a pilha
Instrução Mapeamento
push %ebp Label_push.id { esp[id]--; memory[id][esp[id]] = ebp[id] }
pop %ebp Label_push.id { ebp[id] = memory[id][esp[id]]; esp[id]++ }
call Label2 call_Label2.id { esp[id]–; memory[id][esp[id]] = pc_dummy } ->

Label2(id)
leave Label_leave.id { esp[id] = ebp[id]; ebp[id] = memory[id][esp[id]];

esp[id]++ }
ret Label_ret.id { esp[id]++ } -> Skip

4.3.7 RI 7: Módulo de 3

Apesar de não serem facilmente notadas, algumas operações de alto nível são compi-
ladas de forma a otimizar a sua execução por parte de um processador específico.

Essa ideia é bastante utilizada, por exemplo, em instruções de multiplicação e di-
visão. Já que, respectivamente, adições ou subtrações sucessivas tornariam o custo de
processamento bastante alto.

A divisão por três, quando compilada, é substituída por uma multiplicação pelo nú-
mero 1431655766 seguido de 31 shifts aritméticos para a direita em um registrador de
64 bits. Realizando-se este cálculo, é possível observar que os 32 bits à esquerda são o
resultado da divisão.

Como não há suporte para inteiros de 64 bits em CSP#, todo o Código 4.16 é subs-
tituído pela operação _MOD3_especial.id{eax[id] = ecx[id]− ((ecx[id]/3) ∗ 3)} durante
o mapeamento.

Essa substituição não afeta o resultado da análise, pois não há alterações nos regis-
tradores ESP e EBP, nem na memória heap.
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Código 4.16: Especial módulo de 3
1 mov $1431655766 , %eax
2 imul %ecx
3 mov %ecx , %eax
4 sar $31 , %eax
5 sub %eax , %edx
6 mov %edx , %eax
7 mov %eax , −4(%ebp)
8 mov −4(%ebp ) , %edx
9 mov %edx , %eax

10 add %eax , %eax
11 add %edx , %eax
12 sub %eax , %ecx
13 mov %ecx , %eax

4.4 Aplicações

4.4.1 Exemplo 1: Produtores/Consumidores

Nesta seção as regras definidas até o momento são utilizadas na prática para a verifi-
cação de dois programas com problemas clássicos de concorrência: Produtores/Consumi-
dores e Jantar dos Filósofos.

4.4.1.1 Aplicação das Regras

Este problema consiste na coordenação do acesso de tarefas de comportamento si-
métrico a um buffer limitado compartilhado. A tarefa do produtor é de criar itens e
adicioná-los ao buffer, enquanto que a do consumidor é ir buscá-los para usar uma única
vez. Caso o buffer esteja cheio, deve-se esperar o consumo de um item para retomar
a tarefa de produção dos itens. Já quando está vazio, o consumidor deve aguardar o
preenchimento para continuar sua execução (MAZIERO, 2011).

A versão implementada como exemplo para o trabalho contém um erro de concorrência
conhecido: a depender do escalonamento das tarefas, é possível que ambas entrem em
estado de suspensão, de onde nunca mais tornarão a executar. Isso acontece, por exemplo,
quando o buffer está vazio e o consumidor decide se suspender.

Porém, a decisão e a suspensão não são uma operação atômica. Se antes de ser
suspendida a tarefa for escalonada para o do produtor, um item pode ser produzido e,
com isso, se tentará acordar a tarefa do consumidor (que ainda está acordada). Como o
produtor só acorda o consumidor nesse momento específico, quando voltar a ser executado,
o consumidor se suspenderá. O buffer, então, ficará totalmente preenchido levando o
produtor também a dormir.
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O Código 4.17 mostra como foi implementada a função produzir e a rotina principal,
enquanto o Código 4.18 mostra o Assembly obtido a partir da função produzir.

Código 4.17: Função produzir
1 #include <s t d i o . h>
2 #include <windows . h>
3 #define MAXITENS 3
4 #define IDX_CONSUMIDOR 0
5 #define IDX_PRODUTOR 1
6 int i t e n s = 0 ;
7 HANDLE threads [ 2 ] ;
8

9 produz i r ( void∗ parametros ){
10 while (1){
11 i f ( i t e n s == MAXITENS)
12 SuspendThread ( threads [IDX_PRODUTOR] ) ;
13

14 i t e n s ++;
15

16 i f ( i t e n s == 1)
17 ResumeThread ( threads [IDX_CONSUMIDOR] ) ;
18 }
19 }
20

21 int main ( void ){
22 threads [IDX_CONSUMIDOR] = CreateThread (NULL, 0 , ( void ∗) consumir , NULL, 0 , NULL) ;
23 threads [IDX_PRODUTOR] = CreateThread (NULL, 0 , ( void ∗) produzir , NULL, 0 , NULL) ;
24 WaitForMult ipleObjects (2 , threads , TRUE, INFINITE ) ;
25 }

Código 4.18: Produzir compilado
1 _produzir :
2 push %ebp
3 mov %esp , %ebp
4 sub $8 , %esp
5 L2 :
6 cmp $3 , _itens
7 jne L4
8 mov _threads +4, %eax
9 mov %eax , (%esp )

10 c a l l _SuspendThread@4
11 sub $4 , %esp
12 L4 :
13 inc _itens
14 cmp $1 , _itens
15 jne L2
16 mov _threads , %eax
17 mov %eax , (%esp )
18 c a l l _ResumeThread@4
19 sub $4 , %esp
20 jmp L2
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A esse Assembly foram aplicadas as regras listadas na Tabela 11, gerando o CSP#
do Código 4.19, que é uma versão preliminar do processo, já que outros processos ainda
podem interferir na tradução do mesmo para CSP#. Nesse caso em específico, a main
realmente irá alterá-lo.

Tabela 11: Aplicação das regras em “produzir”
Linha Regra
1 RI 1
2 RI 6
3 RI 5
4 RI 2
5 RI 1
6 e 7 RI 3
8 e 9 RI 5
10 RCE 3
11 Não mapeada
12 RI 1
13 RI 2
14 e 15 RI 3
16 e 17 RI 5
18 RCE 3
19 Não mapeada
20 RI 4

O mapeamento do consumidor se assemelha bastante ao do produtor e, por isso,
não será exposto aqui, mas pode ser encontrado no Apêndice A.1. Passa-se então ao
mapeamento da versão compilada da rotina principal. No Código 4.20, o intervalo fechado
das linhas [11, 20] não gera especificação alguma. Além dessas, as linhas {28, 37, 44} que
sucedem chamadas externas à API, também são descartadas.

À parte os mapeamentos similares aos aplicados na função produzir, a rotina do
Código 4.20 utiliza as seguintes regras: RCE 2 nas linhas 27 e 36; RCE 5 para execução
paralela das threads; RCE 4 na linha 43; RCE 1 devido às variáveis globais nas linhas
[1, 5] e 47 – como mostrado no Código 4.5.

O Código 4.21 mostra as mudanças no processo _produzir e _main, que passaram
a ter um corpo e a serem paralelos no processo que os englobava originalmente. Como
dito na RCE 5, é definido o alfabeto de paralelismo, limitando as possibilidades do inteiro
recebido pelo evento composto start. É importante atentar para o fato de que o processo
_produzir antes definido, passa a ser chamado _produzir_Body devido à regra RCE 2.
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Código 4.19: Produzir em CSP#
1 _produzir ( id ) =
2 _produzir_push . id {memory [ id ] [ esp [ id ] ] = ebp [ id ] ; esp [ id ]−−} −>
3 _produzir_mov . id { esp [ id ] = ebp [ id ] } −>
4 _produzir_sub . id { esp [ id ] = esp [ id ] − 2} −>
5 L2( id ) ;
6
7 L2( id ) =
8 L2_cmpl . id { cmps [ id ] = 3 − memory [HEAP] [ _itens ] } −>
9 i f a ( cmps [ id ] != 0)

10 { L2_then . id −> L4( id ) }
11 else
12 {
13 L2_else . id −>
14 L2_mov . id {eax [ id ] = memory [HEAP] [ _threads + 1 ]} −>
15 _SuspendThread ( eax [ id ] )
16 ; L4 ( id )
17 } ;
18
19 L4( id ) =
20 L4_inc . id { memory [HEAP] [ _itens]++ } −>
21 L4_cmp . id { cmps [ id ] = 1 − memory [HEAP] [ _itens ] } −>
22 i f a ( cmps [ id ] != 0)
23 { L4then . id −> L2( id ) }
24 else
25 {
26 L4e l s e . id −>
27 L4_mov . id {eax [ id ] = memory [HEAP] [ _threads ] } −>
28 _ResumeThread ( eax [ id ] )
29 ; L2 ( id )
30 } ;

A especificação completa (Código A.3) foi submetida à verificação pela ferramenta
PAT. Sabe-se que o código fonte original deste exemplo foi desenvolvido de maneira que
nunca deveria chegar ao fim – há um laço que deveria deixar as tarefas do produtor e
do consumidor rodando para sempre. Deseja-se, portanto, que ele seja um programa
interminável (nonterminating) e, é claro, com ausência de deadlocks (deadlockfree).

A Figura 5 mostra, que a verificação falhou em ambas as assertivas.

4.4.1.2 Análise da Especificação

Analisando com cuidado o Código 4.22, que contém o rastro dos eventos ocorridos
até o acontecimento do deadlock, e considerando apenas os fatos mais relevantes chega-
se ao motivo da falha. Lembrando que o número após o nome dos eventos é apenas o
identificador da thread na qual estes atuam.

1. Consumidor se suspende (setThreadState.1);

2. Produtor produz e acorda consumidor (ResumeThread_channel[1].1);

3. Consumidor consome e verifica que deve dormir (L7_cmpl.1 e L7_else.1);
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Código 4.20: Assembly da rotina principal dos Produtores/Consumidores
1 . g l o b l _itens
2 . b s s
3 .a l ign 4
4 _itens :
5 . s p a c e 4
6 . t e x t
7 _main :
8 push %ebp
9 mov %esp , %ebp

10 sub $40 , %esp
11 and $−16, %esp
12 mov $0 , %eax
13 add $15 , %eax
14 add $15 , %eax
15 shr $4 , %eax
16 sal $4 , %eax
17 mov %eax , −4(%ebp)
18 mov −4(%ebp ) , %eax
19 c a l l __alloca
20 c a l l ___main
21 mov $0 , 20(%esp )
22 mov $0 , 16(%esp )
23 mov $0 , 12(%esp )
24 mov $_consumir , 8(%esp )
25 mov $0 , 4(%esp )
26 mov $0 , (%esp )
27 c a l l _CreateThread@24
28 sub $24 , %esp
29 mov %eax , _threads
30 mov $0 , 20(%esp )
31 mov $0 , 16(%esp )
32 mov $0 , 12(%esp )
33 mov $_produzir , 8(%esp )
34 mov $0 , 4(%esp )
35 mov $0 , (%esp )
36 c a l l _CreateThread@24
37 sub $24 , %esp
38 mov %eax , _threads+4
39 mov $−1, 12(%esp )
40 mov $1 , 8(%esp )
41 mov $_threads , 4(%esp )
42 mov $2 , (%esp )
43 c a l l _WaitForMultipleObjects@16
44 sub $16 , %esp
45 leave
46 ret
47 .comm _threads , 16 # 8



4.4 Aplicações 47

Código 4.21: Mapeamento da main dos Produtores/Consumidores
1 #define consumir_Proc 1 ;
2 #define produzir_Proc 2 ;
3
4 _main ( ) = Def ineGlobalVars ( ) ; _main_Body ( ) | | _consumir (1 ) | | _produzir ( 2 ) ;
5
6 #alphabet _main_Body { proc : { produzir_Proc , consumir_Proc } ; thread_id : { 1 . .TOTALTHREADS}
7 @ s t a r t . proc . thread_id } ;
8 _main_Body ( ) =
9 _main_push { memory [MAIN ] [ esp [MAIN ] ] = ebp [MAIN ] ; esp [MAIN]−− } −>

10 _main_mov { ebp [MAIN] = esp [MAIN] } −>
11 _main_sub { esp [MAIN] = esp [MAIN] − 10 } −>
12 _main_mov { memory [MAIN ] [ esp [MAIN] + 5 ] = 0 } −>
13 _main_mov { memory [MAIN ] [ esp [MAIN] + 4 ] = 0 } −>
14 _main_mov { memory [MAIN ] [ esp [MAIN] + 3 ] = 0 } −>
15 _main_mov { memory [MAIN ] [ esp [MAIN] + 2 ] = consumir_Proc } −>
16 _main_mov { memory [MAIN ] [ esp [MAIN] + 1 ] = 0 } −>
17 _main_mov { memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
18 _CreateThread ( consumir_Proc , MAIN)
19 ; _main_mov { memory [HEAP] [ _threads ] = eax [MAIN] } −>
20 _main_mov { memory [MAIN ] [ esp [MAIN] + 5 ] = 0 } −>
21 _main_mov { memory [MAIN ] [ esp [MAIN] + 4 ] = 0 } −>
22 _main_mov { memory [MAIN ] [ esp [MAIN] + 3 ] = 0 } −>
23 _main_mov { memory [MAIN ] [ esp [MAIN] + 2 ] = produzir_Proc } −>
24 _main_mov { memory [MAIN ] [ esp [MAIN] + 1 ] = 0 } −>
25 _main_mov { memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
26 _CreateThread ( produzir_Proc , MAIN)
27 ; _main_mov { memory [HEAP] [ _threads + 1 ] = eax [MAIN] } −>
28 _main_mov { memory [MAIN ] [ esp [MAIN] + 3 ] = −1 } −>
29 _main_mov { memory [MAIN ] [ esp [MAIN] + 2 ] = 1 } −>
30 _main_mov { memory [MAIN ] [ esp [MAIN] + 1 ] = _threads } −>
31 _main_mov { memory [MAIN ] [ esp [MAIN ] ] = 2 } −>
32 _WaitForMultipleObjects ( _threads , 2)
33 ; _main_leave{
34 esp [MAIN] = ebp [MAIN ] ;
35 ebp [MAIN] = memory [MAIN ] [ esp [MAIN ] ] ;
36 esp [MAIN]−−
37 } −> Skip ;
38
39 _produzir ( id ) =
40 s t a r t . produzir_Proc . id −>
41 _produzir_Body ( id ) ;
42 _ExitThread ( id ) ;
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Figura 5: Janela da análise do Exemplo 1

4. Produtor produz e “acorda” o consumidor suspenso ([if((threadState[1] == 1))]);

5. Consumidor se suspende(setThreadState.1);

6. Produtor produz mais dois itens e dorme (setThreadState.2).

Código 4.22: Trace do deadlock no Exemplo 1
1 The Asse r t i on (_main ( ) d e a d l o c k f r e e ) i s NOT v a l i d .
2 The f o l l o w i n g t r a c e l e a d s to a deadlock s i t u a t i o n .
3 i n i t −> ca l l_mal loc .MAIN −> _main_mov −> ca l l_mal loc .MAIN −> ( . . . ) −> _main_mov −>
4 cal l_CreateThread −> setThreadState −> s t a r t . 1 . 1 −> _main_mov −> _main_mov −> ( . . . ) −>
5 _main_mov −> _main_mov −> cal l_CreateThread −> setThreadState −> s t a r t . 2 . 2 −>
6 _main_mov −> _main_mov −> _main_mov −> _main_mov −> _main_mov −> _consumir_push . 1 −>
7 _consumir_mov . 1 −> _consumir_sub . 1 −> L7_cmp. 1 −> L7_else . 1 −> L7_mov. 1 −>
8 setThreadState . 1 −> _produzir_push . 2 −> _produzir_mov . 2 −> _produzir_sub . 2 −>
9 L2_cmp. 2 −> L2_then . 2 −> L4_inc . 2 −> L4_cmp. 2 −> L4e l s e . 2 −> L4_mov. 2 −>

10 [ i f ! ( ( threadState [ 1 ] == 1 ) ) ] −> setThreadState . 1 −> ResumeThread_channel [ 1 ] . 1 −>
11 L9_dec . 1 −> L9_cmp. 1 −> L9_then . 1 −> L7_cmp. 1 −> L7_else . 1 −> L2_cmp. 2 −> L2_then . 2 −>
12 L4_inc . 2 −> L4_cmp. 2 −> L4e l s e . 2 −> L4_mov. 2 −> [ i f ( ( threadState [ 1 ] == 1 ) ) ] −>
13 L7_mov. 1 −> setThreadState . 1 −> L2_cmp. 2 −> L2_then . 2 −> L4_inc . 2 −> L4_cmp. 2 −>
14 L4then . 2 −> L2_cmp. 2 −> L2_then . 2 −> L4_inc . 2 −> L4_cmpl . 2 −> L4then . 2 −> L2_cmp. 2 −>
15 L2_else . 2 −> L2_mov. 2 −> setThreadState . 2

Ao fazer o mesmo para o caso da asserção nonterminating, percebe-se que o rastro é
o idêntico ao anterior. Pois PAT considera que um deadlock é um caso de terminação.
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4.4.2 Exemplo 2: Jantar dos Filósofos

4.4.2.1 Aplicação das regras

Mais um problema clássico, o Jantar dos Filósofos foi originalmente proposto por
Djikstra e a ideia é que existem filósofos na mesa que alternam seu comportamento entre
meditar e comer. Porém, para um deles comer é preciso que obtenha ambos os talheres,
que são compartilhados, na sua esquerda e na sua direita. O Exemplo deste trabalho
considerou o número de três filósofos, como na Figura 6. Convencionou-se que o garfo à
esquerda de um filósofo tem o mesmo índice que ele e que o garfo à direta tem o índice
conseguinte.

Figura 6: Jantar dos filósofos

A implementação deste exemplo deixa margem para a ocorrência de um livelock. É
possível acontecer de os três filósofos pegarem o talher à sua esquerda, impedindo uns aos
outros de obter ambos os talheres para comer. Não é possível, portanto, sair do while ao
qual cada um deles está preso.

Código 4.23: Obtenção do talher direito
1 #define N 3
2 #define DIR( i ) ( ( ( i )+1) %N)
3 void pegarTalherDir ( int fi lNum ){
4 int i = DIR( filNum ) ;
5 BOOL pegou = 0 ;
6 while ( pegou == FALSE){
7 WaitForSingleObject (Mutex , INFINITE ) ;
8 i f ( g a r f o s [ i ] == 0){
9 g a r f o s [ i ] = 1 ;

10 pegou = TRUE;
11 }
12 ReleaseMutex ( Mutex ) ;
13 }}
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O Código 4.23 mostra a função que representa pegar o talher da direita, cuja compila-
ção gera gera o Assembly do Código 4.24. A aplicação das regras linha-a-linha é descrita
na Tabela 12.

Código 4.24: Assembly da obtenção de talher direito
1 _pegarTalherDir :
2 push %ebp
3 mov %esp , %ebp
4 sub $24 , %esp
5 mov 8(%ebp ) , %ecx
6 inc %ecx
7 mov $1431655766 , %eax
8 imul %ecx
9 mov %ecx , %eax

10 sar $31 , %eax
11 sub %eax , %edx
12 mov %edx , %eax
13 mov %eax , −4(%ebp)
14 mov −4(%ebp ) , %edx
15 mov %edx , %eax
16 add %eax , %eax
17 add %edx , %eax
18 sub %eax , %ecx
19 mov %ecx , %eax
20 mov %eax , −4(%ebp)
21 mov $0 , −8(%ebp)
22 L7 :
23 cmp $0 , −8(%ebp)
24 jne L6
25 mov $−1, 4(%esp )
26 mov _Mutex , %eax
27 mov %eax , (%esp )
28 c a l l _WaitForSingleObject@8
29 sub $8 , %esp
30 mov −4(%ebp ) , %eax
31 cmp $0 , _garfos ( ,%eax , 4 )
32 jne L9
33 mov −4(%ebp ) , %edx
34 mov 8(%ebp ) , %eax
35 inc %eax
36 mov %eax , _garfos ( ,%edx , 4 )
37 mov $1 , −8(%ebp)
38 L9 :
39 mov _Mutex , %eax
40 mov %eax , (%esp )
41 c a l l _ReleaseMutex@4
42 sub $4 , %esp
43 jmp L7
44 L6 :
45 leave
46 ret
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Tabela 12: Aplicação das regras em “pegarTalherDir”
Linha Regra
1 RI 1
2 RI 6
3 RI 5
4 RI 2
5 RI 5
6 RI 2
7 a 19 RI 7
20 e 21 RI 5
22 RI 1
23 e 24 RI 3
25, 26 e 27 RI 5
28 RCE 4
29 Não mapeada
30 RI 5
31 e 32 RI 3
33 e 34 RI 5
35 RI 2
36 e 37 RI 5
38 RI 1
39 e 40 RI 5
41 RCE 5
42 Não mapeada
43 RI 4
44 RI 1
45 e 46 RI 6
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As demais funções do programa possuem mapeamento similar ao feito para “pegar-
TalherDir” e, portanto, não são expostas nesta Seção.

Assim como no exemplo anterior, passa-se ao mapeamento da rotina principal (Có-
digo 4.25) – cujo Assembly pode ser visto no Apêndice A.2 –, onde são identificadas e
aplicadas as regras de criação de threads, paralelismo (mutex e threads), variáveis globais,
alocação de memória e espera.

Código 4.25: Rotina principal do problema dos filósofos
1 int g a r f o s [N ] ;
2 HANDLE threads [N ] ;
3 HANDLE Mutex ;
4 int main ( ){
5 int i ;
6 int∗ f ;
7 Mutex = CreateMutex (NULL, FALSE, NULL) ;
8 for ( i = 0 ; i < N; i ++){
9 f = mal loc ( s izeof ( int ) ) ;

10 ∗ f = i ;
11 threads [ i ] = CreateThread (NULL, 0 , ( void ∗) f i l o s o f o , f , 0 ,NULL) ;
12 }
13 WaitForMult ipleObjects (N, threads , TRUE, INFINITE ) ; }

Após a compilação, a aplicação das regras de mapeamento deixa clara a interferência
da main no procedimento de label _filosofos e, indiretamente, nos que são chamados in-
ternamente por ele: _pegarTalherEsq,_pegarTalherDir,_comer,_devolverTalherEsq
e _devolverTalherDir.

4.4.2.2 Análise da Especificação

Finalizado o mapeamento, a especificação completa (Código A.6) foi verificada uti-
lizando as mesmas asserções do exemplo passado: deadlockfree e nonterminating. Aqui,
porém, além de se desejar que o programa seja livre de deadlocks, espera-se que o programa
sempre termine.

Já foi dito anteriormente nesta Seção, que a implementação deste exemplo deixa
margem para a ocorrência de livelock. Esse tipo de falha não é um estado de deadlock em
CSP, então não é encontrada através da asserção deadlockfree.

Como já foi dito no Capítulo2, os livelocks em CSP estão associados a realizações
sucessivas de transições internas, sem a comunicação de eventos visíveis em uma recursão
infinita. Portanto, como o mapeamento não gera nenhum evento escondido, é esperado
que a verificação se o processo é divergencefree seja válida.
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Apesar de deixar o sistema indefinidamente em execução, esse livelock também não é
encontrado via asserção nonterminating. Pois apesar de este caso específico ser interminá-
vel, em havendo ao menos um caso em que termine – seja por deadlock ou por finalização
natural – o resultado será que a asserção é inválida.

Há, ao menos, duas maneiras de detectar esta falha através de LTL. De ante-mão,
sabe-se que todos os filósofos devem comer. Então, pode-se perguntar à ferramenta de
verificação se não há nenhum estado futuro em que os três garfos estão com três diferentes
filósofos. Outra alternativa é perguntar se, para todos os identificadores das threads, o
evento call_comer.id é realizado em algum ponto de qualquer execução. Essas opções
estã descritas no Código 4.26.

Código 4.26: Asserções LTL
1 #define o b j e t i v o (memory [HEAP] [ _garfos ] == 1 &&
2 memory [HEAP] [ _garfos + 1 ] == 2 && memory [HEAP] [ _garfos + 2 ] == 3 ) ;
3 #assert _main ( ) |= !(<> o b j e t i v o ) ;
4 #assert _main ( ) |= (<> cal l_comer . 1 ) && (<> cal l_comer . 2 ) && (<> cal l_comer . 3 ) ;

A Figura 7 mostra o resultado das verificações feitas para este exemplo. Não foram
encontrados rastros que levassem a deadlocks. Analisando o rastro provido pela verificação
de nonterminating, percebe-se que este representa uma execução em que o programa
terminou com sucesso.

Figura 7: Janela da análise do Exemplo 2
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A veficação de alcance do estado definido por “objetivo” falha, ou seja, existe ao menos
uma combinação de transições que leva àquele estado. O rastro mostra que cada um dos
filósofos tem o garfo à sua esquerda. Também falhou a asserção de que todos as threads
realizam o evento call_comer.id em algum ponto da execução.
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5 Considerações Finais

Este capítulo apresenta as conclusões acerca dos resultados e de sua obtenção, bem
como possíveis trabalhos futuros para melhoria de algumas das características observedas.

5.1 Conclusões

Neste trabalho de conclusão de curso foi proposto um conjunto de regras de mape-
amento de código concorrente escrito em Assembly x86 para especificações CSP#. A
aplicação dessas regras possibilita o uso do poder da verificação formal a partir do cálculo
de processos e dá maior confiabilidade que os testes de software comuns, já que estes
não investigam a fundo todas as possíveis combinações de escalonamento entre tarefas,
podendo dar como correto um código passível de deadlock por exemplo.

Além disso, o fato de PAT permitir que o modelo resultante de um mapeamento
também possa ser alvo, além das asserções usuais de CSP, de verificações LTL, como
mostrado no segundo exemplo, garante um poder de verificação ainda maior.

Os objetivos descritos no Capítulo 1 foram atingidos e se apresentou uma solução
candidata ao problema de pesquisa antes exposto, mas apesar dos bons resultados obtidos
com o desenvolvimento deste estudo, algumas limitações estão presentes. Dentre elas,
destacam-se:

1. Quantidade de exemplos: O pouco tempo disponível para a confecção do trabalho
limitou a quantidade de exemplos a serem explorados. Isso implicou em uma menor
quantidade de instruções mapeadas e em uma variedade de situações relativamente
pequena em se falando de programação concorrente;

2. Especificidade do Assembly de origem: Apesar de a maioria das linguagens Assembly
possuírem instruções de mesma finalidade, qualquer diferença, por menor que seja
(sintaxe, nome de instrução, entre outros), pode levar à impossibilidade ou inconsis-
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tência da aplicação das regras mostradas no Capítulo 4. Há, portanto, a limitação
quanto ao alvo do mapeamento ser apenas o Assembly x86 para a plataforma Win-
dows. Contudo, esta é uma plataforma de larga abrangência. O que motivou a
escolha da mesma;

3. Tipo inteiro de CSP#: O inteiro de CSP# não permite que algumas operações co-
muns em código de máquina sejam reproduzidas, especialmente devido a problemas
de overflow em uma multiplicação entre números muito grandes – maiores que 32
bits;

4. Natureza manual da aplicação das regras: As regras de mapeamento devem ser
aplicadas manualmente. Então, ainda se corre o risco de uma falha humana interferir
no resultado da análise. Além disso, devido à extensão dos códigos de máquina, é
preciso bastante tempo para se concluir um trabalho manual de mapeamento;

5. Tamanho do modelo CSP gerado: É claro que este depende do código de entrada
para aplicação das regras, mas o fato do mapeamento ser, a grosso modo, uma linha
de código para uma operação em CSP# pode tornar a verificação um tanto lenta.
Como há mais de um processo CSP em paralelo, a possibilidade de combinações no
“escalonamento” torna-se muito grande, exigindo maior esforço computacional. O
ideal seria detectar as regiões do código que podem gerar eventuais problemas de
concorrência e restringir o paralelismo a esta(s) parte(s);

6. Difícil de detecção de livelocks: A detecção de livelocks não se tornou um proce-
dimento automatizado. Portanto, o não conhecimento de suas possibilidades de
ocorrência em certo código pode levar a crer em falsa ausência dos mesmos.

5.2 Trabalhos Futuros

Os seguintes trabalhos futuros são pertinentes, vistas as limitações desta pesquisa:

1. Realizar mapeamento de mais diferentes exemplos: Isso poderia gerar situações em
que o conjunto de regras atual não seria capaz de mapear, gerando novas regras e,
consequentemente, aumentando a abrangência da abordagem;

2. Criar uma ferramenta para aplicação automatizada: Dessa forma, os modelos gera-
dos seriam mais confiáveis, pois não dependeriam da ação humana, além de aumen-
tarem significativamente a velocidade de aplicação das regras;
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3. Detectar regiões críticas no Assembly: Isso ocasionaria numa redução da quantidade
de estados, pois paralelismo seria, então, limitado a essas regiões. Atualmente,
vários dos estados considerados não geram condições de corrida e apenas tornam a
verificação mais demorada;

4. Gerar verificações automáticas para desvios: Os desvios condicionais ou incondici-
onais podem gerar estados de livelock no programa. O ideal seria que o seu mapea-
mento gerasse uma verificação adicinal para esses casos, por exemplo, verificando se
a comparação de um desvio condicional que pule para uma label anterior à corrente
permite que se saia desse laço em algum ponto no futuro.
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APÊNDICE A -- Códigos-fonte e
Mapeamentos dos
Exemplos

Os códigos Assembly apresentam algumas instruções com nomeação diferente do res-
tante do trabalho, pois são transcrições diretas dos arquivos gerados para uma maquina
alvo que usa a versão de 64 bits do Windows.

A.1 Exemplo 1: Produtores e Consumidores

A.1.1 Código fonte em C

Código A.1: Produtores e Consumidores Completo
1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <windows . h>
4 #define MAXITENS 3
5 #define IDX_CONSUMIDOR 0
6 #define IDX_PRODUTOR 1
7 int i t e n s = 0 ;
8 HANDLE threads [ 2 ] ;
9

10 produz i r ( void∗ parametros ){
11 while (1){
12 i f ( i t e n s == MAXITENS)
13 SuspendThread ( threads [IDX_PRODUTOR] ) ;
14 i t e n s ++;
15 i f ( i t e n s == 1)
16 ResumeThread ( threads [IDX_CONSUMIDOR] ) ;
17 }
18 }
19 void consumir ( void∗ parametros ){
20 while (1){
21 i f ( i t e n s == 0)
22 SuspendThread ( threads [IDX_CONSUMIDOR] ) ;
23 i t e n s −−;
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24 i f ( i t e n s == MAXITENS − 1)
25 ResumeThread ( threads [IDX_PRODUTOR] ) ;
26 }
27 }
28 int main ( void ){
29 threads [IDX_CONSUMIDOR] = CreateThread (NULL, 0 , ( void ∗) consumir , NULL, 0 , NULL) ;
30 threads [IDX_PRODUTOR] = CreateThread (NULL, 0 , ( void ∗) produzir , NULL, 0 , NULL) ;
31 WaitForMult ipleObjects (2 , threads , TRUE, INFINITE ) ;
32 }

A.1.2 Assembly x86

A compilação do Código A.1 a partir do comando “gcc -S ProdutorConsumidor.c”
resulta no x86 seguinte:

Código A.2: x86 Produtores e Consumidores
1 . f i l e " ProdutorConsumidor.c "
2 . g l o b l _itens
3 . b s s
4 .a l ign 4
5 _itens :
6 . s p a c e 4
7 . t e x t
8 . g l o b l _produzir
9 . d e f _produzir ; . s c l 2 ; . t y p e 32; . e n d e f

10 _produzir :
11 pushl %ebp
12 movl %esp , %ebp
13 sub l $8 , %esp
14 L2 :
15 cmpl $3 , _itens
16 jne L4
17 movl _threads +4, %eax
18 movl %eax , (%esp )
19 c a l l _SuspendThread@4
20 sub l $4 , %esp
21 L4 :
22 i n c l _itens
23 cmpl $1 , _itens
24 jne L2
25 movl _threads , %eax
26 movl %eax , (%esp )
27 c a l l _ResumeThread@4
28 sub l $4 , %esp
29 jmp L2
30 . g l o b l _consumir
31 . d e f _consumir ; . s c l 2 ; . t y p e 32; . e n d e f
32 _consumir :
33 pushl %ebp
34 movl %esp , %ebp
35 sub l $8 , %esp
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36 L7 :
37 cmpl $0 , _itens
38 jne L9
39 movl _threads , %eax
40 movl %eax , (%esp )
41 c a l l _SuspendThread@4
42 sub l $4 , %esp
43 L9 :
44 d e c l _itens
45 cmpl $2 , _itens
46 jne L7
47 movl _threads +4, %eax
48 movl %eax , (%esp )
49 c a l l _ResumeThread@4
50 sub l $4 , %esp
51 jmp L7
52 . d e f ___main ; . s c l 2 ; . t y p e 32; . e n d e f
53 . g l o b l _main
54 . d e f _main ; . s c l 2 ; . t y p e 32; . e n d e f
55 _main :
56 pushl %ebp
57 movl %esp , %ebp
58 sub l $40 , %esp
59 andl $−16, %esp
60 movl $0 , %eax
61 addl $15 , %eax
62 addl $15 , %eax
63 s h r l $4 , %eax
64 s a l l $4 , %eax
65 movl %eax , −4(%ebp)
66 movl −4(%ebp ) , %eax
67 c a l l __alloca
68 c a l l ___main
69 movl $0 , 20(%esp )
70 movl $0 , 16(%esp )
71 movl $0 , 12(%esp )
72 movl $_consumir , 8(%esp )
73 movl $0 , 4(%esp )
74 movl $0 , (%esp )
75 c a l l _CreateThread@24
76 sub l $24 , %esp
77 movl %eax , _threads
78 movl $0 , 20(%esp )
79 movl $0 , 16(%esp )
80 movl $0 , 12(%esp )
81 movl $_produzir , 8(%esp )
82 movl $0 , 4(%esp )
83 movl $0 , (%esp )
84 c a l l _CreateThread@24
85 sub l $24 , %esp
86 movl %eax , _threads+4
87 movl $−1, 12(%esp )
88 movl $1 , 8(%esp )
89 movl $_threads , 4(%esp )
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90 movl $2 , (%esp )
91 c a l l _WaitForMultipleObjects@16
92 sub l $16 , %esp
93 leave
94 ret
95 .comm _threads , 16 # 8

A.1.3 CSP#

A aplicação das regras de mapeamento no Código A.2 gera a seguinte especificação
CSP#:

Código A.3: CSP# Produtores e Consumidores
1 #define MEM_SIZE 30 ;
2 #define MEM_LAST_INDEX 29 ;
3 #define MAIN 0 ;
4 #define MAX_THREADS 2 ;
5 #define TOTALTHREADS 3 ;
6 #define HEAP TOTALTHREADS;
7 #define consumir_Proc 1 ;
8 #define produzir_Proc 2 ;
9 #define pc_dummy 999 ;

10

11 //Memória
12 var memory [TOTALTHREADS + 1 ] [MEM_SIZE ] ;
13 var threadState = [ 1 , 0(MAX_THREADS) ] ;
14 channel ResumeThread_channel [TOTALTHREADS] 0 ;
15 var cmps [TOTALTHREADS] ;
16

17 //Contador de cr iação de threads
18 var current_id = 0 ;
19 //Contador de a locação na heap
20 var current_heap = 0 ;
21

22 // Reg i s t radores
23 var eax [TOTALTHREADS] ;
24 var ebp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;
25 var esp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;
26

27 // Var iáve i s das seções bs s e data
28 var _itens ;
29 var _threads ;
30

31 _CreateThread ( proc , c r e a t o r I d ) =
32 atomic{
33 cal l_CreateThread {
34 current_id++;
35 esp [ current_id ] = esp [ current_id ] − 1 ; // sub 4 , %esp
36 // Passagem 3o do parâmetro do CreateThread para função de CallBack
37 memory [ current_id ] [ esp [ current_id ] ] = memory [ c r e a t o r I d ] [ esp [ c r e a t o r I d ] + 3 ] ;
38 esp [ current_id ]−−; memory [ current_id ] [ esp [ current_id ] ] = pc_dummy ; // push %PC
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39 eax [ c r e a t o r I d ] = current_id ; // Coloca id no retorno
40 } −> setThreadState { threadState [ ( eax [ c r e a t o r I d ] ) ] = 1 } −>
41 s t a r t . proc . ( eax [ c r e a t o r I d ] ) −> Skip
42 } ;
43

44 _ExitThread ( id ) =
45 ResumeThread_channel [ id ] ! 2 −> Skip ;
46

47 Malloc ( id , s i z e ) =
48 ca l l_mal loc . id {
49 eax [ id ] = current_heap ;
50 current_heap = current_heap + s i z e /4 ;
51 } −> Skip ;
52

53 Def ineGlobalVars ( ) =
54 Malloc (MAIN, 4)
55 ; _main_movl { _itens = eax [MAIN] } −>
56 Malloc (MAIN, 8)
57 ; _main_movl { _threads = eax [MAIN] } −>
58 _main_movl { eax [MAIN] = 0 } −> Skip ;
59

60 _ResumeThread ( id ) =
61 atomic {
62 i f ( threadState [ id ] == 1) { Skip }
63 else {
64 setThreadState . id { threadState [ id ] = 1 } −>
65 ResumeThread_channel [ id ] ! 1 −> Skip
66 }
67 } ;
68

69 _SuspendThread ( id ) =
70 atomic{ setThreadState . id { threadState [ id ] = 0 } −>
71 ResumeThread_channel [ id ] ? 1 −> Skip
72 } ;
73

74 _WaitForMultipleObjects ( address , count ) =
75 i f a ( count == 1) { _WaitForSingleObject (memory [HEAP] [ address ] ) }
76 else { ( _WaitForSingleObject (memory [HEAP] [ address ] )
77 | | _WaitForMultipleObjects ( address + 1 , count − 1) ) } ;
78

79 _WaitForSingleObject ( id ) =
80 ResumeThread_channel [ id ] ? 2 −> DoneWaiting −> Skip ;
81

82 #alphabet _produzir { thread_id : { 1 . .TOTALTHREADS} @ s t a r t . produzir_Proc . thread_id } ;
83 _produzir ( id ) =
84 s t a r t . produzir_Proc . id −>
85 _produzir_Body ( id ) ;
86 _ExitThread ( id ) ;
87

88 _produzir_Body ( id ) =
89 _produzir_push . id {memory [ id ] [ esp [ id ] ] = ebp [ id ] ; esp [ id ]−−} −>
90 _produzir_movl . id { esp [ id ] = ebp [ id ] } −>
91 _produzir_subl . id { esp [ id ] = esp [ id ] − 2} −>
92 L2( id ) ;
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93

94 L2( id ) =
95 L2_cmpl . id { cmps [ id ] = 3 − memory [HEAP] [ _itens ] } −>
96 i f a ( cmps [ id ] != 0)
97 { L2_then . id −> L4( id ) }
98 else
99 {

100 L2_else . id −>
101 L2_movl . id {eax [ id ] = memory [HEAP] [ _threads + 1 ]} −>
102 _SuspendThread ( eax [ id ] )
103 ; L4 ( id )
104 } ;
105

106 L4( id ) =
107 L4_incl . id { memory [HEAP] [ _itens]++ } −>
108 L4_cmpl . id { cmps [ id ] = 1 − memory [HEAP] [ _itens ] } −>
109 i f a ( cmps [ id ] != 0)
110 { L4then . id −> L2( id ) }
111 else
112 {
113 L4e l s e . id −>
114 L4_movl . id {eax [ id ] = memory [HEAP] [ _threads ] } −>
115 _ResumeThread ( eax [ id ] )
116 ; L2 ( id )
117 } ;
118

119 #alphabet _consumir { thread_id : { 1 . .TOTALTHREADS} @ s t a r t . consumir_Proc . thread_id } ;
120 _consumir ( id ) =
121 s t a r t . consumir_Proc . id −>
122 _consumir_Body ( id ) ;
123 _ExitThread ( id ) ;
124

125 _consumir_Body ( id ) =
126 _consumir_push . id {memory [ id ] [ esp [ id ] ] = ebp [ id ] ; esp [ id ]−−} −>
127 _consumir_movl . id { esp [ id ] = ebp [ id ] } −>
128 _consumir_subl . id { esp [ id ] = esp [ id ] − 2} −>
129 L7( id ) ;
130

131 L7( id ) =
132 L7_cmpl . id { cmps [ id ] = 0 − memory [HEAP] [ _itens ] } −>
133 i f a ( cmps [ id ] != 0)
134 { L7_then . id −> L9( id ) }
135 else
136 {
137 L7_else . id −>
138 L7_movl . id {eax [ id ] = memory [HEAP] [ _threads ] } −>
139 _SuspendThread ( eax [ id ] )
140 ; L9 ( id )
141 } ;
142

143 L9( id ) =
144 L9_decl . id { memory [HEAP] [ _itens]−− } −>
145 L9_cmpl . id { cmps [ id ] = 2 − memory [HEAP] [ _itens ] } −>
146 i f a ( cmps [ id ] != 0)
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147 { L9_then . id −> L7( id ) }
148 else
149 {
150 L9_else . id −>
151 L9_movl . id {eax [ id ] = memory [HEAP] [ _threads + 1 ]} −>
152 _ResumeThread ( eax [ id ] )
153 ; L7 ( id )
154 } ;
155

156 _main ( ) = Def ineGlobalVars ( ) ; _main_Body ( ) | | _consumir (1 ) | | _produzir ( 2 ) ;
157

158 #alphabet _main_Body { proc : { produzir_Proc , consumir_Proc } ;
159 thread_id : { 1 . .TOTALTHREADS} @ s t a r t . proc . thread_id } ;
160 _main_Body ( ) =
161 _main_pushl { memory [MAIN ] [ esp [MAIN ] ] = ebp [MAIN ] ; esp [MAIN]−− } −>
162 _main_movl { ebp [MAIN] = esp [MAIN] } −>
163 _main_subl { esp [MAIN] = esp [MAIN] − 10 } −>
164 _main_movl { memory [MAIN ] [ esp [MAIN] + 5 ] = 0 } −>
165 _main_movl { memory [MAIN ] [ esp [MAIN] + 4 ] = 0 } −>
166 _main_movl { memory [MAIN ] [ esp [MAIN] + 3 ] = 0 } −>
167 _main_movl { memory [MAIN ] [ esp [MAIN] + 2 ] = consumir_Proc } −>
168 _main_movl { memory [MAIN ] [ esp [MAIN] + 1 ] = 0 } −>
169 _main_movl { memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
170 _CreateThread ( consumir_Proc , MAIN)
171 ; _main_movl { memory [HEAP] [ _threads ] = eax [MAIN] } −>
172 _main_movl { memory [MAIN ] [ esp [MAIN] + 5 ] = 0 } −>
173 _main_movl { memory [MAIN ] [ esp [MAIN] + 4 ] = 0 } −>
174 _main_movl { memory [MAIN ] [ esp [MAIN] + 3 ] = 0 } −>
175 _main_movl { memory [MAIN ] [ esp [MAIN] + 2 ] = produzir_Proc } −>
176 _main_movl { memory [MAIN ] [ esp [MAIN] + 1 ] = 0 } −>
177 _main_movl { memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
178 _CreateThread ( produzir_Proc , MAIN)
179 ; _main_movl { memory [HEAP] [ _threads + 1 ] = eax [MAIN] } −>
180 _main_movl { memory [MAIN ] [ esp [MAIN] + 3 ] = −1 } −>
181 _main_movl { memory [MAIN ] [ esp [MAIN] + 2 ] = 1 } −>
182 _main_movl { memory [MAIN ] [ esp [MAIN] + 1 ] = _threads } −>
183 _main_movl { memory [MAIN ] [ esp [MAIN ] ] = 2 } −>
184 _WaitForMultipleObjects ( _threads , 2)
185 ; _main_leave{
186 esp [MAIN] = ebp [MAIN ] ;
187 ebp [MAIN] = memory [MAIN ] [ esp [MAIN ] ] ;
188 esp [MAIN]−−
189 } −> Skip ;
190 #assert _main ( ) deadlockfree ;
191 #assert _main ( ) nonterminating ;

A.2 Exemplo 2: O Jantar dos Filósofos

A.2.1 Código fonte em C
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Código A.4: Jantar dos Filósofos Completo
1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <windows . h>
4 #define N 3 //N f i l ó s o f o s
5 #define DIR( i ) ( ( ( i )+1) %N) //Garfo d i r e i t a
6 int g a r f o s [N ] ;
7 HANDLE threads [N ] ;
8 HANDLE Mutex ;
9 void comer ( int fi lNum ){ }

10 void pegarTalherEsq ( int fi lNum ){
11 int i = filNum ;
12 BOOL pegou = 0 ;
13 while ( pegou == FALSE){
14 WaitForSingleObject (Mutex , INFINITE ) ;
15 i f ( g a r f o s [ i ] == 0){
16 g a r f o s [ i ] = filNum + 1 ;
17 pegou = TRUE;
18 }
19 ReleaseMutex ( Mutex ) ;
20 }
21 }
22 void pegarTalherDir ( int fi lNum ){
23 int i = DIR( filNum ) ;
24 BOOL pegou = 0 ;
25 while ( pegou == FALSE){
26 WaitForSingleObject (Mutex , INFINITE ) ;
27 i f ( g a r f o s [ i ] == 0){
28 g a r f o s [ i ] = filNum + 1 ;
29 pegou = TRUE;
30 }
31 ReleaseMutex ( Mutex ) ;
32 }
33 }
34 void devolverTalherEsq ( int fi lNum ){
35 int i = filNum ;
36 g a r f o s [ i ] = 0 ;
37 }
38 void devo lverTa lherDir ( int fi lNum ){
39 int i = DIR( filNum ) ;
40 g a r f o s [ i ] = 0 ;
41 }
42 void f i l o s o f o ( void∗ parametros ){
43 //Número do f i l ó s o f o passado como parametro para a thread
44 int∗ fi lNum = ( int ∗) parametros ;
45

46 pegarTalherEsq (∗ fi lNum ) ;
47 pegarTalherDir (∗ fi lNum ) ;
48 comer (∗ fi lNum ) ;
49 devolverTalherEsq (∗ fi lNum ) ;
50 devo lverTa lherDir (∗ fi lNum ) ;
51 }
52 int main ( ){
53 int i ;
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54 int∗ f ;
55 Mutex = CreateMutex (NULL, FALSE, NULL) ;
56 for ( i = 0 ; i < N; i ++){
57 f = mal loc ( s izeof ( int ) ) ;
58 ∗ f = i ;
59 threads [ i ] = CreateThread (NULL, 0 , ( void ∗) f i l o s o f o , f , 0 ,NULL) ;
60 }
61 WaitForMult ipleObjects (N, threads , TRUE, INFINITE ) ;
62 }

A.2.2 Assembly x86

A compilação do Código A.4 a partir do comando “gcc -S JantarFilosofos.c” resulta
no x86 seguinte:

Código A.5: x86 Jantar dos Filósofos
1 . f i l e " J a n t a r F i l o s o f o s . c "
2 . t e x t
3 . g l o b l _comer
4 . d e f _comer ; . s c l 2 ; . t y p e 32; . e n d e f
5 _comer :
6 pushl %ebp
7 movl %esp , %ebp
8 popl %ebp
9 ret

10 . g l o b l _pegarTalherEsq
11 . d e f _pegarTalherEsq ; . s c l 2 ; . t y p e 32; . e n d e f
12 _pegarTalherEsq :
13 pushl %ebp
14 movl %esp , %ebp
15 sub l $24 , %esp
16 movl 8(%ebp ) , %eax
17 movl %eax , −4(%ebp)
18 movl $0 , −8(%ebp)
19 L3 :
20 cmpl $0 , −8(%ebp)
21 jne L2
22 movl $−1, 4(%esp )
23 movl _Mutex , %eax
24 movl %eax , (%esp )
25 c a l l _WaitForSingleObject@8
26 sub l $8 , %esp
27 movl −4(%ebp ) , %eax
28 cmpl $0 , _garfos ( ,%eax , 4 )
29 jne L5
30 movl −4(%ebp ) , %edx
31 movl 8(%ebp ) , %eax
32 i n c l %eax
33 movl %eax , _garfos ( ,%edx , 4 )
34 movl $1 , −8(%ebp)
35 L5 :



A.2 Exemplo 2: O Jantar dos Filósofos 69

36 movl _Mutex , %eax
37 movl %eax , (%esp )
38 c a l l _ReleaseMutex@4
39 sub l $4 , %esp
40 jmp L3
41 L2 :
42 leave
43 ret
44 . g l o b l _pegarTalherDir
45 . d e f _pegarTalherDir ; . s c l 2 ; . t y p e 32; . e n d e f
46 _pegarTalherDir :
47 pushl %ebp
48 movl %esp , %ebp
49 sub l $24 , %esp
50 movl 8(%ebp ) , %ecx
51 i n c l %ecx
52 movl $1431655766 , %eax
53 imu l l %ecx
54 movl %ecx , %eax
55 s a r l $31 , %eax
56 sub l %eax , %edx
57 movl %edx , %eax
58 movl %eax , −4(%ebp)
59 movl −4(%ebp ) , %edx
60 movl %edx , %eax
61 addl %eax , %eax
62 addl %edx , %eax
63 sub l %eax , %ecx
64 movl %ecx , %eax
65 movl %eax , −4(%ebp)
66 movl $0 , −8(%ebp)
67 L7 :
68 cmpl $0 , −8(%ebp)
69 jne L6
70 movl $−1, 4(%esp )
71 movl _Mutex , %eax
72 movl %eax , (%esp )
73 c a l l _WaitForSingleObject@8
74 sub l $8 , %esp
75 movl −4(%ebp ) , %eax
76 cmpl $0 , _garfos ( ,%eax , 4 )
77 jne L9
78 movl −4(%ebp ) , %edx
79 movl 8(%ebp ) , %eax
80 i n c l %eax
81 movl %eax , _garfos ( ,%edx , 4 )
82 movl $1 , −8(%ebp)
83 L9 :
84 movl _Mutex , %eax
85 movl %eax , (%esp )
86 c a l l _ReleaseMutex@4
87 sub l $4 , %esp
88 jmp L7
89 L6 :
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90 leave
91 ret
92 . g l o b l _devolverTalherEsq
93 . d e f _devolverTalherEsq ; . s c l 2 ; . t y p e 32; . e n d e f
94 _devolverTalherEsq :
95 pushl %ebp
96 movl %esp , %ebp
97 sub l $4 , %esp
98 movl 8(%ebp ) , %eax
99 movl %eax , −4(%ebp)

100 movl −4(%ebp ) , %eax
101 movl $0 , _garfos ( ,%eax , 4 )
102 leave
103 ret
104 . g l o b l _devolverTalherDir
105 . d e f _devolverTalherDir ; . s c l 2 ; . t y p e 32; . e n d e f
106 _devolverTalherDir :
107 pushl %ebp
108 movl %esp , %ebp
109 sub l $4 , %esp
110 movl 8(%ebp ) , %ecx
111 i n c l %ecx
112 movl $1431655766 , %eax
113 imu l l %ecx
114 movl %ecx , %eax
115 s a r l $31 , %eax
116 sub l %eax , %edx
117 movl %edx , %eax
118 movl %eax , −4(%ebp)
119 movl −4(%ebp ) , %edx
120 movl %edx , %eax
121 addl %eax , %eax
122 addl %edx , %eax
123 sub l %eax , %ecx
124 movl %ecx , %eax
125 movl %eax , −4(%ebp)
126 movl −4(%ebp ) , %eax
127 movl $0 , _garfos ( ,%eax , 4 )
128 leave
129 ret
130 . g l o b l _ f i l o s o f o
131 . d e f _ f i l o s o f o ; . s c l 2 ; . t y p e 32; . e n d e f
132 _ f i l o s o f o :
133 pushl %ebp
134 movl %esp , %ebp
135 sub l $8 , %esp
136 movl 8(%ebp ) , %eax
137 movl %eax , −4(%ebp)
138 movl −4(%ebp ) , %eax
139 movl (%eax ) , %eax
140 movl %eax , (%esp )
141 c a l l _pegarTalherEsq
142 movl −4(%ebp ) , %eax
143 movl (%eax ) , %eax
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144 movl %eax , (%esp )
145 c a l l _pegarTalherDir
146 movl −4(%ebp ) , %eax
147 movl (%eax ) , %eax
148 movl %eax , (%esp )
149 c a l l _comer
150 movl −4(%ebp ) , %eax
151 movl (%eax ) , %eax
152 movl %eax , (%esp )
153 c a l l _devolverTalherEsq
154 movl −4(%ebp ) , %eax
155 movl (%eax ) , %eax
156 movl %eax , (%esp )
157 c a l l _devolverTalherDir
158 leave
159 ret
160 . d e f ___main ; . s c l 2 ; . t y p e 32; . e n d e f
161 . g l o b l _main
162 . d e f _main ; . s c l 2 ; . t y p e 32; . e n d e f
163 _main :
164 pushl %ebp
165 movl %esp , %ebp
166 pushl %ebx
167 sub l $36 , %esp
168 andl $−16, %esp
169 movl $0 , %eax
170 addl $15 , %eax
171 addl $15 , %eax
172 s h r l $4 , %eax
173 s a l l $4 , %eax
174 movl %eax , −16(%ebp)
175 movl −16(%ebp ) , %eax
176 c a l l __alloca
177 c a l l ___main
178 movl $0 , 8(%esp )
179 movl $0 , 4(%esp )
180 movl $0 , (%esp )
181 c a l l _CreateMutexA@12
182 sub l $12 , %esp
183 movl %eax , _Mutex
184 movl $0 , −8(%ebp)
185 L14 :
186 cmpl $2 , −8(%ebp)
187 jg L15
188 movl $4 , (%esp )
189 c a l l _malloc
190 movl %eax , −12(%ebp)
191 movl −12(%ebp ) , %edx
192 movl −8(%ebp ) , %eax
193 movl %eax , (%edx)
194 movl −8(%ebp ) , %ebx
195 movl $0 , 20(%esp )
196 movl $0 , 16(%esp )
197 movl −12(%ebp ) , %eax
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198 movl %eax , 12(%esp )
199 movl $ _ f i l o s o f o , 8(%esp )
200 movl $0 , 4(%esp )
201 movl $0 , (%esp )
202 c a l l _CreateThread@24
203 sub l $24 , %esp
204 movl %eax , _threads ( ,%ebx , 4 )
205 l e a l −8(%ebp ) , %eax
206 i n c l (%eax )
207 jmp L14
208 L15 :
209 movl $−1, 12(%esp )
210 movl $1 , 8(%esp )
211 movl $_threads , 4(%esp )
212 movl $3 , (%esp )
213 c a l l _WaitForMultipleObjects@16
214 sub l $16 , %esp
215 movl −4(%ebp ) , %ebx
216 leave
217 ret
218 .comm _garfos , 16 # 12
219 .comm _threads , 16 # 12
220 .comm _Mutex , 16 # 4
221 . d e f _malloc ; . s c l 3 ; . t y p e 32; . e n d e f

A.2.3 CSP#

A aplicação das regras de mapeamento no Código A.5 gera a seguinte especificação
CSP#:

Código A.6: CSP# Jantar dos Filósofos
1 #define MEM_SIZE 30 ;
2 #define MEM_LAST_INDEX 29 ;
3 #define MAIN 0 ;
4 #define MAX_THREADS 3 ;
5 #define TOTALTHREADS 4 ;
6 #define HEAP TOTALTHREADS;
7 #define f i l o s o f o _ P r o c 1 ;
8 #define pc_dummy 999 ;
9

10 //Memória
11 var memory [TOTALTHREADS + 1 ] [MEM_SIZE ] ;
12 var threadState = [ 1 , 0(MAX_THREADS) ] ;
13 var cmps [TOTALTHREADS] ;
14

15 channel ResumeThread_channel [TOTALTHREADS] 0 ;
16

17 //Contador de cr iação de threads
18 var current_id = 0 ;
19 //Contador de a locação na heap
20 var current_heap = 0 ;
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21

22 // Reg i s t radores
23 var esp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;
24 var ebp = [MEM_LAST_INDEX(TOTALTHREADS) ] ;
25 var eax [TOTALTHREADS] ;
26 var ebx [TOTALTHREADS] ;
27 var ecx [TOTALTHREADS] ;
28 var edx [TOTALTHREADS] ;
29

30 // Var iáve i s das seções bs s e data
31 var _garfos ;
32 var _threads ;
33 var _Mutex ;
34

35 _CreateThread ( proc , c r e a t o r I d ) =
36 atomic{
37 cal l_CreateThread {
38 current_id++;
39 esp [ current_id ] = esp [ current_id ] − 1 ; // sub 4 , %esp
40 // Passagem 3o do parâmetro do CreateThread para função de CallBack
41 memory [ current_id ] [ esp [ current_id ] ] = memory [ c r e a t o r I d ] [ esp [ c r e a t o r I d ] + 3 ] ;
42 esp [ current_id ]−−; memory [ current_id ] [ esp [ current_id ] ] = pc_dummy ; // push %PC
43 eax [ c r e a t o r I d ] = current_id ; // Coloca id no retorno
44 } −> setThreadState { threadState [ ( eax [ c r e a t o r I d ] ) ] = 1 } −>
45 s t a r t . proc . ( eax [ c r e a t o r I d ] ) −> Skip
46 } ;
47

48 _ExitThread ( id ) =
49 ResumeThread_channel [ id ] ! 2 −> Skip ;
50

51 Malloc ( id , s i z e ) =
52 ca l l_mal loc . id {
53 eax [ id ] = current_heap ;
54 current_heap = current_heap + s i z e /4 ;
55 } −> Skip ;
56

57 Def ineGlobalVars ( ) =
58 Malloc (MAIN, 12)
59 ; _main_movl { _garfos = eax [MAIN ] ; } −>
60 Malloc (MAIN, 12)
61 ; _main_movl { _threads = eax [MAIN] } −>
62 _main_movl { eax [MAIN] = 0 } −> Skip ;
63

64 _WaitForMultipleObjects ( address , count ) =
65 i f a ( count == 1) { _WaitForSingleObject (memory [HEAP] [ address ] ) }
66 else { ( _WaitForSingleObject (memory [HEAP] [ address ] )
67 | | _WaitForMultipleObjects ( address + 1 , count − 1) ) } ;
68

69 _WaitForSingleObject ( id ) =
70 ResumeThread_channel [ id ] ? 2 −> DoneWaiting −> Skip ;
71

72 channel LockMutex 0 ;
73 channel ReleaseMutex 0 ;
74
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75 Mutex ( ) =
76 LockMutex? id −> ReleaseMutex ? id −> Mutex ( )
77 [ ] End −> Skip ;
78

79 _main ( ) = _main_Body ( ) | | Mutex ( ) | | ( | | x : { 1 . .MAX_THREADS} @ _ f i l o s o f o ( x ) ) ;
80

81 #alphabet _main_Body { proc : { f i l o s o f o _ P r o c } ;
82 thread_id : { 1 . .MAX_THREADS} @ s t a r t . proc . thread_id , End } ;
83 _main_Body ( ) =
84 Def ineGlobalVars ( ) ;
85 _main_movl{ memory [MAIN ] [ esp [MAIN]−2] = 0 } −>
86 _main_movl{ memory [MAIN ] [ esp [MAIN]−1] = 0 } −>
87 _main_movl{ memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
88 call_CreateMutex −>
89 _main_movl{ eax [MAIN] = _Mutex } −>
90 _main_movl{ memory [MAIN ] [ ebp [MAIN] − 2 ] = 0 } −>
91 L14 ( ) ;
92

93 L14 ( ) =
94 L14_cmpl{ cmps [MAIN] = 2 − memory [MAIN ] [ ebp [MAIN] − 2 ] } −>
95 i f a ( cmps [MAIN] < 0)
96 {
97 L14_then−> L15 ( )
98 }
99 else

100 {
101 L14_else −>
102 L14_movl { memory [MAIN ] [ esp [MAIN ] ] = 4 } −>
103 Malloc (MAIN, 4)
104 ; L14_movl { memory [MAIN ] [ ebp [MAIN] − 3 ] = eax [MAIN] } −>
105 L14_movl { edx [MAIN] = memory [MAIN ] [ ebp [MAIN] − 3 ] } −>
106 L14_movl { eax [MAIN] = memory [MAIN ] [ ebp [MAIN] − 2 ] } −>
107 L14_movl { memory [HEAP] [ edx [MAIN ] ] = eax [MAIN] } −>
108 L14_movl { ebx [MAIN] = memory [MAIN ] [ ebp [MAIN] − 2 ] } −>
109 L14_movl { memory [MAIN ] [ esp [MAIN] + 5 ] = 0 } −>
110 L14_movl { memory [MAIN ] [ esp [MAIN] + 4 ] = 0 } −>
111 L14_movl { eax [MAIN] = memory [MAIN ] [ ebp [MAIN] − 3 ] } −>
112 L14_movl { memory [MAIN ] [ esp [MAIN] + 3 ] = eax [MAIN] } −>
113 L14_movl { memory [MAIN ] [ esp [MAIN] + 2 ] = f i l o s o f o _ P r o c } −>
114 L14_movl { memory [MAIN ] [ esp [MAIN] + 1 ] = 0 } −>
115 L14_movl { memory [MAIN ] [ esp [MAIN ] ] = 0 } −>
116 _CreateThread ( f i l o so f o_Proc , MAIN)
117 ; L14_movl { memory [HEAP] [ _threads + ebx [MAIN ] ] = eax [MAIN] } −>
118 L14_leal { eax [MAIN] = ebp [MAIN] − 2 } −>
119 L14_incl { memory [MAIN ] [ eax [MAIN ] ] ++ } −>
120 L14 ( )
121 } ;
122

123 L15 ( ) =
124 L15_movl { memory [MAIN ] [ esp [MAIN] + 3 ] = −1 } −>
125 L15_movl { memory [MAIN ] [ esp [MAIN] + 2 ] = 1 } −>
126 L15_movl { memory [MAIN ] [ esp [MAIN] + 1 ] = _threads } −>
127 L15_movl { memory [MAIN ] [ esp [MAIN ] ] = 3 } −>
128 _WaitForMultipleObjects ( _threads , 3)
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129 ; L15_movl { ebx [MAIN] = memory [MAIN ] [ ebp [MAIN] −1] } −>
130 L15_leave { esp [MAIN] = ebp [MAIN ] ; ebp [MAIN] = memory [MAIN ] [ esp [MAIN ] ] ; esp [MAIN]−− } −>
131 L15_ret { esp [MAIN] = esp [MAIN] + 1 } −>
132 End −>
133 Skip ;
134

135 _ f i l o s o f o ( id ) =
136 s t a r t . f i l o s o f o _ P r o c . id −>
137 _filoso_Body ( id ) ;
138 _ExitThread ( id ) ;
139

140 _filoso_Body ( id ) =
141 _f i l o so fo_push l . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] } −>
142 _fi losofo_movl . id { ebp [ id ] = esp [ id ] } −>
143 _ f i l o s o f o _ s u b l . id { esp [ id ] = esp [ id ] − 2 } −>
144 _fi losofo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
145 _fi losofo_movl . id { memory [ id ] [ ebp [ id ] − 1 ] = eax [ id ] } −>
146 _fi losofo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
147 _fi losofo_movl . id { eax [ id ] = memory [HEAP] [ eax [ id ] ] } −>
148 _fi losofo_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
149 ca l l_pegarTalherEsq . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = pc_dummy } −>
150 _pegarTalherEsq ( id ) ;
151 _fi losofo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
152 _fi losofo_movl . id { eax [ id ] = memory [HEAP] [ eax [ id ] ] } −>
153 _fi losofo_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
154 ca l l_pegarTalherDir . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = pc_dummy } −>
155 _pegarTalherDir ( id ) ;
156 _fi losofo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
157 _fi losofo_movl . id { eax [ id ] = memory [HEAP] [ eax [ id ] ] } −>
158 _fi losofo_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
159 cal l_comer . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = pc_dummy } −>
160 _comer ( id )
161 ; _f i loso fo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
162 _fi losofo_movl . id { eax [ id ] = memory [HEAP] [ eax [ id ] ] } −>
163 _fi losofo_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
164 ca l l_devo lverTalherEsq . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = pc_dummy } −>
165 _devolverTalherEsq ( id ) ;
166 _fi losofo_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
167 _fi losofo_movl . id { eax [ id ] = memory [HEAP] [ eax [ id ] ] } −>
168 _fi losofo_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
169 ca l l_devo lve rTa lhe rDi r . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = pc_dummy } −>
170 _devolverTalherDir ( id ) ;
171 _ f i l o s o f o _ l e a v e . id {
172 esp [ id ] = ebp [ id ] ;
173 ebp [ id ] = memory [ id ] [ esp [ id ] ] ;
174 esp [ id ]++
175 } −>
176 _ f i l o s o f o _ r e t . id { esp [ id ]++ } −>
177 Skip ;
178

179 _pegarTalherEsq ( id ) =
180 _pegarTalherEsq_pushl . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] }−>
181 _pegarTalherEsq_movl . id { ebp [ id ] = esp [ id ] } −>
182 _pegarTalherEsq_subl . id { esp [ id ] = esp [ id ] − 6 } −>



A.2 Exemplo 2: O Jantar dos Filósofos 76

183 _pegarTalherEsq_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
184 _pegarTalherEsq_movl . id { memory [ id ] [ ebp [ id ] − 1 ] = eax [ id ] } −>
185 _pegarTalherEsq_movl . id { memory [ id ] [ ebp [ id ] − 2 ] = 0 }−>
186 L3( id ) ;
187

188 L3( id ) =
189 L3_cmpl . id { cmps [ id ] = 0 − memory [ id ] [ ebp [ id ] − 2 ] } −>
190 i f a ( cmps [ id ] != 0 )
191 { L3_then . id −> L2( id ) }
192 else
193 {
194 L3_else . id −>
195 L3_movl . id { memory [ id ] [ esp [ id ] + 1 ] = −1 } −>
196 L3_movl . id { eax [ id ] = _Mutex } −>
197 L3_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
198 LockMutex ! id −>
199 L3_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] }−>
200 L3_cmpl . id { cmps [ id ] = 0 − memory [HEAP] [ _garfos + eax [ id ] ] } −>
201 i f a ( cmps [ id ] != 0 )
202 { L3_then . id −> L5( id ) }
203 else
204 {
205 L3_else . id −>
206 L3_movl . id { edx [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
207 L3_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
208 L3_incl . id { eax [ id ]++ } −>
209 L3_movl . id { memory [HEAP] [ _garfos + edx [ id ] ] = eax [ id ] } −>
210 L3_movl . id { memory [ id ] [ ebp [ id ] − 2 ] = 1 } −>
211 L5( id )
212 }
213 } ;
214

215 L5( id ) =
216 L5_movl . id { eax [ id ] = _Mutex }−>
217 L5_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
218 ReleaseMutex ! id −>
219 L3( id ) ;
220

221 L2( id ) =
222 L2_leave . id {
223 esp [ id ] = ebp [ id ] ;
224 ebp [ id ] = memory [ id ] [ esp [ id ] ] ;
225 esp [ id ]++
226 } −>
227 L2_ret . id { esp [ id ]++ } −>
228 Skip ;
229

230 _pegarTalherDir ( id ) =
231 _pegarTalherDir_pushl . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] } −>
232 _pegarTalherDir_movl . id { ebp [ id ] = esp [ id ] } −>
233 _pegarTalherDir_subl . id { esp [ id ] = esp [ id ] − 6 } −>
234 _pegarTalherDir_movl . id { ecx [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
235 _pegarTalherDir_incl . id { ecx [ id ] ++ } −>
236 _MOD3_especial . id { eax [ id ] = ecx [ id ] − ( ( ecx [ id ] / 3 )∗3 ) } −>
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237 _pegarTalherDir_movl . id { memory [ id ] [ ebp [ id ] − 1 ] = eax [ id ] } −>
238 _pegarTalherDir_movl . id { memory [ id ] [ ebp [ id ] − 2 ] = 0 } −>
239 L7( id ) ;
240

241 L7( id ) =
242 L7_cmpl . id { cmps [ id ] = 0 − memory [ id ] [ ebp [ id ] − 2 ] } −>
243 i f a ( cmps [ id ] != 0 )
244 { L7_then . id −> L6( id ) }
245 else
246 {
247 L7_else . id −>
248 L7_movl . id { memory [ id ] [ esp [ id ] + 1 ] = −1 } −>
249 L7_movl . id { eax [ id ] = _Mutex } −>
250 L7_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
251 LockMutex ! id −>
252 L7_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
253 L7_cmpl . id { cmps [ id ] = 0 − memory [HEAP] [ _garfos + eax [ id ] ] } −>
254 i f a ( cmps [ id ] != 0 )
255 { L7_then . id −> L9( id ) }
256 else
257 {
258 L7_else . id −>
259 L7_movl . id { edx [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
260 L7_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
261 L7_incl . id { eax [ id ]++ } −>
262 L7_movl . id { memory [HEAP] [ _garfos + edx [ id ] ] = eax [ id ] } −>
263 L7_movl . id { memory [ id ] [ ebp [ id ] − 2 ] = 1 } −>
264 L9( id )
265 }
266 } ;
267

268 L9( id ) =
269 L9_movl . id { eax [ id ] = _Mutex }−>
270 L9_movl . id { memory [ id ] [ esp [ id ] ] = eax [ id ] } −>
271 ReleaseMutex ! id −>
272 L7( id ) ;
273

274 L6( id ) =
275 L6_leave . id {
276 esp [ id ] = ebp [ id ] ;
277 ebp [ id ] = memory [ id ] [ esp [ id ] ] ;
278 esp [ id ]++
279 } −>
280 L6_ret . id { esp [ id ]++ } −>
281 Skip ;
282

283 _comer ( id ) =
284 _comer_push { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] } −>
285 _comer_movl { ebp [ id ] = esp [ id ] } −>
286 _comer_popl { ebp [ id ] = memory [ id ] [ esp [ id ] ] ; esp [ id ]++ } −>
287 _comer_ret { esp [ id ]++ } −>
288 Skip ;
289

290 _devolverTalherEsq ( id ) =
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291 _devolverTalherEsq_pushl . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] } −>
292 _devolverTalherEsq_movl . id { ebp [ id ] = esp [ id ] } −>
293 _devolverTalherEsq_subl . id { esp [ id ]−−} −>
294 _devolverTalherEsq_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
295 _devolverTalherEsq_movl . id { memory [ id ] [ ebp [ id ] − 1 ] = eax [ id ] } −>
296 _devolverTalherEsq_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
297 _devolverTalherEsq_movl . id { memory [HEAP] [ _garfos + eax [ id ] ] = 0 } −>
298 _devolverTalherEsq_leave . id {
299 esp [ id ] = ebp [ id ] ;
300 ebp [ id ] = memory [ id ] [ esp [ id ] ] ;
301 esp [ id ]++
302 } −>
303 _devolverTalherEsq_ret . id { esp [ id ]++ } −>
304 Skip ;
305

306 _devolverTalherDir ( id ) =
307 _devolverTalherDir_pushl . id { esp [ id ]−−; memory [ id ] [ esp [ id ] ] = ebp [ id ] }−>
308 _devolverTalherDir_movl . id { ebp [ id ] = esp [ id ] } −>
309 _devolverTalherDir_subl . id { esp [ id ]−− } −>
310 _devolverTalherDir_movl . id { ecx [ id ] = memory [ id ] [ ebp [ id ] + 2 ] } −>
311 _devolverTalherDir_inc l . id { ecx [ id ] ++ } −>
312 _MOD3_especial . id { eax [ id ] = ecx [ id ] − ( ( ecx [ id ] / 3 )∗3 ) } −>
313 _devolverTalherDir_movl . id { memory [ id ] [ ebp [ id ] − 1 ] = eax [ id ] } −>
314 _devolverTalherDir_movl . id { eax [ id ] = memory [ id ] [ ebp [ id ] − 1 ] } −>
315 _devolverTalherDir_movl . id { memory [HEAP] [ _garfos + eax [ id ] ] = 0 } −>
316 _devolverTalherDir_leave . id {
317 esp [ id ] = ebp [ id ] ;
318 ebp [ id ] = memory [ id ] [ esp [ id ] ] ;
319 esp [ id ]++
320 } −>
321 _devolverTalherDir_ret . id { esp [ id ]++ }−>
322 Skip ;
323

324 #assert _main ( ) deadlockfree ;
325 #assert _main ( ) nonterminating ;
326 #assert _main ( ) |= (<> cal l_comer . 1 ) && (<> cal l_comer . 2 ) && (<> cal l_comer . 3 ) ;
327 #define o b j e t i v o (memory [HEAP] [ _garfos ] == 1 &&
328 memory [HEAP] [ _garfos + 1 ] == 2 && memory [HEAP] [ _garfos + 2 ] == 3 ) ;
329 #assert _main ( ) |= !(<> o b j e t i v o ) ;


