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Resumo

Expressoes faciais sao uma forma natural e expressiva de
transmitir emocoes e inten¢oes humanas. Diferente do cérebro
humano, o reconhecimento destas expressoes nao é uma tarefa
trivial para um computador. Nos tltimos anos, diferentes
sistemas com base em redes de arquitetura profunda foram
propostos para resolver problemas da visao computacio-
nal, revolucionando o estado da arte. Todavia, diferentes
arquiteturas de rede apresentam diferentes caracteristicas
de aprendizado, mostrando-se mais adequadas para padroes
especificos. Este trabalho propde, entao, uma abordagem
hibrida que envolve o zoneamento da imagem de entrada,
a classificacdo das subimagens com redes especialistas, e o
reconhecimento final através de técnicas de modelagem de
sequéncias. Como estudo de caso, aplica-se o modelo proposto
ao problema de reconhecimento de expressoes faciais. A partir
dos experimentos, observa-se que o modelo fornece resultados
competitivos com o estado-da-arte, além de oferecer alternativas

para exploracao da combinacao de diferentes redes especialistas.

Palavras-chave: Reconhecimento de padroes, Expressoes Fa-
ciais, CNN, HMM, Zoneamento.



Abstract

Facial expressions are a natural and expressive way of conveying
human emotions and intentions. Unlike the human brain, recog-
nizing those expressions is not a trivial task for a computer. In
recent years, multiple deep-learning models have been proposed
to solve computer vision problems, revolutionizing the state of
the art. However, different network architectures have different
learning abilities, making them more appropriate for specific
patterns. Therefore, this study proposes a hybrid approach
involving the zoning of the input image, the classification of
the sub-images with expert networks, and a final recognition
through sequence modeling techniques. As a case study, we
apply the model to the problem of facial expression recognition.
From the experiments, it is observed that the model achieves
competitive results, while providing alternatives for exploring

the combination of different expert networks.

Keywords: Pattern recognition, Facial Expressions, CNN,
HMM, Zoning.
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1 Introducao

1.1 Qualificacdao do Problema

Expressoes faciais sdo a forma mais natural e expressiva de transmitir emocoes
e intenc¢oes humanas. Parte essencial da nossa interacao com terceiros, essa forma de
comunicagao nao-verbal tem atraido pesquisadores de diferentes campos de pesquisa, como
nos estudos psicologicos das emogoes basicas (EKMAN, 1993) e na elaboracao de técnicas
inteligentes de interagdo homem-maquina (FASEL; LUETTIN, 2003).

O cérebro humano é capaz de facilmente interpretar diferentes padrdes, permitindo-
nos a facil compreensao de expressoes faciais. Para um computador, todavia, essa é uma
tarefa nao-trivial. Diferentes técnicas de aprendizado de maquina precisam ser aplicadas,
visando capacitar a identificacdo das mesmas. Tais sistemas de aprendizado também podem
ser encontrados em diversas outras aplicagoes, como reconhecimento de voz, gestos, escrita

e outros.

A area de visdo computacional tem como objetivo a elaboragao de técnicas para
construir sistemas computacionais capazes de realizar processamento e compreensao de
informagdes visuais, tais como imagens e videos. Andlise automatica de expressoes faciais
tem sido, por sua vez, foco de diversas pesquisas nesta area (MORISHIMA; HARASHIMA,
1993; COLMENAREZ; FREY; HUANG, 1999; CHU; ROMDHANI; CHEN, 2014).

Nos ultimos anos, diferentes sistemas com base em redes de arquitetura profunda
foram propostos para resolver problemas da visao computacional, revolucionando o estado
da arte (GIRSHICK et al., 2014; KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Do
termo em inglés Deep Learning, redes profundas permitem que modelos computacionais,
compostos por diferentes camadas de processamento, aprendam representacoes de dados
com multiplas camadas de abstracao. Esses métodos sao capazes, entdao, de aprender estru-
turas intrinsecas em grandes conjuntos de dados ao ponto de melhorarem drasticamente o
estado da arte em diferentes problemas (LECUN; BENGIO; HINTON, 2015). Dentre estas
redes, destaca-se a Convolutional Neural Network (CNN), rede especificamente projetada
para o reconhecimento de padroes em imagens. Amplamente utilizada pela literatura, a
mesma ¢ aplicada em diversos problemas de reconhecimento de objetos e padroes diversos
em imagens (SZEGEDY et al., 2014; VINYALS et al., 2014)

Adicionalmente, modelos estocasticos para analise de sequéncias, como o Hidden
Markov Model (HMM), também vém sendo utilizados para a classificacao de expressoes

faciais, normalmente mapeadas como uma sequéncia temporal de movimentos faciais
(COHEN; GARG; HUANG, 2000). Tais abordagens visam explorar a capacidade de
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representacao de distribuicoes de probabilidade sobre uma determinada sequéncia de
observagoes (RABINER; JUANG, 1986), usualmente provindas da captura de diferentes
quadros em um video (COHEN; GARG; HUANG, 2000).

Considerando a alta capacidade de aprendizado para classificacao de imagens das
redes de arquitetura profunda e o alto desempenho do HMM na categorizagao de séries
estocasticas, uma nova abordagem hibrida pode ser proposta. Através da segmentagao de
diferentes pontos de interesse (e.g.: boca, nariz e olhos), problemas de reconhecimento de
padrao em imagens como a classificacao de uma expressao facial podem ser subdivididos
em problemas menores e distribuidos para diferentes redes especialistas, sendo, por fim,

reagrupados como uma sequéncia a ser modelada e analisada pelo HMM.

1.2 Objetivos

Este trabalho tem como objetivo propor uma nova abordagem hibrida para o
reconhecimento de expressoes faciais através da combinacao de classificadores estocasticos
de cadeias com técnicas do estado-da-arte de reconhecimento de padrdes em imagens
digitais. Desta forma, busca-se permitir a combina¢ao e andlise das classificacoes de

diferentes pontos de interesse da face humana de forma isolada.

1.2.1 Objetivos Especificos

e Propor a divisao de problemas de reconhecimento de padroes em imagens em
subproblemas menores, focados na andlise de caracteristicas especificas, permitindo

a aplicagao de redes neurais especializadas;

e Propor a utilizagao de algoritmos de modelagem de séries estocasticas (e.g.: HMM)

como ferramenta para classificacao global dos resultados obtidos pelas subredes;

e Analisar o desempenho do modelo proposto no problema de reconhecimento de

expressoes faciais e avaliar sua viabilidade e beneficios.

1.3 Estrutura da Monografia

Este documento esta organizado em 6 capitulos. O Capitulo 2 inicia a fundamenta-
¢ao tedrica com a apresentacao das redes neurais artificiais, com énfase na CNN, rede de
arquitetura profunda utilizada para classificacao de imagens. Em seguida, o Capitulo 3
apresenta uma introducao a classificadores de sequéncias, estudando o HMM. O Capitulo 4
propoe, entdao, uma arquitetura hibrida fundamentada nas duas técnicas anteriormente cita-
das. No Capitulo 5, apresenta-se a metodologia, experimentos realizados e seus resultados.

Por fim, o Capitulo 6 analisa as principais contribuicoes e trabalhos futuros.
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2 Redes Neurais Artificiais

Este capitulo visa introduzir parte da fundamentacao teérica deste trabalho. A
Secao 2.1 apresenta uma breve introducao as redes neurais artificiais, sendo seguida pela
Secao 2.2 que detalha a rede MLP. Por fim, a Secao 2.3 detalha a rede neural utilizada no

desenvolvimento do projeto, a CNN.

2.1 Introducao

O cérebro humano ¢ um poderoso sistema de processamento de informagoes capaz
de interpretar diferentes padroes e adaptar-se ao meio ambiente, apresentando-se altamente
complexo, nao-linear e paralelo. Tarefas rotineiras, como o reconhecimento perceptivo
visual realizado ao se reconhecer um rosto familiar, sdo executadas em aproximadamente
100-200ms, enquanto tarefas de complexidade muito inferior podem demorar varias ordens
de grandeza a mais para serem executadas por um computador convencional (HAYKIN;,
1998).

Partindo da inspiragao no funcionamento das Redes Neurais Naturais, (HAYKIN,
1998) define que Redes Neurais Artificiais (RNAs) sdo maquinas computacionais adapta-
tivas projetadas para modelar a maneira como o cérebro humano realiza uma tarefa em
particular ou funcdo de interesse. Sao um processador extremamente paralelo, distribuido,
constituido de unidades de processamento simples (neurdnios), que tém a propensao natural
para armazenar conhecimento experimental e torna-lo disponivel para o uso. Enumeram-se

dois aspectos que as tornam semelhantes ao cérebro:

1. Um processo de aprendizagem permite a rede adquirir conhecimento a partir de seu

ambiente.

2. Pesos sinapticos sao utilizados para armazenar o conhecimento adquirido.

2.2 Multilayer Perceptron

Dentre as diferentes arquiteturas possiveis para RNAs, destaca-se a Multilayer
Perceptron (MLP). Baseada em uma das primeiras RNAs a serem projetadas, o Perceptron
de (ROSENBLATT, 1958), a rede MLP se torna um marco por passar a permitir a
resolucao de problemas nao-linearmente separaveis, sendo capaz de aproximar qualquer
fungao continua (CYBENKO, 1988).
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A rede MLP é formada por um conjunto de neurdnios, interconectados, organizados
em camadas. Cada neurdnio recebe um conjunto de sinapses para entrada, caracterizados
por um peso préprio, os quais sao somados ponderadamente e processados por uma funcao
de ativacao restritiva, que define a amplitude do sinal de saida. Os neuronios de uma

camada sao conectados a todos os das camadas vizinhas (i.e.: é fully-connected).

Existem trés tipos de camadas utilizadas em uma rede MLP. A primeira camada é
a de entrada, onde seus neurdnios representam as variaveis input do sistema. Em seguida,
encontram-se uma ou mais camadas intermediarias, escondidas, que sao responsaveis pela
nao-lineariedade do sistema. (VALENCA, 2010) sugere o uso de uma fun¢ao sigmdide de
ativagao, como a tangente hiperbodlica ou logistica nesta camada. Por fim, tem-se a de
saida, representando a resposta da rede com as variaveis sendo classificadas ou previstas.

A Figura 1 apresenta graficamente a arquitetura descrita.

Camada Camada Camada
de Entrada Qculta de Saida

Figura 1 — Exemplo de rede MLP com quatro neuronios na camada de entrada, quatro na
sua unica camada oculta e dois na camada de saida.

2.3  Convolutional Neural Networks

A Convolutional Neural Network (CNN) funciona de forma semelhante as redes
neurais artificiais tradicionais, como a MLP. Também sao compostas por multiplas camadas
de neurdnios, ponderados por pesos, que recebem algum sinal de entrada, calculam
um produto escalar e geram uma saida através de uma funcdo de ativacao. Uma das
diferencas fundamentais é que a CNN foi projetada para processar, exclusivamente, entradas
multidimensionais, como imagens compostas por trés vetores bidimensionais contendo
a intensidade de cada pixel em cada um dos trés canais de cores. Isso permite que a
mesma faga suposigoes sobre sua entrada que a beneficiem, como: conexoes locais, pesos
compartilhados, pooling e abstracdo em multiplas camadas (LECUN; BENGIO; HINTON,
2015).



Capitulo 2. Redes Neurais Artificiais 17

Aplicagoes diversas de CNNs podem ser encontradas na literatura, incluindo:
reconhecimento de voz (WAIBEL et al., 1989), leitura de documentos e cheques (LECUN
et al., 1998), envolvendo o reconhecimento de digitos e escrita cursiva, reconhecimento
de objetos (SZEGEDY et al., 2014), reconhecimento de faces (HAMESTER; BARROS;
WERMTER, 2015), descrigao automatica de imagens (VINYALS et al., 2014), entre

outros.

leopard

oto pa 3
black widow - jaguar g
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beach wagen gill fungus |ffordshire buliterrier indri
fire engine || dead-man's-fingers currant howler monkey

Figura 2 — Visualizacao do poder de classificacdo de uma arquitetura projetada para o
ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC-2010). A
primeira imagem, a esquerda, apresenta oito imagens de teste e as cinco clas-
ses consideradas mais provaveis pelo modelo. A segunda imagem, a direita,
apresenta cinco imagens de teste na primeira coluna, seguidas por seis colu-

nas de imagens de treinos consideradas mais semelhantes a de teste. Fonte:
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

2.3.1 Inspiracdo e estrutura basica

Problemas de reconhecimento de padroes em imagem notoriamente requerem que
o modelo utilizado desconsidere variagoes irrelevantes das imagens, como mudancas de
posicao, orientacao e iluminagao, mas que, ao mesmo tempo, sejam sensiveis a detalhes

especificos que de fato caracterizem o cendrio presente na imagem.

Como exemplificado por (LECUN; BENGIO; HINTON;, 2015) e observado na Figura
3, as fotografias de dois cachorros brancos da raca Samoyed, em poses diferentes, podem
ser completamente diferentes se comparadas diretamente por pixel. Ja a comparagao das
mesmas fotos com a de um Husky Siberiano branco, em pose e plano de fundo semelhantes,
pode apresentar um grande niimero de pixels semelhantes. Como concluido por (LECUN;
BENGIO; HINTON, 2015), um classificador linear ou qualquer outro classificador raso
(i.e.: uma rede neural artificial de poucas camadas), operando diretamente nos pixels, nao
poderia distinguir as duas ultimas imagens enquanto classificando as duas primeiras como

da mesma classe.
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Figura 3 — Trés exemplos de fotografias de diferentes cachorros. As duas primeiras apre-
sentam um cachorro da mesma raga, Samoyed, em diferentes poses. A ultima,
a direita, apresenta um Husky Siberiano. Classificadores rasos, operando di-
retamente nos pixels, ndo sao capazes de distinguir as duas tltimas imagens
enquanto classificando as duas primeiras como da mesma classe. Fonte: (DENG
et al., 2009)

Percebe-se, também, problemas de escalabilidade em arquiteturas rasas, como
apresentado por (BENGIO; LECUN, 2007). Para utilizar uma imagem 100 x 100 x 3 dire-
tamente como entrada de uma rede MLP, sao necessarios 100 x 100 * 3 = 30.000 neuronios
na camada de entrada, implicando em 30.000 pesos para conectar um tinico neuronio da
primeira camada escondida a de entrada. Esse grande ntimero de parametros acumula-se
rapidamente e pode causar overfitting. Faz-se necessario, entao, o uso de extratores de
caracteristicas manualmente projetados e otimizados, que busquem simplificar a imagem
de entrada em valores que representem aspectos importantes para sua classificacao, se

mantendo invariantes para coisas irrelevantes a mesma.

Visando resolver o problema da explosao de pardmetros causada pela alta conecti-
vidade, a CNN utiliza propriedades inerentes as imagens digitais para reduzir a quantidade
de pesos necessarios em redes de sua profundidade. Além disso, sua modelagem busca
aprender automaticamente caracteristicas que identifiquem padrdes na imagem, removendo
a necessidade de otimizacao manual de extratores, que demanda extensivo conhecimento a

priori do universo de entrada.

A arquitetura tipica de uma CNN é composta por uma série de estagios, que, por
sua vez, sao compostos por uma ou mais camadas. Tais camadas, ao contrario da rede
MLP, sao organizadas em 3 dimensoes: largura, altura e profundidade. O objetivo de
cada uma é, entao, transformar sua entrada tridimensional em uma saida também em
trés dimensodes, através de alguma funcao diferencidvel opcionalmente parametrizavel. A
Figura 4 apresenta um exemplo desta arquitetura. Ainda, nota-se que os neurénios da
vasta maioria das camadas se conectam apenas a uma parte limitada da camada anterior
a deles. Em geral, apenas o tltimo estégio (chamado de fully-connected, ou FC) apresenta
todas as conexoes, por se assemelhar a uma rede tradicional acoplada para converter o

aprendizado da rede em probabilidades de cada classe do problema.
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BIN)E
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Figura 4 — Visualizacdo de uma arquitetura CNN simples e suas camadas tridimensionais

2.3.2 Camadas na CNN

Existem quatro tipos de camadas fundamentais que estruturam os estagios de uma
CNN, seguindo a camada de entrada. Sao elas: camada convolucional (CONV), funcao de
ativacdo nao-linear elemento a elemento (aplicada apos a realizagdo das convolugoes, e.g.:
ReLU), camada de amostragem (POOL) e camada totalmente conectada (FC). Em geral,
uma arquitetura bésica é composta pelo empilhamento de um estégio inicial contendo um
ou mais conjuntos de camadas CONV-ReLU-POOL, e finalizando com a camada FC para

calculo dos scores de cada classe.

2.3.2.1 Camada Convolucional

Como visto anteriormente, CNNs exploram o principio da conectividade local.
Os neurdnios da camada CONV se conectam apenas a uma regiao limitada da camada
anterior. As dimensdes dessa regiao sao definidas pelo hiperparametro campo receptivo,
que define a largura e altura da conectividade local. Para a profundidade, todavia, a
conectividade extende-se por toda a extensao da camada anterior. Recebendo uma imagem
RGB como entrada, por exemplo, um neurdnio terd acesso a apenas um pedago da imagem

(largura x altura) em todos os seus canais de cores (profundidade).

A quantidade de pardmetros necessarios também pode ser reduzida através do
compartilhamento de pesos entre diferentes neuronios. Isso é possivel partindo da suposi¢ao
de que o filtro aprendido para reconhecer uma determinada caracteristica em um pedago
da imagem também pode ser ttil em outro. Por exemplo, um filtro detector de bordas
do canto superior direito de uma imagem também pode detectar bordas no canto inferior
esquerdo, visto que, se uma caracteristica pode aparecer em um lugar da imagem, a mesma
também pode aparecer em qualquer outro lugar (invaridncia de local). Pode-se denotar,
entao, que cada neuronio da camada convolucional compartilha seus pesos com os vizinhos
no mesmo nivel de profundidade, onde estes conjuntos de neuronios sao chamados de depth

slices.
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Dado o compartilhamento de pesos por depth slices, percebe-se que o calculo dos
produtos escalares para produzir a saida da camada convolucional ¢, em suma, uma
operagao de convolugdo entre os pesos (aqui chamados de filtros, dada sua func¢ao) desta
fatia pelo volume de entrada. O resultado da convolucao de todos os filtros gera um
conjunto de mapas de ativagcdo que, ao serem empilhados em profundidade, formam o
volume de saida desta camada. Isto é, a camada CONV processa sua entrada através de
filtros, fornecendo, em sua saida, um mapeamento da ativacio de cada filtro em diferentes
partes da imagem. A Figura 5 apresenta um exemplo de filtros aprendidos por uma camada

convolucional.

Figura 5 — Exemplo de 96 filtros convolucionais 11 x 11 x 3 aprendidos pela primeira

camada convolucional de uma arquitetura treinada para reconhecer objetos
genéricos em imagens da ILSVRC-2010. Fonte: (KRIZHEVSKY; SUTSKEVER,;
HINTON, 2012).

Por fim, existem trés outros hiperparametros que podem ser configurados em uma
camada convolucional: profundidade do volume de saida, que corresponde a quantidade
de filtros a serem aprendidos; passo, espacamento em pixels entre o centro dos campos
receptivos de cada neurdnio, definindo a sobreposicao dos filtros; e zero-padding, que pode

ser utilizado para controlar o tamanho do volume de saida.

2.3.2.2 Camada de amostragem

O proposito da camada de pooling é fundir caracteristicas semanticamente similares
em uma tnica (LECUN; BENGIO; HINTON, 2015). A redugao de tamanho (downsam-
pling) das representagoes de entrada pode influenciar positivamente na generalizacdo das
caracteristicas, ao remover pequenos deslocamentos e distor¢oes. Além disso, a simples
reducao da quantidade de parametros ajuda a simplificar o custo computacional da rede

como um todo.

A camada POOL é geralmente configurada através de dois hiperparametros: di-
mensdo, que representa a largura e altura do filtro de amostragem a ser utilizado; e passo,
que, novamente, ajusta a sobreposigao da aplicagao dos filtros. De acordo com (LECUN;

BENGIO; HINTON, 2015), a operagao de amostragem mais comumente utilizada é a
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MAX, que tem como resultado o valor maximo dentre todos os valores da entrada visiveis

pelo filtro.

2.3.2.3 Camada fully-connected

Por fim, a camada FC possui todos os seus neuronios conectados a todos os neurdnios
da camada anterior. Isto é, a mesma comporta-se como uma rede neural tradicional que
recebe como entrada o resultado da ativacao de cada filtro aprendido pela rede e computa

a probabilidade de cada classe do problema.

2.3.3 Arquitetura Final

(LECUN; BENGIO; HINTON, 2015) afirma em seu review que Redes Neurais de
Arquitetura Profunda, dentre elas a CNN, exploram a propriedade de que muitos sinais
naturais sao hierarquias de composigoes, nas quais caracteristicas de mais alto-nivel sao
obtidas através da composicao de outras de mais baixo-nivel. Um conjunto de bordas em
uma imagem forma um padrao, um conjunto de padrdes compoe fragmentos de objetos,
um conjunto de fragmentos constréi um objeto. Na CNN, quanto maior a hierarquia de

uma camada convolucional, maior o seu campo receptivo e sua capacidade de abstracao.

De forma genérica, (LECUN; BENGIO; HINTON, 2015) sugere como arquitetura
bésica de uma CNN:

Input — ((CONV — ReLU) x a — POOL) x b — FC X c, (2.1)

onde a camada POOL é opcional e a, b e ¢ sdo nimeros inteiros nao negativos que
indicam a quantidade de repeti¢oes de cada estagio. Isto é: compoe-se hierarquicamente
uma série de camadas convolucionais, que aprenderao filtros cada vez mais complexos e
abrangentes, com camadas de amostragem que ajudam a reduzir espacialmente o volume
processado. Por fim, camadas completamente conectadas computam as variaveis de saida,

como o score das classes.

As subsecgoes a seguir apresentam algumas arquiteturas famosas de CNNs.

2.3.3.1 LeNet

Tendo sua ultima iteragdo (LeNet-5) proposta em (LECUN et al., 1998), a LeNet é
uma familia de arquiteturas projetada para o reconhecimento de caracteres escritos a mao,
sendo aplicada com sucesso no reconhecimento de digitos em cheques, niimeros de casas,

entre outras aplicagoes. Sua arquitetura basica pode ser vista na Figura 6.
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Figura 6 — Arquitetura da rede CNN LeNet-5, projetada para reconhecimento de digitos
manuscritos. Fonte: (LECUN et al., 1998).

2.3.3.2 GoogleNet

Modelo campeao da ILSVRC-2014, competicao que avalia algoritmos para detecgao
de objetos e classificacdo de imagens em larga escala, revolucionou o estado da arte ao
apresentar uma nova arquitetura entitulada Inception. Obteve desempenho significativa-
mente melhor que seus antecessores, usando 12 vezes menos parametros que a rede campea
de duas competigoes atrds (SZEGEDY et al., 2014). Sua arquitetura é caracterizada pela
organizacao em modulos de Inception e pela sua profundidade, sendo composta por 22

camadas. A Figura 7 apresenta a estrutura da mesma.
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Figura 7 — Arquitetura da rede GoogLeNet, modelo campeao da ILSVRC-2014. A camada
de entrada pode ser visualizada no canto inferior esquerdo. Itens (1) e (2)
indicam a continuidade do fluxograma. Fonte: (SZEGEDY et al., 2014)
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3 Classificadores de Sequéncias por Modelo

Classificadores de sequéncias possuem uma ampla gama de aplicagoes: classificacao
de sequéncias de proteinas do genoma, detec¢ao de intrusdo, recuperacao de informacao
e classificagao de documentos, analise de ECG, diferenciagao entre robos e usuarios
legitimos na internet, entre diversas outras areas (XING; PEI; KEOGH, 2010). Dentre os
diferentes tipos de classificadores, destacam-se os baseados em modelo, onde assume-se
que a sequéncia foi gerada por um modelo intrinseco. Este capitulo busca detalhar o

funcionamento do Hidden Markov Model (HMM), exemplo de classificador desta classe.

A Secao 3.1 introduz o conceito de processos estocasticos e processos Markovianos.

Em seguida, a Secao 3.2 detalha o funcionamento de um HMM.

3.1 Processos Estocasticos e Modelos de Markov

Como definido por (GARDINER, 1985), processos estocasticos sao sistemas em
que existe uma variavel aleatéria dependente do tempo X (). A observagao do langa-
mento sucessivo de moedas, os passos de uma pessoa caminhando, entre diversos outros

experimentos, sao exemplos de processos aleatorios.

Os Modelos de Markov sao modelos que assumem a hipdtese Markoviana, definida
por (GARDINER, 1985) em termos de probabilidade condicional: se o tempo satisfaz a

ordem

tl Z tz Z t3 Z Z T1 Z T2 > ceey (31)

a probabilidade condicional é determinada apenas pelo conhecimento das condi¢oes

mais recentes. Isto é:

(a1, tr; 2o, to; Y1, T3 Yo, T2 o) = p(a1, Ly 2o, to; .| y1, T1), (3.2)

onde z, e y, sao eventos no instante n. Nota-se que, neste exemplo, o modelo

depende apenas do evento mais recente, sendo classificado como de primeira ordem.

Portanto, a probabilidade de determinados eventos acontecerem depende apenas da
observacao mais recente. Modelos Markovianos apresentam-se, entdo, como uma técnica de
predi¢ao baseada apenas no atual momento de execucao, ja que nao consideram, de forma
direta, os resultados obtidos anteriormente. Como exemplo préatico, (Donald Tanguay,

n__n

1995) apresenta a lingua inglesa, onde a probabilidade de observar a letra "u"ao processar
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uma palavra depende fortemente da letra que foi indentificada por ultimo, visto que essa

estda quase sempre precedida pela letra "q".

3.2 Hidden Markov Model

(RABINER; JUANG, 1986) sugere, como motivagao para o HMM, processos do
mundo real que aparentam apresentar um comportamento de mudancas sequenciais: suas
propriedades se mantém aproximadamente constantes por um determinado intervalo de
tempo, com pequenas flutuagoes, até que, em um determinado instante, ha uma troca

dessas propriedades. Enumeram-se, entao, trés problemas com esses processos:

1. Como identificar esses momentos de estabilidade e variagao?
2. Como caracterizar essa natureza de evolugao sequencial?

3. Qual periodo de tempo tipico/curto deve ser escolhido para a andlise?

Os HMMs tratam desse problema com sucesso por se tratarem de processos
Markovianos duplamente estocasticos. Isto é, HMMs sao compostos por um processo
estocastico interno, nao diretamente observavel, que s6 pode ser analisado e observado

através de outro processo estocastico externo que produz a sequéncia de simbolos visiveis.

(FOSLER-LUSSIER, 1998) exemplifica a aplica¢gdo de um HMM na previsao do
tempo. Considere que existem trés possiveis estados para o clima: ensolarado, chuvoso
ou nublado. Para simplificacao do modelo, assumiremos que o clima é estavel por toda a
duracao de um dia. Caso possamos assumir que a previsao do tempo para um dia depende
apenas da previsao do tempo do dia anterior, teremos satisfeito a hipotése Markoviana.
Basta olhar o céu do dia atual para prever o clima do dia seguinte. E se nao for possivel
observar diretamente o céu? Caso restrinjamos as observagoes para torné-las indiretas (e.g.:
vocé agora estd dentro de uma casa e s6 observa pessoas carregando guarda-chuva ou nao),
passamos a ter um HMM. Vocé nao tem acesso ao real estado de seu processo, apenas
a certos observaveis que podem ser emitidos: ¢ mais provavel que as pessoas carreguem
um guarda-chuva em um dia chuvoso, apesar disso também poder ser feito em um dia

ensolarado, nos levando a um novo conjunto de probabilidades.

Um HMM X pode ser escrito na notagao:

A= (A, B,r), (3.3)

onde:
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A ¢é a matriz de probabilidade de transi¢oes, com cada elemento a;; sendo a probabilidade

de sair de um estado 7 e ir para um estado j

7w é o vetor de probabilidades de distribuigao inicial, onde cada 7; representa a probabili-

dade do estado inicial ser ¢

B ¢ a matriz de probabilidades dos observaveis, onde cada elemento b;; representa a
probabilidade do observavel j ser emitido no estado ¢ (NEFIAN; Hayes 111, 1998).
Essa matriz pode ser composta por valores discretos ou por distribui¢oes continuas,

definindo modelos de escopo discretos e continuos.

Figura 8 — Representagao grafica de um HMM, de estados x ocultos (cinza claro) e seus
sinais observaveis (cinza escuro) y.

3.2.1 Problemas Canonicos

Existem trés problemas candnicos para um HMM (NEFIAN; Hayes III, 1998;
MITRA; ACHARYA, 2007). Sao eles:

Evaluation Qual a probabilidade de determinada sequéncia de observaveis O ter sido
gerada pelo modelo A (i.e.: P(O|X))? O algoritmo Forward-backward (BAUM et al.,
1970) pode ser aplicado para obter essa informagao, possuindo um custo computacio-
nal miultiplas ordens de grandeza menor que resolucao por "forga-bruta'(RABINER;
JUANG, 1986);

Decoding Dado um modelo A e uma sequéncia de observaveis O, qual a sequéncia de

estados com maior probabilidade de ter gerado O? Esta ¢é obtida através do algoritmo
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de Viterbi (FORNEY G.D., 1973; LOU, 1995), que se apresenta préximo ao 6timo
(SCHUHLI, 2005);

Training Como devem ser treinados os pardmetros de um modelo A de modo a maximizar
P(O|N)? Utilizando o algoritmo de treinamento Baum-Welch (RABINER; JUANG,
1986).

Através dos algoritmos relacionados aos problemas candnicos, podemos realizar a

classificacao e previsao de sequéncias de observaveis modelando-os com HMMs.

3.2.2 Implementacao de um HMM Continuo Multivariavel

Partindo do conceito base discutido nas subse¢oes anteriores, um HMM pode
ser modelado para lidar com diferentes tipos de dados. As principais variagoes estao
relacionadas a dimensionalidade e continuidade dos valores observaveis. Um valor observavel
pode ser monovariavel (apenas uma dimensao) ou multivariavel (multiplas dimensdes),

além de poder ser discreto ou continuo.

A implementacao discutida nas subsecoes a seguir diz respeito a um HMM Conti-
nuo Multivariavel, dada sua flexibilidade quanto a entrada. Dada a natureza continua, as
matrizes de probabilidade agora incorporam distribui¢des continuas de probabilidade. A
Distribuicao de Mistura Gaussiana é apresentada por possuir um maior poder de represen-
tacdo (FINK, 2007). Nesta, cada estado possui um conjunto de k distribuigdes normais
gjk(x) e k pesos cji, nos quais a probabilidade de emissao é dada por b, = > ¢;rg;k(),
permitindo um nimero maior de maximos locais em comparacao com a distribui’z;éo normal

individualmente, que possui apenas um maximo global.

As préoximas subsegdes apresentam os algoritmos explanados por (FINK, 2007) e
(RABINER; JUANG, 1993), matematicamente.

3.2.2.1 Forward ()

A probabilidade de que para um determinado modelo A, a sequéncia de observaveis
O1,0s, ..., 0, seja gerada no tempo ¢ e o estado (s) de valor i seja alcangado, é dada pelas

variaveis forward oy (7). Isto é:
Olt(i) :P(Ol,OQ,...,Ot,St:i|)\). (34)
O célculo da matriz « é feito através do seguinte algoritmo recursivo:

Inicializagao Para todos os estados i:

aq (1) = mbi(O1); (3.5)



Capitulo 3. Classificadores de Sequéncias por Modelo 28

Recursao Para todos os estados jet=1...7T — 1:

a1 (5) = D _(eu(i)aij)bj (Opsr)- (3.6)

3.2.2.2 Backward (3)

A probabilidade de uma sequéncia parcial de observaveis Oy 1, Opio, ..., Or a partir
do tempo t + 1, partindo de um estado j, ser gerada por um determinado modelo A pode

ser calculada através das variaveis backward (3:

Bi(3) = P(Ory1, Oy, - . ., Oplsy = j,A) (3.7)

O algoritmo recursivo utilizado para o calculo da matriz 5 é composto por:

Inicializagao Para todos os estados i:

Recursao Para todos os estadostet=T—1...1:

Zaw (Ot11)Br41(5))- (3.9)

3.2.2.3 Classificacdo de sequéncias

Partindo das matrizes forward e backward definidas anteriormente, é possivel
calcular a probabilidade de uma determinada sequéncia de observaveis O ter sido produzida
pelo modelo A (FINK, 2007). Essa operacao é chamada de Forward-Backward:

P(OIN) = Z:a:r(i); (3.10)
O‘)‘ Zﬂz ) Ol ﬁl (3.11)

3.2.2.4 Treinamento utilizando Baum-Welch

(FINK, 2007) apresenta Baum-Welch como o algoritmo mais utilizado para a
otimizacao de HMMs. Em cada iteracao, o mesmo visa encontrar um novo conjunto
de parametros para A onde P(O|\N) > P(OJ)), isto ¢, a probabilidade de ter gerado o
conjunto de observagoes tidas como verdadeiras para esse modelo seja maior que ou igual

a probabilidade obtida pelo modelo com o conjunto de pardmetros da iteracao anterior.

Os valores atualizados de cada parametro sdo calculados com base em trés fungoes:
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1. Probabilidade a posteriori para a ocorréncia do estado ¢ no tempo t.

. . at(i)ﬁt(i)
2. Probabilidade a posteriori da transicao de um estado ¢ para um estado 57 em um

tempo t.

CLijbj (Ot+1>ﬁt+1 (])
P(O[N)

. ) ) ay (2
Y(i,7) = P(S; = 4, Sp41 = 7|0, \) = () (3.13)
3. Probabilidade de selecionar no estado j o k-ésimo componente da distribui¢ao mistura

no tempo t para gerar a observacao continua O;.

% (1) aiicikgin(Or) Be(4)

§t<j’ k) = P(St = ja M; = k|07 /\) == P(Ol)\) (314>

O algoritmo, entao, é executado em trés etapas: inicializacao, otimizacao e verifica-
¢ao. Na inicializagao, define-se um modelo base A = (A, B, ) com as estimativas inicias
para todos os pardmetros. As duas tultimas etapas sao repetidas até que o critério de parada
seja atingido. O critério de parada ¢é controlado pela etapa de verificacao, onde compara-se
o modelo proposto pela iteragao atual com o modelo anterior: caso a probabilidade de
geragao das sequéncias tenha aumentando (i.e.: P(O|X) > P(O|))), os pardmetros sao
sobrescritos e a execuc¢ao continua. Caso contrario, o treinamento é encerrado. Pode-se,

também, definir um limiar que determine quais diferencas sdo consideradas significantes.

A etapa de otimizacgao realiza a atualizacao dos pardmetros do modelo A, estimando

um novo modelo N = (A’ B’ 7’). A matriz A’ é atualizada como:

T-1
E 715(%])

> mi(?)

t=1

O vetor 7’ é atualizado por:

7 =3 (i). (3.16)

Os pesos ¢ da distribui¢ao mistura, assim como u' e C” de cada distribuicdo normal:

, (3.17)



Capitulo 3. Classificadores de Sequéncias por Modelo 30

= S 319
Z ft(ja k)
=1
T
t; &i(g, k)i (xf) vy
k=7 — [jph k- (3.19)
tgl £t<j7 k)

Esse processo de otimizagao é executado para cada sequéncia de observaveis no
conjunto de treino e o parametro final do modelo otimizado se dard pela média aritmética
simples (soma do resultado em cada sequéncia de observaveis de todos os parametros
correspondentes dividido pelo nimero de sequéncias no treino) (RABINER; JUANG,
1993).
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4 Modelo proposto

4.1 Introducao

Sabe-se que diferentes arquiteturas de redes neurais artificiais apresentam diferentes
capacidades de aprendizado e generalizagao em problemas diversos. Padroes a serem
reconhecidos podem ser compostos por caracteristicas intrinsecas que sao capturadas
de forma melhor por diferentes redes. (LE et al., 2011) exemplifica este efeito em seu
trabalho, ao treinar diferentes neuronios para a classificacdo de faces humanas, corpos
humanos e faces de gatos. (ERHAN et al., 2014) ao apresentar uma nova abordagem
para o ILSVRC-2012, demonstra como varias arquiteturas propostas se sobressaem em

diferentes classes de objetos na base de dados da competicao.

A complexidade da imagem a ser analisada também possui grande impacto na
capacidade de generalizacao da rede. As camadas mais profundas de uma CNN, por
exemplo, estao diretamente ligadas a sua capacidade de criacao de filtros mais complexos
e abstratos (ZEILER; FERGUS, 2014). O mesmo pode ser observado em diferentes
redes de arquitetura profunda, em geral ocasionando um crescimento de multiplas ordens
de grandeza na quantidade de parametros treindveis necessarios, tornando a rede mais
suscetivel a overfitting. Por esta razao, ha um constante interesse da literatura em buscar

diferentes alternativas ao crescimento espacial das redes neurais (SZEGEDY et al., 2014).

Encontra-se, especialmente na literatura acerca de reconhecimento de escrita cursiva,
um amplo uso de técnicas de zoneamento para classificagao de padroes (Rachana R. Herekar,
2014). Nestas, a imagem a ser analisada é divida em sub-imagens intituladas zonas, onde
cada uma ira conter informacao local a respeito do padrao a ser analisado. Em seguida, cada
zona é avaliada por um classificador de padroes, e o contexto com todas as classificagoes é

utilizado para compor o processo de reconhecimento final.

Inspirado por essas motivagoes, este capitulo apresenta um modelo hibrido para o
reconhecimento de padrdes em imagens. Neste, o conceito de zoneamento é utilizado visando
a divisao da imagem a ser analisada em sub-problemas menores, em uma abordagem
dividir para conquistar, que podem ser classificados por redes especialistas de cada zona.
Por fim, um modelador de sequéncias pode ser utilizado para obter-se a classificacao final

da imagem. A Secao 4.2 discorre a respeito da arquitetura proposta e suas etapas.
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4.2 Arquitetura

O modelo proposto é composto por trés estagios: zoneamento da entrada, classifica-
cao das diferentes zonas e, por tultimo, classificacao das sequéncias. A Figura 9 apresenta
visualmente o processo executado por este modelo. As subsecoes a seguir detalham cada
etapa, enfatizando que diferentes técnicas podem ser aplicadas em cada estagio, adaptando

o modelo a problemas especificos.

Classificagao Classificagdo
Zoneamento das Zonas  [(0.99,0.01,0,0,0), da Sequéncia
A . 0,95, 0.05. 0, 0, 0). (0.93, 003, 0, 0.02, 0.02)
(0.94, 0,0, 0, 0.06),
(0.99, 0, 0, 0.01, 0)]

Figura 9 — Representacao grafica do processamento de uma imagem contendo a letra A pelo
modelo proposto, visando classificéd-la como uma das vogais (ou seja, 5 classes
possiveis). Na primeira etapa, divide-se a imagem de entrada em quatro zonas.
Em seguida, cada zona é classificada por uma rede neural produzindo tuplas de
probabilidade. Por fim, o classificador de sequéncias produz as probabilidades
finais de cada classe, mostrando que a entrada tem 93% de chance de ser a
vogal A.

4.2.1 Zoneamento

Frequentemente utilizado em técnicas de reconhecimento de escrita cursiva, o propé-
sito desta etapa é dividir a imagem de entrada em problemas menores, com caracteristicas
locais, a serem classificados por diferentes redes neurais. Desta forma, podemos reduzir a

complexidade do problema e possibilitar a utilizagao de redes especialistas para cada zona.

(Rachana R. Herekar, 2014) define que o zoneamento pode ser classificado em

topologias. As duas que se destacam sao:

Topologia Estatica: projetada sem o uso direto de informagoes previamente obtidas
a respeito da distribuicao das caracteristicas nos padroes. Estas sao usualmente
propostas com base em evidéncias experimentais, ou experiéncia e intuicao do

projetista. Em geral, tomam forma de simples grades.

Topologia Dinamica: obtida através do uso de técnicas de otimizagao, tendo como base

informagoes especificas do problema a ser analisado.

Como resultado desta etapa, tem-se as sub-imagens obtidas através da topologia
aplicada. Essas zonas possuem caracteristicas locais que serao classificadas pela proxima

etapa.
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4.2.2 Classificacao das diferentes zonas

Apoés a obtencao das diferentes sub-imagens que compoe a entrada, a partir da
topologia escolhida, realiza-se a classificacado de cada zona utilizando uma rede neural
especialista, treinada para o reconhecimento das caracteristicas locais da zona a qual esta
relacionada. Nesta etapa, as propriedades do aprendizado e poder de generalizacao de
cada rede deve ser levado em conta. Cada zona, aqui, apresenta um novo problema, menos

complexo, ao qual as arquiteturas das redes utilizadas devem se adaptar.

Nota-se que, caso a mesma rede neural seja utilizada para cada zona, a vantagem
deste modelo apresenta-se apenas como reducao de complexidade. Através da utilizacao
de multiplas redes, esta vantagem é ampliada ao permitir a utilizagdo de redes que
apresentam melhor desempenho nos problemas de cada zona. Ainda, deve-se notar que,
apesar da recomendacao da utilizacao de arquiteturas profundas, visto o alto desempenho
na classificagdo de objetos observado na literatura, diferentes técnicas de reconhecimento

de padrao também podem ser aplicados com sucesso nesta etapa.

Como resultado, temos, para cada zona, uma tupla que indica a probabilidade desta
zona pertencer a uma das classes do problema. A sequéncia final pode ser representada

COomao:

[(p1,1,p1,27 e 7p1,m)7 (]92,17])2,2, e ,p2,m)> ceey (pn,lupn,27 e 7pn,m)]u (4-1>

onde p, ., indica a probabilidade da zona n pertencer a classe m.

4.2.3 Classificacao das sequéncias

Por fim, consolida-se a série de classificagoes obtidas, em relagao as possiveis classes
do problema, através de técnicas de modelagem de sequéncias. Variagoes de Dynamic
Time Warping (DTW), Support Vector Machine (SVM) e HMM podem ser utilizadas para
a classificacdo de sequéncias, como analisado por (XING; PEI; KEOGH, 2010).

Nesta fase, realiza-se o treino do classificador utilizando como entrada as sequéncias
geradas pela etapa anterior. O classificador deve ser capaz de aprender a generalizar
a construcao da série representante de cada classe, provendo uma maior resisténcia a
ruido. Assim, pequenas falhas de classificacdo em zonas especificas podem ser corretamente
ignoradas nesta etapa. Nota-se, portanto, que toda a base de dados deve ter sido convertida

para este novo formato, englobando o grupo de imagens utilizadas para teste e para treino.

Como resultado, é fornecida a probabilidade da imagem de entrada pertencer a

cada classe do problema.
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5 Experimentos e Resultados

Este capitulo apresenta a exploracao realizada acerca da aplicacao do modelo
proposto no Capitulo 4 ao problema de reconhecimento de expressoes faciais. A Secao 5.1
detalha a motivacao e realiza um breve resumo do problema a ser analisado. Em seguida,
a Secao 5.2 especifica a base de imagens utilizada e as modificagoes realizadas & mesma.
A Secao 5.3 apresenta, entao, as adaptagoes realizadas ao modelo proposto para este
problema. Por fim, a Secao 5.4 detalha os experimentos realizados, sendo seguida pelos

resultados obtidos, explorados na Secao 5.5.

5.1 Reconhecimento de Expressoes Faciais

Expressoes faciais sdo a forma mais natural e expressiva de transmitir emocoes
e intencoes humanas. Parte essencial da nossa interacao com terceiros, essa forma de
comunicagao nao-verbal tem atraido pesquisadores de diferentes campos, como nos estudos
psicologicos das emogdes basicas (EKMAN, 1993) e na elaboracao de técnicas inteligentes
de intera¢do homem-méquina (FASEL; LUETTIN, 2003).

A positividade e negatividade emocional indiretamente transmitida por expressoes
faciais possue papel significativo na psicologia humana. (HAMESTER; BARROS; WERM-
TER, 2015) exemplifica este impacto ao analisar a teoria broaden-and-build proposta por
(FREDRICKSON;, 2001), que afirma que emogoes positivas ampliam a percep¢ao, encora-
jando pensamentos inovadores e exploradores, diretamente conectados a a¢oes. Enquanto

isso, emocoes negativas ampliam nossa auto-consciéncia em relagao ao ambiente.

Enfatiza-se que o reconhecimento da positividade de expressoes faciais apresenta,
ainda, diversas aplicagoes praticas de grande valor para a sociedade. Da melhoria na
interacao homem-maquina, como na criagao de robos inteligentes capazes de processar
tais emocoes, até sistemas de monitoramento de pacientes acamados, agilizando seu
atendimento emergencial. A habilidade de interpretar comunicacao nao-verbal possui,
entao, grande valor para setores como saude, automagao, atendimento ao cliente, e diversos

outros.

Diferentes abordagens para o reconhecimento de expressoes faciais podem ser
encontradas na literatura. (CHEN et al., 2011) apresenta um modelo capaz de realizar
o reconhecimento a partir da combinacao das informagoes do rosto e do corpo humano,
em fungdao do tempo. (HAMESTER; BARROS; WERMTER, 2015) propoe um novo
modelo intitulado Cross-Channel Convolutional Neural Network, extensao da CNN para

extracao de caracteristicas multimodais. Nota-se, todavia, que este se trata de um problema
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complexo, nao havendo um modelo universal que o solucione por completo.

As caracteristicas intrinsecas do problema de reconhecimento de expressoes faciais,
como sua interpretacao a partir da visualizacao da variacdo muscular em partes especificas
do rosto humano, tornam este um problema propicio para a aplicacao do modelo proposto

por este projeto. Toma-se, entao, este problema como o estudo de caso deste projeto.

5.2 Base de Dados

As imagens utilizadas nos experimentos realizados por este trabalho foram extraidas
do banco de expressoes faciais Cohn-Kanade (LUCEY et al., 2010). Esta base possui 327
capturas envolvendo 123 individuos realizando expressoes faciais mapeadas a emocgoes.
Ao todo, 7 emocoes sao avaliadas: anger, contempt, disqust, fear, happiness, sadness e
surprise. A execuc¢ao de cada captura possui uma duragao de até 60 quadros, onde a
primeira imagem retrata neutralidade e, a tltima, o auge da expressao sendo realizada.
Um exemplo pode ser visto na Figura 10. Para os experimentos aqui realizados, todas as

imagens foram redimensionadas para 100 x 100 pixels.

Figura 10 — Exemplo de captura da base Cohn-Kanade. Fonte: (LUCEY et al., 2010)

Dado que o problema de classificacao desejado relaciona-se a positividade e negati-
vidade da expressao sendo realizada, fez-se necessaria uma reorganizacao da base de dados,
como proposta por (HAMESTER; BARROS; WERMTER, 2015). Nesta, sdo possiveis trés
diferentes classes de expressoes: neutras, positivas e negativas. Em busca das imagens que
melhor representam as classes, os dois quadros que compoem o auge de cada expressao sao
agrupados sob a classe positiva ou negativa. De forma semelhante, todas as duas imagens
iniciais, onde o individuo nao expressa emocoes, classificam-se sob a neutra. As emocoes

ditas positivas sao happiness e surprised, sendo as demais negativas.

Por fim, visando fornecer uma maior quantidade de exemplos para o treinamento

dos modelos, técnicas de ampliacao artificial de base de dados (Data Augmentation) foram
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aplicadas, como sugeridas por (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Para
cada imagem provida pela base, foram capturadas 9 subimagens de 96 x 96 pixels e 9
subimagens de 92 x 92 pixels, que posteriormente sao redimensionadas para o mesmo
tamanho da imagem original. Essa operacao pode ser visualizada na Figura 11. Por fim,
também calcula-se o espelhamento horizontal destas novas imagens, dobrando a quantia
produzida. No total, cada imagem da base original é capaz de criar, artificialmente, 36

novos exemplos para a mesma classe.

Figura 11 — Exemplo de nove posic¢oes de corte diferentes para obtencao de sub-imagens,
no processo de ampliacao artificial da base de dados. Os quadrados exter-
nos representam a imagem original, e os internos, com as linhas diagonais,
representam a subimagem a ser obtida.

5.3 Adaptacao do Modelo

Visando a aplicacdo no problema de reconhecimento de expressoes faciais, realizou-

se a configuracao e adaptacdo do modelo proposto.

5.3.1 Zoneamento

A topologia de zoneamento escolhida foi a estatica. Empiricamente, partindo do
conhecimento da base a ser utilizada, definiu-se uma divisdo da imagem em quatro faixas
horizontais de 40 pixels de altura, com overlapping de 20 pixels. Esta separagdo permite

que cada zona contenha o seguinte conjunto de informagoes, em ordem:
Zona 1 (0-40px): Testa e inicio das sobrancelhas, contendo informagao a respeito da
inclinacao das mesmas;

Zona 2 (20-60px): Parte das sobrancelhas, olho, e parte superior do nariz, contendo

informacao a respeito da movimentacao muscular de todas as regides;
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Zona 3 (40-80px): Nariz e parte superior da boca, observando todas as marcas da pele

causadas pela movimentacao de ambos;

Zona 4 (60-100px): Boca e queixo, permitindo a visualizagdo da abertura da boca e

movimentagao do queixo.

X I==1 k=0 =4

(a) (b) (c) (d) (e)

Figura 12 — Visualizacao das subimagines geradas pelo zoneamento. (a) Imagem original,
(b) zona 1, (c) zona 2, (d) zona 3, (e) zona 4.

5.3.2 Classificacdao das Zonas

Percebe-se um crescente interesse em diferentes arquiteturas da CNN na ultima
década, sendo aplicadas com sucesso na deteccao, segmentacao e classificacdo de objetos e
regides em imagens (RUSSAKOVSKY et al., 2015). Seguindo os resultados promissores
expostos pela literatura, a CNN foi escolhida para integralizar o sistema proposto por este

trabalho em sua fase de classificagao inicial.

Visto que a analise do comportamento de redes neurais diversas na classificacao de
diferentes zonas do rosto humano é fora do escopo deste trabalho, uma tnica arquitetura

basica da CNN foi compartilhada por todas as zonas:

Input - CONV — ReLU - MAX — POOL — CONV — ReLU — FC, (5.1)

onde as camadas CONV possuem 64 filtros 5 x5 e 128 filtros 16 x 16, respectivamente,
e a operagao MAX-POOL é realizada com configuragao padrao de filtro 2 x 2. Por fim,
a camada F'C possui 12.672 neurénios de entrada e trés de saida, representando as trés

possiveis classes: neutra, positiva e negativa.

5.3.3 C(lassificacao das Sequéncias

Dentre os diferentes métodos de classificacdo de sequéncias baseados em modelos
presentes na literatura, o HMM foi escolhido para esta etapa. Das caracteristicas diversas
que se destacam para a decisao, enfatiza-se seu poder de representacao do modelo intrinseco

a partir da observacao de varidveis estocasticas. Através disso, pode-se modelar um



Capitulo 5. FEzperimentos e Resultados 38

classificador robusto capaz de ponderar corretamente as variagoes nas probabilidades
obtidas pela etapa anterior, sendo mais invariante a ruidos. Exemplos de utilizagao de
HMDMs no reconhecimento de padroes podem ser visto em (BARROS et al., 2013).

A arquitetura do HMM utilizada nos experimentos apresenta quatro estados
internos, para representacao intrinseca das zonas, e fun¢ao de distribuicao de probabilidade

Gaussiana multivariavel. O treinamento com Baum-Welch é limitado a 500 iteragoes.

5.4 Metodologia e Experimentos

A implementacao de todo o modelo foi realizada utilizando Torch, um framework
de computacao cientifica com vasto suporte a algoritmos de aprendizado de maquina
(COLLOBERT; KAVUKCUOGLU; FARABET, 2011). A linguagem de programagao utili-
zada foi Lua, mantendo integragao com codigos escritos para a plataforma de computacao
paralela CUDA (SANDERS; KANDROT, 2010). Para o HMM, em especial, optou-se por
uma implementacgao customizada em Java, dado seu relativo baixo custo computacional,

sendo integrada posteriormente a plataforma do projeto.

Visando a normalizacao dos dados de entrada, duas operacgoes sao realizadas no
pré-processamento: padronizacao das caracteristicas e normalizacdo de contraste local.
Neste caso, a primeira padroniza a escala dos dados de forma a terem média zero e variancia
unitaria, enquanto a ultima busca reduzir o impacto causado pela diferenca de iluminacao

e/ou cor de pele. Exemplos do pré-processamento podem ser visualizados na Figura 13.

Figura 13 — Exemplo de imagens da base Cohn-Kanade apds o padronizacao das caracte-
risticas e normalizacao de contraste.

Para cada experimento realizado foram executadas 5 simulagoes, obtendo-se a

média e desvio padrao. A selecao das imagens a serem utilizadas para treino e para teste
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foram realizadas de forma aleatéria. Em todos os experimentos a mesma arquitetura de
CNN e HMM foram utilizadas, como apresentado nas se¢oes anteriores. Em cada simulacao,
o treinamento da CNN foi limitado a 10 épocas, escolhendo-se o modelo que apresentou as

melhores taxas de classificagao. Trés experimentos foram realizados, sendo eles:

Experimento 1 (E1): Partindo da base ampliada, 40% das imagens para treino da CNN,
40% para treino da HMM e 20% para teste individual de cada etapa e do modelo

geral;

Experimento 2 (E2): Partindo da base original (i.e.: ndo-ampliada, limita¢do proposi-
tal), 40% das imagens para treino da CNN, 40% para treino da HMM e 20% para

teste individual de cada etapa e do modelo geral;

Experimento 3 (E3): Partindo da base ampliada, 60% das imagens compartilhadas
para treino tanto da CNN quanto da HMM (limitacdo proposital), utilizando o

restante para teste em todas as etapas.

5.5 Resultados

A Tabela 1 apresenta a taxa de acerto média obtida para cada um dos experimentos
realizados, assim como o desvio padrao. Observa-se que o experimento que obteve a maior
taxa de acerto foi o E1, como esperado, visto que este ndo contém as limitagdes dos outros
experimentos. O E2, por nao ter realizado a ampliacao da base de dados, tem a sua etapa

de treinamento prejudicada, pendendo para overfitting.

Destaca-se, no E3, a demonstracao do impacto do compartilhamento da base
de treinamento entre a etapa de classificacao das zonas (CNN) e a de classificacao de
sequéncias (HMM). Caso a CNN memorize a base de treino, obtendo alta porcentagem
de acerto na mesma, o HMM tera poucos exemplos ruidosos para tomar como exemplo
em seu aprendizado, prejudicando seu poder de generalizacao. Por isso, recomenda-se a

separagao da base de treino das duas etapas, como feito em E1.

Tabela 1 — Taxa de acerto média e desvio padrao para cada experimento rea-

lizado.
Experimento | Taxa de acerto | Desvio Padrao
E1 93,81% 1,1%
E2 73,16% 1,6%
E3 80,10% 1,2%

A Tabela 2 apresenta exemplos das taxas de acerto obtidas pela CNN (i.e.: etapa
de classificagdo de zonas). Observa-se que o modelo proposto foi capaz de otimizar a

classificacao realizada pela CNN, melhorando a taxa final, nos experimentos El1 e E3.
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Ja no experimento E2, o modelo proposto fez com que o resultado da classificagao total

tendesse para a classificagdo da zona melhor reconhecida.

Tabela 2 — Exemplo de taxa de acerto da CNN em diferentes zonas, por expe-

rimento.
Experimento | Zona 1 | Zona 2 | Zona 3 | Zona 4
E1l 67,06% | 84,04% | 83,71% | 91,90%
E2 62,82% | 69,73% | 65,13% | 74,01%
E3 62,23% | 65,46% | 65,87% | 75,71%

A Tabela 3 apresenta um exemplo de matriz de confusao obtida durante o trei-
namento de uma zona 1 pela CNN do experimento E3. Observa-se um grande ntimero
de erros no reconhecimento das imagens da classe Neutra. Este comportamento pode ser
explicado pela falta de caracteristicas determinantes para esta classe: suas imagens sao,

em grande maioria, genéricas.

Tabela 3 — Exemplo de matriz de confusao para a zona 1, experimento E3.
As linhas representam as classes encontrada pela CNN, enquanto
as colunas indicam a classificagdo correta. O valor indicado é re-
ferente a quantidade de exemplos da classe da coluna que foram
classificados como a classe da linha.

Negativa | Neutra | Positiva
Negativa | 5658 241 2885
Neutra 928 196 2896
Positiva | 932 405 7843

Por fim, conclui-se que o modelo proposto demonstra-se competitivo com o estado da
arte na classificacdo da positividade de expressoes faciais da base Cohn-Kanade, obtendo
resultados similares aos encontrados em outros trabalhos como (BARROS; WEBER;
WERMTER, 2015), como observado na Tabela 4.

Tabela 4 — Comparagao entre os melhores resultados obtidos pelo modelo pro-
posto e a CCCNN proposta por (BARROS; WEBER; WERMTER,

2015).
Modelo Taxa de acerto | Desvio Padrao
CCCNN 92,50% 2.5%

Abordagem hibrida | 93,81% 1,1%
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6 Consideracoes Finais

6.1 Conclusoes

O objetivo deste trabalho é a proposi¢do de um modelo hibrido para reconhecimento
de padroes em imagens através da combinagao de classificadores estocasticos de cadeias
com técnicas estado-da-arte de reconhecimento de padroes em imagens digitais, aplicando-o
no problema de reconhecimento de expressoes faciais. Para isto, fez-se necessario o estudo
de técnicas de reconhecimento de padrao, redes neurais, redes de arquitetura profunda e

classificadores de sequéncias.

A arquitetura aplicada nos experimentos de classificagdo de expressoes faciais fez
uso das técnicas CNN e HMM. Os resultados obtidos apresentaram-se satisfatorios, identi-
ficando classificagoes semelhantes ao estado-da-arte, apesar da utilizacao de arquiteturas

béasicas nas redes de suas camadas.

Deve-se salientar, entretanto, que o modelo aqui proposto nao impoe limitacoes
quanto a rede neural ou o classificador de sequéncias a ser utilizado. Pelo contrario, um
dos seus pontos diferenciais em destaque é a possibilidade de utilizacao de multiplas redes

especialistas.

6.2 Trabalhos Futuros

O modelo aqui proposto possui varios pontos de extensao, além de diversas outras

analises que podem ser desenvolvidas. Dentre elas:
e Avaliacdo do desempenho de diferentes redes neurais no problema de reconhecimento
de expressoes faciais, utilizando a melhor rede para cada zona;
e Availacao do desempenho de diferentes classificadores de sequéncia, como DTW.

e Uso de zoneamento adaptativo: criacao de zonas diretamente em pontos de interesse,

como exclusivamente nos olhos, ou observando determinada parte da face;

e Estudo do poder de generalizacao através da realizagao de experimentos com dife-

rentes bases de imagens.



42

Referencias

BARROS, P.; WEBER, C.; WERMTER, S. Emotional Expression Recognition with a
Cross-Channel Convolutional Neural Network for Human-Robot Interaction. Procee-
dings of the IEEE-RAS International Conference on Humanoid Robots, p. In Press,
2015.

BARROS, P. V. a. et al. Convexity local contour sequences for gesture recognition.
Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC ’13,
p. 34, 2013.

BAUM, L. E. et al. A Maximization Technique Occurring in the Statistical Analysis of
Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics,
v. 41, n. 1, p. 164-171, 1970. ISSN 0003-4851.

BENGIO, Y.; LECUN, Y. Scaling Learning Algorithms towards Al To appear in Large-
Scale Kernel Machines. New York, v. 34, n. 1, p. 1-41, 2007. ISSN 00099104.

CHEN, S. et al. Recognizing expressions from face and body gesture by temporal normalized
motion and appearance features. In: Computer Vision and Pattern Recognition
Workshops (CVPRW), 2011 IEEE Computer Society Conference on. [S.1.: s.n.], 2011.
p. 7-12. ISSN 2160-7508.

CHU, B.; ROMDHANI, S.; CHEN, L. 3D-Aided Face Recognition Robust to Expression and
Pose Variations. 201/ IEEE Conference on Computer Vision and Pattern Recognition,
p- 1907-1914, 2014.

COHEN, I.; GARG, A.; HUANG, T. S. Emotion recognition from facial expressions using
multilevel HMM. Science And Technology, p. 85, 2000.

COLLOBERT, R.; KAVUKCUOGLU, K.; FARABET, C. Torch7: A Matlab-like Environ-
ment for Machine Learning. In: BigLearn, NIPS Workshop. [S.1.: s.n.], 2011.

COLMENAREZ, A.; FREY, B.; HUANG, T. S. A probabilistic framework for embedded
face and facial expression recognition. In: Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference on. [S.l.: s.n.], 1999. v. 1, p. 597 Vol. 1.
ISBN 1063-6919.

CYBENKO, G. Continuous Valued Neural Networks with Two Hidden Layers are Sufficient.
[S.L.: s.n.], 1988.

DENG, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09. [S.1.:
s.n.], 2009.

Donald Tanguay. Hidden markov models for gesture recognition. p. 1-52, 1995.

EKMAN, P. Facial expression and emotion. The American psychologist, v. 48, n. 4, p.
384-392, 1993. ISSN 0003-066X.

ERHAN, D. et al. Scalable object detection using deep neural networks. Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, p. 2155-2162, 2014.



Referéncias 43

FASEL, B.; LUETTIN, J. Automatic facial expression analysis: A survey. Pattern Recog-
nition, v. 36, n. 1, p. 259-275, 2003. ISSN 00313203.

FINK, G. A. Markov Models for Pattern Recognition: From Theory to Applications.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007. ISBN 3540717668.

FORNEY G.D., J. The viterbi algorithm. Proceedings of the IEEFE, v. 61, n. 3, p. 302-309,
1973. ISSN 0018-9219.

FOSLER-LUSSIER, E. Markov Models and Hidden Markov Models: A Brief Tutorial. Ca
Tr-98-041, v. 1198, n. 510, p. 132-141, 1998.

FREDRICKSON, B. L. The role of positive emotions in positive psychology: The broaden-
and-build theory of positive emotions. American Psychologist, v. 56, n. 3, p. 218-226,
2001. ISSN 0003-066X.

GARDINER, C. W. Handbook of stochastic methods. 1985. 101 p.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. Cupr’14, p. 2-9, 2014. ISSN 10636919.

HAMESTER, D.; BARROS, P.; WERMTER, S. Face expression recognition with a
2-channel Convolutional Neural Network. In: Neural Networks (ILJCNN), 2015 Inter-
national Joint Conference on. [S.l.: s.n.], 2015. p. 1-8.

HAYKIN, S. Neural Networks: A Comprehensive Foundation. 2nd. ed. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1998. ISBN 0132733501.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. Advances In Neural Information Processing Systems,
p. 1-9, 2012. ISSN 10495258.

LE, Q. V. et al. Building high-level features using large scale unsupervised learning.
International Conference in Machine Learning, p. 38115, 2011. ISSN 10535888.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436444,
2015. ISSN 0028-0836.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, v. 86, n. 11, p. 22782323, 1998. ISSN 00189219.

LOU, H.-L. Implementing the Viterbi algorithm. IEEE Signal Processing Magazine, v. 12,
n. 5, p. 42-52, 1995. ISSN 1053-5888.

LUCEY, P. et al. The extended Cohn-Kanade dataset (CK+): A complete dataset for action
unit and emotion-specified expression. 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Workshops, CVPRW 2010, n. July, p.
94-101, 2010. ISSN 2160-7508.

MITRA, S.; ACHARYA, T. Gesture Recognition : A Survey. IEEE Transactions On
Systems, Man, And Cybernetics - Part C: Applications And Reviews, v. 37, n. 3, p.
311-324, 2007. ISSN 10946977.



Referéncias 44

MORISHIMA, S.; HARASHIMA, H. Facial expression synthesis based on natural voice
for virtual\nface-to-face communication with machine. Proceedings of IEEE Virtual
Reality Annual International Symposium, 1993.

NEFIAN, A. V.; Hayes III, M. H. Hidden Markov models for face recognition. Acoustics
Speech and Signal Processing, v. b, n. 4, p. 2721-2724, 1998. ISSN 15206149.

RABINER, L.; JUANG, B. An introduction to hidden Markov models. IEEE ASSP
Magazine, v. 3, n. January, p. 4-16, 1986. ISSN 1934-340X.

RABINER, L.; JUANG, B.-H. Fundamentals of Speech Recognition. 1993. 507 p.

Rachana R. Herekar. Handwritten Character Recognition Based on Zoning Using Fu-
ler Number for English Alphabets and Numerals\n. IOSR Journal of Computer
Engineering (IOSR-JCE), v. 16, n. 4, p. 75-88, 2014.

ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in .... Psychological Review, v. 65, n. 6, p. 386—408, 1958. ISSN 1939-
1471(Electronic);0033-295X (Print).

RUSSAKOVSKY, O. et al. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), v. 115, n. 3, p. 211-252, 2015.

SANDERS, J.; KANDROT, E. CUDA by Example: An Introduction to General-
Purpose GPU Programming. 1st. ed. [S.1.]: Addison-Wesley Professional, 2010. ISBN
0131387685, 9780131387683.

SCHUHLI, E. S. E. Reconhecimento de gestos de maestro utilizando redes neurais artificiais
parcialmente recorrentes. 2005.

SZEGEDY, C. et al. Going Deeper with Convolutions. arXiv preprint arXiv:1409.4842, p.
1-12, 2014. ISSN 1550-5499.

VALENCA, M. Fundamentos das Redes Neurais. [S.l]: Livro Rapido, 2010. ISBN
9788577163427.

VINYALS, O. et al. Show and Tell: A Neural Image Caption Generator. 2014.

WAIBEL, a. et al. Phoneme recognition using time-delay neural networks. IEFE Tran-
sactions on Acoustics, Speech, and Signal Processing, v. 37, n. 3, p. 328-339, 1989.
ISSN 00963518.

XING, Z.; PEIL J.; KEOGH, E. A brief survey on sequence classification. ACM SIGKDD
Explorations Newsletter, v. 12, n. 1, p. 40, 2010. ISSN 19310145.

ZEILER, M.; FERGUS, R. Visualizing and understanding convolutional networks. Com-
puter Vision - ECCV 2014, v. 8689, p. 818-833, 2014. ISSN 978-3-319-10589-5.



	Folha de rosto
	Folha de aprovação
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução  
	Qualificação do Problema
	Objetivos
	Objetivos Específicos

	Estrutura da Monografia

	Redes Neurais Artificiais  
	Introdução 
	Multilayer Perceptron 
	Convolutional Neural Networks 
	Inspiração e estrutura básica 
	Camadas na CNN 
	Camada Convolucional
	Camada de amostragem
	Camada fully-connected

	Arquitetura Final 
	LeNet
	GoogLeNet



	Classificadores de Sequências por Modelo 
	Processos Estocásticos e Modelos de Markov 
	Hidden Markov Model 
	Problemas Canônicos
	Implementação de um HMM Contínuo Multivariável
	Forward ()
	Backward ()
	Classificação de sequências
	Treinamento utilizando Baum-Welch



	Modelo proposto  
	Introdução
	Arquitetura 
	Zoneamento
	Classificação das diferentes zonas
	Classificação das sequências


	Experimentos e Resultados 
	Reconhecimento de Expressões Faciais 
	Base de Dados 
	Adaptação do Modelo 
	Zoneamento
	Classificação das Zonas
	Classificação das Sequências

	Metodologia e Experimentos 
	Resultados 

	Considerações Finais  
	Conclusões
	Trabalhos Futuros

	Referências

