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"Sempre que vocé andar 5 passos em direcdio ao horizonte, ele deve se afastar 5 passos. Se
vocé andar 10 passos na diregdo dele, ele deve se afastar 10 passos, pois o horizonte nao

esta ld para vocé alcancd-lo, mas para que vocé nunca pare de caminhar!"
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Resumo

A expansao do consumo de energia tem aspectos negativos. Com
o intuito de amenizar esses efeitos, a humanidade vem tentando
diversificar a matriz energética com novas fontes que, além de
nao causarem danos ao ambiente, sejam renovaveis. Entre essas
novas fontes destaca-se a energia edlica. Para sua utilizacao é
necessario lidar com algumas incertezas, tais como velocidade e
direcao do vento. Assim, este trabalho tem o objetivo de propor
um sistema de previsao de poténcia edlica, utilizando em sua
construcao uma Rede Neural Artificial. Através de experimentos
realizados com trés topologias de redes neurais (MLP, RBF
e SVM) e diferentes horizontes de entrada, verificou-se que a
rede SVM com 48 variaveis se mostrou mais adequada para a
previsao de poténcia edlica.

Palavras-chave: MLP, RBF, SVM, Energia Eodlica, Redes

Neurais Artificiais.



Abstract

The expansion of energy use has negative aspects. In order to
mitigate these effects, humany has been trying new sources of
energy that do not cause damage to the natural environment
and are renewable. Among these new sources stands out the
wind. For this energy source to be used it is necessary to deal
with some uncertainties, such as wind speed and direction. Thus,
this work aims to propose a wind power forecasting system using
an Artificial Neural Network. Through experiments conducted
with three different neural network topologies(MLP, RBF and
SVM) and different input horizons, it was verified that the SVM
network with 48 variables was more appropriate suitable for
wind power forecast.

Keywords: MLP, RBF, SVM, wind energy, Artificial neural

networks.
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1 Introducao

Este capitulo apresenta a motivagao para a realizacao deste trabalho. Em seguida,
sao especificados os objetivos a serem atingidos e uma explicacao detalhada do contetido

dos capitulos seguintes.

1.1 Motivacao

A expansao acentuada do consumo de energia, embora demonstre o aquecimento
economico e a melhoria da qualidade de vida, tem aspectos negativos. Dentre eles podemos
citar: a possibilidade de esgotamento dos recursos utilizados para producao de energia, o
impacto ao meio ambiente, e os elevados investimentos em pesquisa e desenvolvimento de
novas fontes de geragao de energia elétrica (ANEEL, 2008). Atualmente, entre as fontes de
energia mais utilizadas estao o petroleo, gas natural e carvao mineral que, além de serem
extremamente danosas ao ambiente, sao ditas nao renovaveis, ou seja, seu processo de

regeneracao ¢ muito lento ou inexiste, tornando sua utilizacao sustentavel inviavel.

Desde o inicio dos anos 90 cientistas e estudiosos alertam para efeitos danosos
ao ambiente provocados pela agao humana, tendo como exemplo o aquecimento global,
provocado pela emissao elevada de gases causadores do efeito estufa. Estes liberados em
larga escala através da queima de combustiveis fésseis para a producao de calor, vapor
ou energia elétrica (ANEEL, 2008). Sendo assim, um grande desafio enfrentado pela
humanidade ¢ diversificagdo da matriz energética com fontes renovaveis de energia, como

energia solar, energia eélica e biomassa.

A utilizagdo do vento como fonte de energia tem seu potencial diretamente ligado
a velocidade dele (ANEEL, 2005) e a outras incertezas como dire¢do do vento, clima e
topografia. Tais condigoes justificam a construcao de um sistema de previsao de poténcia
edlica, a fim de que se obtenham boas estimativas do potencial edlico em um determinado
local, possibilitando a elaboracao boas estratégias para um aproveitamento mais eficiente

dessa fonte.

A poténcia edlica pode ser representada na forma de uma série temporal (ST), que
¢ um conjunto de observagoes ordenadas no tempo e registradas em intervalos regulares,
feitas sobre um evento. Por exemplo, o nimero de atendimentos diarios em um Pronto
Socorro ou a quantidade mensal de casos notificados de uma doenca especifica. Na analise
de uma ST, deseja-se modelar o evento estudado para realizar estimativas e descrever o
seu comportamento através de testes estatisticos (CARDOSO, 2001). A caracteristica mais

importante das STs é a dependéncia entre as observagoes vizinhas e a possibilidade de
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analisar esta dependéncia. O estudo deste tipo de dados requer o uso técnicas especificas
(EHLERS, 2007), como por exemplo Redes Neurais Artificias (RNAs). As RNAs sao
modelos matematicos que possuem a capacidade de aprender a partir de exemplos, vém se

tornando bastante populares em estudos sobre STs.

A expansao do consumo de energia cria a necessidade de diversificar a matriz
energética com fontes renovaveis de energia. Uma das mais promissoras é a energia edlica,
visto que sua capacidade mundial instalada aumentou 1155% entre 1997 e 2007. Assim,
muitos trabalhos de pesquisa vém sendo realizados nesta area, com o intuito de desenvolver
um sistema de previsao eficiente, podemos citar como exemplo (RODRIGUES, 2007),
onde utiliza-se a rede Multi- Layer Perceptron (MLP). Porém, sdo implementadas vérias

configuragoes com esse tipo de RNA.

A producgao de energia elétrica pelas fontes mais utilizadas atualmente, carvao
mineral, petroleo e gas, tem consequéncias negativas, como por exemplo os danos causados
ao meio ambiente e fato dessas fontes nao serem renovaveis. Sendo assim, é necessario
introduzir na matriz energética fontes que nao apresentem esses pontos negativos, alguns
exemplos sdo: energia edlica, solar, entre outras. A edlica em particular esta ligada a uma
série de incertezas, tais como velocidade e dire¢ao do vento, clima e topografia do local
onde serd instalado o parque edlico. Com isso, para definir boas estratégias que permitam
o uso mais eficiente do potencial edlico do local é necessario ter boas estimativas das
poténcias geradas, sendo fundamental construir um sistema de previsao de poténcia edlica.
Esse sistema deve utilizar métodos que o possibilitem fornecer estimativas precisas sobre a

poténcia edlica.

1.2 Objetivos

1.2.1 Objetivos Gerais

Este trabalho tem como objetivo geral desenvolver um sistema para previsao
de poténcia edlica, utilizando para isso RNAs de arquitetura RBF (LUDERMIR et al.,
2007), MLP (VALENCA, 2009) e SVM (ANDREOLA, 2009), realizar uma comparagao
de desempenho entre estes métodos que utilizam aprendizagem de maquina e analisar o
impacto de diferentes horizontes de entrada (ou seja, quantidade de informagoes passadas)
em cada previsao, para um horizonte de trés horas a frente. Pois, a avaliagdo em variagoes
de curta duracao apresenta valores que se aproximam mais da realidade do que a avaliacao

realizada em variagoes sazonais e anuais.

1.2.2  Objetivos Especificos

1. Configurar diversas redes.
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2. Calcular a correlagao entre as variaveis presentes na base de dados.

3. Encontrar os valores para os parametros que apresentem a previsao mais eficiente,

para um intervalo de trés horas a frente.

4. Comparar os resultados obtidos pelas trés arquiteturas de rede utilizando testes

estatisticos.

1.3 Estrutura da Monografia

O capitulo 2 apresenta os conceitos necessarios para o entendimento dos experimen-
tos realizados: energia edlica e Redes Neurais Artificiais, enfatizando as trés arquiteturas
escolhidas para esse trabalho, a MLP, a RBF e a SVM. No capitulo 3 é descrita a me-
todologia escolhida com o intuito de alcancar os objetivos definidos na secao 1.2. Além
de explicar como se dard o processamento dos dados, as configuracoes e uso das trés
arquiteturas selecionadas para serem utilizadas no trabalho. O capitulo 4 apresenta os
resultados atingidos apds as simulagoes, fazendo uma comparagao entre os resultados
alcangados com as trés arquiteturas. E finalmente o capitulo 5 mostra as conclusoes

inferidas a partir dos resultados obtidos e propostas de trabalhos futuros.



2 Fundamentacao Tedrica

Este capitulo fornece uma breve explicacao dos conceitos chaves para o completo
entendimento dos experimentos propostos. A secao 2.1 discorre sobre a energia edlica,
apresentando desde sua demanda no Brasil e no mundo até informagoes sobre sua geracao,
equipamentos utilizados para producao de energia elétrica e consideragoes sobre o vento.
A secao 2.2 traz informagoes sobre as Redes Neurais Artificiais (RNAs), explicando as
arquiteturas escolhidas para serem utilizadas neste trabalho (MLP, RBF ¢ SVM) e o modo

como é realizado o treinamento em cada uma delas.

2.1 Energia Edlica

A energia edlica tem sua geragao diretamente ligada ao vento, resultando do
deslocamento de massas de ar (FONSECA et al., 2012). A ideia principal é aproveitar
a energia cinética resultante desses deslocamentos. Esses causados pela diferenca de
temperatura na superficie do planeta (ANEEL, 2008), ocasionada pela energia solar:
enquanto o sol aquece a agua e a terra de um lado do planeta, o outro lado é resfriado.
Porém, regioes diferentes respondem de maneiras diferentes a esse aquecimento. Por
exemplo, os oceanos se aquecerao mais lentamente do que as terras porque a agua tem uma
capacidade maior de estocar calor, gerando massas de ar com diferentes caracteristicas.

Devido as causas que lhe dao origem a energia edlica é considerada renovavel.

2.1.1 Histérico

O aproveitamento dos beneficios da energia edlica pelo homem data da antiguidade.
Acredita-se que foram os egipcios os primeiros a utilizarem o vento. Barcos encontrados em
um timulo da época do ano 4000 a.c. indicam que nessa época ja se fazia o uso de energia
eblica em embarcagoes (FONSECA et al., 2012). Mas estas ainda utilizavam os remos
em conjunto com o vento para se locomover. Os primeiros a utilizarem barcos movidos

exclusivamente com energia edlica foram os fenicios por volta do ano 1000 a.c..

Contudo, na antiguidade o uso desta forma de energia nao se resumia a sua conversao
em energia cinética, mas contempla também a sua conversao em energia mecanica através
dos moinhos de ventos, utilizados ha mais de 1000 anos, e tem sua origem ligada ao Oriente
Médio por volta do século VII. Alguns indicios datam o uso do moinho de vento do século
X na Pérsia (Figura 1). Posteriormente, foram trazidos para a Europa pelas Cruzadas na
Idade Média, onde incorporavam velas e eixo horizontal, designadas Sail Windmill (ver

Figura 2).
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Figura 1 — Moinho de vento Persa

[Fonte: Reproduzido de (HECKL, 2015)]

Figura 2 — Sail Windmill
[Fonte: Reproduzido de (HECKL, 2015)]
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Apés algumas evolugoes surgiram os Post mills (ver Figura 3) e os Dutch windmills,
usados essencialmente para bombear agua e cultivar a terra. A partir do século XIX nos
Estados Unidos, passou-se a utilizar turbinas edlicas multi-lamina, mostrada na Figura 4,

para a irrigacao.

Figura 3 — Post mill
[Fonte: Reproduzido de (FERREIRA, 2011)]

Figura 4 — Turbina edlica americana

[Fonte: Reproduzido de (BOLDUAN, 2000)]

A Charles F. Brush ¢ atribuida a inveng¢ao do primeiro aerogerador automatico. Em
1888, ele construiu a turbina edlica de Brush, hoje reconhecida como a primeira turbina de
vento de funcionamento automatizado para producao elétrica. Possuia um rotor com um
didmetro de 17 metros (o maior do mundo na altura) e 177 laminas feitas de madeira de
cedro, mostrada na Figura 5. Apesar do seu tamanho, a maquina tinha uma poténcia de 12
KW, nao conseguindo uma grande eficiéncia. Foi o dinamarqués Poul La Cour a conseguir
desenvolver as turbinas de rotagdo rapida, em 1897, construiu os seus proprios tineis

de vento para as suas experiéncias. Utilizou a energia elétrica proveniente das turbinas
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ellicas para produzir hidrogénio através da eletrodlise. Esses experimentos permitiram o

desenvolvimento das turbinas de geracao de energia edlica ao longo do século XX.

Figura 5 — Turbina eédlica de Charles Brush
[Fonte: Reproduzido de (MOLENAAR, 2003)]

2.1.2 Geracao de Energia Edlica

A energia edlica tem sua origem na energia solar, uma vez que 0s ventos sao os
movimentos das massas de ar resultantes do aquecimento nao uniforme da superficie
terrestre (FERREIRA, 2011). As regioes tropicais sdo mais aquecidas que as regioes
polares, pois estao mais préoximas do sol. Assim, o ar quente que se encontra nas baixas
altitudes das regides tropicais tende a subir, sendo substituido por uma massa de ar mais
frio que se desloca das regides polares, Figura 6. Esses deslocamentos geram os ventos do

planeta.

Os ventos mais fortes e constantes sdo encontrados a mais de um quilémetro da
superficie terrestre. No entanto, s6 é possivel instalar aproveitamentos edlicos a algumas
dezenas de metros da superficie. A densidade do ar, a intensidade, direcdo e velocidade do
vento relacionam-se com aspectos geograficos naturais como relevo vegetagao e interacoes
térmicas entre a superficie da terra e a atmosfera. Sendo assim, a obten¢ao de energia
edlica, a exemplo do que ocorre com outras fontes como a hidraulica, exige a existéncia de
condigoes naturais favoraveis e especificas. A avaliacdo destas condigoes requer trabalhos
sisteméticos de coleta e andlise de dados sobre o regime de vento do local (FERREIRA,
2011) (ANEEL, 2008).

A geracao edlica ocorre pelo contato do vento com as pas do cata-vento, elementos
integrantes da usina. Ao girar, essas pas dao origem a energia mecanica que aciona o rotor

do aerogerador, produzindo eletricidade. A quantidade de energia mecanica transferida e o
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Figura 6 — Movimento das massas de ar

[Fonte: Reproduzido de
<http://www.coladaweb.com/geografia /pressao-atmosferica-massas-de-ar-precipitacao-e-ventos>]

potencial de energia elétrica a ser produzida estao diretamente relacionados a densidade

do ar, a area coberta pela rotacao das pas e a velocidade do vento.

A evolucao tecnolégica permitiu o desenvolvimento de equipamentos mais potentes,
que aproveitam o vento de maneira mais eficiente. Essa evoluc¢ao vai desde o aumento
do didametro das turbinas até o aumento da altura das torres, que inicialmente era de 10
metros aproximadamente e hoje supera os 50 metros, incluindo também sistemas avancados
de transmissao, melhor aerodindmica, estratégias de controle e operacao das turbinas.
Em 1985 a altura das torres era de 20 metros, produzindo uma poténcia média de 50
kW (quilowatts) e hoje chega a superar os 100 metros, permitindo a obten¢do em uma
Unica turbina de 5000 kW.

Para um melhor aproveitamento da energia edlica é importante distinguir os tipos
de variagoes temporais da velocidade dos ventos, pois estes a influenciam fortemente. Essas
variagoes podem ser: variagoes anuais, sazonais, didrias e de curta duracdo (RODRIGUES,

2007). A seguir uma breve descrigao de cada uma:

e Variagoes Anuais - Para se obter um bom conhecimento do regime dos ventos nao é
suficiente basear-se na analise de dados de vento de apenas um ano; o ideal é dispor

de dados referentes a varios anos.

e Variagoes Sazonais - O aquecimento nao uniforme da superficie terrestre resulta em
significativas varia¢oes no regime dos ventos, resultando na existéncia de diferentes
estagdes do ano. Sendo assim, a utilizagdo de médias anuais (ao invés de médias

sazonais) pode levar a resultados que se afastam da realidade.


http://www.coladaweb.com/geografia/pressao-atmosferica-massas-de-ar-precipitacao-e-ventos
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e Variagoes Diarias - Essas variacoes sao importantes para definir o local mais adequado
para a instalacao do sistema edlico dentro de uma area que ja foi escolhida para
hospedar um parque edlico. Ao comparar a evolucao da velocidade média ao longo
do dia percebe-se que ha uma significativa variacdo de um més para os outros. Com

esse tipo de informagao pode-se projetar melhor o sistema edlico.

e Variagoes de Curta Duracao - As variagoes de curta duragao estao associadas tanto
as pequenas flutuagdes quanto as rajadas de vento. Em um primeiro momento, essas

variagdes nao sao consideradas na analise do potencial edlico de uma regiao.

Além da velocidade, outro parametro que influencia muito a producgao de energia
edlica é a direcao do vento. Frequentes mudancas na direcao indicam a existéncia de
rajadas de ventos, e a medida da direcdo do vento auxilia a localizagao das turbinas nos

parque eolicos.

2.1.3 Turbina Edlica

Como pode ser visto na secao 2.1.1, os egipcios foram os primeiros a utilizar a
energia edlica. Eles a utilizaram por volta de 2800 a.c. para mover as embarcacoes em
conjunto com a forga dos remos. Com o passar dos anos as técnicas de aproveitamento da
energia edlicas foram evoluindo até que, no do inicio do século XX, essa energia comegou
a ser utilizada para produzir eletricidade, sendo as primeiras tentativas creditadas aos
dinamarqueses. Por volta da década de 1930, cerca de um duzia de firmas comecgou a

produzir e vender esses geradores primitivos, que geravam em torno de 1kW.

Muitos paises europeus comegaram a construir avancados projetos de geradores
edlicos entre 1950 e 1960. A primeira turbina edlica comercial ligada a rede elétrica ptblica
foi instalada em 1976, na Dinamarca. Uma das mais memoraveis foi construida perto de

Rutland, Vermont, USA e foi projetada para fornecer 1250 kW para Vermont.

As turbinas eélicas sao maquinas que utilizam a energia edlica - energia cinética
dos ventos - para rotacionar sua pas, transformando essa energia em energia mecéanica ou
elétrica. Sao classificadas de acordo com a posicao do eixo do rotor (TABLADA, 2010) em
turbinas edlicas de eixo vertical, possuem pas que giram em um plano paralelo ao do vento,
e turbinas edlicas de eixo horizontal, possuem pas que giram em um plano perpendicular
ao do vento. Elas sao compostas pelo rotor e pela torre que o sustenta, pela transmissao
e caixa multiplicadora - responsavel por transmitir a poténcia fornecida pelo rotor ao
gerador - e pelo conversor (FONSECA et al., 2012).

A energia cinética s6 é extraida do ar que passa pela area interceptada pelas pas
rotativas. A energia cinética bruta por unidade de tempo do vento passando por uma area

A perpendicular ao seu vetor velocidade instantanea V', é dada pela equacao 2.1:
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1
P = C’p.§.p.A.V3 (2.1)

Temos:

p = densidade do ar em kg/m? que varia de acordo com a latitude e as condicoes

atmosféricas;

e ('p = é o coeficiente de desempenho que se relaciona com a energia cinética de saida
e depende do modelo e da relacao entre a velocidade do rotor e a velocidade do

vento;
e IV = velocidade do vento em m/s;

A = area em m?2.

2.1.3.1 Turbinas Edlicas de Eixo Vertical

Esse tipo de turbina foi inventado pelo engenheiro francés Darrieus, incluindo duas
laminas, como pode ser observado na Figura 7. Esta turbina é unidirecional, ou seja, aceita
o vento de qualquer direcao, diferente do que acontece com as turbinas convencionais que
se ajustam a dire¢ao do vento. Por isso, as turbinas de eixo vertical nao necessitam de
sistemas de controle de dire¢ao, o que simplifica bastante os mecanismos de transmissao
(RODRIGUES, 2007). Algumas grandes vantagens dessas turbinas em relagao a outros
tipos sao a manutencao, muito mais pratica, e uma variabilidade de aplicacoes elétricas e
mecanicas muito maior. Isso se deve ao fato de o rotor e suas partes elétricas se localizarem

na parte inferior da turbina.

2.1.3.2 Turbinas Edlicas de Eixo Horizontal

A origem da turbina de eixo horizontal ¢ atribuida a Rissia no ano de 1931, sendo
construida junto ao Mar Negro. Essa turbina tinha um rotor de trés pas, como pode ser
observado na Figura 8, com um didmetro de 30 metros e uma poténcia nominal de 100 kW.
Funcionou durante cerca de dois anos ligada a rede de corrente alternada. Em sistema para
aproveitamento com ventos de baixa velocidade é comum utilizar-se o rotor de multiplas

pas, ver Figura 9.

2.1.4 Energia Edlica no Mundo

O interesse pelo uso da energia edlica vem crescendo consideravelmente, principal-
mente na Europa. Trinta por cento de toda a capacidade nova anual instalada na Uniao
Europeia, entre 2002 e 2006, foi de geragao de energia edlica (SALLES, 2009). Em 2007
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Figura 7 — Turbina de Darrieus de duas laminas

[Fonte: Reproduzido de (FERREIRA, 2011)]

Figura 8 — Turbina edlica de eixo horizontal

[Fonte: Reproduzido de (RODRIGUES, 2007)]
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Figura 9 — Aerogerador com miultiplas pas

[Fonte: Reproduzido de
<http://www.engquimicasantossp.com.br/2013/12/energia-eolica-e-aerogeradores.html>|

essa participacao anual subiu para 40% da capacidade total instalada, tornando-a a forma

de geracao de energia elétrica que mais cresce na Europa.

Atualmente existem mais de 30 mil turbinas edlicas em operagao no mundo (VI-
TERBO, 2008). A Associagdo Europeia de Energia Edlica estabeleceu, em 1991, como
metas a instalagdo de 4.000 MW (Megawatts) de energia edlica na Europa até o ano 2000 e
11.500 MW até 2005. Essas metas foram atingidas muito antes do esperado, 4000 MW em
1996 e 11500 MW em 2001.0 mercado vem crescendo substancialmente, principalmente na
Alemanha, EUA, Dinamarca e Espanha, onde a poténcia adicionada anualmente supera
3.000 MW. Esse crescimento de mercado fez com que a Associacdo Europeia de Energia
Eélica estabelecesse uma nova meta que é em 2020 12% da energia do mundo ser gerada
pelo vento, com uma capacidade instalada de 1200 GW (Gigawatts) (ANEEL, 2005).
O Conselho Europeu de Energia Renovavel (EREC) tracou uma meta para as fontes
renovaveis. Essa meta é que em 2022 a fonte edlica possa atingir um nivel de 4000 TWh
ao ano, superando a fonte hidraulica de porte como a principal fonte renovavel de energia

elétrica do mundo.

Na América do Norte a instalacdo de fazendas edlicas se intensificou apenas por
volta de 2003, sendo que no final de 2008 os Estados Unidos se tornaram o pais com
maior capacidade de energia edlica instalada de geracao de energia edlica. O interesse pela
instalacao de novas fazendas edlica continua crescendo. Somente na costa da Alemanha

planeja-se instalar gradativamente 25 GW até 2020, porém, devido as novas diretrizes do


http://www.engquimicasantossp.com.br/2013/12/energia-eolica-e-aerogeradores.html
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Governo alemao, este valor passou por 10 GW.

2.1.5 Energia Edlica no Brasil

No Brasil, as primeiras unidades utilizadas para a medigao de energia edlica foram
instaladas no inicio dos anos 1990, no Ceara e em Fernando de Noronha. Essas medi¢oes
determinaram o potencial edlico local e a instalagao das primeiras turbinas edlicas no
Brasil. O primeiro estudo sobre a energia edlica no Brasil foi a elaboragdo do Atlas Eélico
do Nordeste, publicado pelo Centro Brasileiro de Energia Eélica (CBEE) com o apoio da
Agéncia Nacional de Energia Elétrica (ANEEL), em 1998. Apesar das divergéncias entre
especialistas e instituicoes, as estimativas sobre o potencial edlico brasileiro apresenta
valores extremamente relevantes. As estimativas, que até poucos anos atras eram de 20000
MW, hoje indicam valores superiores a 60000 MW. A falta de informacao e a diferenca
nas metodologias aplicadas em cada estudo provoca essas divergéncias. Para ampliar os
conhecimentos sobre o potencial edlico brasileiro, varios estudos vem sendo realizados,

como, por exemplo atlas eélicos para alguns estados.

A participacao da energia edlica na geracao de energia elétrica do pais ainda é
pequena. Em setembro de 2003 havia apenas 6 centrais edlicas em operagao no pais,
perfazendo uma capacidade instalada de 22.075 kW. Entre essas centrais, destacam-se

Taiba e Prainha, no Estado do Ceard, que representam 68% do parque edlico nacional.

Porém, existem alguns incentivos vigentes para o setor elétrico que devem despertar
um maior interesse por investimentos e projetos na area. Entre esses incentivos podemos
destacar o Programa de Incentivo as Fontes Alternativas de Energia Elétrica (PROINFA)
(MME, 2004), cujo objetivo é aumentar a participacao da energia elétrica produzida por
empreendimentos concebidos com base em fontes edlica, biomassa e pequenas centrais
hidrelétricas no Sistema Elétrico Interligado Nacional (SIN). Outro incentivo importante é
a possibilidade de complementaridade entre a geracao hidrelétrica e a edlica, visto que o
maior potencial edlico, na regiao Nordeste, ocorre durante o periodo de estiagem, conforme

ilustrado na Figura 10.

O Brasil ¢é favorecido em termos de ventos, que se caracterizam por uma presenca
duas vezes superior & média mundial e pela volatilidade de 5% (oscilacao da velocidade),
o que da maior previsibilidade ao volume a ser produzido. Além disso, como dito no
paragrafo anterior, a velocidade costuma ser maior em periodos de estiagem, sendo assim,
é possivel operar as usinas edlicas em sistema complementar com as usinas hidrelétricas,
de forma a preservar a agua dos reservatérios em periodos de poucas chuvas. Finalmente,
estimativas mostradas em (AMARANTE et al., 2001) apontam para um potencial de

geracao de energia edlica de 143 mil MW no Brasil, como pode ser visto na Figura 11.
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Figura 10 — Complementaridade entre geracao hidrelétrica e edlica

[Fonte: Reproduzido de (ANEEL, 2005)]

Figura 11 — Potencial edlico brasileiro

[Fonte: Reproduzido de (ANEEL, 2008)]
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2.2 Redes Neurais

2.2.1 Introducao

Redes neurais artificiais sao modelos matematicos - inspirados no sistema nervoso
dos seres vivos - que tem a capacidade de aprender através de exemplos. Possuem a
capacidade de aquisi¢do e manutenc¢ao do conhecimento (SILVA et al., 2010). Quanto a
sua constituicao, pode-se definir uma RNA como um sistema composto por elementos de
processamento interconectados chamados de neurdnios, dispostos em camadas (VALENCA,
2009).

2.2.1.1 Historico

A primeira publicacao relacionada a redes neurais data de 1943, através de um
artigo elaborado por McCulloch & Pitts (VALENCA, 2009). Esse trabalho resultou na
construcao do primeiro neurénio artificial, resultado da modelagem matematica inspirada
no neurdnio bioldgico. A partir dai outros pesquisadores continuaram o desenvolvimento de
modelos matematicos baseados no neuronio biolégico, dando origem a diversas arquiteturas
(SILVA et al., 2010).

Entre as primeiras arquiteturas que surgiram pode-se destacar a pesquisa de Frank
Rosenblatt que, entre 1957 e 1958, desenvolveu o primeiro neuro-computador, denominado
Mark I - Perceptron, idealizando o modelo basico do Perceptron, capaz de reconhecer
padroes simples. Em 1960, Widrow e Hoff criaram uma regra de aprendizagem para
uma extensao do Perceptron chamada de ADALINE. Mas, em 1969, verificou-se que o
Perceptron conseguia distinguir apenas padroes linearmente separaveis. Este fato gerou um
desinteresse pelas RNAs, que ressurgiram gracas ao trabalho publicado por John Hopfield
em 1982 e ao desenvolvimento do algoritmo backpropagation (VALENCA, 2009).

2.2.1.2 Neuronio Bioldgico

A célula elementar do sistema nervoso cerebral é o neurdnio, seu papel pode ser
resumido em conduzir impulsos. Constitui-se de trés partes: dendritos, corpo celular e
no axonio, ver Figura 12. A funcao dos dendritos é captar os estimulos vindos de outros
neurénios ou do proprio meio onde o neurénio se encontra. O corpo celular, por sua vez,
tem a funcao de processar todas as informacoes vindas dos dendritos a fim de produzir um
potencial de ativacao. Este potencial indicard se o neurénio podera disparar um impulso
elétrico ao longo de seu axonio. Finalmente, o axénio tem a missao de conduzir os impulsos
elétricos para outros neurdnios através das sua terminacdo que contém ramificagoes

denominadas terminacoes sinapticas.
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Corpo cefular | —

Terminagdes do axdnio

Figura 12 — Neuronio Biolégico

[Fonte: Reproduzido de
<http://www.biologia.seed.pr.gov.br /modules/galeria/detalhe.php?foto=256&evento=3>]

2.2.1.3 Neurdnio Artificial

Os elementos computacionais ou unidades processadoras, denominadas neurdnios
artificiais, sdo modelos simplificados dos neurdnios bioldgicos (SILVA et al., 2010). Os
neuronios artificiais sdo nao-lineares, fornecem saidas continuas, e exercem fungoes simples,
como coletar os sinais existentes em suas entradas, agrega-los de acordo com com sua

funcao operacional e produzir uma resposta.

A representacao do neurdnio artificial pode ser vista na Figura 13. Nesta repre-
sentagdo podemos ver as entradas (xy, T2, T3, ..., T,), representando os sinais recebidos
pelo neurdnio do meio externo ou de outros neurénios. Temos ainda os pesos (wy, wsy, w3
e Wy, ), que representam o grau de importancia de cada entrada para o neurdnio, ou seja,
quanto maior o peso mais importante ¢ a entrada para o neurénio. O somatorio de todos
os produtos entrada x peso, menos o bias, gera um resultado v;, como pode ser visto na
equacao 2.2. Esse resultado serd o parametro para a func¢ao de ativagao ¢(.), que gera a
saida do neur6nio, (VALENCA, 2009).

v =Y wij.x; — bias (2.2)
j=1

2.2.2 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) é uma RNA composta por nds agrupados em
camadas: uma camada de entrada, uma ou mais camadas intermediarias e uma camada
de saida. A Figura 14 mostra uma MLP com duas camadas escondidas. MLP é uma rede
onde cada n6 de uma camada esta conectado unicamente aos nés da camada seguinte, sem
realimentagdo. Assim, o sinal se propaga pela rede camada a camada, a partir da camada

de entrada até a camada de saida.

As conexoes entre os nés sao conhecidas como sinapses. A camada de entrada é a


http://www.biologia.seed.pr.gov.br/modules/galeria/detalhe.php?foto=256&evento=3
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Figura 13 — Neuronio Artificial
[Fonte: Reproduzido de <http://www.scielo.br/img/revistas/ca/v21nd/a03figl7.gif>]

que trata a alimentacao das caracteristicas, ou seja, recebe o sinal de entrada, e o niimero
de nés nessa camada depende da dimensionalidade do espago de observagao (LEITE, 2012).
A camada intermediaria é a responsavel pela nao linearidade da rede e que permite que as
redes MLP sejam capazes de resolver problemas reais. Por sua vez, a camada de saida ¢é

responsavel pela resposta da rede e representa a variavel desejada.

As redes MLP sao ainda caracterizadas pelas elevadas possibilidades de aplicagoes
em diversos tipos de problemas relacionados com as mais diferentes areas do conhecimento,

sendo também consideradas uma das arquiteturas mais versateis quanto aplicabilidade
(SILVA et al., 2010):

e Aproximacao universal de fungoes.

Reconhecimento de padroes.

Identificacao e controle de processos.

Previsao de séries temporais.

Otimizacao de sistemas.

As redes MLP sao redes de treinamento supervisionado. Para o seu treinamento é
necessario utilizar um algoritmo que permita estabelecer um conjunto de pesos 6timos
para a rede. O que torna o treinamento da MLP complexo ¢é a existéncia de pelo menos
uma camada intermediaria, pois, com a inclusao dessas camadas, nao se conhece o erro
necessario para realizar o reajuste dos pesos. Sendo assim, para o treinamento dessas
redes é utilizado o backpropagation, que resolve este problema realizando uma propagacao

recursiva dos erros.

De acordo com Valenga (2009), o backpropagation é realizado em dois passos: no
primeiro passo os sinais sdo propagados da camada de entrada para a camada de saida

(sentido progressivo), calculando-se o sinal de saida e o erro, sem alterar os pesos; no


http://www.scielo.br/img/revistas/ca/v21n4/a03fig17.gif
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Camada de entrada Camadas escondidas Camada de saida

Figura 14 — Arquitetura da rede MLP
[Fonte: Reproduzido de Leite (2012)]

segundo passo, os erros sao propagados da camada de saida para a entrada (recursivamente)

e o pesos sao ajustados.
Algoritmo Backpropagation

O algoritmo backpropagation é um algoritmo supervisionado que utiliza pares
(entrada, saida desejada) para ajustar os pesos da rede. O treinamento ocorre em duas
fases, onde em cada fase percorre a rede em um sentido. Estas fases sdo chamadas de
forward e backward. A primeira fase, forward, é utilizada para calcular a saida da rede,
enquanto a segunda fase, backward, atualiza os pesos das conexdes da rede (LUDERMIR

et al., 2007). A Figura 15 ilustra o sentido em que as duas fases atuam na rede.

Fase forward

Fase backward

Figura 15 — Fases do algoritmo Backpropagation

[Fonte: Reproduzido de Ludermir et al. (2007)]

Fase Forward

A primeira fase do algoritmo corresponde a propagacao do sinal da camada de

entrada para a camada de saida e com o calculo do erro na saida, que sera utilizado para
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ajustar os pesos. A equagao 2.3 mostra como é calculado o valor do sinal de cada neurdnio

na camada de saida:

y; = [*.(net}) (2.3)

Temos:

e 32 - representa o valor do sinal do neurdnio 7 da camada 2, camada de saida para

uma rede com uma camada escondida;
e f2 - funcao de ativacdo da camada 2;

e net? - valor do sinal recebido pelo neurdnio i da camada 2.

A equacao 2.4 mostra como é calculado o erro para cada neur6nio na saida:

ei(n) = (di — ;) (2.4)

Onde e;(n) é o valor do erro do neurénio ¢ da camada de saida, para o exemplo n; d; é o

valor desejado para o neurdnio i e y? é o valor calculado no neurdnio 7 da camada 2.
Fase Backward

Nesta fase os valores dos pesos da rede sao ajustados levando em consideragao o
erro calculado na fase anterior. Esse ajuste nos pesos é realizado de acordo com a equagao
2.5:

w; (novo) = w;i (antigo) + adlmfm_l(net’f“_l) (2.5)

Onde w;} representa os pesos das conexoes entre os neuronios, com i representando
o neurdnio que emite o sinal e j o neuronio que recebe o sinal; « é a tacha de aprendizagem

e 0" é a sensibilidade do neurdnio.

Para o calculo da sensibilidade é preciso levar em conta duas situagoes: quando o

neurdnio de indice j estd na camada de saida, equacao 2.6, e quando nao esta, equacao 2.7.

(51.2 = fQI(net?).ei(n) (2.6)
, N

5;7‘_1 = fmt (net;-”_l) > wie (2.7)
i=1

Através da equacao 2.7 pode-se concluir que o valor da sensibilidade é calculado

. ’ . . . ~ —1/ —
recursivamente da tltima para a primeira camada. Nesta equacao f™ 1 (net’j" 1) representa
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a derivada da funcao de ativacao da camada que emite o sinal, o indice 7 representa o niimero
do neuronios da camada que recebe o sinal, ou seja, da camada que estd imediatamente a
frente e tem N neurtnios e sensibilidade 6" (PAZ, 2014).

2.2.3 Radial Basis Function

As redes conhecidas como RBF (Radial Basis Function), podem ser empregadas em
quase todos os tipos de problemas tratados pela MLP, inclusive aproximacao de fungoes e
reconhecimento de padroes (SILVA et al., 2010). Mas, diferentemente da MLP que pode
ser composta de diversas camadas intermediarias, a estrutura tipica de uma RBF possui
apenas uma, cujas func¢oes de ativacao sao do tipo gaussiana, como pode ser observado
na Figura 16. De acordo com Ludermir et al. (2007), a utilizacao deste tipo funcao - de
base radial - na camada intermediaria é que da o nome a rede, enquanto que na rede MLP

utiliza-se na camada intermediaria, geralmente a fungao sigmoidal.

Camada de saida

Camada de
entrada com Camada QCI:IHH
com m fungoes
K dados de de base radial
entrada

Figura 16 — Estrutura da rede RBF
[Fonte: Reproduzido de Coelho, Santos e Jr (2008)]

Cada camada da rede RBF tem um papel especifico para o correto comportamento
da rede. A primeira camada representa as entradas (os sinais) recebidas pela rede. A
segunda camada, cujos neuronios tem funcao de base radial, agrupa os dados de entrada
em clusters, transformando o conjunto de entradas nao linearmente separaveis em um
conjunto de saidas linearmente separaveis. A camada de salda procura classificar os padroes

recebidos da camada anterior.

Funcoes de base radial
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Segundo Aliaga (2010), fungbes de base radial sdo uma classe de fungoes em que a
sua resposta decresce, ou cresce, monotonicamente com o distanciamento de um ponto

central. As fungoes mais utilizadas sao:

e Fungdes Gaussianas:

oua) = exp(- 12D (2.5)
e Funcgoes Multi-Quadraticas:

di(x) = /[l — pul | + 207 (2.9)
e Funcoes Multi-Quadraticas Inversas:

¢i(x) = ! (2.10)

Vil = il + 207
e Funcao de base Lamina Spline fina:
o) = 162 —QMHZOQH%—MZ-H (2.11)

(o

7 g;

Temos: z; sao as entrada da rede e p; e 0; sao respectivamente o centro e a largura

da i-ésima funcao.
Treinamento da rede RBF

O treinamento na rede RBF ¢ efetivado de forma supervisionada e é divido em dois
estagios distintos: o primeiro é associado aos ajustes dos pesos dos neuronios da camada
intermediaria e depende apenas das caracteristicas dos dados de entrada; ja o segundo
¢é associado ao ajuste dos pesos dos neuronios da camada de saida. Outra caracteristica
importante do treinamento dessas redes é que esse tem inicio na camada intermediaria e
se encerra na camada de saida (SILVA et al., 2010).

Primeira fase

Esta etapa geralmente é realizada de forma nao supervisionada, e como dito
anteriormente tem efeito sobre a camada escondida. O objetivo é ajustar os pardmetros da

fungao radial (ALIAGA, 2010). Os parametros a serem ajustados sao:

e Centros (y;): existem duas forma de escolher os centros. A primeira forma ¢é dis-
tribuir de forma randoémica, e a segunda forma é aplicar algum algoritmo de pré-

processamento, como por exemplo Minimos Quadrados Ortogonais e o K-means.

e Largura (o;): geralmente a escolha deste valor ¢ realizada de forma empirica e com
ajuda de heuristicas, como por exemplo atribuir para cada unidade um valor de
largura diferente e calculo da média do seu centro até o centro da unidade mais

préxima.
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Segunda fase

Como a camada escondida transforma o conjunto de entradas nao linearmente
separaveis em um conjunto de saidas linearmente separaveis, o ajuste dos pesos da camada
de saida reduz-se a um problema linear. De acordo com (PAZ, 2014), Nesta segunda etapa
do treinamento, os pesos que ligam a camada escondida a camada de saida da rede sao
ajustados através de um combinador linear que atua na camada de saida para que as
ativagoes das fungoes de base radial gerem uma saida linear, aos moldes dos dados de

entrada.

2.2.4 Support Vector Machine

A SVM é uma técnica de aprendizagem de maquina que se baseia no aprendizado
estatistico. Esta técnica busca minimizar o erro com relacao ao conjunto de treinamento
(Risco Empirico), juntamente com o erro com relagdo ao conjunto de teste. A motivacao
para esse principio surgiu da necessidade de desenvolver limites tedricos para a capacidade
de generalizagao dos sistemas de aprendizagem (ANDREOLA, 2009). O objetivo da SVM
consiste em encontrar um hiperplano 6timo que possua a maior margem de diferenciagao
entre as classes, a fim de obter um equilibrio entre ambos os erros citados anteriormente, e
minimizando o excesso de ajustes, melhorando a capacidade de generalizacao. Inicialmente
foi desenvolvida como um método de separacao linear, mas é possivel estendé-la de forma
a separar classes que sao nao lineares, a ideia principal é transportar os dados para um

espago de dimensao maior no qual eles possam ser separados linearmente (LEITE, 2012).

A funcao de decisdo que maximiza a habilidade de generalizagao é determinada
pelo problema de duas classes, assumindo que as amostras de treinamento das diferentes
classes sao linearmente separaveis. A funcao de decisao mais adequada é aquela para a
qual a distancia entre os conjuntos das amostras de treinamento é maximizada, como pode
ser visto na Figura 17. A funcdo de decisao que maximiza esta separacao é denominada de
otima.

Hiperplano
Otimo

Maximizacio : - d
Margem de Separacio

Figura 17 — Hiperplano 6timo separando os dados com a maxima margem p

[Fonte: Reproduzido de Andreola (2009)]
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Para tratar dos casos nao-linearmente separaveis, se introduz a variavel de folga
(slack variable) &( >= 0), ver Figura 18. As amostras de treinamento x;, para as quais
0 <¢;<1, sdo corretamente classificados, embora sem a margem de separagao maxima.
Por outro lado, as amostras de treinamento x;, para as quais &>=1, sao erroneamente

classificadas pelo hiperplano 6timo.

Figura 18 — Exemplos de valores e situagoes da variavel de folga €.

[Fonte: Reproduzido de Andreola (2009)]

Outra caracteristica presente na SVM quando trata problemas nao linearmente
separaveis é a Funcao de Kernel. As funcgoes de kernel tém a finalidade de projetar os
vetores de caracteristicas de entrada em um espaco de caracteristicas de alta dimensao
para classificagdo de problemas que se encontram em espagos nao linearmente separaveis
(JUNIOR, 2010).

A Figura 19 mostra o processo de transformacgao de um dominio nao linearmente
separavel, em um problema linearmente separavel através do aumento da dimensao, onde

é feito um mapeamento por uma fungao de kernel F(x).

Kernel - F[x) n

i

Espago de entrada Espago de caracteristicas

Figura 19 — Transformacao de um problema nao linearmente separavel em
um problema linearmente separavel

[Fonte: Reproduzido de Junior (2010)]

De acordo com Rodrigues et al. (2007) uma das grandes vantagens da SVM é seu

alto poder de generalizagao. Isto ocorre pois a complexidade da hipétese nao depende do



Capitulo 2. Fundamentacio Teorica 24

nimero de atributos, mas sim da margem com que eles separam os dados.
Teoria da Aprendizagem

A Teoria da Aprendizagem Estatistica no contexto de SVM, tem o objetivo de
controlar a habilidade de generalizagao da técnica. Existem diversas teorias de aprendizagem
que podem ser aplicadas. A técnica SVM é derivada dos principios bésicos descritos na

teoria de Vapnik e Chervonenkis (VC). A teoria VC é a mais apropriada para descrever

SVM.

Segundo Santos (2002), para uma tarefa de aprendizagem com uma quantidade
de dados de treinamento finita, o melhor desempenho de generalizacao ocorre quando
¢ atingido um equilibrio entre a precisao alcangada em um conjunto de treinamento

particular e a capacidade do sistema.
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3 Meétodologia

Este capitulo apresenta os passos que foram executados para atingir os objetivos
definidos no capitulo 1, e como sera aplicada a teoria apresentada no capitulo anterior

para a realizacao do estudo proposto neste trabalho.

3.1 Base de Dados

A base de dados utilizada no desenvolvimento deste trabalho correspondem as
medigoes feitas em um parque edlico. Por se tratarem de informagoes importantes, o nome
do parque eélico, de onde foram coletados os valores das poténcias, serd omitido e um

codinome seréa utilizado.

Os valores das poténcias edlicas presentes na base de dados foram medidos em
intervalos de 30 minutos pra cada 24 horas, totalizando num total de 48 valores de poténcias
por dia. Como foi definido na se¢ao 1.2, este trabalho busca uma previsao em intervalos de
trinta minutos, trés horas a frente. Tem-se para cada dia além dos 48 valores de poténcias
medidos ao longo do dia, mais 6 valores correspondentes as trés horas da previsao realizada.
Assim, na base de dados do Parque I, para cada dia tem-se 54 valores de poténcia (48

entradas e 6 saidas). A base de dados contém observagoes feitas durante 6966 dias.

3.2 Processamento dos Dados

3.2.1 Normalizacao dos Dados

Antes de submeter os dados as redes neurais para realizar os testes, é necessario
normaliza-los, isto é, deixar todos dentro de um mesmo intervalo. A normalizacao faz
com que todas as entradas tenham a mesma relevancia para o treinamento, ou seja, as
varidveis, mesmo que tenham ordens de grandeza diferentes, terdo a mesma relevancia nos
experimentos. Outro efeito da normalizacao é deixar os dados dentro dos limites da funcao
de ativagdo (VALENCA, 2005).

O intervalo utilizado na normalizagao depende da funcao de ativagao da camada
de saida. Por exemplo, caso fun¢ao de ativagao seja a funcao sigmoide logistica, os valores
tem que ser limitados entre 0 e 1, logo seus valores devem ser normalizados entre 0,10 e
0,90 ou entre 0,15 e 0,85. Caso a fungao de ativacao seja a tangente hiperbodlica os valores
sao normalizados entre -0,90 e 0,90 ou entre -0,85 e 0,85. Na normalizac¢ao os dados nao
devem ser re-escalados nos extremos da funcao, pois algumas fungoes quando trabalham

com valores que estao em seus extremos se aproximam de zero.
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De acordo com Valenga (2005), os tipos de normalizagdo mais frequentemente

utilizados sao:

e transformacao linear:

(b — a)(®; — Tmin)

y= E— +a (3.1)
e normalizagao estatistica: .
=" (3.2)
e normalizagao simples: )
y = xmm (3.3)

Temos: y ¢ o valor normalizado; x; é o valor original; z,,,, ¢ o valor maximo da
variavel; x,,;, € o valor minimo da variavel; T é o valor médio da variavel e s o desvio

padrao.

Para a base de dados do Parque I utilizada nos experimentos deste trabalho foram
utilizados os limites [-0,85 e 0,85], logo assume-se o uso da fungao tangente hiperbdlica,

para normalizar os dados utilizando a transformacao linear.

3.2.2 Defasagem dos Dados

A previsao é realizada utilizando valores medidos em instantes de tempo anteriores
ao atual. Assim, apds a normalizagdo deve-se realizar a defasagem dos dados de poténcia
eblica, para que assim se tenha como entradas da rede os dados em um instante de tempo

anterior ao do dado atual.

A defasagem constitui um processo que torna um dado medido em uma época t,
ocupando uma posicao ¢ do vetor de dados, presente na época t — 1, ocupando a posi¢ao
1+ 1 do vetor. A tabela 1 mostra como foi realizada a defasagem dos valores presentes na

base de dados do Parque I.

Tabela 1 — Representacao de defasagem dos valores presentes na base de dados

do Parque 1
t 5 4 3 2 1 0
t-1 4 3 2 1 O
t-2 3 2 1 0
t-3 2 1 0
t-4 1 0
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3.3 Arquiteturas de Redes Neurais na Previsao de Poténcia Edlica

3.3.1 Multi-Layer Perceptron

Para a configuracao das diversas arquiteturas de RNAs utilizadas nos experimentos
propostos neste trabalho foi utilizado o software Weka (WEKA, 2008).

O primeiro tipo de RNA utilizado nos experimentos foi a MLP. Para a confi-
guracao dos parametros da MLP utilizou-se o Weka 3.7.8 através do médulo Ezxplorer
(BOUCKAERT et al., 2008), na aba Classify, selecionando a rede neural MLP na opc¢ao

Functions.

Apos selecionar a MLP, foi necessario configurar alguns parametros para a correta

execucao dos testes:

e learningRate - taxa de aprendizagem, foi configurada com o valor 0,3;

e seed - semente, inicial configurada com o valor 1, mas é preciso alterar o seu valor
antes de cada simulagao, caso contrario, todas as simulagdes vao apresentar os mesmo

resultados;

e validationSetSize - define a porcentagem dos dados submetidos ao treinamento, e a

porcentagem que sera utilizada na validacao cruzada.

Como foi definido nos objetivos, durante os experimentos ocorreram variacoes no
horizonte de entrada. Primeiro foram feitas 30 simulacoes com 6 entradas. Como os valores
presentes na base de dados foram medidos em intervalos de 30 minutos, este horizonte
totaliza 3 horas, ou seja, com essa configuracao foram usados os dados de 3 horas para

prever as préoximas 3 horas.

Apés as simulagoes com 6 entradas foram feitas 30 simulagoes com 12 entradas, ou
seja, utilizou-se valores de poténcias medidas durante 6 horas para prever as proximas 3

horas.

Em seguida, foi utilizado um horizonte de 24 entradas, ou seja, 12 horas. Apds as
simulacgdes com 24 entradas foram realizadas simulacoes com 48 entradas. E importante
lembrar que o valor da semente era alterado antes de cada simulagao, e voltava a ser 1

quando era alterado o horizonte de entrada.

O software utilizado nos experimentos gerou os seguintes resultados:

e Correlation coefficient
e Mean absolute error - EMA

e Root mean squared error - REMQ
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o Relative absolute error - ERA

e Root relative squared error - RERQ

Para os objetivos proposto neste trabalho o valor de interesse entre os valores
gerados nas simulagoes é a REMQ), logo para cada simulagao serd salvo este valor. Na

se¢ao 3.3.4 é mostrado como calcular o valor da REMQ.

3.3.2 Radial Basis Function

Apoés executar os testes com a rede MLP, o passo seguinte foi realizar os experimen-
tos com a rede RBF. Antes foi necessario configura-la, com o auxilio da mesma ferramenta
utilizada para os testes com MLP, Weka 3.7.8.

Para configurar a rede RBF na ferramenta utilizada é preciso seguir os mesmos
passos que foram seguidos para a outra rede, e na opcao Functions selecionar RBFNetwork.

Os parametros configuraveis da rede RBF na ferramenta utilizada sao:

e clusteringSeed - Valor da semente: inicialmente seu valor é foi definido em 1. Assim

como na MLP esse valor deve ser alterado antes de cada iteragao;

e numCluster - define o numero de clusters nos quais os dados da entrada serao

divididos. Seu valor foi definido em 30.

Antes da definicao dos valores destes parametros foram realizados testes alterando
seus valores. Nesses testes verificou-se que quanto maior o nimero de clusters, menos as
taxas de erro das simulacoes se repetiam. Logo, como seriam realizadas 30 simulagoes o

numero de clusters foi definido em 30.

Para os testes com a rede RBF, a variacao de entradas foi a mesma que ocorreu
com a MLP. Primeiro foi utilizada uma arquitetura com 6 entradas e foram executadas 30
simulagoes, sempre alterando, antes da execugao de cada uma, o valor da semente. Para
cada execucao foi salvo o valor da REMQ. Apés executar as 30 simulagoes a arquitetura da
rede foi alterada para 12 variaveis de entrada. O mesmo processo foi executado, ao final das
simulagoes a arquitetura foi alterada para 24 entradas. Os mesmos testes foram executados,

e ap6s 30 simulagoes utilizou-se 48 entradas e os mesmos passos foram executados.

A ferramenta apresenta apds cada simulagdo os mesmos resultados que apresentou

para MLP. Para os objetivos deste trabalho os valores a serem salvos foram as REMQs.

3.3.3  Support Vector Machine

Apbs os testes com RBF foram realizados testes com SVM. Para sua configuragao

foi utilizada a mesma ferramenta que foi utilizada nas outras redes.
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Para configurar a rede SVM acessamos a op¢ao Functions e selecionamos LibS VM.

Antes realizar os testes foi necessario configurar alguns parametros:

o SVMType - define o tipo de SVM a ser usado: para este trabalho foi escolhido o tipo
nu-SVR

e kernelType - define o tipo de funcao que sera usado: para este trabalho foi se

selecionada a funcao radial basis function;

e seed -define o valor da semente: inicialmente foi configurada com o valor 1.

Para definir os valores dos parametros, foram realizados testes com diversos valores

aplicados nesses parametros.

O SVMType foi configurado com nu-SVR pois apresentou resultados mais satisfa-
torios do que o epsilon-SVR. O kernelType foi configurado com a funcao RBF por causo
do baixo nimero de pardmetros (dois) que influenciam o resultado do aprendizado. No
kernel polinomial sdo usados mais pardmetros que o RBF: C' (custo), v (gamma) e o grau
(degree). Se C assumisse 11 valores, v assumisse 10 no kernel RBF, seria uma combinagao
de 110 valores, adicionando-se o grau e atribuindo-lhe 5 valores, a combinagao iria para
550, aumentando consideravelmente o desempenho e complexidade do classificador. Os

valores destes pardmetro sao definidos pela ferramenta (JUNIOR, 2010).

O procedimento para os experimentos € igual ao realizado com as outras redes.
Primeiro realizou-se os testes com 6 variaveis de entrada. Foram feitas 30 simulacoes
salvando para cada uma o valor da REMQ. Terminados os testes com 6 variaveis, foram
realizados testes com 12 variaveis, salvando para estas simulacoes o valor da REMQ. Os

mesmos passos foram executados com 24 e 48 variaveis de entrada.

Apés realizar todas as simulagoes com RNAs, foram realizados testes estatisticos
com os valores de REMQ gerados. Este teste é descrito na se¢ao 3.4. Porém, antes é

necessario mostrar o procedimento utilizado parar os testes.

3.3.4 Validacdo Cruzada

Segundo Valenga (2009) durante o treinamento um fator importante é o critério
utilizado para encerra-lo. Alguns estudos utilizam critérios como niimero maximo de ciclos
ou erro minimo. Mas em algumas aplicagoes esses critérios nao sdo satisfatorios pois nao

levam em conta o processo iterativo.

Escolher o critério de parada adequado é importante para evitar dois problemas

que podem ocorrer durante o treinamento: underfitting e overfitting.
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O underfitting acontece quando o treinamento é parado precocemente, assim a rede
com baixa capacidade de generalizagao. Seria como se um botanico classificasse qualquer

objeto como arvore apenas por ser verde.

J& o owverfitting ocorre quando a rede é treinada em excesso, o que a deixa supera-
justada. Com isso a rede passa a memorizar perdendo sua capacidade de generalizagao.
Voltando ao exemplo do botéanico, seria como se ele classificasse uma arvore como nao

sendo uma arvore apenas por ter menos folhas que os exemplos vistos anteriormente.

A validagao cruzada utiliza um conjunto de dados (normalmente 25% da amostra)
para informar quando devemos para o treinamento. Esses dados sao utilizados para
calcular a funcao erro utilizada para interromper o treinamento quando esta atingir seu
valor minimo ou de um ciclo para o outro seu valor ficar em estacionario dentro de uma

dada precisao.

A validagao cruzada ¢ realizada da seguinte forma:

e Apresenta-se a rede neural o conjunto de treinamento utilizado para ajustar os pesos.
Quando se conclui a apresentacao de todos os exemplos diz-se que se completou um

ciclo.

e A cada ciclo apés o reajuste dos pesos, o treinamento é parado e o conjunto de

validagao cruzada é apresentado para que se possa calcular o erro.

e O processo é repetido a cada ciclo de modo que se possa tracar um grafico onde se

coloca na horizontal o namero de ciclos e na vertical o valor do erro.

e O treinamento é interrompido quando o valor do erro, para o conjunto de validagao
cruzada, apos atingir seu valor minimo, comeca a crescer ou quando o valor do erro

de um ciclo para o outro ficar estacionario dentro de uma dada precisao.

A funcao mais comum de ser utilizada é a funcao de error médio quadratico:

N
EMQ = le S (Z,- Z,)? (3.4)
p=o=1

Mas nos experimentos realizados neste trabalho foi utilizado o valor da raiz do erro

médio quadratico (REMQ), que mede a amplitude do erro:

REMQ = ||~ ¥ (Z,- 2, (35
p=o=1

Nas equacoes 3.4 e 3.5 temos o0s seguintes parametros:

e N - numero de valores previstos;
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e Z, - valor previsto;

e 7, - valor ocorrido.

3.4 Testes Estatisticos

Apos 30 simulagbes com cada configuragdo de rede neural, foram realizados testes
estatisticos para verificar qual método apresenta o melhor desempenho na previsao de
poténcia edlica ou os resultados podem ser considerados estatisticamente iguais. Para
realizagao dos teste utilizou-se o software matematico R, que contém as implementacoes dos
testes utilizados neste trabalho. Este software utiliza como padrao um nivel de significancia

() previamente definido com o valor 0,05.

Entre os teste disponiveis na literatura se encontram os testes T-Student e Wilcoxon.
Antes de aplicar o T-Student é necesséario aplicar o teste de Shapiro- Wilk que analisa se os
dados sao normalmente distribuidos. Apods aplicar o teste Shapiro- Wilk, é aplicado o Teste
F, para verificar se a variancia é originada da mesma populagao. Caso os dados passem
nos dois testes é aplicado entao o T-Student. Caso eles nao passem ¢é aplicado o teste nao

paramétrico das Somas dos Postos de Wilcozon.

3.4.1 Teste de Shapiro-Wilk

Este teste tem o objetivo de verificar se as amostras sdo normalmente distribuidas e
se possuem variancia estatisticamente iguais. Se essas premissas forem verdadeiras, pode-se

aplicar um teste paramétrico, caso contrario, um teste nao paramétrico deve ser aplicado.

Assim, antes de executar esse teste é necessario formular duas hipoteses:

e Hipotese nula: as amostras sao normalmente distribuidas.
e Hipotese alternativa: as amostras nao sao normalmente distribuidas.
Apés executar o teste para cada modelo, deve-se analisar o p-value e compara-lo

com o nivel de significancia. Caso o p-value seja menor que « a hipdtese nula é rejeitada e

a amostra nao é considerada normalmente distribuida.

3.42 Teste F

Apods o teste de Shapiro- Wilk, deve-se aplicar o Teste F, que tem o objetivo de

verificar os dados de dois conjuntos sao originados da mesma populacao.

Antes de aplicar o teste é preciso formular duas hipdteses:
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e Hipdtese nula: as amostras possuem variancias estatisticamente iguais.

e Hipotese alternativa: as amostras nao possuem varidncias estatisticamente iguais.

Apébs executar o teste, o valor do p-value é analisado. Se for menor que o nivel de

significancia, a hipotese nula é rejeitada.

3.4.3 Teste t-Student

O T-Student é um teste paramétrico. Assim, para que seja aplicado é necessario
que os modelos a serem testados sejam normalmente distribuidos e possuam variancias

estatisticamente iguais.

Assim como nos outros testes, antes de aplicar o T-Student é necessario formular

as hipoteses nula e alternativa:

e Hipdtese nula: as médias das amostras sao estatisticamente iguais.

e Hipotese alternativa: as médias das amostras nao sao estatisticamente iguais.

Para determinar qual das hipdteses é a verdadeira compara-se o p-value com o
nivel de significincia. Caso o p-value seja menor a hipotese nula é rejeitada e o moledo

com maior média é considerado melhor.

3.4.4 Teste das Somas dos Postos de Wilcoxon

O teste de Wicozon é um teste nao paramétrico utilizado para andlise de dados
os valores nao sao normalmente distribuidos ou nao possuem variancias estatisticamente

iguais. Esse teste faz sua analise baseado na mediana de cada uma das amostras analisadas.

Este teste apresenta duas hipoteses:

e Hipotese nula: os modelos comparados tem distribuicao simétrica.

e Hipotese alternativa: ha uma diferenga significativa entre os modelos analisados.

Para definir qual das hipoteses é a verdadeira usa-se como referéncia a variavel p-
value. Antes de executar os testes deve-se definir um nivel de significincia, neste trabalho foi
adotado o valor 0,05. Apds executar o teste compara-se o p-value com nivel de significincia,
se 0 p-value for maior quer dizer que a hipdtese nula é a verdadeira, caso contrario é a

hipotese alternativa.
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4 Resultados

Este capitulo apresenta os resultados obtidos apds a aplicagao de todos os passos

descritos no capitulo anterior.

Para a configuracdo das arquiteturas utilizadas neste trabalho foi utilizado o
software Weka 3.7.8, através do médulo Fxplorer. Foram utilizados como valores iniciais

dos parametros, das 3 trés arquiteturas, aqueles definidos nas se¢oes 3.3.1, 3.3.2 e 3.3.3.

Foram executadas 30 simulagoes para cada configuragao (tipo de RNA e quantidade
de entradas) para realizar previsdes a cada intervalo de 30 minutos totalizando trés horas
a frente. De cada simulagdo foi salvo o valor da raiz do erro médio quadratico (REMQ), a

fim de submeté-los aos testes estatistico citados anteriormente.

As préximas segoes apresentam os resultados dessas simulagoes e as aplicagoes dos

testes estatisticos.

4.1 Comparativos e Testes estatisticos entre MLP, RBF e SVM

4.1.1 Comparacdo da Raiz do Erro Médio Quadratico

Esta secao apresenta os valores das REMQs geradas a partir das simulagoes, isto
nao define a rede mais adequada. A rede mais adequada s6 sera definida com a aplicacao

dos testes estatisticos, apresentado na secao 3.4.

Os valores de REMQ gerados a partir das simula¢des com 6 valores podem ser
vistos na Figura 20. Nela pode-se observar que a rede MLLP apresentou valores maiores de
REMQ), assim a variagao deste valor foi maior para esta rede. Ja as redes RBF e SVM,
apresentaram valores muito semelhantes. A rede RBF apresentou pouca variacio, enquanto

o modelo SVM nao apresentou variacao alguma no valor da REMQ).

As simulagoes feitas com 12 valores de entradas tem seus valores de REMQ
apresentados na Figura 21. A partir deste grafico percebe-se um comportamento semelhante
ao das simulagoes com 6 valores. A MLP apresentou maior variagao e valores maiores
da REMQ. No caso das redes RBF e SVM apresentaram valores proximos, com a RBF
variando muito pouco e a SVM apresentando valor constante, porém, menor que as outras

redes.

Analisando a Figura 22 podemos observar uma pequena mudanga nos valores de
REMQ das simulagoes com 24 valores em relagdo as simulagoes comentadas anteriormente.
A MLP apresentou as mesmas caracteristicas das configuracoes anteriores: maior variacao

no valor da REMQ e maior dessa taxa de erro. A mudanca em relacao as Figuras 20 e 21
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Figura 20 — Comparacao da Raiz do EMQ com 6 valores
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Figura 21 — Comparacao da Raiz do EMQ com 12 valores
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estd no comportamento das redes RBF e SVM. Elas apresentaram valores distintos, com a
primeira apresentando pouco variacao e a segunda valor constante e menor em relagdo aos

valores de REMQ) apresentados pelas outras redes.

REMQ utilizando 24 valores
0,48
0,46
0,44

il

0,42

REMC

0,4
0,38
0,36
0,34

12345678 9101112131415161718102021222324 3526272829 30
SIMULACOES

MLP RBF SV

Figura 22 — Comparacao da Raiz do EMQ com 24 valores

Por fim, as simulagoes com 48 entradas tem seus valores de REMQ apresentados
na Figura 23. Nesta configuracao a rede RBF apresentou os valores maiores de REMQ.
A MLP apresentou uma variagdo em relacao a sua utilizacdo em outras configuragoes. A

rede SVM apresentou novamente valor constante, porém menor que as outras redes.

REMQ utilizando 48 valores

12345678 9101112131415161718192021222324 252627282930
SIMULACOES

MLF RBF SV

Figura 23 — Comparacao da Raiz do EMQ com 48 valores
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4.1.2 Testes Estatisticos

Apos aplicagao do teste de Shapiro- Wilk e Teste F, verificou-se que nao poderia ser
aplicado o teste T-Student, pois as amostras - resultantes dos testes com os 4 horizontes
de entrada - ndo passaram nos dois primeiros. Desse modo para a analise dos resultado foi

utilizado o teste nao paramétrico de Wilcozon.

4.1.2.1 Arquiteturas com 6 valores de entrada

O resultado das simulagoes com 6 valores de entradas é apresentado na Tabela 2.

Nela podemos ver a raiz do EMQ para as 30 simulagoes de cada topologia.

Tabela 2 — Representacao da média das taxas de erro apés 30 simulagoes com
cada arquitetura utilizando 6 variaveis.

Topologia da rede neural Raiz do EMQ (30 simulagoes)

RBF 0,353256111

A partir dos resultados das simulagoes foi aplicado o teste da Soma dos Postos de
Wilcoxon. Para cada conjunto REMQs, obtidos a partir das simulagoes com as arquitetura
MLP, RBF e SVM, foi realizado o teste nao-paramétrico de Wilcozon, para verificar se
os modelos sdo estatisticamente distintos. Este teste foi aplicado utilizando o software R,
com o nivel de significancia estabelecido em 0,05. A Tabela 3 mostra os resultados destes

testes.

Tabela 3 — Resultados do teste da Soma dos Postos de Wilcoxon para 6 valores
de entrada.

RNAs testadas p-value

MLPxSVM 4,574x10712

A partir da Tabela 3 pode-se concluir da comparacao entre MLP e RBF, que ambas
sdo estatisticamente iguais pois o p-value foi maior que o nivel de significincia (0,05), logo,

pelo teste de Wilcoxon pode-se utilizar qualquer uma das duas.

Por outro lado, a comparagao entre MLP e SVM resultou em um p-value menor
que o nivel de significancia. O que nos leva a escolher o modelo que apresentou menor
taxa de erro, logo, a op¢do mais adequada é a rede SVM que apresentou REMQ no valor
de 0,351583333.
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Para a comparacao entre SVM e RBF ocorre o mesmo, o p-value calculado foi
menor que 0,05 e a rede SVM apresenta a menor taxa de erro, sendo escolhida a mais

adequada para previsao com 6 valores.

4.1.2.2 Arquiteturas com 12 valores de entrada

Na Tabela 4 podemos ver as REMQs resultantes das 30 simulagbes com 12 valores

de entradas para cada topologia.

Tabela 4 — Representacao da média das taxas de erro apdés 30 simulagbes com
cada arquitetura utilizando 12 variaveis.

Topologia da rede neural Raiz do EMQ (30 simulagoes)

RBF 0,351083333

Assim como foi feito com os resultados das simulagdes com 6 valores, os resultados
das simulagoes com 12 valores foram utilizados para a aplicacao de teste de Wilcozon e
assim determinar se os modelos sdo estatisticamente distintos. Os resultados do teste de

Wilcoxon sdao mostrados na Tabela 5.

Tabela 5 — Resultados do teste da Soma dos Postos de Wilcoxon para 12 va-
lores de entrada.

RNAs testadas p-value

MLPxSVM 4,574x10712

A partir da Tabela 5 concluimos que as redes MLP e RBF sao estatisticamente
iguais. J4 na comparacao de ambas com a SVM concluimos que esta é mais adequada
do que as outras pois no teste da SVM com a MLP e RBF o p-value foi menor que 0,05,

permitindo escolher a SVM por apresentar menor taxa de erro.

4.1.2.3 Arquiteturas com 24 valores de entrada

O mesmo procedimento realizado nas arquiteturas com 6 e 12 valores de entrada foi
realizado para a arquitetura com 24 entradas. Os resultados das 30 simulag¢oes, mostrados
na Tabela 6, foram utilizados para a aplicacao do teste de Wilcozon, onde os resultados

deste ultimo teste sao apresentados na Tabela 7.

Com o auxilio das tabelas 6 e 7 concluimos que a rede SVM é a mais adequada

para previsao de poténcia edlica com 24 entradas. Pois, o teste realizado com MLP e RBF
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Tabela 6 — Representacao da média das taxas de erro apés 30 simulagbes com
cada arquitetura utilizando 24 variaveis.

Topologia da rede neural Raiz do EMQ (30 simulagoes)

RBF 0,353782222

Tabela 7 — Resultados do teste da Soma dos Postos de Wilcoxon para 24 va-
lores de entrada.

RNAs testadas p-value

MLPxSVM 4,574x10712

resultou em um p-value maior que o nivel de significincia definido em 0,05,sendo essas
duas RNAs estatisticamente iguais. Ja nos testes realizados comparando SVM com MLP e
RBF, o p-value encontrado foi menor que 0,05, sendo a op¢ao mais adequada aquela que

apresenta a menor taxa de erro, logo, SVM.

4.1.2.4 Arquiteturas com 48 valores de entrada

Por fim, na arquitetura com 48 valores foram realizados os mesmos procedimentos
que nas outras arquiteturas, executando-se 30 simulagoes com cada topologia, guardando
sempre o valor da REMQ), os resultados sao mostrados na Tabela 8. Em seguida, foi
aplicado o teste de Wilcoxon a fim de encontrar a topologia mais adequada a previsao

com 48 valores, o resultado desse teste ¢ mostrado na Tabela 9.

Tabela 8 — Representagao da média das taxas de erro apdés 30 simulagbes com
cada arquitetura utilizando 48 variaveis.

Topologia da rede neural Raiz do EMQ (30 simulagoes)

RBF 0,31354

Tabela 9 — Resultados do teste da Soma dos Postos de Wilcoron para 48 va-
lores de entrada.

RNAs testadas p-value

MLPxSVM 4,574x10712
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Assim como nas outras arquiteturas a rede SVM foi determinada como a mais
adequada para a previsao utilizando 48 entradas. Pois, o teste de Wilcoron para MLP e
RBF resultou em um p-value maior que o nivel de significincia, e o teste entre SVM as
outras duas redes resultou em um p-value menor que 0,05. Sendo assim, a rede escolhida
como a mais adequada é aquela que apresentar a menor taxa de erro. Como podemos ver
na Tabela 8 essa rede é a SVM.

Apés encontrar a rede mais adequada para cada horizonte de entrada, é preciso

determinar a mais adequada entre elas para a previsao de poténcia edlica.

A Tabela 10 mostra as taxas de erro para cada rede determinada como a mais

adequada para cada horizonte.

Tabela 10 — Representacao das taxas de erro de cada rede escolhida como mais
adequada para horizonte de entrada.

Horizonte RNA REMQ

12 entradas SVM 0,348683333

48 entradas SVM 0,22535

Observando a Tabela 10 podemos notar que a rede SVM com 48 entradas apresentou
menor taxa de erro. Para determinar qual das redes presentes nesta tabela é a mais
adequada, seria necessario aplicar testes estatisticos. No entanto, como pode ser visto na
secao 4.1.1, a rede SVM nao apresenta variacao na taxa, para as 30 simulagoes de cada

horizonte. Nao sendo possivel aplicar tais testes.

Sendo assim, conclui-se que as quatro configuragoes de SVM sao estatisticamente
iguais, pois apresentaram taxas de erro semelhantes durantes os experimentos realizados.
Assim, qualquer uma delas pode ser utilizada para previsao de poténcia edlica, pois

apresentarao resultados semelhantes quando realizarem as previsoes.
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5 Consideracoes Finais

5.1 Conclusoes

Este trabalho teve como objetivo selecionar a arquitetura de rede neural mais
adequada a previsao de poténcia edlica trés horas a frente. As redes neurais utilizadas para
realizar a previsao foram MLP, RBF e SVM. Nos experimentos realizados as configuracoes
das redes variaram em relacdo a quantidade de valores de entrada. Assim foram utilizadas

para cada topologia arquiteturas com 6. 12, 24 e 48 valores de entrada.

Foram utilizadas os modulos de redes neurais disponiveis no Weka 3.7.8. De posse
das ferramentas e do dados foram realizados varias simula¢bes com as configuragoes de
cada definidas anteriormente. Para cada simulagao foi salvo o valor da raiz do erro médio

quadratico.

Os testes estatisticos realizados permitiram analisar o desempenho das topologias
utilizadas. Essa analise determinou que como os resultados foram similares as redes SVM
para as arquiteturas testadas sdo estatisticamente iguais. Assim, as quatro configuragoes

apresentam valores semelhantes para previsao de poténcia edlica.

5.2 Trabalhos Futuros

Apébs concluir os experimentos e analisar seus resultados, espera-se em outros
estudos realizar os experimentos propostos neste trabalho com cenarios diferente daqueles
que foram objetos de estudo. Sendo assim, para trabalhos futuros pretende-se estudar a

previsao de poténcia edlica sob novas perspectivas, tais como:

e Novas topologias de redes neurais para serem comparadas aquelas que foram objetos

de estudo no trabalho atual.

e Novas ferramentas ferramentas, que sejam mais flexiveis no que diz respeito a
configuragdo das redes neurais, visto que a ferramenta utilizada neste trabalho
nao permite por exemplo atribuir qualquer quantidade de neurtnios na camada

escondida.

e Novas arquiteturas: neste trabalho utilizou-se 4 horizontes de entrada (6, 12, 24 e
48), pretende-se no futuro testar outros horizontes de entrada, assim como variar a

quantidade de neurdnios presentes na camada escondida.
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e Diferentes intervalos de previsao: neste trabalho foi utilizada previsao a cada 30

minutos. Pretende-se testar outros intervalos.

e Variar o tempo a ser previsto: pretende-se estudar a previsao com alcance diferentes

do utilizado no trabalho atual que foi de 3 horas a frente.



42

Referencias

ALTAGA, D. K. Redes neurais artificais rbf. PGEAS - UFSC, 2010. Acessado em
02/10/2015.

AMARANTE, O. A. et al. Atlas do potencial edlico brasileiro. In: Atlas do potencial eolico
brasileiro. [S.1.]: Ministerio de Minas e EnergiaEletrobras, 2001.

ANDREOLA, R. Support vector machines na classificacao de imagens hiperespectrais.
2009. Acessado em 23/08/2015.

ANEEL. Atlas da FEnergia FElétrica do Brasil. TDA Comunicagao, 2005. Acesso
em 18/08/2015. Disponivel em: <http://www.aneel.gov.br/aplicacoes/atlas/pdf/
06-energia__eolica(3).pdf>.

ANEEL. Atlas da Energia FElétrica do Brasil. 3. ed. TDA Comunicagao, 2008. Acesso
em 18/08/2015. Disponivel em: <http://www.aneel.gov.br/arquivos/PDF /atlas3ed.
pdf>.

BOLDUAN, P. Old windmill (1880 town, South Dakota, USA). 2000. Acessado
em 27/10/2015. Disponivel em: <https://commons.wikimedia.org/wiki/File:Old__
Windmill.jpg>.

BOUCKAERT, R. et al. Weka manual. 2008. Acessado em 15/08/2015.

CARDOSO, M. R. A. Andlise de séries temporais em epidemiologia: uma introducao sobre
os aspectos metodolégicos. Rev. bras. epidemiol, ScIELO Public Health, v. 4, n. 3,
2001. Acessado em 13/10/2015.

COELHO, L. d. S.; SANTOS, A. A. P,; JR, N. C. A. d. C. Podemos prever a taxa de
cambio brasileira? evidéncia empirica utilizando inteligéncia computacional e modelos
econométricos. Gestao €& Produgao, v. 15, n. 3, 2008. Acessado em 21/11/2015.

EHLERS, R. S. Anélise de séries temporais. Laboratorio de Estatistica e Geoinformagao.
Universidade Federal do Parand, 2007. Acessado em 23/10/2015.

FERREIRA, A. A. d. A. Sistema de produgao de energia edlica. Tese (Doutorado) —
Universidade do Porto, 2011. Acessado em 27/10/2015.

FONSECA, I. d. S. A. d. et al. Manutencao de sistemas de geracao de energia renovavel
edlica através de redes ip. 2012.

HECKL, W. M. Deutsches Museum. 2015. Acessado em 27/10/2015. Disponivel em:
<http://www.deutsches-museum.de/>.

JUNIOR, P. M. d. O. Mdquina de Vetores Suporte: estudo e andlise de parametros para
otimizagdo de resultado. Trabalho de conclusA£0 de curso — Universidade Federal
de Pernambuco, 2010. Acessado em 27/11/2015.


http://www.aneel.gov.br/aplicacoes/atlas/pdf/06-energia_eolica(3).pdf
http://www.aneel.gov.br/aplicacoes/atlas/pdf/06-energia_eolica(3).pdf
http://www.aneel.gov.br/arquivos/PDF/atlas3ed.pdf
http://www.aneel.gov.br/arquivos/PDF/atlas3ed.pdf
https://commons.wikimedia.org/wiki/File:Old_Windmill.jpg
https://commons.wikimedia.org/wiki/File:Old_Windmill.jpg
http://www.deutsches-museum.de/

Referéncias 43

LEITE, V. Uma andlise da classificacao de litologias utilizando SVM, MLP e métodos FEn-
semble. Tese (Doutorado) — Dissertacao de Mestrado. Departamento de Informatica.
Rio de Janeiro: Pontificia Universidade Catolica do Rio de Janeiro, 2012. Acessado
em 10/11/2015.

LUDERMIR, T. B. et al. Redes neurais artificiais: teoria e aplicagoes. LTC Editora, 2007.
Acessado em 18/08/2015.

MME, M. d. M. e. E. Programa de Incentivo as Fontes Alternativas de Energia FElé-
trica. 2004. Acessado em 02/11/2015. Disponivel em: <http://www.mme.gov.br/
programas/proinfa/>.

MOLENAAR, D.-P. Cost-effective design and operation of variable speed wind turbines.
TU Delft, Delft University of Technology, 2003. Acessado em 03/11/2015.

PAZ, W. V. d. PREVISAO DE GERACAO DE POTENCIA EOLICA UTILIZANDO
REDES NEURAIS ARTIFICIAIS. Trabalho de conclusA£.o0 de curso — Universidade
de Pernambuco, 2014. Acessado em 19/11/2015.

RODRIGUES, G. C. Utilizacdo de Redes Neurais para Previsio de Ventos no Horizonte de
24 Horas. Tese (Doutorado) — UNIVERSIDADE FEDERAL DO RIO DE JANEIRO,
2007. Acessado em 17/09/2015.

RODRIGUES, R. C. B. et al. Mdquinas de vetores de suporte aplicadas a classificacdo de
defeitos em couro bovino. Trabalho de conclusA£o de curso — Universidade Catélica
Dom Bosco, 2007. Acessado em 20/11/2015.

SALLES, M. B. d. C. Modelagem e andlises de geradores edlicos de velocidade varidvel
conectados em sistemas de energia elétrica. Tese (Doutorado) — Universidade de
Sao Paulo, 2009. Acessado em 20,/10/2015.

SANTOS, E. M. dos. Teoria e Aplicacdo de Support Vector Machines a Aprendizagem e
Reconhecimento de Objetos Baseado na Aparéncia. Tese (Doutorado) — Universidade
Federal da Paraiba, 2002. Acessado em 15/11/2015.

SILVA, I. N. da et al. Redes neurais artificiais para engenharia e ciéncias aplicadas curso
pratico. Artliber, SciELO Brasil, 2010.

TABLADA, L. G. N. Utilizando Redes Neurais para a Previsio de Velocidade do Vento.
Trabalho de conclusA£o de curso — Universidade de Pernambuco, 2010. Acessado
em 27/08/2015.

VALENCA, M. Aplicando redes neurais: Um guia completo. Livro Rapido, Olinda, 2005.
Acessado em 18/10/2015.

VALENCA, M. Fundamentos das redes neurais: exemplos em java. Livro Répido, Olinda,
2009. Acessado em 18/08/2015.

VITERBO, J. C. Geracdo de energia elétrica a partir da fonte edlica offshore. Tese
(Doutorado) — Universidade de Sao Paulo, 2008. Acessado em 20/10/2015.

WEKA. Data Mining Software in Java. 2008. Acessado em 15/08/2015. Disponivel em:
<http://www.cs.waikato.ac.nz/ml/weka/>.


http://www.mme.gov.br/programas/proinfa/
http://www.mme.gov.br/programas/proinfa/
http://www.cs.waikato.ac.nz/ml/weka/

	Folha de rosto
	Folha de aprovação
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	 Sumário
	Introdução  
	Motivação
	Objetivos
	Objetivos Gerais
	Objetivos Específicos

	Estrutura da Monografia

	Fundamentação Teórica  
	Energia Eólica
	Histórico
	Geração de Energia Eólica
	Turbina Eólica
	Turbinas Eólicas de Eixo Vertical 
	Turbinas Eólicas de Eixo Horizontal

	Energia Eólica no Mundo
	Energia Eólica no Brasil

	Redes Neurais
	Introdução
	Histórico
	Neurônio Biológico
	Neurônio Artificial

	Multi-Layer Perceptron
	Radial Basis Function
	Support Vector Machine


	Métodologia  
	Base de Dados
	Processamento dos Dados
	Normalização dos Dados
	Defasagem dos Dados

	Arquiteturas de Redes Neurais na Previsão de Potência Eólica
	Multi-Layer Perceptron
	Radial Basis Function
	Support Vector Machine
	Validação Cruzada

	Testes Estatísticos
	Teste de Shapiro-Wilk
	Teste F
	Teste t-Student
	Teste das Somas dos Postos de Wilcoxon


	Resultados  
	Comparativos e Testes estatísticos entre MLP, RBF e SVM
	Comparação da Raiz do Erro Médio Quadrático
	Testes Estatísticos
	Arquiteturas com 6 valores de entrada
	Arquiteturas com 12 valores de entrada
	Arquiteturas com 24 valores de entrada
	Arquiteturas com 48 valores de entrada



	Considerações Finais  
	Conclusões
	Trabalhos Futuros

	Referências

