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Resumo
A expansão do consumo de energia tem aspectos negativos. Com
o intuito de amenizar esses efeitos, a humanidade vem tentando
diversificar a matriz energética com novas fontes que, além de
não causarem danos ao ambiente, sejam renováveis. Entre essas
novas fontes destaca-se a energia eólica. Para sua utilização é
necessário lidar com algumas incertezas, tais como velocidade e
direção do vento. Assim, este trabalho tem o objetivo de propôr
um sistema de previsão de potência eólica, utilizando em sua
construção uma Rede Neural Artificial. Através de experimentos
realizados com três topologias de redes neurais (MLP, RBF
e SVM) e diferentes horizontes de entrada, verificou-se que a
rede SVM com 48 variáveis se mostrou mais adequada para a
previsão de potência eólica.
Palavras-chave: MLP, RBF, SVM, Energia Eólica, Redes
Neurais Artificiais.



Abstract
The expansion of energy use has negative aspects. In order to
mitigate these effects, humany has been trying new sources of
energy that do not cause damage to the natural environment
and are renewable. Among these new sources stands out the
wind. For this energy source to be used it is necessary to deal
with some uncertainties, such as wind speed and direction. Thus,
this work aims to propose a wind power forecasting system using
an Artificial Neural Network. Through experiments conducted
with three different neural network topologies(MLP, RBF and
SVM) and different input horizons, it was verified that the SVM
network with 48 variables was more appropriate suitable for
wind power forecast.
Keywords: MLP, RBF, SVM, wind energy, Artificial neural
networks.
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1 Introdução

Este capítulo apresenta a motivação para a realização deste trabalho. Em seguida,
são especificados os objetivos a serem atingidos e uma explicação detalhada do conteúdo
dos capítulos seguintes.

1.1 Motivação
A expansão acentuada do consumo de energia, embora demonstre o aquecimento

econômico e a melhoria da qualidade de vida, tem aspectos negativos. Dentre eles podemos
citar: a possibilidade de esgotamento dos recursos utilizados para produção de energia, o
impacto ao meio ambiente, e os elevados investimentos em pesquisa e desenvolvimento de
novas fontes de geração de energia elétrica (ANEEL, 2008). Atualmente, entre as fontes de
energia mais utilizadas estão o petróleo, gás natural e carvão mineral que, além de serem
extremamente danosas ao ambiente, são ditas não renováveis, ou seja, seu processo de
regeneração é muito lento ou inexiste, tornando sua utilização sustentável inviável.

Desde o início dos anos 90 cientistas e estudiosos alertam para efeitos danosos
ao ambiente provocados pela ação humana, tendo como exemplo o aquecimento global,
provocado pela emissão elevada de gases causadores do efeito estufa. Estes liberados em
larga escala através da queima de combustíveis fósseis para a produção de calor, vapor
ou energia elétrica (ANEEL, 2008). Sendo assim, um grande desafio enfrentado pela
humanidade é diversificação da matriz energética com fontes renováveis de energia, como
energia solar, energia eólica e biomassa.

A utilização do vento como fonte de energia tem seu potencial diretamente ligado
à velocidade dele (ANEEL, 2005) e a outras incertezas como direção do vento, clima e
topografia. Tais condições justificam a construção de um sistema de previsão de potência
eólica, a fim de que se obtenham boas estimativas do potencial eólico em um determinado
local, possibilitando a elaboração boas estratégias para um aproveitamento mais eficiente
dessa fonte.

A potência eólica pode ser representada na forma de uma série temporal (ST), que
é um conjunto de observações ordenadas no tempo e registradas em intervalos regulares,
feitas sobre um evento. Por exemplo, o número de atendimentos diários em um Pronto
Socorro ou a quantidade mensal de casos notificados de uma doença específica. Na análise
de uma ST, deseja-se modelar o evento estudado para realizar estimativas e descrever o
seu comportamento através de testes estatísticos (CARDOSO, 2001). A característica mais
importante das STs é a dependência entre as observações vizinhas e a possibilidade de
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analisar esta dependência. O estudo deste tipo de dados requer o uso técnicas específicas
(EHLERS, 2007), como por exemplo Redes Neurais Artificias (RNAs). As RNAs são
modelos matemáticos que possuem a capacidade de aprender a partir de exemplos, vêm se
tornando bastante populares em estudos sobre STs.

A expansão do consumo de energia cria a necessidade de diversificar a matriz
energética com fontes renováveis de energia. Uma das mais promissoras é a energia eólica,
visto que sua capacidade mundial instalada aumentou 1155% entre 1997 e 2007. Assim,
muitos trabalhos de pesquisa vêm sendo realizados nesta área, com o intuito de desenvolver
um sistema de previsão eficiente, podemos citar como exemplo (RODRIGUES, 2007),
onde utiliza-se a rede Multi-Layer Perceptron (MLP). Porém, são implementadas várias
configurações com esse tipo de RNA.

A produção de energia elétrica pelas fontes mais utilizadas atualmente, carvão
mineral, petróleo e gás, tem consequências negativas, como por exemplo os danos causados
ao meio ambiente e fato dessas fontes não serem renováveis. Sendo assim, é necessário
introduzir na matriz energética fontes que não apresentem esses pontos negativos, alguns
exemplos são: energia eólica, solar, entre outras. A eólica em particular está ligada a uma
série de incertezas, tais como velocidade e direção do vento, clima e topografia do local
onde será instalado o parque eólico. Com isso, para definir boas estratégias que permitam
o uso mais eficiente do potencial eólico do local é necessário ter boas estimativas das
potências geradas, sendo fundamental construir um sistema de previsão de potência eólica.
Esse sistema deve utilizar métodos que o possibilitem fornecer estimativas precisas sobre a
potência eólica.

1.2 Objetivos

1.2.1 Objetivos Gerais

Este trabalho tem como objetivo geral desenvolver um sistema para previsão
de potência eólica, utilizando para isso RNAs de arquitetura RBF (LUDERMIR et al.,
2007), MLP (VALENÇA, 2009) e SVM (ANDREOLA, 2009), realizar uma comparação
de desempenho entre estes métodos que utilizam aprendizagem de máquina e analisar o
impacto de diferentes horizontes de entrada (ou seja, quantidade de informações passadas)
em cada previsão, para um horizonte de três horas à frente. Pois, a avaliação em variações
de curta duração apresenta valores que se aproximam mais da realidade do que a avaliação
realizada em variações sazonais e anuais.

1.2.2 Objetivos Específicos

1. Configurar diversas redes.
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2. Calcular a correlação entre as variáveis presentes na base de dados.

3. Encontrar os valores para os parâmetros que apresentem a previsão mais eficiente,
para um intervalo de três horas à frente.

4. Comparar os resultados obtidos pelas três arquiteturas de rede utilizando testes
estatísticos.

1.3 Estrutura da Monografia
O capítulo 2 apresenta os conceitos necessários para o entendimento dos experimen-

tos realizados: energia eólica e Redes Neurais Artificiais, enfatizando as três arquiteturas
escolhidas para esse trabalho, a MLP, a RBF e a SVM. No capítulo 3 é descrita a me-
todologia escolhida com o intuito de alcançar os objetivos definidos na seção 1.2. Além
de explicar como se dará o processamento dos dados, as configurações e uso das três
arquiteturas selecionadas para serem utilizadas no trabalho. O capítulo 4 apresenta os
resultados atingidos após as simulações, fazendo uma comparação entre os resultados
alcançados com as três arquiteturas. E finalmente o capítulo 5 mostra as conclusões
inferidas a partir dos resultados obtidos e propostas de trabalhos futuros.
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2 Fundamentação Teórica

Este capítulo fornece uma breve explicação dos conceitos chaves para o completo
entendimento dos experimentos propostos. A seção 2.1 discorre sobre a energia eólica,
apresentando desde sua demanda no Brasil e no mundo até informações sobre sua geração,
equipamentos utilizados para produção de energia elétrica e considerações sobre o vento.
A seção 2.2 traz informações sobre as Redes Neurais Artificiais (RNAs), explicando as
arquiteturas escolhidas para serem utilizadas neste trabalho (MLP, RBF e SVM) e o modo
como é realizado o treinamento em cada uma delas.

2.1 Energia Eólica
A energia eólica tem sua geração diretamente ligada ao vento, resultando do

deslocamento de massas de ar (FONSECA et al., 2012). A ideia principal é aproveitar
a energia cinética resultante desses deslocamentos. Esses causados pela diferença de
temperatura na superfície do planeta (ANEEL, 2008), ocasionada pela energia solar:
enquanto o sol aquece a água e a terra de um lado do planeta, o outro lado é resfriado.
Porém, regiões diferentes respondem de maneiras diferentes a esse aquecimento. Por
exemplo, os oceanos se aquecerão mais lentamente do que as terras porque a água tem uma
capacidade maior de estocar calor, gerando massas de ar com diferentes características.
Devido as causas que lhe dão origem a energia eólica é considerada renovável.

2.1.1 Histórico

O aproveitamento dos benefícios da energia eólica pelo homem data da antiguidade.
Acredita-se que foram os egípcios os primeiros a utilizarem o vento. Barcos encontrados em
um túmulo da época do ano 4000 a.c. indicam que nessa época já se fazia o uso de energia
eólica em embarcações (FONSECA et al., 2012). Mas estas ainda utilizavam os remos
em conjunto com o vento para se locomover. Os primeiros a utilizarem barcos movidos
exclusivamente com energia eólica foram os fenícios por volta do ano 1000 a.c..

Contudo, na antiguidade o uso desta forma de energia não se resumia a sua conversão
em energia cinética, mas contempla também a sua conversão em energia mecânica através
dos moinhos de ventos, utilizados há mais de 1000 anos, e tem sua origem ligada ao Oriente
Médio por volta do século VII. Alguns indícios datam o uso do moinho de vento do século
X na Pérsia (Figura 1). Posteriormente, foram trazidos para a Europa pelas Cruzadas na
Idade Média, onde incorporavam velas e eixo horizontal, designadas Sail Windmill (ver
Figura 2).
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Figura 1 – Moinho de vento Persa
[Fonte: Reproduzido de (HECKL, 2015)]

Figura 2 – Sail Windmill
[Fonte: Reproduzido de (HECKL, 2015)]
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Após algumas evoluções surgiram os Post mills (ver Figura 3) e os Dutch windmills,
usados essencialmente para bombear água e cultivar a terra. A partir do século XIX nos
Estados Unidos, passou-se a utilizar turbinas eólicas multi-lâmina, mostrada na Figura 4,
para a irrigação.

Figura 3 – Post mill
[Fonte: Reproduzido de (FERREIRA, 2011)]

Figura 4 – Turbina eólica americana
[Fonte: Reproduzido de (BOLDUAN, 2000)]

A Charles F. Brush é atribuída a invenção do primeiro aerogerador automático. Em
1888, ele construiu a turbina eólica de Brush, hoje reconhecida como a primeira turbina de
vento de funcionamento automatizado para produção elétrica. Possuía um rotor com um
diâmetro de 17 metros (o maior do mundo na altura) e 177 lâminas feitas de madeira de
cedro, mostrada na Figura 5. Apesar do seu tamanho, a máquina tinha uma potência de 12
KW, não conseguindo uma grande eficiência. Foi o dinamarquês Poul La Cour a conseguir
desenvolver as turbinas de rotação rápida, em 1897, construiu os seus próprios túneis
de vento para as suas experiências. Utilizou a energia elétrica proveniente das turbinas
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eólicas para produzir hidrogênio através da eletrólise. Esses experimentos permitiram o
desenvolvimento das turbinas de geração de energia eólica ao longo do século XX.

Figura 5 – Turbina eólica de Charles Brush
[Fonte: Reproduzido de (MOLENAAR, 2003)]

2.1.2 Geração de Energia Eólica

A energia eólica tem sua origem na energia solar, uma vez que os ventos são os
movimentos das massas de ar resultantes do aquecimento não uniforme da superfície
terrestre (FERREIRA, 2011). As regiões tropicais são mais aquecidas que as regiões
polares, pois estão mais próximas do sol. Assim, o ar quente que se encontra nas baixas
altitudes das regiões tropicais tende a subir, sendo substituído por uma massa de ar mais
frio que se desloca das regiões polares, Figura 6. Esses deslocamentos geram os ventos do
planeta.

Os ventos mais fortes e constantes são encontrados a mais de um quilômetro da
superfície terrestre. No entanto, só é possível instalar aproveitamentos eólicos a algumas
dezenas de metros da superfície. A densidade do ar, a intensidade, direção e velocidade do
vento relacionam-se com aspectos geográficos naturais como relevo vegetação e interações
térmicas entre a superfície da terra e a atmosfera. Sendo assim, a obtenção de energia
eólica, a exemplo do que ocorre com outras fontes como a hidráulica, exige a existência de
condições naturais favoráveis e específicas. A avaliação destas condições requer trabalhos
sistemáticos de coleta e análise de dados sobre o regime de vento do local (FERREIRA,
2011) (ANEEL, 2008).

A geração eólica ocorre pelo contato do vento com as pás do cata-vento, elementos
integrantes da usina. Ao girar, essas pás dão origem à energia mecânica que aciona o rotor
do aerogerador, produzindo eletricidade. A quantidade de energia mecânica transferida e o
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Figura 6 – Movimento das massas de ar
[Fonte: Reproduzido de

<http://www.coladaweb.com/geografia/pressao-atmosferica-massas-de-ar-precipitacao-e-ventos>]

potencial de energia elétrica a ser produzida estão diretamente relacionados à densidade
do ar, à área coberta pela rotação das pás e à velocidade do vento.

A evolução tecnológica permitiu o desenvolvimento de equipamentos mais potentes,
que aproveitam o vento de maneira mais eficiente. Essa evolução vai desde o aumento
do diâmetro das turbinas até o aumento da altura das torres, que inicialmente era de 10
metros aproximadamente e hoje supera os 50 metros, incluindo também sistemas avançados
de transmissão, melhor aerodinâmica, estratégias de controle e operação das turbinas.
Em 1985 a altura das torres era de 20 metros, produzindo uma potência média de 50
kW(quilowatts) e hoje chega a superar os 100 metros, permitindo a obtenção em uma
única turbina de 5000 kW.

Para um melhor aproveitamento da energia eólica é importante distinguir os tipos
de variações temporais da velocidade dos ventos, pois estes a influenciam fortemente. Essas
variações podem ser: variações anuais, sazonais, diárias e de curta duração (RODRIGUES,
2007). A seguir uma breve descrição de cada uma:

• Variações Anuais - Para se obter um bom conhecimento do regime dos ventos não é
suficiente basear-se na análise de dados de vento de apenas um ano; o ideal é dispor
de dados referentes a vários anos.

• Variações Sazonais - O aquecimento não uniforme da superfície terrestre resulta em
significativas variações no regime dos ventos, resultando na existência de diferentes
estações do ano. Sendo assim, a utilização de médias anuais (ao invés de médias
sazonais) pode levar a resultados que se afastam da realidade.

http://www.coladaweb.com/geografia/pressao-atmosferica-massas-de-ar-precipitacao-e-ventos
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• Variações Diárias - Essas variações são importantes para definir o local mais adequado
para a instalação do sistema eólico dentro de uma área que já foi escolhida para
hospedar um parque eólico. Ao comparar a evolução da velocidade média ao longo
do dia percebe-se que há uma significativa variação de um mês para os outros. Com
esse tipo de informação pode-se projetar melhor o sistema eólico.

• Variações de Curta Duração - As variações de curta duração estão associadas tanto
às pequenas flutuações quanto às rajadas de vento. Em um primeiro momento, essas
variações não são consideradas na análise do potencial eólico de uma região.

Além da velocidade, outro parâmetro que influencia muito a produção de energia
eólica é a direção do vento. Frequentes mudanças na direção indicam a existência de
rajadas de ventos, e a medida da direção do vento auxilia a localização das turbinas nos
parque eólicos.

2.1.3 Turbina Eólica

Como pode ser visto na seção 2.1.1, os egípcios foram os primeiros a utilizar a
energia eólica. Eles a utilizaram por volta de 2800 a.c. para mover as embarcações em
conjunto com a força dos remos. Com o passar dos anos as técnicas de aproveitamento da
energia eólicas foram evoluindo até que, no do início do século XX, essa energia começou
a ser utilizada para produzir eletricidade, sendo as primeiras tentativas creditadas aos
dinamarqueses. Por volta da década de 1930, cerca de um dúzia de firmas começou a
produzir e vender esses geradores primitivos, que geravam em torno de 1kW.

Muitos países europeus começaram a construir avançados projetos de geradores
eólicos entre 1950 e 1960. A primeira turbina eólica comercial ligada a rede elétrica pública
foi instalada em 1976, na Dinamarca. Uma das mais memoráveis foi construída perto de
Rutland, Vermont, USA e foi projetada para fornecer 1250 kW para Vermont.

As turbinas eólicas são máquinas que utilizam a energia eólica - energia cinética
dos ventos - para rotacionar sua pás, transformando essa energia em energia mecânica ou
elétrica. São classificadas de acordo com a posição do eixo do rotor (TABLADA, 2010) em
turbinas eólicas de eixo vertical, possuem pás que giram em um plano paralelo ao do vento,
e turbinas eólicas de eixo horizontal, possuem pás que giram em um plano perpendicular
ao do vento. Elas são compostas pelo rotor e pela torre que o sustenta, pela transmissão
e caixa multiplicadora - responsável por transmitir a potência fornecida pelo rotor ao
gerador - e pelo conversor (FONSECA et al., 2012).

A energia cinética só é extraída do ar que passa pela área interceptada pelas pás
rotativas. A energia cinética bruta por unidade de tempo do vento passando por uma área
A perpendicular ao seu vetor velocidade instantânea V , é dada pela equação 2.1:
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P = Cp.
1
2 .ρ.A.V

3 (2.1)

Temos:

• ρ = densidade do ar em kg/m3 que varia de acordo com a latitude e as condições
atmosféricas;

• Cp = é o coeficiente de desempenho que se relaciona com a energia cinética de saída
e depende do modelo e da relação entre a velocidade do rotor e a velocidade do
vento;

• V = velocidade do vento em m/s;

• A = área em m2.

2.1.3.1 Turbinas Eólicas de Eixo Vertical

Esse tipo de turbina foi inventado pelo engenheiro francês Darrieus, incluindo duas
lâminas, como pode ser observado na Figura 7. Esta turbina é unidirecional, ou seja, aceita
o vento de qualquer direção, diferente do que acontece com as turbinas convencionais que
se ajustam a direção do vento. Por isso, as turbinas de eixo vertical não necessitam de
sistemas de controle de direção, o que simplifica bastante os mecanismos de transmissão
(RODRIGUES, 2007). Algumas grandes vantagens dessas turbinas em relação a outros
tipos são a manutenção, muito mais prática, e uma variabilidade de aplicações elétricas e
mecânicas muito maior. Isso se deve ao fato de o rotor e suas partes elétricas se localizarem
na parte inferior da turbina.

2.1.3.2 Turbinas Eólicas de Eixo Horizontal

A origem da turbina de eixo horizontal é atribuída a Rússia no ano de 1931, sendo
construída junto ao Mar Negro. Essa turbina tinha um rotor de três pás, como pode ser
observado na Figura 8, com um diâmetro de 30 metros e uma potência nominal de 100 kW.
Funcionou durante cerca de dois anos ligada a rede de corrente alternada. Em sistema para
aproveitamento com ventos de baixa velocidade é comum utilizar-se o rotor de múltiplas
pás, ver Figura 9.

2.1.4 Energia Eólica no Mundo

O interesse pelo uso da energia eólica vem crescendo consideravelmente, principal-
mente na Europa. Trinta por cento de toda a capacidade nova anual instalada na União
Europeia, entre 2002 e 2006, foi de geração de energia eólica (SALLES, 2009). Em 2007
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Figura 7 – Turbina de Darrieus de duas lâminas
[Fonte: Reproduzido de (FERREIRA, 2011)]

Figura 8 – Turbina eólica de eixo horizontal
[Fonte: Reproduzido de (RODRIGUES, 2007)]
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Figura 9 – Aerogerador com múltiplas pás
[Fonte: Reproduzido de

<http://www.engquimicasantossp.com.br/2013/12/energia-eolica-e-aerogeradores.html>]

essa participação anual subiu para 40% da capacidade total instalada, tornando-a a forma
de geração de energia elétrica que mais cresce na Europa.

Atualmente existem mais de 30 mil turbinas eólicas em operação no mundo (VI-
TERBO, 2008). A Associação Europeia de Energia Eólica estabeleceu, em 1991, como
metas a instalação de 4.000 MW(Megawatts) de energia eólica na Europa até o ano 2000 e
11.500 MW até 2005. Essas metas foram atingidas muito antes do esperado, 4000 MW em
1996 e 11500 MW em 2001.O mercado vem crescendo substancialmente, principalmente na
Alemanha, EUA, Dinamarca e Espanha, onde a potência adicionada anualmente supera
3.000 MW. Esse crescimento de mercado fez com que a Associação Europeia de Energia
Eólica estabelecesse uma nova meta que é em 2020 12% da energia do mundo ser gerada
pelo vento, com uma capacidade instalada de 1200 GW (Gigawatts) (ANEEL, 2005).
O Conselho Europeu de Energia Renovável (EREC) traçou uma meta para as fontes
renováveis. Essa meta é que em 2022 a fonte eólica possa atingir um nível de 4000 TWh
ao ano, superando a fonte hidráulica de porte como a principal fonte renovável de energia
elétrica do mundo.

Na América do Norte a instalação de fazendas eólicas se intensificou apenas por
volta de 2003, sendo que no final de 2008 os Estados Unidos se tornaram o país com
maior capacidade de energia eólica instalada de geração de energia eólica. O interesse pela
instalação de novas fazendas eólica continua crescendo. Somente na costa da Alemanha
planeja-se instalar gradativamente 25 GW até 2020, porém, devido as novas diretrizes do

http://www.engquimicasantossp.com.br/2013/12/energia-eolica-e-aerogeradores.html
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Governo alemão, este valor passou por 10 GW.

2.1.5 Energia Eólica no Brasil

No Brasil, as primeiras unidades utilizadas para a medição de energia eólica foram
instaladas no inicio dos anos 1990, no Ceará e em Fernando de Noronha. Essas medições
determinaram o potencial eólico local e a instalação das primeiras turbinas eólicas no
Brasil. O primeiro estudo sobre a energia eólica no Brasil foi a elaboração do Atlas Eólico
do Nordeste, publicado pelo Centro Brasileiro de Energia Eólica (CBEE) com o apoio da
Agência Nacional de Energia Elétrica (ANEEL), em 1998. Apesar das divergências entre
especialistas e instituições, as estimativas sobre o potencial eólico brasileiro apresenta
valores extremamente relevantes. As estimativas, que até poucos anos atrás eram de 20000
MW, hoje indicam valores superiores a 60000 MW. A falta de informação e a diferença
nas metodologias aplicadas em cada estudo provoca essas divergências. Para ampliar os
conhecimentos sobre o potencial eólico brasileiro, vários estudos vem sendo realizados,
como, por exemplo atlas eólicos para alguns estados.

A participação da energia eólica na geração de energia elétrica do país ainda é
pequena. Em setembro de 2003 havia apenas 6 centrais eólicas em operação no país,
perfazendo uma capacidade instalada de 22.075 kW. Entre essas centrais, destacam-se
Taíba e Prainha, no Estado do Ceará, que representam 68% do parque eólico nacional.

Porém, existem alguns incentivos vigentes para o setor elétrico que devem despertar
um maior interesse por investimentos e projetos na área. Entre esses incentivos podemos
destacar o Programa de Incentivo às Fontes Alternativas de Energia Elétrica (PROINFA)
(MME, 2004), cujo objetivo é aumentar a participação da energia elétrica produzida por
empreendimentos concebidos com base em fontes eólica, biomassa e pequenas centrais
hidrelétricas no Sistema Elétrico Interligado Nacional (SIN). Outro incentivo importante é
a possibilidade de complementaridade entre a geração hidrelétrica e a eólica, visto que o
maior potencial eólico, na região Nordeste, ocorre durante o período de estiagem, conforme
ilustrado na Figura 10.

O Brasil é favorecido em termos de ventos, que se caracterizam por uma presença
duas vezes superior à média mundial e pela volatilidade de 5% (oscilação da velocidade),
o que dá maior previsibilidade ao volume a ser produzido. Além disso, como dito no
parágrafo anterior, a velocidade costuma ser maior em períodos de estiagem, sendo assim,
é possível operar as usinas eólicas em sistema complementar com as usinas hidrelétricas,
de forma a preservar a água dos reservatórios em períodos de poucas chuvas. Finalmente,
estimativas mostradas em (AMARANTE et al., 2001) apontam para um potencial de
geração de energia eólica de 143 mil MW no Brasil, como pode ser visto na Figura 11.
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Figura 10 – Complementaridade entre geração hidrelétrica e eólica
[Fonte: Reproduzido de (ANEEL, 2005)]

Figura 11 – Potencial eólico brasileiro
[Fonte: Reproduzido de (ANEEL, 2008)]
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2.2 Redes Neurais

2.2.1 Introdução

Redes neurais artificiais são modelos matemáticos - inspirados no sistema nervoso
dos seres vivos - que tem a capacidade de aprender através de exemplos. Possuem a
capacidade de aquisição e manutenção do conhecimento (SILVA et al., 2010). Quanto à
sua constituição, pode-se definir uma RNA como um sistema composto por elementos de
processamento interconectados chamados de neurônios, dispostos em camadas (VALENÇA,
2009).

2.2.1.1 Histórico

A primeira publicação relacionada à redes neurais data de 1943, através de um
artigo elaborado por McCulloch & Pitts (VALENÇA, 2009). Esse trabalho resultou na
construção do primeiro neurônio artificial, resultado da modelagem matemática inspirada
no neurônio biológico. A partir daí outros pesquisadores continuaram o desenvolvimento de
modelos matemáticos baseados no neurônio biológico, dando origem a diversas arquiteturas
(SILVA et al., 2010).

Entre as primeiras arquiteturas que surgiram pode-se destacar a pesquisa de Frank
Rosenblatt que, entre 1957 e 1958, desenvolveu o primeiro neuro-computador, denominado
Mark I - Perceptron, idealizando o modelo básico do Perceptron, capaz de reconhecer
padrões simples. Em 1960, Widrow e Hoff criaram uma regra de aprendizagem para
uma extensão do Perceptron chamada de ADALINE. Mas, em 1969, verificou-se que o
Perceptron conseguia distinguir apenas padrões linearmente separáveis. Este fato gerou um
desinteresse pelas RNAs, que ressurgiram graças ao trabalho publicado por John Hopfield
em 1982 e ao desenvolvimento do algoritmo backpropagation (VALENÇA, 2009).

2.2.1.2 Neurônio Biológico

A célula elementar do sistema nervoso cerebral é o neurônio, seu papel pode ser
resumido em conduzir impulsos. Constitui-se de três partes: dendritos, corpo celular e
no axônio, ver Figura 12. A função dos dendritos é captar os estímulos vindos de outros
neurônios ou do próprio meio onde o neurônio se encontra. O corpo celular, por sua vez,
tem a função de processar todas as informações vindas dos dendritos a fim de produzir um
potencial de ativação. Este potencial indicará se o neurônio poderá disparar um impulso
elétrico ao longo de seu axônio. Finalmente, o axônio tem a missão de conduzir os impulsos
elétricos para outros neurônios através das sua terminação que contém ramificações
denominadas terminações sinápticas.
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Figura 12 – Neurônio Biológico
[Fonte: Reproduzido de

<http://www.biologia.seed.pr.gov.br/modules/galeria/detalhe.php?foto=256&evento=3>]

2.2.1.3 Neurônio Artificial

Os elementos computacionais ou unidades processadoras, denominadas neurônios
artificiais, são modelos simplificados dos neurônios biológicos (SILVA et al., 2010). Os
neurônios artificiais são não-lineares, fornecem saídas contínuas, e exercem funções simples,
como coletar os sinais existentes em suas entradas, agregá-los de acordo com com sua
função operacional e produzir uma resposta.

A representação do neurônio artificial pode ser vista na Figura 13. Nesta repre-
sentação podemos ver as entradas (x1, x2, x3, ..., xm), representando os sinais recebidos
pelo neurônio do meio externo ou de outros neurônios. Temos ainda os pesos (w1, w2, w3

e wm), que representam o grau de importância de cada entrada para o neurônio, ou seja,
quanto maior o peso mais importante é a entrada para o neurônio. O somatório de todos
os produtos entrada x peso, menos o bias, gera um resultado vi, como pode ser visto na
equação 2.2. Esse resultado será o parâmetro para a função de ativação ϕ(.), que gera a
saída do neurônio, (VALENÇA, 2009).

vi =
n∑

j=1
wij.xj − bias (2.2)

2.2.2 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) é uma RNA composta por nós agrupados em
camadas: uma camada de entrada, uma ou mais camadas intermediárias e uma camada
de saída. A Figura 14 mostra uma MLP com duas camadas escondidas. MLP é uma rede
onde cada nó de uma camada está conectado unicamente aos nós da camada seguinte, sem
realimentação. Assim, o sinal se propaga pela rede camada a camada, a partir da camada
de entrada até a camada de saída.

As conexões entre os nós são conhecidas como sinapses. A camada de entrada é a

http://www.biologia.seed.pr.gov.br/modules/galeria/detalhe.php?foto=256&evento=3
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Figura 13 – Neurônio Artificial
[Fonte: Reproduzido de <http://www.scielo.br/img/revistas/ca/v21n4/a03fig17.gif>]

que trata a alimentação das características, ou seja, recebe o sinal de entrada, e o número
de nós nessa camada depende da dimensionalidade do espaço de observação (LEITE, 2012).
A camada intermediária é a responsável pela não linearidade da rede e que permite que as
redes MLP sejam capazes de resolver problemas reais. Por sua vez, a camada de saída é
responsável pela resposta da rede e representa a variável desejada.

As redes MLP são ainda caracterizadas pelas elevadas possibilidades de aplicações
em diversos tipos de problemas relacionados com as mais diferentes áreas do conhecimento,
sendo também consideradas uma das arquiteturas mais versáteis quanto aplicabilidade
(SILVA et al., 2010):

• Aproximação universal de funções.

• Reconhecimento de padrões.

• Identificação e controle de processos.

• Previsão de séries temporais.

• Otimização de sistemas.

As redes MLP são redes de treinamento supervisionado. Para o seu treinamento é
necessário utilizar um algoritmo que permita estabelecer um conjunto de pesos ótimos
para a rede. O que torna o treinamento da MLP complexo é a existência de pelo menos
uma camada intermediária, pois, com a inclusão dessas camadas, não se conhece o erro
necessário para realizar o reajuste dos pesos. Sendo assim, para o treinamento dessas
redes é utilizado o backpropagation, que resolve este problema realizando uma propagação
recursiva dos erros.

De acordo com Valença (2009), o backpropagation é realizado em dois passos: no
primeiro passo os sinais são propagados da camada de entrada para a camada de saída
(sentido progressivo), calculando-se o sinal de saída e o erro, sem alterar os pesos; no

http://www.scielo.br/img/revistas/ca/v21n4/a03fig17.gif
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Figura 14 – Arquitetura da rede MLP
[Fonte: Reproduzido de Leite (2012)]

segundo passo, os erros são propagados da camada de saída para a entrada (recursivamente)
e o pesos são ajustados.

Algoritmo Backpropagation

O algoritmo backpropagation é um algoritmo supervisionado que utiliza pares
(entrada, saída desejada) para ajustar os pesos da rede. O treinamento ocorre em duas
fases, onde em cada fase percorre a rede em um sentido. Estas fases são chamadas de
forward e backward. A primeira fase, forward, é utilizada para calcular a saída da rede,
enquanto a segunda fase, backward, atualiza os pesos das conexões da rede (LUDERMIR
et al., 2007). A Figura 15 ilustra o sentido em que as duas fases atuam na rede.

Figura 15 – Fases do algoritmo Backpropagation
[Fonte: Reproduzido de Ludermir et al. (2007)]

Fase Forward

A primeira fase do algoritmo corresponde a propagação do sinal da camada de
entrada para a camada de saída e com o cálculo do erro na saída, que será utilizado para
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ajustar os pesos. A equação 2.3 mostra como é calculado o valor do sinal de cada neurônio
na camada de saída:

y2
i = f 2.(net2i ) (2.3)

Temos:

• y2
i - representa o valor do sinal do neurônio i da camada 2, camada de saída para
uma rede com uma camada escondida;

• f 2 - função de ativação da camada 2 ;

• net2i - valor do sinal recebido pelo neurônio i da camada 2.

A equação 2.4 mostra como é calculado o erro para cada neurônio na saída:

ei(n) = (di − y2
i ) (2.4)

Onde ei(n) é o valor do erro do neurônio i da camada de saída, para o exemplo n; di é o
valor desejado para o neurônio i e y2

i é o valor calculado no neurônio i da camada 2.

Fase Backward

Nesta fase os valores dos pesos da rede são ajustados levando em consideração o
erro calculado na fase anterior. Esse ajuste nos pesos é realizado de acordo com a equação
2.5:

wm
ij (novo) = wm

ij (antigo) + αδm
i f

m−1(netm−1
j ) (2.5)

Onde wm
ij representa os pesos das conexões entre os neurônios, com i representando

o neurônio que emite o sinal e j o neurônio que recebe o sinal; α é a tacha de aprendizagem
e δm

i é a sensibilidade do neurônio.

Para o cálculo da sensibilidade é preciso levar em conta duas situações: quando o
neurônio de índice j está na camada de saída, equação 2.6, e quando não está, equação 2.7.

δ2
i = f 2′(net2i ).ei(n) (2.6)

δm−1
j = fm−1′(netm−1

j )
N∑

i=1
wm

ij δ
m
i (2.7)

Através da equação 2.7 pode-se concluir que o valor da sensibilidade é calculado
recursivamente da última para a primeira camada. Nesta equação fm−1′(netm−1

j ) representa
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a derivada da função de ativação da camada que emite o sinal, o índice i representa o número
do neurônios da camada que recebe o sinal, ou seja, da camada que está imediatamente a
frente e tem N neurônios e sensibilidade δm

i (PAZ, 2014).

2.2.3 Radial Basis Function

As redes conhecidas como RBF (Radial Basis Function), podem ser empregadas em
quase todos os tipos de problemas tratados pela MLP, inclusive aproximação de funções e
reconhecimento de padrões (SILVA et al., 2010). Mas, diferentemente da MLP que pode
ser composta de diversas camadas intermediárias, a estrutura típica de uma RBF possui
apenas uma, cujas funções de ativação são do tipo gaussiana, como pode ser observado
na Figura 16. De acordo com Ludermir et al. (2007), a utilização deste tipo função - de
base radial - na camada intermediaria é que dá o nome à rede, enquanto que na rede MLP
utiliza-se na camada intermediária, geralmente a função sigmoidal.

Figura 16 – Estrutura da rede RBF
[Fonte: Reproduzido de Coelho, Santos e Jr (2008)]

Cada camada da rede RBF tem um papel específico para o correto comportamento
da rede. A primeira camada representa as entradas (os sinais) recebidas pela rede. A
segunda camada, cujos neurônios tem função de base radial, agrupa os dados de entrada
em clusters, transformando o conjunto de entradas não linearmente separáveis em um
conjunto de saídas linearmente separáveis. A camada de saída procura classificar os padrões
recebidos da camada anterior.

Funções de base radial
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Segundo Aliaga (2010), funções de base radial são uma classe de funções em que a
sua resposta decresce, ou cresce, monotonicamente com o distanciamento de um ponto
central. As funções mais utilizadas são:

• Funções Gaussianas:
φi(x) = exp(−||xj − µi||2

2σ2
i

) (2.8)

• Funções Multi-Quadráticas:

φi(x) =
√
||xj − µi||2 + 2σ2

i (2.9)

• Funções Multi-Quadráticas Inversas:

φi(x) = 1√
||xj − µi||2 + 2σ2

i

(2.10)

• Função de base Lâmina Spline fina:

φi(x) = ||xj − µi||
σ2

i

log
||xj − µi||

σi

(2.11)

Temos: xj são as entrada da rede e µi e σi são respectivamente o centro e a largura
da i-ésima função.

Treinamento da rede RBF

O treinamento na rede RBF é efetivado de forma supervisionada e é divido em dois
estágios distintos: o primeiro é associado aos ajustes dos pesos dos neurônios da camada
intermediária e depende apenas das características dos dados de entrada; já o segundo
é associado ao ajuste dos pesos dos neurônios da camada de saída. Outra característica
importante do treinamento dessas redes é que esse tem início na camada intermediária e
se encerra na camada de saída (SILVA et al., 2010).

Primeira fase

Esta etapa geralmente é realizada de forma não supervisionada, e como dito
anteriormente tem efeito sobre a camada escondida. O objetivo é ajustar os parâmetros da
função radial (ALIAGA, 2010). Os parâmetros a serem ajustados são:

• Centros (µi): existem duas forma de escolher os centros. A primeira forma é dis-
tribuir de forma randômica, e a segunda forma é aplicar algum algoritmo de pré-
processamento, como por exemplo Mínimos Quadrados Ortogonais e o K-means.

• Largura (σi): geralmente a escolha deste valor é realizada de forma empírica e com
ajuda de heurísticas, como por exemplo atribuir para cada unidade um valor de
largura diferente e cálculo da média do seu centro até o centro da unidade mais
próxima.
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Segunda fase

Como a camada escondida transforma o conjunto de entradas não linearmente
separáveis em um conjunto de saídas linearmente separáveis, o ajuste dos pesos da camada
de saída reduz-se a um problema linear. De acordo com (PAZ, 2014), Nesta segunda etapa
do treinamento, os pesos que ligam a camada escondida à camada de saída da rede são
ajustados através de um combinador linear que atua na camada de saída para que as
ativações das funções de base radial gerem uma saída linear, aos moldes dos dados de
entrada.

2.2.4 Support Vector Machine

A SVM é uma técnica de aprendizagem de máquina que se baseia no aprendizado
estatístico. Esta técnica busca minimizar o erro com relação ao conjunto de treinamento
(Risco Empírico), juntamente com o erro com relação ao conjunto de teste. A motivação
para esse princípio surgiu da necessidade de desenvolver limites teóricos para a capacidade
de generalização dos sistemas de aprendizagem (ANDREOLA, 2009). O objetivo da SVM
consiste em encontrar um hiperplano ótimo que possua a maior margem de diferenciação
entre as classes, a fim de obter um equilíbrio entre ambos os erros citados anteriormente, e
minimizando o excesso de ajustes, melhorando a capacidade de generalização. Inicialmente
foi desenvolvida como um método de separação linear, mas é possível estendê-la de forma
a separar classes que são não lineares, a ideia principal é transportar os dados para um
espaço de dimensão maior no qual eles possam ser separados linearmente (LEITE, 2012).

A função de decisão que maximiza a habilidade de generalização é determinada
pelo problema de duas classes, assumindo que as amostras de treinamento das diferentes
classes são linearmente separáveis. A função de decisão mais adequada é aquela para a
qual a distância entre os conjuntos das amostras de treinamento é maximizada, como pode
ser visto na Figura 17. A função de decisão que maximiza esta separação é denominada de
ótima.

Figura 17 – Hiperplano ótimo separando os dados com a máxima margem ρ

[Fonte: Reproduzido de Andreola (2009)]
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Para tratar dos casos não-linearmente separáveis, se introduz a variável de folga
(slack variable) ξi( >= 0), ver Figura 18. As amostras de treinamento xI , para as quais
0 <ξi<1, são corretamente classificados, embora sem a margem de separação máxima.
Por outro lado, as amostras de treinamento xI , para as quais ξi>=1, são erroneamente
classificadas pelo hiperplano ótimo.

Figura 18 – Exemplos de valores e situações da variável de folga ξ.
[Fonte: Reproduzido de Andreola (2009)]

Outra característica presente na SVM quando trata problemas não linearmente
separáveis é a Função de Kernel. As funções de kernel têm a finalidade de projetar os
vetores de características de entrada em um espaço de características de alta dimensão
para classificação de problemas que se encontram em espaços não linearmente separáveis
(JUNIOR, 2010).

A Figura 19 mostra o processo de transformação de um domínio não linearmente
separável, em um problema linearmente separável através do aumento da dimensão, onde
é feito um mapeamento por uma função de kernel F (x).

Figura 19 – Transformação de um problema não linearmente separável em
um problema linearmente separável

[Fonte: Reproduzido de Junior (2010)]

De acordo com Rodrigues et al. (2007) uma das grandes vantagens da SVM é seu
alto poder de generalização. Isto ocorre pois a complexidade da hipótese não depende do



Capítulo 2. Fundamentação Teórica 24

número de atributos, mas sim da margem com que eles separam os dados.

Teoria da Aprendizagem

A Teoria da Aprendizagem Estatística no contexto de SVM, tem o objetivo de
controlar a habilidade de generalização da técnica. Existem diversas teorias de aprendizagem
que podem ser aplicadas. A técnica SVM é derivada dos princípios básicos descritos na
teoria de Vapnik e Chervonenkis (VC). A teoria VC é a mais apropriada para descrever
SVM.

Segundo Santos (2002), para uma tarefa de aprendizagem com uma quantidade
de dados de treinamento finita, o melhor desempenho de generalização ocorre quando
é atingido um equilíbrio entre a precisão alcançada em um conjunto de treinamento
particular e a capacidade do sistema.
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3 Métodologia

Este capítulo apresenta os passos que foram executados para atingir os objetivos
definidos no capítulo 1, e como será aplicada a teoria apresentada no capítulo anterior
para a realização do estudo proposto neste trabalho.

3.1 Base de Dados
A base de dados utilizada no desenvolvimento deste trabalho correspondem às

medições feitas em um parque eólico. Por se tratarem de informações importantes, o nome
do parque eólico, de onde foram coletados os valores das potências, será omitido e um
codinome será utilizado.

Os valores das potências eólicas presentes na base de dados foram medidos em
intervalos de 30 minutos pra cada 24 horas, totalizando num total de 48 valores de potências
por dia. Como foi definido na seção 1.2, este trabalho busca uma previsão em intervalos de
trinta minutos, três horas à frente. Tem-se para cada dia além dos 48 valores de potências
medidos ao longo do dia, mais 6 valores correspondentes às três horas da previsão realizada.
Assim, na base de dados do Parque I, para cada dia tem-se 54 valores de potência (48
entradas e 6 saídas). A base de dados contém observações feitas durante 6966 dias.

3.2 Processamento dos Dados

3.2.1 Normalização dos Dados

Antes de submeter os dados às redes neurais para realizar os testes, é necessário
normalizá-los, isto é, deixar todos dentro de um mesmo intervalo. A normalização faz
com que todas as entradas tenham a mesma relevância para o treinamento, ou seja, as
variáveis, mesmo que tenham ordens de grandeza diferentes, terão a mesma relevância nos
experimentos. Outro efeito da normalização é deixar os dados dentro dos limites da função
de ativação (VALENÇA, 2005).

O intervalo utilizado na normalização depende da função de ativação da camada
de saída. Por exemplo, caso função de ativação seja a função sigmoide logística, os valores
tem que ser limitados entre 0 e 1, logo seus valores devem ser normalizados entre 0,10 e
0,90 ou entre 0,15 e 0,85. Caso a função de ativação seja a tangente hiperbólica os valores
são normalizados entre -0,90 e 0,90 ou entre -0,85 e 0,85. Na normalização os dados não
devem ser re-escalados nos extremos da função, pois algumas funções quando trabalham
com valores que estão em seus extremos se aproximam de zero.
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De acordo com Valença (2005), os tipos de normalização mais frequentemente
utilizados são:

• transformação linear:
y = (b− a)(xi − xmin)

xmax − xmin

+ a (3.1)

• normalização estatística:
y = xi − x

s
(3.2)

• normalização simples:
y = xi

xmax

(3.3)

Temos: y é o valor normalizado; xi é o valor original; xmax é o valor máximo da
variável; xmin é o valor mínimo da variável; x é o valor médio da variável e s o desvio
padrão.

Para a base de dados do Parque I utilizada nos experimentos deste trabalho foram
utilizados os limites [-0,85 e 0,85], logo assume-se o uso da função tangente hiperbólica,
para normalizar os dados utilizando a transformação linear.

3.2.2 Defasagem dos Dados

A previsão é realizada utilizando valores medidos em instantes de tempo anteriores
ao atual. Assim, após a normalização deve-se realizar a defasagem dos dados de potência
eólica, para que assim se tenha como entradas da rede os dados em um instante de tempo
anterior ao do dado atual.

A defasagem constitui um processo que torna um dado medido em uma época t,
ocupando uma posição i do vetor de dados, presente na época t− 1, ocupando a posição
i+ 1 do vetor. A tabela 1 mostra como foi realizada a defasagem dos valores presentes na
base de dados do Parque I.

Tabela 1 – Representação de defasagem dos valores presentes na base de dados
do Parque I

t 5 4 3 2 1 0
t-1 4 3 2 1 0
t-2 3 2 1 0
t-3 2 1 0
t-4 1 0
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3.3 Arquiteturas de Redes Neurais na Previsão de Potência Eólica

3.3.1 Multi-Layer Perceptron

Para a configuração das diversas arquiteturas de RNAs utilizadas nos experimentos
propostos neste trabalho foi utilizado o software Weka (WEKA, 2008).

O primeiro tipo de RNA utilizado nos experimentos foi a MLP. Para a confi-
guração dos parâmetros da MLP utilizou-se o Weka 3.7.8 através do módulo Explorer
(BOUCKAERT et al., 2008), na aba Classify, selecionando a rede neural MLP na opção
Functions.

Após selecionar a MLP, foi necessário configurar alguns parâmetros para a correta
execução dos testes:

• learningRate - taxa de aprendizagem, foi configurada com o valor 0,3;

• seed - semente, inicial configurada com o valor 1, mas é preciso alterar o seu valor
antes de cada simulação, caso contrário, todas as simulações vão apresentar os mesmo
resultados;

• validationSetSize - define a porcentagem dos dados submetidos ao treinamento, e a
porcentagem que será utilizada na validação cruzada.

Como foi definido nos objetivos, durante os experimentos ocorreram variações no
horizonte de entrada. Primeiro foram feitas 30 simulações com 6 entradas. Como os valores
presentes na base de dados foram medidos em intervalos de 30 minutos, este horizonte
totaliza 3 horas, ou seja, com essa configuração foram usados os dados de 3 horas para
prever as próximas 3 horas.

Após as simulações com 6 entradas foram feitas 30 simulações com 12 entradas, ou
seja, utilizou-se valores de potências medidas durante 6 horas para prever as próximas 3
horas.

Em seguida, foi utilizado um horizonte de 24 entradas, ou seja, 12 horas. Após as
simulações com 24 entradas foram realizadas simulações com 48 entradas. É importante
lembrar que o valor da semente era alterado antes de cada simulação, e voltava a ser 1
quando era alterado o horizonte de entrada.

O software utilizado nos experimentos gerou os seguintes resultados:

• Correlation coefficient

• Mean absolute error - EMA

• Root mean squared error - REMQ
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• Relative absolute error - ERA

• Root relative squared error - RERQ

Para os objetivos proposto neste trabalho o valor de interesse entre os valores
gerados nas simulações é a REMQ, logo para cada simulação será salvo este valor. Na
seção 3.3.4 é mostrado como calcular o valor da REMQ.

3.3.2 Radial Basis Function

Após executar os testes com a rede MLP, o passo seguinte foi realizar os experimen-
tos com a rede RBF. Antes foi necessário configurá-la, com o auxílio da mesma ferramenta
utilizada para os testes com MLP, Weka 3.7.8.

Para configurar a rede RBF na ferramenta utilizada é preciso seguir os mesmos
passos que foram seguidos para a outra rede, e na opção Functions selecionar RBFNetwork.
Os parâmetros configuráveis da rede RBF na ferramenta utilizada são:

• clusteringSeed - Valor da semente: inicialmente seu valor é foi definido em 1. Assim
como na MLP esse valor deve ser alterado antes de cada iteração;

• numCluster - define o número de clusters nos quais os dados da entrada serão
divididos. Seu valor foi definido em 30.

Antes da definição dos valores destes parâmetros foram realizados testes alterando
seus valores. Nesses testes verificou-se que quanto maior o número de clusters, menos as
taxas de erro das simulações se repetiam. Logo, como seriam realizadas 30 simulações o
número de clusters foi definido em 30.

Para os testes com a rede RBF, a variação de entradas foi a mesma que ocorreu
com a MLP. Primeiro foi utilizada uma arquitetura com 6 entradas e foram executadas 30
simulações, sempre alterando, antes da execução de cada uma, o valor da semente. Para
cada execução foi salvo o valor da REMQ. Após executar as 30 simulações a arquitetura da
rede foi alterada para 12 variáveis de entrada. O mesmo processo foi executado, ao final das
simulações a arquitetura foi alterada para 24 entradas. Os mesmos testes foram executados,
e após 30 simulações utilizou-se 48 entradas e os mesmos passos foram executados.

A ferramenta apresenta após cada simulação os mesmos resultados que apresentou
para MLP. Para os objetivos deste trabalho os valores a serem salvos foram as REMQs.

3.3.3 Support Vector Machine

Após os testes com RBF foram realizados testes com SVM. Para sua configuração
foi utilizada a mesma ferramenta que foi utilizada nas outras redes.
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Para configurar a rede SVM acessamos a opção Functions e selecionamos LibSVM.
Antes realizar os testes foi necessário configurar alguns parâmetros:

• SVMType - define o tipo de SVM a ser usado: para este trabalho foi escolhido o tipo
nu-SVR

• kernelType - define o tipo de função que será usado: para este trabalho foi se
selecionada a função radial basis function;

• seed -define o valor da semente: inicialmente foi configurada com o valor 1.

Para definir os valores dos parâmetros, foram realizados testes com diversos valores
aplicados nesses parâmetros.

O SVMType foi configurado com nu-SVR pois apresentou resultados mais satisfa-
tórios do que o epsilon-SVR. O kernelType foi configurado com a função RBF por causo
do baixo número de parâmetros (dois) que influenciam o resultado do aprendizado. No
kernel polinomial são usados mais parâmetros que o RBF: C (custo), γ (gamma) e o grau
(degree). Se C assumisse 11 valores, γ assumisse 10 no kernel RBF, seria uma combinação
de 110 valores, adicionando-se o grau e atribuindo-lhe 5 valores, a combinação iria para
550, aumentando consideravelmente o desempenho e complexidade do classificador. Os
valores destes parâmetro são definidos pela ferramenta (JUNIOR, 2010).

O procedimento para os experimentos é igual ao realizado com as outras redes.
Primeiro realizou-se os testes com 6 variáveis de entrada. Foram feitas 30 simulações
salvando para cada uma o valor da REMQ. Terminados os testes com 6 variáveis, foram
realizados testes com 12 variáveis, salvando para estas simulações o valor da REMQ. Os
mesmos passos foram executados com 24 e 48 variáveis de entrada.

Após realizar todas as simulações com RNAs, foram realizados testes estatísticos
com os valores de REMQ gerados. Este teste é descrito na seção 3.4. Porém, antes é
necessário mostrar o procedimento utilizado parar os testes.

3.3.4 Validação Cruzada

Segundo Valença (2009) durante o treinamento um fator importante é o critério
utilizado para encerrá-lo. Alguns estudos utilizam critérios como número máximo de ciclos
ou erro mínimo. Mas em algumas aplicações esses critérios não são satisfatórios pois não
levam em conta o processo iterativo.

Escolher o critério de parada adequado é importante para evitar dois problemas
que podem ocorrer durante o treinamento: underfitting e overfitting.
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O underfitting acontece quando o treinamento é parado precocemente, assim a rede
com baixa capacidade de generalização. Seria como se um botânico classificasse qualquer
objeto como árvore apenas por ser verde.

Já o overfitting ocorre quando a rede é treinada em excesso, o que a deixa supera-
justada. Com isso a rede passa a memorizar perdendo sua capacidade de generalização.
Voltando ao exemplo do botânico, seria como se ele classificasse uma árvore como não
sendo uma árvore apenas por ter menos folhas que os exemplos vistos anteriormente.

A validação cruzada utiliza um conjunto de dados (normalmente 25% da amostra)
para informar quando devemos para o treinamento. Esses dados são utilizados para
calcular a função erro utilizada para interromper o treinamento quando esta atingir seu
valor mínimo ou de um ciclo para o outro seu valor ficar em estacionário dentro de uma
dada precisão.

A validação cruzada é realizada da seguinte forma:

• Apresenta-se a rede neural o conjunto de treinamento utilizado para ajustar os pesos.
Quando se conclui a apresentação de todos os exemplos diz-se que se completou um
ciclo.

• A cada ciclo após o reajuste dos pesos, o treinamento é parado e o conjunto de
validação cruzada é apresentado para que se possa calcular o erro.

• O processo é repetido a cada ciclo de modo que se possa traçar um gráfico onde se
coloca na horizontal o número de ciclos e na vertical o valor do erro.

• O treinamento é interrompido quando o valor do erro, para o conjunto de validação
cruzada, após atingir seu valor mínimo, começa a crescer ou quando o valor do erro
de um ciclo para o outro ficar estacionário dentro de uma dada precisão.

A função mais comum de ser utilizada é a função de error médio quadrático:

EMQ = 1
N

N∑
p=o=1

(Zp − Zo)2 (3.4)

Mas nos experimentos realizados neste trabalho foi utilizado o valor da raiz do erro
médio quadrático (REMQ), que mede a amplitude do erro:

REMQ =

√√√√ 1
N

N∑
p=o=1

(Zp − Zo)2 (3.5)

Nas equações 3.4 e 3.5 temos os seguintes parâmetros:

• N - número de valores previstos;
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• Zp - valor previsto;

• Zo - valor ocorrido.

3.4 Testes Estatísticos
Após 30 simulações com cada configuração de rede neural, foram realizados testes

estatísticos para verificar qual método apresenta o melhor desempenho na previsão de
potência eólica ou os resultados podem ser considerados estatisticamente iguais. Para
realização dos teste utilizou-se o software matemático R, que contém as implementações dos
testes utilizados neste trabalho. Este software utiliza como padrão um nível de significância
(α) previamente definido com o valor 0,05.

Entre os teste disponíveis na literatura se encontram os testes T-Student e Wilcoxon.
Antes de aplicar o T-Student é necessário aplicar o teste de Shapiro-Wilk que analisa se os
dados são normalmente distribuídos. Após aplicar o teste Shapiro-Wilk, é aplicado o Teste
F, para verificar se a variância é originada da mesma população. Caso os dados passem
nos dois testes é aplicado então o T-Student. Caso eles não passem é aplicado o teste não
paramétrico das Somas dos Postos de Wilcoxon.

3.4.1 Teste de Shapiro-Wilk

Este teste tem o objetivo de verificar se as amostras são normalmente distribuídas e
se possuem variância estatisticamente iguais. Se essas premissas forem verdadeiras, pode-se
aplicar um teste paramétrico, caso contrário, um teste não paramétrico deve ser aplicado.

Assim, antes de executar esse teste é necessário formular duas hipóteses:

• Hipótese nula: as amostras são normalmente distribuídas.

• Hipótese alternativa: as amostras não são normalmente distribuídas.

Após executar o teste para cada modelo, deve-se analisar o p-value e compará-lo
com o nível de significância. Caso o p-value seja menor que α a hipótese nula é rejeitada e
a amostra não é considerada normalmente distribuída.

3.4.2 Teste F

Após o teste de Shapiro-Wilk, deve-se aplicar o Teste F, que tem o objetivo de
verificar os dados de dois conjuntos são originados da mesma população.

Antes de aplicar o teste é preciso formular duas hipóteses:



Capítulo 3. Métodologia 32

• Hipótese nula: as amostras possuem variâncias estatisticamente iguais.

• Hipótese alternativa: as amostras não possuem variâncias estatisticamente iguais.

Após executar o teste, o valor do p-value é analisado. Se for menor que o nível de
significância, a hipótese nula é rejeitada.

3.4.3 Teste t-Student

O T-Student é um teste paramétrico. Assim, para que seja aplicado é necessário
que os modelos a serem testados sejam normalmente distribuídos e possuam variâncias
estatisticamente iguais.

Assim como nos outros testes, antes de aplicar o T-Student é necessário formular
as hipóteses nula e alternativa:

• Hipótese nula: as médias das amostras são estatisticamente iguais.

• Hipótese alternativa: as médias das amostras não são estatisticamente iguais.

Para determinar qual das hipóteses é a verdadeira compara-se o p-value com o
nível de significância. Caso o p-value seja menor a hipótese nula é rejeitada e o moledo
com maior média é considerado melhor.

3.4.4 Teste das Somas dos Postos de Wilcoxon

O teste de Wicoxon é um teste não paramétrico utilizado para análise de dados
os valores não são normalmente distribuídos ou não possuem variâncias estatisticamente
iguais. Esse teste faz sua análise baseado na mediana de cada uma das amostras analisadas.

Este teste apresenta duas hipóteses:

• Hipótese nula: os modelos comparados tem distribuição simétrica.

• Hipótese alternativa: há uma diferença significativa entre os modelos analisados.

Para definir qual das hipóteses é a verdadeira usa-se como referência a variável p-
value. Antes de executar os testes deve-se definir um nível de significância, neste trabalho foi
adotado o valor 0,05. Após executar o teste compara-se o p-value com nível de significância,
se o p-value for maior quer dizer que a hipótese nula é a verdadeira, caso contrário é a
hipótese alternativa.
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4 Resultados

Este capítulo apresenta os resultados obtidos após a aplicação de todos os passos
descritos no capítulo anterior.

Para a configuração das arquiteturas utilizadas neste trabalho foi utilizado o
software Weka 3.7.8, através do módulo Explorer. Foram utilizados como valores iniciais
dos parâmetros, das 3 três arquiteturas, aqueles definidos nas seções 3.3.1, 3.3.2 e 3.3.3.

Foram executadas 30 simulações para cada configuração (tipo de RNA e quantidade
de entradas) para realizar previsões a cada intervalo de 30 minutos totalizando três horas
à frente. De cada simulação foi salvo o valor da raiz do erro médio quadrático (REMQ), a
fim de submetê-los aos testes estatístico citados anteriormente.

As próximas seções apresentam os resultados dessas simulações e as aplicações dos
testes estatísticos.

4.1 Comparativos e Testes estatísticos entre MLP, RBF e SVM

4.1.1 Comparação da Raiz do Erro Médio Quadrático

Esta seção apresenta os valores das REMQs geradas a partir das simulações, isto
não define a rede mais adequada. A rede mais adequada só será definida com a aplicação
dos testes estatísticos, apresentado na seção 3.4.

Os valores de REMQ gerados a partir das simulações com 6 valores podem ser
vistos na Figura 20. Nela pode-se observar que a rede MLP apresentou valores maiores de
REMQ, assim a variação deste valor foi maior para esta rede. Já as redes RBF e SVM,
apresentaram valores muito semelhantes. A rede RBF apresentou pouca variação, enquanto
o modelo SVM não apresentou variação alguma no valor da REMQ.

As simulações feitas com 12 valores de entradas tem seus valores de REMQ
apresentados na Figura 21. A partir deste gráfico percebe-se um comportamento semelhante
ao das simulações com 6 valores. A MLP apresentou maior variação e valores maiores
da REMQ. No caso das redes RBF e SVM apresentaram valores próximos, com a RBF
variando muito pouco e a SVM apresentando valor constante, porém, menor que as outras
redes.

Analisando a Figura 22 podemos observar uma pequena mudança nos valores de
REMQ das simulações com 24 valores em relação as simulações comentadas anteriormente.
A MLP apresentou as mesmas características das configurações anteriores: maior variação
no valor da REMQ e maior dessa taxa de erro. A mudança em relação às Figuras 20 e 21
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Figura 20 – Comparação da Raiz do EMQ com 6 valores

Figura 21 – Comparação da Raiz do EMQ com 12 valores
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está no comportamento das redes RBF e SVM. Elas apresentaram valores distintos, com a
primeira apresentando pouco variação e a segunda valor constante e menor em relação aos
valores de REMQ apresentados pelas outras redes.

Figura 22 – Comparação da Raiz do EMQ com 24 valores

Por fim, as simulações com 48 entradas tem seus valores de REMQ apresentados
na Figura 23. Nesta configuração a rede RBF apresentou os valores maiores de REMQ.
A MLP apresentou uma variação em relação à sua utilização em outras configurações. A
rede SVM apresentou novamente valor constante, porém menor que as outras redes.

Figura 23 – Comparação da Raiz do EMQ com 48 valores
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4.1.2 Testes Estatísticos

Após aplicação do teste de Shapiro-Wilk e Teste F, verificou-se que não poderia ser
aplicado o teste T-Student, pois as amostras - resultantes dos testes com os 4 horizontes
de entrada - não passaram nos dois primeiros. Desse modo para a análise dos resultado foi
utilizado o teste não paramétrico de Wilcoxon.

4.1.2.1 Arquiteturas com 6 valores de entrada

O resultado das simulações com 6 valores de entradas é apresentado na Tabela 2.
Nela podemos ver a raiz do EMQ para as 30 simulações de cada topologia.

Tabela 2 – Representação da média das taxas de erro após 30 simulações com
cada arquitetura utilizando 6 variáveis.

Topologia da rede neural Raiz do EMQ (30 simulações)
MLP 0,393156667
RBF 0,353256111
SVM 0,351583333

A partir dos resultados das simulações foi aplicado o teste da Soma dos Postos de
Wilcoxon. Para cada conjunto REMQs, obtidos a partir das simulações com as arquitetura
MLP, RBF e SVM, foi realizado o teste não-paramétrico de Wilcoxon, para verificar se
os modelos são estatisticamente distintos. Este teste foi aplicado utilizando o software R,
com o nível de significância estabelecido em 0,05. A Tabela 3 mostra os resultados destes
testes.

Tabela 3 – Resultados do teste da Soma dos Postos de Wilcoxon para 6 valores
de entrada.

RNAs testadas p-value
MLPxRBF 0,464
MLPxSVM 4,574x10−12
SVMxRBF 4,552x10−12

A partir da Tabela 3 pode-se concluir da comparação entre MLP e RBF, que ambas
são estatisticamente iguais pois o p-value foi maior que o nível de significância (0,05), logo,
pelo teste de Wilcoxon pode-se utilizar qualquer uma das duas.

Por outro lado, a comparação entre MLP e SVM resultou em um p-value menor
que o nível de significância. O que nos leva a escolher o modelo que apresentou menor
taxa de erro, logo, a opção mais adequada é a rede SVM que apresentou REMQ no valor
de 0,351583333.
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Para a comparação entre SVM e RBF ocorre o mesmo, o p-value calculado foi
menor que 0,05 e a rede SVM apresenta a menor taxa de erro, sendo escolhida a mais
adequada para previsão com 6 valores.

4.1.2.2 Arquiteturas com 12 valores de entrada

Na Tabela 4 podemos ver as REMQs resultantes das 30 simulações com 12 valores
de entradas para cada topologia.

Tabela 4 – Representação da média das taxas de erro após 30 simulações com
cada arquitetura utilizando 12 variáveis.

Topologia da rede neural Raiz do EMQ (30 simulações)
MLP 0,387228889
RBF 0,351083333
SVM 0,348683333

Assim como foi feito com os resultados das simulações com 6 valores, os resultados
das simulações com 12 valores foram utilizados para a aplicação de teste de Wilcoxon e
assim determinar se os modelos são estatisticamente distintos. Os resultados do teste de
Wilcoxon são mostrados na Tabela 5.

Tabela 5 – Resultados do teste da Soma dos Postos de Wilcoxon para 12 va-
lores de entrada.

RNAs testadas p-value
MLPxRBF 0,4731
MLPxSVM 4,574x10−12
SVMxRBF 4,563x10−12

A partir da Tabela 5 concluímos que as redes MLP e RBF são estatisticamente
iguais. Já na comparação de ambas com a SVM concluímos que esta é mais adequada
do que as outras pois no teste da SVM com a MLP e RBF o p-value foi menor que 0,05,
permitindo escolher a SVM por apresentar menor taxa de erro.

4.1.2.3 Arquiteturas com 24 valores de entrada

O mesmo procedimento realizado nas arquiteturas com 6 e 12 valores de entrada foi
realizado para a arquitetura com 24 entradas. Os resultados das 30 simulações, mostrados
na Tabela 6, foram utilizados para a aplicação do teste de Wilcoxon, onde os resultados
deste último teste são apresentados na Tabela 7.

Com o auxílio das tabelas 6 e 7 concluímos que a rede SVM é a mais adequada
para previsão de potência eólica com 24 entradas. Pois, o teste realizado com MLP e RBF
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Tabela 6 – Representação da média das taxas de erro após 30 simulações com
cada arquitetura utilizando 24 variáveis.

Topologia da rede neural Raiz do EMQ (30 simulações)
MLP 0,385669444
RBF 0,353782222
SVM 0,348083333

Tabela 7 – Resultados do teste da Soma dos Postos de Wilcoxon para 24 va-
lores de entrada.

RNAs testadas p-value
MLPxRBF 0,569
MLPxSVM 4,574x10−12
SVMxRBF 4,563x10−12

resultou em um p-value maior que o nível de significância definido em 0,05,sendo essas
duas RNAs estatisticamente iguais. Já nos testes realizados comparando SVM com MLP e
RBF, o p-value encontrado foi menor que 0,05, sendo a opção mais adequada aquela que
apresenta a menor taxa de erro, logo, SVM.

4.1.2.4 Arquiteturas com 48 valores de entrada

Por fim, na arquitetura com 48 valores foram realizados os mesmos procedimentos
que nas outras arquiteturas, executando-se 30 simulações com cada topologia, guardando
sempre o valor da REMQ, os resultados são mostrados na Tabela 8. Em seguida, foi
aplicado o teste de Wilcoxon a fim de encontrar a topologia mais adequada a previsão
com 48 valores, o resultado desse teste é mostrado na Tabela 9.

Tabela 8 – Representação da média das taxas de erro após 30 simulações com
cada arquitetura utilizando 48 variáveis.

Topologia da rede neural Raiz do EMQ (30 simulações)
MLP 0,254461111
RBF 0,31354
SVM 0,22535

Tabela 9 – Resultados do teste da Soma dos Postos de Wilcoxon para 48 va-
lores de entrada.

RNAs testadas p-value
MLPxRBF 0,2704
MLPxSVM 4,574x10−12
SVMxRBF 4,534x10−12
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Assim como nas outras arquiteturas a rede SVM foi determinada como a mais
adequada para a previsão utilizando 48 entradas. Pois, o teste de Wilcoxon para MLP e
RBF resultou em um p-value maior que o nível de significância, e o teste entre SVM as
outras duas redes resultou em um p-value menor que 0,05. Sendo assim, a rede escolhida
como a mais adequada é aquela que apresentar a menor taxa de erro. Como podemos ver
na Tabela 8 essa rede é a SVM.

Após encontrar a rede mais adequada para cada horizonte de entrada, é preciso
determinar a mais adequada entre elas para a previsão de potência eólica.

A Tabela 10 mostra as taxas de erro para cada rede determinada como a mais
adequada para cada horizonte.

Tabela 10 – Representação das taxas de erro de cada rede escolhida como mais
adequada para horizonte de entrada.

Horizonte RNA REMQ
6 entradas SVM 0,351583
12 entradas SVM 0,348683333
24 entradas SVM 0,348083333
48 entradas SVM 0,22535

Observando a Tabela 10 podemos notar que a rede SVM com 48 entradas apresentou
menor taxa de erro. Para determinar qual das redes presentes nesta tabela é a mais
adequada, seria necessário aplicar testes estatísticos. No entanto, como pode ser visto na
seção 4.1.1, a rede SVM não apresenta variação na taxa, para as 30 simulações de cada
horizonte. Não sendo possível aplicar tais testes.

Sendo assim, conclui-se que as quatro configurações de SVM são estatisticamente
iguais, pois apresentaram taxas de erro semelhantes durantes os experimentos realizados.
Assim, qualquer uma delas pode ser utilizada para previsão de potência eólica, pois
apresentarão resultados semelhantes quando realizarem as previsões.
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5 Considerações Finais

5.1 Conclusões
Este trabalho teve como objetivo selecionar a arquitetura de rede neural mais

adequada à previsão de potência eólica três horas à frente. As redes neurais utilizadas para
realizar a previsão foram MLP, RBF e SVM. Nos experimentos realizados as configurações
das redes variaram em relação à quantidade de valores de entrada. Assim foram utilizadas
para cada topologia arquiteturas com 6. 12, 24 e 48 valores de entrada.

Foram utilizadas os módulos de redes neurais disponíveis no Weka 3.7.8. De posse
das ferramentas e do dados foram realizados várias simulações com as configurações de
cada definidas anteriormente. Para cada simulação foi salvo o valor da raiz do erro médio
quadrático.

Os testes estatísticos realizados permitiram analisar o desempenho das topologias
utilizadas. Essa análise determinou que como os resultados foram similares as redes SVM
para as arquiteturas testadas são estatisticamente iguais. Assim, as quatro configurações
apresentam valores semelhantes para previsão de potência eólica.

5.2 Trabalhos Futuros
Após concluir os experimentos e analisar seus resultados, espera-se em outros

estudos realizar os experimentos propostos neste trabalho com cenários diferente daqueles
que foram objetos de estudo. Sendo assim, para trabalhos futuros pretende-se estudar a
previsão de potência eólica sob novas perspectivas, tais como:

• Novas topologias de redes neurais para serem comparadas àquelas que foram objetos
de estudo no trabalho atual.

• Novas ferramentas ferramentas, que sejam mais flexíveis no que diz respeito a
configuração das redes neurais, visto que a ferramenta utilizada neste trabalho
não permite por exemplo atribuir qualquer quantidade de neurônios na camada
escondida.

• Novas arquiteturas: neste trabalho utilizou-se 4 horizontes de entrada (6, 12, 24 e
48), pretende-se no futuro testar outros horizontes de entrada, assim como variar a
quantidade de neurônios presentes na camada escondida.
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• Diferentes intervalos de previsão: neste trabalho foi utilizada previsão a cada 30
minutos. Pretende-se testar outros intervalos.

• Variar o tempo a ser previsto: pretende-se estudar a previsão com alcance diferentes
do utilizado no trabalho atual que foi de 3 horas à frente.
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