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Resumo
Expressões faciais são uma forma natural e expressiva de
transmitir emoções e intenções humanas. Diferente do cérebro
humano, o reconhecimento destas expressões não é uma tarefa
trivial para um computador. Nos últimos anos, diferentes
sistemas com base em redes de arquitetura profunda foram
propostos para resolver problemas da visão computacio-
nal, revolucionando o estado da arte. Todavia, diferentes
arquiteturas de rede apresentam diferentes características
de aprendizado, mostrando-se mais adequadas para padrões
específicos. Este trabalho propõe, então, uma abordagem
híbrida que envolve o zoneamento da imagem de entrada,
a classificação das subimagens com redes especialistas, e o
reconhecimento final através de técnicas de modelagem de
sequências. Como estudo de caso, aplica-se o modelo proposto
ao problema de reconhecimento de expressões faciais. A partir
dos experimentos, observa-se que o modelo fornece resultados
competitivos com o estado-da-arte, além de oferecer alternativas
para exploração da combinação de diferentes redes especialistas.

Palavras-chave: Reconhecimento de padrões, Expressões Fa-
ciais, CNN, HMM, Zoneamento.



Abstract
Facial expressions are a natural and expressive way of conveying
human emotions and intentions. Unlike the human brain, recog-
nizing those expressions is not a trivial task for a computer. In
recent years, multiple deep-learning models have been proposed
to solve computer vision problems, revolutionizing the state of
the art. However, di�erent network architectures have di�erent
learning abilities, making them more appropriate for specific
patterns. Therefore, this study proposes a hybrid approach
involving the zoning of the input image, the classification of
the sub-images with expert networks, and a final recognition
through sequence modeling techniques. As a case study, we
apply the model to the problem of facial expression recognition.
From the experiments, it is observed that the model achieves
competitive results, while providing alternatives for exploring
the combination of di�erent expert networks.

Keywords: Pattern recognition, Facial Expressions, CNN,
HMM, Zoning.
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1 Introdução

1.1 Qualificação do Problema
Expressões faciais são a forma mais natural e expressiva de transmitir emoções

e intenções humanas. Parte essencial da nossa interação com terceiros, essa forma de
comunicação não-verbal tem atraído pesquisadores de diferentes campos de pesquisa, como
nos estudos psicológicos das emoções básicas (EKMAN, 1993) e na elaboração de técnicas
inteligentes de interação homem-máquina (FASEL; LUETTIN, 2003).

O cérebro humano é capaz de facilmente interpretar diferentes padrões, permitindo-
nos a fácil compreensão de expressões faciais. Para um computador, todavia, essa é uma
tarefa não-trivial. Diferentes técnicas de aprendizado de máquina precisam ser aplicadas,
visando capacitar a identificação das mesmas. Tais sistemas de aprendizado também podem
ser encontrados em diversas outras aplicações, como reconhecimento de voz, gestos, escrita
e outros.

A área de visão computacional tem como objetivo a elaboração de técnicas para
construir sistemas computacionais capazes de realizar processamento e compreensão de
informações visuais, tais como imagens e vídeos. Análise automática de expressões faciais
tem sido, por sua vez, foco de diversas pesquisas nesta área (MORISHIMA; HARASHIMA,
1993; COLMENAREZ; FREY; HUANG, 1999; CHU; ROMDHANI; CHEN, 2014).

Nos últimos anos, diferentes sistemas com base em redes de arquitetura profunda
foram propostos para resolver problemas da visão computacional, revolucionando o estado
da arte (GIRSHICK et al., 2014; KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Do
termo em inglês Deep Learning, redes profundas permitem que modelos computacionais,
compostos por diferentes camadas de processamento, aprendam representações de dados
com múltiplas camadas de abstração. Esses métodos são capazes, então, de aprender estru-
turas intrínsecas em grandes conjuntos de dados ao ponto de melhorarem drasticamente o
estado da arte em diferentes problemas (LECUN; BENGIO; HINTON, 2015). Dentre estas
redes, destaca-se a Convolutional Neural Network (CNN), rede especificamente projetada
para o reconhecimento de padrões em imagens. Amplamente utilizada pela literatura, a
mesma é aplicada em diversos problemas de reconhecimento de objetos e padrões diversos
em imagens (SZEGEDY et al., 2014; VINYALS et al., 2014)

Adicionalmente, modelos estocásticos para análise de sequências, como o Hidden
Markov Model (HMM), também vêm sendo utilizados para a classificação de expressões
faciais, normalmente mapeadas como uma sequência temporal de movimentos faciais
(COHEN; GARG; HUANG, 2000). Tais abordagens visam explorar a capacidade de
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representação de distribuições de probabilidade sobre uma determinada sequência de
observações (RABINER; JUANG, 1986), usualmente provindas da captura de diferentes
quadros em um vídeo (COHEN; GARG; HUANG, 2000).

Considerando a alta capacidade de aprendizado para classificação de imagens das
redes de arquitetura profunda e o alto desempenho do HMM na categorização de séries
estocásticas, uma nova abordagem híbrida pode ser proposta. Através da segmentação de
diferentes pontos de interesse (e.g.: boca, nariz e olhos), problemas de reconhecimento de
padrão em imagens como a classificação de uma expressão facial podem ser subdivididos
em problemas menores e distribuídos para diferentes redes especialistas, sendo, por fim,
reagrupados como uma sequência a ser modelada e analisada pelo HMM.

1.2 Objetivos
Este trabalho tem como objetivo propor uma nova abordagem híbrida para o

reconhecimento de expressões faciais através da combinação de classificadores estocásticos
de cadeias com técnicas do estado-da-arte de reconhecimento de padrões em imagens
digitais. Desta forma, busca-se permitir a combinação e análise das classificações de
diferentes pontos de interesse da face humana de forma isolada.

1.2.1 Objetivos Específicos

• Propor a divisão de problemas de reconhecimento de padrões em imagens em
subproblemas menores, focados na análise de características específicas, permitindo
a aplicação de redes neurais especializadas;

• Propor a utilização de algoritmos de modelagem de séries estocásticas (e.g.: HMM)
como ferramenta para classificação global dos resultados obtidos pelas subredes;

• Analisar o desempenho do modelo proposto no problema de reconhecimento de
expressões faciais e avaliar sua viabilidade e benefícios.

1.3 Estrutura da Monografia
Este documento está organizado em 6 capítulos. O Capítulo 2 inicia a fundamenta-

ção teórica com a apresentação das redes neurais artificiais, com ênfase na CNN, rede de
arquitetura profunda utilizada para classificação de imagens. Em seguida, o Capítulo 3
apresenta uma introdução a classificadores de sequências, estudando o HMM. O Capítulo 4
propõe, então, uma arquitetura híbrida fundamentada nas duas técnicas anteriormente cita-
das. No Capítulo 5, apresenta-se a metodologia, experimentos realizados e seus resultados.
Por fim, o Capítulo 6 analisa as principais contribuições e trabalhos futuros.
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2 Redes Neurais Artificiais

Este capítulo visa introduzir parte da fundamentação teórica deste trabalho. A
Seção 2.1 apresenta uma breve introdução às redes neurais artificiais, sendo seguida pela
Seção 2.2 que detalha a rede MLP. Por fim, a Seção 2.3 detalha a rede neural utilizada no
desenvolvimento do projeto, a CNN.

2.1 Introdução
O cérebro humano é um poderoso sistema de processamento de informações capaz

de interpretar diferentes padrões e adaptar-se ao meio ambiente, apresentando-se altamente
complexo, não-linear e paralelo. Tarefas rotineiras, como o reconhecimento perceptivo
visual realizado ao se reconhecer um rosto familiar, são executadas em aproximadamente
100-200ms, enquanto tarefas de complexidade muito inferior podem demorar várias ordens
de grandeza a mais para serem executadas por um computador convencional (HAYKIN,
1998).

Partindo da inspiração no funcionamento das Redes Neurais Naturais, (HAYKIN,
1998) define que Redes Neurais Artificiais (RNAs) são máquinas computacionais adapta-
tivas projetadas para modelar a maneira como o cérebro humano realiza uma tarefa em
particular ou função de interesse. São um processador extremamente paralelo, distribuído,
constituído de unidades de processamento simples (neurônios), que têm a propensão natural
para armazenar conhecimento experimental e torná-lo disponível para o uso. Enumeram-se
dois aspectos que as tornam semelhantes ao cérebro:

1. Um processo de aprendizagem permite a rede adquirir conhecimento a partir de seu
ambiente.

2. Pesos sinápticos são utilizados para armazenar o conhecimento adquirido.

2.2 Multilayer Perceptron
Dentre as diferentes arquiteturas possíveis para RNAs, destaca-se a Multilayer

Perceptron (MLP). Baseada em uma das primeiras RNAs a serem projetadas, o Perceptron
de (ROSENBLATT, 1958), a rede MLP se torna um marco por passar a permitir a
resolução de problemas não-linearmente separáveis, sendo capaz de aproximar qualquer
função contínua (CYBENKO, 1988).
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A rede MLP é formada por um conjunto de neurônios, interconectados, organizados
em camadas. Cada neurônio recebe um conjunto de sinapses para entrada, caracterizados
por um peso próprio, os quais são somados ponderadamente e processados por uma função
de ativação restritiva, que define a amplitude do sinal de saída. Os neurônios de uma
camada são conectados a todos os das camadas vizinhas (i.e.: é fully-connected).

Existem três tipos de camadas utilizadas em uma rede MLP. A primeira camada é
a de entrada, onde seus neurônios representam as variáveis input do sistema. Em seguida,
encontram-se uma ou mais camadas intermediárias, escondidas, que são responsáveis pela
não-lineariedade do sistema. (VALENÇA, 2010) sugere o uso de uma função sigmóide de
ativação, como a tangente hiperbólica ou logística nesta camada. Por fim, tem-se a de
saída, representando a resposta da rede com as variáveis sendo classificadas ou previstas.
A Figura 1 apresenta graficamente a arquitetura descrita.

Figura 1 – Exemplo de rede MLP com quatro neurônios na camada de entrada, quatro na
sua única camada oculta e dois na camada de saída.

2.3 Convolutional Neural Networks
A Convolutional Neural Network (CNN) funciona de forma semelhante às redes

neurais artificiais tradicionais, como a MLP. Também são compostas por múltiplas camadas
de neurônios, ponderados por pesos, que recebem algum sinal de entrada, calculam
um produto escalar e geram uma saída através de uma função de ativação. Uma das
diferenças fundamentais é que a CNN foi projetada para processar, exclusivamente, entradas
multidimensionais, como imagens compostas por três vetores bidimensionais contendo
a intensidade de cada pixel em cada um dos três canais de cores. Isso permite que a
mesma faça suposições sobre sua entrada que a beneficiem, como: conexões locais, pesos
compartilhados, pooling e abstração em múltiplas camadas (LECUN; BENGIO; HINTON,
2015).
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Aplicações diversas de CNNs podem ser encontradas na literatura, incluindo:
reconhecimento de voz (WAIBEL et al., 1989), leitura de documentos e cheques (LECUN
et al., 1998), envolvendo o reconhecimento de dígitos e escrita cursiva, reconhecimento
de objetos (SZEGEDY et al., 2014), reconhecimento de faces (HAMESTER; BARROS;
WERMTER, 2015), descrição automática de imagens (VINYALS et al., 2014), entre
outros.

Figura 2 – Visualização do poder de classificação de uma arquitetura projetada para o
ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC-2010). A
primeira imagem, à esquerda, apresenta oito imagens de teste e as cinco clas-
ses consideradas mais prováveis pelo modelo. A segunda imagem, à direita,
apresenta cinco imagens de teste na primeira coluna, seguidas por seis colu-
nas de imagens de treinos consideradas mais semelhantes à de teste. Fonte:
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

2.3.1 Inspiração e estrutura básica
Problemas de reconhecimento de padrões em imagem notoriamente requerem que

o modelo utilizado desconsidere variações irrelevantes das imagens, como mudanças de
posição, orientação e iluminação, mas que, ao mesmo tempo, sejam sensíveis a detalhes
específicos que de fato caracterizem o cenário presente na imagem.

Como exemplificado por (LECUN; BENGIO; HINTON, 2015) e observado na Figura
3, as fotografias de dois cachorros brancos da raça Samoyed, em poses diferentes, podem
ser completamente diferentes se comparadas diretamente por pixel. Já a comparação das
mesmas fotos com a de um Husky Siberiano branco, em pose e plano de fundo semelhantes,
pode apresentar um grande número de pixels semelhantes. Como concluído por (LECUN;
BENGIO; HINTON, 2015), um classificador linear ou qualquer outro classificador raso
(i.e.: uma rede neural artificial de poucas camadas), operando diretamente nos pixels, não
poderia distinguir as duas últimas imagens enquanto classificando as duas primeiras como
da mesma classe.



Capítulo 2. Redes Neurais Artificiais 18

Figura 3 – Três exemplos de fotografias de diferentes cachorros. As duas primeiras apre-
sentam um cachorro da mesma raça, Samoyed, em diferentes poses. A última,
à direita, apresenta um Husky Siberiano. Classificadores rasos, operando di-
retamente nos pixels, não são capazes de distinguir as duas últimas imagens
enquanto classificando as duas primeiras como da mesma classe. Fonte: (DENG
et al., 2009)

Percebe-se, também, problemas de escalabilidade em arquiteturas rasas, como
apresentado por (BENGIO; LECUN, 2007). Para utilizar uma imagem 100 ◊ 100 ◊ 3 dire-
tamente como entrada de uma rede MLP, são necessários 100 ú 100 ú 3 = 30.000 neurônios
na camada de entrada, implicando em 30.000 pesos para conectar um único neurônio da
primeira camada escondida à de entrada. Esse grande número de parâmetros acumula-se
rapidamente e pode causar overfitting. Faz-se necessário, então, o uso de extratores de
características manualmente projetados e otimizados, que busquem simplificar a imagem
de entrada em valores que representem aspectos importantes para sua classificação, se
mantendo invariantes para coisas irrelevantes à mesma.

Visando resolver o problema da explosão de parâmetros causada pela alta conecti-
vidade, a CNN utiliza propriedades inerentes às imagens digitais para reduzir a quantidade
de pesos necessários em redes de sua profundidade. Além disso, sua modelagem busca
aprender automaticamente características que identifiquem padrões na imagem, removendo
a necessidade de otimização manual de extratores, que demanda extensivo conhecimento a
priori do universo de entrada.

A arquitetura típica de uma CNN é composta por uma série de estágios, que, por
sua vez, são compostos por uma ou mais camadas. Tais camadas, ao contrário da rede
MLP, são organizadas em 3 dimensões: largura, altura e profundidade. O objetivo de
cada uma é, então, transformar sua entrada tridimensional em uma saída também em
três dimensões, através de alguma função diferenciável opcionalmente parametrizável. A
Figura 4 apresenta um exemplo desta arquitetura. Ainda, nota-se que os neurônios da
vasta maioria das camadas se conectam apenas a uma parte limitada da camada anterior
a deles. Em geral, apenas o último estágio (chamado de fully-connected, ou FC) apresenta
todas as conexões, por se assemelhar a uma rede tradicional acoplada para converter o
aprendizado da rede em probabilidades de cada classe do problema.
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Figura 4 – Visualização de uma arquitetura CNN simples e suas camadas tridimensionais

2.3.2 Camadas na CNN
Existem quatro tipos de camadas fundamentais que estruturam os estágios de uma

CNN, seguindo a camada de entrada. São elas: camada convolucional (CONV ), função de
ativação não-linear elemento a elemento (aplicada após a realização das convoluções, e.g.:
ReLU ), camada de amostragem (POOL) e camada totalmente conectada (FC ). Em geral,
uma arquitetura básica é composta pelo empilhamento de um estágio inicial contendo um
ou mais conjuntos de camadas CONV-ReLU-POOL, e finalizando com a camada FC para
cálculo dos scores de cada classe.

2.3.2.1 Camada Convolucional

Como visto anteriormente, CNNs exploram o princípio da conectividade local.
Os neurônios da camada CONV se conectam apenas a uma região limitada da camada
anterior. As dimensões dessa região são definidas pelo hiperparâmetro campo receptivo,
que define a largura e altura da conectividade local. Para a profundidade, todavia, a
conectividade extende-se por toda a extensão da camada anterior. Recebendo uma imagem
RGB como entrada, por exemplo, um neurônio terá acesso a apenas um pedaço da imagem
(largura ◊ altura) em todos os seus canais de cores (profundidade).

A quantidade de parâmetros necessários também pode ser reduzida através do
compartilhamento de pesos entre diferentes neurônios. Isso é possível partindo da suposição
de que o filtro aprendido para reconhecer uma determinada característica em um pedaço
da imagem também pode ser útil em outro. Por exemplo, um filtro detector de bordas
do canto superior direito de uma imagem também pode detectar bordas no canto inferior
esquerdo, visto que, se uma característica pode aparecer em um lugar da imagem, a mesma
também pode aparecer em qualquer outro lugar (invariância de local). Pode-se denotar,
então, que cada neurônio da camada convolucional compartilha seus pesos com os vizinhos
no mesmo nível de profundidade, onde estes conjuntos de neurônios são chamados de depth
slices.
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Dado o compartilhamento de pesos por depth slices, percebe-se que o cálculo dos
produtos escalares para produzir a saída da camada convolucional é, em suma, uma
operação de convolução entre os pesos (aqui chamados de filtros, dada sua função) desta
fatia pelo volume de entrada. O resultado da convolução de todos os filtros gera um
conjunto de mapas de ativação que, ao serem empilhados em profundidade, formam o
volume de saída desta camada. Isto é, a camada CONV processa sua entrada através de
filtros, fornecendo, em sua saída, um mapeamento da ativação de cada filtro em diferentes
partes da imagem. A Figura 5 apresenta um exemplo de filtros aprendidos por uma camada
convolucional.

Figura 5 – Exemplo de 96 filtros convolucionais 11 ◊ 11 ◊ 3 aprendidos pela primeira
camada convolucional de uma arquitetura treinada para reconhecer objetos
genéricos em imagens da ILSVRC-2010. Fonte: (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012).

Por fim, existem três outros hiperparâmetros que podem ser configurados em uma
camada convolucional: profundidade do volume de saída, que corresponde à quantidade
de filtros a serem aprendidos; passo, espaçamento em pixels entre o centro dos campos
receptivos de cada neurônio, definindo a sobreposição dos filtros; e zero-padding, que pode
ser utilizado para controlar o tamanho do volume de saída.

2.3.2.2 Camada de amostragem

O propósito da camada de pooling é fundir características semanticamente similares
em uma única (LECUN; BENGIO; HINTON, 2015). A redução de tamanho (downsam-
pling) das representações de entrada pode influenciar positivamente na generalização das
características, ao remover pequenos deslocamentos e distorções. Além disso, a simples
redução da quantidade de parâmetros ajuda a simplificar o custo computacional da rede
como um todo.

A camada POOL é geralmente configurada através de dois hiperparâmetros: di-
mensão, que representa a largura e altura do filtro de amostragem a ser utilizado; e passo,
que, novamente, ajusta a sobreposição da aplicação dos filtros. De acordo com (LECUN;
BENGIO; HINTON, 2015), a operação de amostragem mais comumente utilizada é a
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MAX, que tem como resultado o valor máximo dentre todos os valores da entrada visíveis
pelo filtro.

2.3.2.3 Camada fully-connected

Por fim, a camada FC possui todos os seus neurônios conectados a todos os neurônios
da camada anterior. Isto é, a mesma comporta-se como uma rede neural tradicional que
recebe como entrada o resultado da ativação de cada filtro aprendido pela rede e computa
a probabilidade de cada classe do problema.

2.3.3 Arquitetura Final
(LECUN; BENGIO; HINTON, 2015) afirma em seu review que Redes Neurais de

Arquitetura Profunda, dentre elas a CNN, exploram a propriedade de que muitos sinais
naturais são hierarquias de composições, nas quais características de mais alto-nível são
obtidas através da composição de outras de mais baixo-nível. Um conjunto de bordas em
uma imagem forma um padrão, um conjunto de padrões compõe fragmentos de objetos,
um conjunto de fragmentos constrói um objeto. Na CNN, quanto maior a hierarquia de
uma camada convolucional, maior o seu campo receptivo e sua capacidade de abstração.

De forma genérica, (LECUN; BENGIO; HINTON, 2015) sugere como arquitetura
básica de uma CNN:

Input æ ((CONV æ ReLU) ◊ a æ POOL) ◊ b æ FC ◊ c, (2.1)

onde a camada POOL é opcional e a, b e c são números inteiros não negativos que
indicam a quantidade de repetições de cada estágio. Isto é: compõe-se hierarquicamente
uma série de camadas convolucionais, que aprenderão filtros cada vez mais complexos e
abrangentes, com camadas de amostragem que ajudam a reduzir espacialmente o volume
processado. Por fim, camadas completamente conectadas computam as variáveis de saída,
como o score das classes.

As subseções a seguir apresentam algumas arquiteturas famosas de CNNs.

2.3.3.1 LeNet

Tendo sua última iteração (LeNet-5) proposta em (LECUN et al., 1998), a LeNet é
uma família de arquiteturas projetada para o reconhecimento de caracteres escritos à mão,
sendo aplicada com sucesso no reconhecimento de dígitos em cheques, números de casas,
entre outras aplicações. Sua arquitetura básica pode ser vista na Figura 6.
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Figura 6 – Arquitetura da rede CNN LeNet-5, projetada para reconhecimento de dígitos
manuscritos. Fonte: (LECUN et al., 1998).

2.3.3.2 GoogLeNet

Modelo campeão da ILSVRC-2014, competição que avalia algoritmos para detecção
de objetos e classificação de imagens em larga escala, revolucionou o estado da arte ao
apresentar uma nova arquitetura entitulada Inception. Obteve desempenho significativa-
mente melhor que seus antecessores, usando 12 vezes menos parâmetros que a rede campeã
de duas competições atrás (SZEGEDY et al., 2014). Sua arquitetura é caracterizada pela
organização em módulos de Inception e pela sua profundidade, sendo composta por 22
camadas. A Figura 7 apresenta a estrutura da mesma.
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Figura 7 – Arquitetura da rede GoogLeNet, modelo campeão da ILSVRC-2014. A camada
de entrada pode ser visualizada no canto inferior esquerdo. Itens (1) e (2)
indicam a continuidade do fluxograma. Fonte: (SZEGEDY et al., 2014)

.
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3 Classificadores de Sequências por Modelo

Classificadores de sequências possuem uma ampla gama de aplicações: classificação
de sequências de proteínas do genoma, detecção de intrusão, recuperação de informação
e classificação de documentos, análise de ECG, diferenciação entre robôs e usuários
legítimos na internet, entre diversas outras áreas (XING; PEI; KEOGH, 2010). Dentre os
diferentes tipos de classificadores, destacam-se os baseados em modelo, onde assume-se
que a sequência foi gerada por um modelo intrínseco. Este capítulo busca detalhar o
funcionamento do Hidden Markov Model (HMM), exemplo de classificador desta classe.

A Seção 3.1 introduz o conceito de processos estocásticos e processos Markovianos.
Em seguida, a Seção 3.2 detalha o funcionamento de um HMM.

3.1 Processos Estocásticos e Modelos de Markov
Como definido por (GARDINER, 1985), processos estocásticos são sistemas em

que existe uma variável aleatória dependente do tempo X(t). A observação do lança-
mento sucessivo de moedas, os passos de uma pessoa caminhando, entre diversos outros
experimentos, são exemplos de processos aleatórios.

Os Modelos de Markov são modelos que assumem a hipótese Markoviana, definida
por (GARDINER, 1985) em termos de probabilidade condicional: se o tempo satisfaz a
ordem

t1 Ø t2 Ø t3 Ø ... Ø ·1 Ø ·2 Ø ..., (3.1)

a probabilidade condicional é determinada apenas pelo conhecimento das condições
mais recentes. Isto é:

p(x1, t1; x2, t2; ...|y1, ·1; y2, ·2; ...) = p(x1, t1; x2, t2; ...|y1, ·1), (3.2)

onde xn e yn são eventos no instante n. Nota-se que, neste exemplo, o modelo
depende apenas do evento mais recente, sendo classificado como de primeira ordem.

Portanto, a probabilidade de determinados eventos acontecerem depende apenas da
observação mais recente. Modelos Markovianos apresentam-se, então, como uma técnica de
predição baseada apenas no atual momento de execução, já que não consideram, de forma
direta, os resultados obtidos anteriormente. Como exemplo prático, (Donald Tanguay,
1995) apresenta a língua inglesa, onde a probabilidade de observar a letra "u"ao processar
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uma palavra depende fortemente da letra que foi indentificada por último, visto que essa
está quase sempre precedida pela letra "q".

3.2 Hidden Markov Model
(RABINER; JUANG, 1986) sugere, como motivação para o HMM, processos do

mundo real que aparentam apresentar um comportamento de mudanças sequenciais: suas
propriedades se mantêm aproximadamente constantes por um determinado intervalo de
tempo, com pequenas flutuações, até que, em um determinado instante, há uma troca
dessas propriedades. Enumeram-se, então, três problemas com esses processos:

1. Como identificar esses momentos de estabilidade e variação?

2. Como caracterizar essa natureza de evolução sequencial?

3. Qual período de tempo típico/curto deve ser escolhido para a análise?

Os HMMs tratam desse problema com sucesso por se tratarem de processos
Markovianos duplamente estocásticos. Isto é, HMMs são compostos por um processo
estocástico interno, não diretamente observável, que só pode ser analisado e observado
através de outro processo estocástico externo que produz a sequência de símbolos visíveis.

(FOSLER-LUSSIER, 1998) exemplifica a aplicação de um HMM na previsão do
tempo. Considere que existem três possíveis estados para o clima: ensolarado, chuvoso
ou nublado. Para simplificação do modelo, assumiremos que o clima é estável por toda a
duração de um dia. Caso possamos assumir que a previsão do tempo para um dia depende
apenas da previsão do tempo do dia anterior, teremos satisfeito a hipotése Markoviana.
Basta olhar o céu do dia atual para prever o clima do dia seguinte. E se não for possível
observar diretamente o céu? Caso restrinjamos as observações para torná-las indiretas (e.g.:
você agora está dentro de uma casa e só observa pessoas carregando guarda-chuva ou não),
passamos a ter um HMM. Você não tem acesso ao real estado de seu processo, apenas
a certos observáveis que podem ser emitidos: é mais provável que as pessoas carreguem
um guarda-chuva em um dia chuvoso, apesar disso também poder ser feito em um dia
ensolarado, nos levando a um novo conjunto de probabilidades.

Um HMM ⁄ pode ser escrito na notação:

⁄ = (A, B, fi), (3.3)

onde:
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A é a matriz de probabilidade de transições, com cada elemento aij sendo a probabilidade
de sair de um estado i e ir para um estado j

fi é o vetor de probabilidades de distribuição inicial, onde cada fii representa a probabili-
dade do estado inicial ser i

B é a matriz de probabilidades dos observáveis, onde cada elemento bij representa a
probabilidade do observável j ser emitido no estado i (NEFIAN; Hayes III, 1998).
Essa matriz pode ser composta por valores discretos ou por distribuições contínuas,
definindo modelos de escopo discretos e contínuos.

Figura 8 – Representação gráfica de um HMM, de estados x ocultos (cinza claro) e seus
sinais observáveis (cinza escuro) y.

3.2.1 Problemas Canônicos
Existem três problemas canônicos para um HMM (NEFIAN; Hayes III, 1998;

MITRA; ACHARYA, 2007). São eles:

Evaluation Qual a probabilidade de determinada sequência de observáveis O ter sido
gerada pelo modelo ⁄ (i.e.: P (O|⁄))? O algoritmo Forward-backward (BAUM et al.,
1970) pode ser aplicado para obter essa informação, possuindo um custo computacio-
nal múltiplas ordens de grandeza menor que resolução por "força-bruta"(RABINER;
JUANG, 1986);

Decoding Dado um modelo ⁄ e uma sequência de observáveis O, qual a sequência de
estados com maior probabilidade de ter gerado O? Esta é obtida através do algoritmo
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de Viterbi (FORNEY G.D., 1973; LOU, 1995), que se apresenta próximo ao ótimo
(SCHÜHLI, 2005);

Training Como devem ser treinados os parâmetros de um modelo ⁄ de modo a maximizar
P (O|⁄)? Utilizando o algoritmo de treinamento Baum-Welch (RABINER; JUANG,
1986).

Através dos algoritmos relacionados aos problemas canônicos, podemos realizar a
classificação e previsão de sequências de observáveis modelando-os com HMMs.

3.2.2 Implementação de um HMM Contínuo Multivariável
Partindo do conceito base discutido nas subseções anteriores, um HMM pode

ser modelado para lidar com diferentes tipos de dados. As principais variações estão
relacionadas a dimensionalidade e continuidade dos valores observáveis. Um valor observável
pode ser monovariável (apenas uma dimensão) ou multivariável (múltiplas dimensões),
além de poder ser discreto ou contínuo.

A implementação discutida nas subseções a seguir diz respeito a um HMM Contí-
nuo Multivariável, dada sua flexibilidade quanto à entrada. Dada a natureza contínua, as
matrizes de probabilidade agora incorporam distribuições contínuas de probabilidade. A
Distribuição de Mistura Gaussiana é apresentada por possuir um maior poder de represen-
tação (FINK, 2007). Nesta, cada estado possui um conjunto de k distribuições normais
gjk(x) e k pesos cjk, nos quais a probabilidade de emissão é dada por bjk = q

k
cjkgjk(x),

permitindo um número maior de máximos locais em comparação com a distribuição normal
individualmente, que possui apenas um máximo global.

As próximas subseções apresentam os algoritmos explanados por (FINK, 2007) e
(RABINER; JUANG, 1993), matematicamente.

3.2.2.1 Forward (–)

A probabilidade de que para um determinado modelo ⁄, a sequência de observáveis
O1, O2, . . . , Ot seja gerada no tempo t e o estado (s) de valor i seja alcançado, é dada pelas
variáveis forward –t(i). Isto é:

–t(i) = P (O1, O2, . . . , Ot, st = i|⁄). (3.4)

O cálculo da matriz – é feito através do seguinte algoritmo recursivo:

Inicialização Para todos os estados i:

–1(i) = fiibi(O1); (3.5)



Capítulo 3. Classificadores de Sequências por Modelo 28

Recursão Para todos os estados j e t = 1 . . . T ≠ 1:

–t+1(j) =
ÿ

i

(–t(i)aij)bj(Ot+1). (3.6)

3.2.2.2 Backward (—)

A probabilidade de uma sequência parcial de observáveis Ot+1, Ot+2, . . . , OT a partir
do tempo t + 1, partindo de um estado j, ser gerada por um determinado modelo ⁄ pode
ser calculada através das variáveis backward —:

—t(j) = P (Ot+1, Ot+2, . . . , OT |st = j, ⁄) (3.7)

O algoritmo recursivo utilizado para o cálculo da matriz — é composto por:

Inicialização Para todos os estados i:

—T (i) = 1; (3.8)

Recursão Para todos os estados i e t = T ≠ 1 . . . 1:

—t(i) =
ÿ

j

aijbj(Ot+1)—t+1(j)). (3.9)

3.2.2.3 Classificação de sequências

Partindo das matrizes forward e backward definidas anteriormente, é possível
calcular a probabilidade de uma determinada sequência de observáveis O ter sido produzida
pelo modelo ⁄ (FINK, 2007). Essa operação é chamada de Forward-Backward:

P (O|⁄) =
Nÿ

i=1
–T (i); (3.10)

e:

P (O|⁄) =
Nÿ

i=1
fiibi(O1)—1(i). (3.11)

3.2.2.4 Treinamento utilizando Baum-Welch

(FINK, 2007) apresenta Baum-Welch como o algoritmo mais utilizado para a
otimização de HMMs. Em cada iteração, o mesmo visa encontrar um novo conjunto
de parâmetros para ⁄ onde P (O|⁄Õ) Ø P (O|⁄), isto é, a probabilidade de ter gerado o
conjunto de observações tidas como verdadeiras para esse modelo seja maior que ou igual
a probabilidade obtida pelo modelo com o conjunto de parâmetros da iteração anterior.

Os valores atualizados de cada parâmetro são calculados com base em três funções:
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1. Probabilidade a posteriori para a ocorrência do estado i no tempo t.

“t(i) = P (St = i|O, ⁄) = –t(i)—t(i)
P (O|⁄) (3.12)

2. Probabilidade a posteriori da transição de um estado i para um estado j em um
tempo t.

“t(i, j) = P (St = i, St+1 = j|O, ⁄) = –t(i)aijbj(Ot+1)—t+1(j)
P (O|⁄) (3.13)

3. Probabilidade de selecionar no estado j o k-ésimo componente da distribuição mistura
no tempo t para gerar a observação contínua Ot.

›t(j, k) = P (St = j, Mt = k|O, ⁄) =

Nq
i=1

–t(i)aijcjkgjk(Ot)—t(j)

P (O|⁄) (3.14)

O algoritmo, então, é executado em três etapas: inicialização, otimização e verifica-
ção. Na inicialização, define-se um modelo base ⁄ = (A, B, fi) com as estimativas inicias
para todos os parâmetros. As duas últimas etapas são repetidas até que o critério de parada
seja atingido. O critério de parada é controlado pela etapa de verificação, onde compara-se
o modelo proposto pela iteração atual com o modelo anterior: caso a probabilidade de
geração das sequências tenha aumentando (i.e.: P (O|⁄Õ) > P (O|⁄)), os parâmetros são
sobrescritos e a execução continua. Caso contrário, o treinamento é encerrado. Pode-se,
também, definir um limiar que determine quais diferenças são consideradas significantes.

A etapa de otimização realiza a atualização dos parâmetros do modelo ⁄, estimando
um novo modelo ⁄Õ = (AÕ, BÕ, fiÕ). A matriz AÕ é atualizada como:

aÕ
ij =

T ≠1q
t=1

“t(i, j)
T ≠1q
t=1

“t(i)
. (3.15)

O vetor fiÕ é atualizado por:

fiÕ
i = “1(i). (3.16)

Os pesos c da distribuição mistura, assim como µÕ e C Õ de cada distribuição normal:

cÕ
jk =

Tq
t=1

›t(j, k)
Tq

t=1
“t(j)

, (3.17)
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µÕ
jk =

Tq
t=1

›t(j, k)xt

Tq
t=1

›t(j, k)
, (3.18)

C Õ
jk =

Tq
t=1

›t(j, k)xt(xT
t )

Tq
t=1

›t(j, k)
≠ µÕ

jkµ
ÕT
jk . (3.19)

Esse processo de otimização é executado para cada sequência de observáveis no
conjunto de treino e o parâmetro final do modelo otimizado se dará pela média aritmética
simples (soma do resultado em cada sequência de observáveis de todos os parâmetros
correspondentes dividido pelo número de sequências no treino) (RABINER; JUANG,
1993).
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4 Modelo proposto

4.1 Introdução
Sabe-se que diferentes arquiteturas de redes neurais artificiais apresentam diferentes

capacidades de aprendizado e generalização em problemas diversos. Padrões a serem
reconhecidos podem ser compostos por características intrínsecas que são capturadas
de forma melhor por diferentes redes. (LE et al., 2011) exemplifica este efeito em seu
trabalho, ao treinar diferentes neurônios para a classificação de faces humanas, corpos
humanos e faces de gatos. (ERHAN et al., 2014) ao apresentar uma nova abordagem
para o ILSVRC-2012, demonstra como várias arquiteturas propostas se sobressaem em
diferentes classes de objetos na base de dados da competição.

A complexidade da imagem a ser analisada também possui grande impacto na
capacidade de generalização da rede. As camadas mais profundas de uma CNN, por
exemplo, estão diretamente ligadas a sua capacidade de criação de filtros mais complexos
e abstratos (ZEILER; FERGUS, 2014). O mesmo pode ser observado em diferentes
redes de arquitetura profunda, em geral ocasionando um crescimento de múltiplas ordens
de grandeza na quantidade de parâmetros treináveis necessários, tornando a rede mais
suscetível a overfitting. Por esta razão, há um constante interesse da literatura em buscar
diferentes alternativas ao crescimento espacial das redes neurais (SZEGEDY et al., 2014).

Encontra-se, especialmente na literatura acerca de reconhecimento de escrita cursiva,
um amplo uso de técnicas de zoneamento para classificação de padrões (Rachana R. Herekar,
2014). Nestas, a imagem a ser analisada é divida em sub-imagens intituladas zonas, onde
cada uma irá conter informação local a respeito do padrão a ser analisado. Em seguida, cada
zona é avaliada por um classificador de padrões, e o contexto com todas as classificações é
utilizado para compor o processo de reconhecimento final.

Inspirado por essas motivações, este capítulo apresenta um modelo híbrido para o
reconhecimento de padrões em imagens. Neste, o conceito de zoneamento é utilizado visando
a divisão da imagem a ser analisada em sub-problemas menores, em uma abordagem
dividir para conquistar, que podem ser classificados por redes especialistas de cada zona.
Por fim, um modelador de sequências pode ser utilizado para obter-se a classificação final
da imagem. A Seção 4.2 discorre a respeito da arquitetura proposta e suas etapas.
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4.2 Arquitetura
O modelo proposto é composto por três estágios: zoneamento da entrada, classifica-

ção das diferentes zonas e, por último, classificação das sequências. A Figura 9 apresenta
visualmente o processo executado por este modelo. As subseções a seguir detalham cada
etapa, enfatizando que diferentes técnicas podem ser aplicadas em cada estágio, adaptando
o modelo a problemas específicos.

Figura 9 – Representação gráfica do processamento de uma imagem contendo a letra A pelo
modelo proposto, visando classificá-la como uma das vogais (ou seja, 5 classes
possíveis). Na primeira etapa, divide-se a imagem de entrada em quatro zonas.
Em seguida, cada zona é classificada por uma rede neural produzindo tuplas de
probabilidade. Por fim, o classificador de sequências produz as probabilidades
finais de cada classe, mostrando que a entrada tem 93% de chance de ser a
vogal A.

4.2.1 Zoneamento
Frequentemente utilizado em técnicas de reconhecimento de escrita cursiva, o propó-

sito desta etapa é dividir a imagem de entrada em problemas menores, com características
locais, a serem classificados por diferentes redes neurais. Desta forma, podemos reduzir a
complexidade do problema e possibilitar a utilização de redes especialistas para cada zona.

(Rachana R. Herekar, 2014) define que o zoneamento pode ser classificado em
topologias. As duas que se destacam são:

Topologia Estática: projetada sem o uso direto de informações previamente obtidas
a respeito da distribuição das características nos padrões. Estas são usualmente
propostas com base em evidências experimentais, ou experiência e intuição do
projetista. Em geral, tomam forma de simples grades.

Topologia Dinâmica: obtida através do uso de técnicas de otimização, tendo como base
informações específicas do problema a ser analisado.

Como resultado desta etapa, tem-se as sub-imagens obtidas através da topologia
aplicada. Essas zonas possuem características locais que serão classificadas pela próxima
etapa.
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4.2.2 Classificação das diferentes zonas
Após a obtenção das diferentes sub-imagens que compõe a entrada, a partir da

topologia escolhida, realiza-se a classificação de cada zona utilizando uma rede neural
especialista, treinada para o reconhecimento das características locais da zona a qual está
relacionada. Nesta etapa, as propriedades do aprendizado e poder de generalização de
cada rede deve ser levado em conta. Cada zona, aqui, apresenta um novo problema, menos
complexo, ao qual as arquiteturas das redes utilizadas devem se adaptar.

Nota-se que, caso a mesma rede neural seja utilizada para cada zona, a vantagem
deste modelo apresenta-se apenas como redução de complexidade. Através da utilização
de múltiplas redes, esta vantagem é ampliada ao permitir a utilização de redes que
apresentam melhor desempenho nos problemas de cada zona. Ainda, deve-se notar que,
apesar da recomendação da utilização de arquiteturas profundas, visto o alto desempenho
na classificação de objetos observado na literatura, diferentes técnicas de reconhecimento
de padrão também podem ser aplicados com sucesso nesta etapa.

Como resultado, temos, para cada zona, uma tupla que indica a probabilidade desta
zona pertencer a uma das classes do problema. A sequência final pode ser representada
como:

[(p1,1, p1,2, . . . , p1,m), (p2,1, p2,2, . . . , p2,m), . . . , (pn,1, pn,2, . . . , pn,m)], (4.1)

onde pn,m indica a probabilidade da zona n pertencer a classe m.

4.2.3 Classificação das sequências
Por fim, consolida-se a série de classificações obtidas, em relação as possíveis classes

do problema, através de técnicas de modelagem de sequências. Variações de Dynamic
Time Warping (DTW), Support Vector Machine (SVM) e HMM podem ser utilizadas para
a classificação de sequências, como analisado por (XING; PEI; KEOGH, 2010).

Nesta fase, realiza-se o treino do classificador utilizando como entrada as sequências
geradas pela etapa anterior. O classificador deve ser capaz de aprender a generalizar
a construção da série representante de cada classe, provendo uma maior resistência a
ruído. Assim, pequenas falhas de classificação em zonas específicas podem ser corretamente
ignoradas nesta etapa. Nota-se, portanto, que toda a base de dados deve ter sido convertida
para este novo formato, englobando o grupo de imagens utilizadas para teste e para treino.

Como resultado, é fornecida a probabilidade da imagem de entrada pertencer a
cada classe do problema.
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5 Experimentos e Resultados

Este capítulo apresenta a exploração realizada acerca da aplicação do modelo
proposto no Capítulo 4 ao problema de reconhecimento de expressões faciais. A Seção 5.1
detalha a motivação e realiza um breve resumo do problema a ser analisado. Em seguida,
a Seção 5.2 especifica a base de imagens utilizada e as modificações realizadas à mesma.
A Seção 5.3 apresenta, então, as adaptações realizadas ao modelo proposto para este
problema. Por fim, a Seção 5.4 detalha os experimentos realizados, sendo seguida pelos
resultados obtidos, explorados na Seção 5.5.

5.1 Reconhecimento de Expressões Faciais
Expressões faciais são a forma mais natural e expressiva de transmitir emoções

e intenções humanas. Parte essencial da nossa interação com terceiros, essa forma de
comunicação não-verbal tem atraído pesquisadores de diferentes campos, como nos estudos
psicológicos das emoções básicas (EKMAN, 1993) e na elaboração de técnicas inteligentes
de interação homem-máquina (FASEL; LUETTIN, 2003).

A positividade e negatividade emocional indiretamente transmitida por expressões
faciais possue papel significativo na psicologia humana. (HAMESTER; BARROS; WERM-
TER, 2015) exemplifica este impacto ao analisar a teoria broaden-and-build proposta por
(FREDRICKSON, 2001), que afirma que emoções positivas ampliam a percepção, encora-
jando pensamentos inovadores e exploradores, diretamente conectados a ações. Enquanto
isso, emoções negativas ampliam nossa auto-consciência em relação ao ambiente.

Enfatiza-se que o reconhecimento da positividade de expressões faciais apresenta,
ainda, diversas aplicações práticas de grande valor para a sociedade. Da melhoria na
interação homem-máquina, como na criação de robôs inteligentes capazes de processar
tais emoções, até sistemas de monitoramento de pacientes acamados, agilizando seu
atendimento emergencial. A habilidade de interpretar comunicação não-verbal possui,
então, grande valor para setores como saúde, automação, atendimento ao cliente, e diversos
outros.

Diferentes abordagens para o reconhecimento de expressões faciais podem ser
encontradas na literatura. (CHEN et al., 2011) apresenta um modelo capaz de realizar
o reconhecimento a partir da combinação das informações do rosto e do corpo humano,
em função do tempo. (HAMESTER; BARROS; WERMTER, 2015) propõe um novo
modelo intitulado Cross-Channel Convolutional Neural Network, extensão da CNN para
extração de características multimodais. Nota-se, todavia, que este se trata de um problema
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complexo, não havendo um modelo universal que o solucione por completo.

As características intrínsecas do problema de reconhecimento de expressões faciais,
como sua interpretação a partir da visualização da variação muscular em partes específicas
do rosto humano, tornam este um problema propício para a aplicação do modelo proposto
por este projeto. Toma-se, então, este problema como o estudo de caso deste projeto.

5.2 Base de Dados
As imagens utilizadas nos experimentos realizados por este trabalho foram extraídas

do banco de expressões faciais Cohn-Kanade (LUCEY et al., 2010). Esta base possui 327
capturas envolvendo 123 indivíduos realizando expressões faciais mapeadas à emoções.
Ao todo, 7 emoções são avaliadas: anger, contempt, disgust, fear, happiness, sadness e
surprise. A execução de cada captura possui uma duração de até 60 quadros, onde a
primeira imagem retrata neutralidade e, a última, o auge da expressão sendo realizada.
Um exemplo pode ser visto na Figura 10. Para os experimentos aqui realizados, todas as
imagens foram redimensionadas para 100 ◊ 100 pixels.

Figura 10 – Exemplo de captura da base Cohn-Kanade. Fonte: (LUCEY et al., 2010)

.

Dado que o problema de classificação desejado relaciona-se a positividade e negati-
vidade da expressão sendo realizada, fez-se necessária uma reorganização da base de dados,
como proposta por (HAMESTER; BARROS; WERMTER, 2015). Nesta, são possíveis três
diferentes classes de expressões: neutras, positivas e negativas. Em busca das imagens que
melhor representam as classes, os dois quadros que compõem o auge de cada expressão são
agrupados sob a classe positiva ou negativa. De forma semelhante, todas as duas imagens
iniciais, onde o indivíduo não expressa emoções, classificam-se sob a neutra. As emoções
ditas positivas são happiness e surprised, sendo as demais negativas.

Por fim, visando fornecer uma maior quantidade de exemplos para o treinamento
dos modelos, técnicas de ampliação artificial de base de dados (Data Augmentation) foram
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aplicadas, como sugeridas por (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Para
cada imagem provida pela base, foram capturadas 9 subimagens de 96 ◊ 96 pixels e 9
subimagens de 92 ◊ 92 pixels, que posteriormente são redimensionadas para o mesmo
tamanho da imagem original. Essa operação pode ser visualizada na Figura 11. Por fim,
também calcula-se o espelhamento horizontal destas novas imagens, dobrando a quantia
produzida. No total, cada imagem da base original é capaz de criar, artificialmente, 36
novos exemplos para a mesma classe.

Figura 11 – Exemplo de nove posições de corte diferentes para obtenção de sub-imagens,
no processo de ampliação artificial da base de dados. Os quadrados exter-
nos representam a imagem original, e os internos, com as linhas diagonais,
representam a subimagem a ser obtida.

.

5.3 Adaptação do Modelo
Visando a aplicação no problema de reconhecimento de expressões faciais, realizou-

se a configuração e adaptação do modelo proposto.

5.3.1 Zoneamento
A topologia de zoneamento escolhida foi a estática. Empiricamente, partindo do

conhecimento da base a ser utilizada, definiu-se uma divisão da imagem em quatro faixas
horizontais de 40 pixels de altura, com overlapping de 20 pixels. Esta separação permite
que cada zona contenha o seguinte conjunto de informações, em ordem:

Zona 1 (0-40px): Testa e início das sobrancelhas, contendo informação a respeito da
inclinação das mesmas;

Zona 2 (20-60px): Parte das sobrancelhas, olho, e parte superior do nariz, contendo
informação a respeito da movimentação muscular de todas as regiões;



Capítulo 5. Experimentos e Resultados 37

Zona 3 (40-80px): Nariz e parte superior da boca, observando todas as marcas da pele
causadas pela movimentação de ambos;

Zona 4 (60-100px): Boca e queixo, permitindo a visualização da abertura da boca e
movimentação do queixo.

Figura 12 – Visualização das subimagines geradas pelo zoneamento. (a) Imagem original,
(b) zona 1, (c) zona 2, (d) zona 3, (e) zona 4.

.

5.3.2 Classificação das Zonas
Percebe-se um crescente interesse em diferentes arquiteturas da CNN na última

década, sendo aplicadas com sucesso na detecção, segmentação e classificação de objetos e
regiões em imagens (RUSSAKOVSKY et al., 2015). Seguindo os resultados promissores
expostos pela literatura, a CNN foi escolhida para integralizar o sistema proposto por este
trabalho em sua fase de classificação inicial.

Visto que a análise do comportamento de redes neurais diversas na classificação de
diferentes zonas do rosto humano é fora do escopo deste trabalho, uma única arquitetura
básica da CNN foi compartilhada por todas as zonas:

Input æ CONV æ ReLU æ MAX ≠ POOL æ CONV æ ReLU æ FC, (5.1)

onde as camadas CONV possuem 64 filtros 5◊5 e 128 filtros 16◊16, respectivamente,
e a operação MAX-POOL é realizada com configuração padrão de filtro 2 ◊ 2. Por fim,
a camada FC possui 12.672 neurônios de entrada e três de saída, representando as três
possíveis classes: neutra, positiva e negativa.

5.3.3 Classificação das Sequências
Dentre os diferentes métodos de classificação de sequências baseados em modelos

presentes na literatura, o HMM foi escolhido para esta etapa. Das características diversas
que se destacam para a decisão, enfatiza-se seu poder de representação do modelo intrínseco
a partir da observação de variáveis estocásticas. Através disso, pode-se modelar um
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classificador robusto capaz de ponderar corretamente as variações nas probabilidades
obtidas pela etapa anterior, sendo mais invariante a ruídos. Exemplos de utilização de
HMMs no reconhecimento de padrões podem ser visto em (BARROS et al., 2013).

A arquitetura do HMM utilizada nos experimentos apresenta quatro estados
internos, para representação intrínseca das zonas, e função de distribuição de probabilidade
Gaussiana multivariável. O treinamento com Baum-Welch é limitado a 500 iterações.

5.4 Metodologia e Experimentos
A implementação de todo o modelo foi realizada utilizando Torch, um framework

de computação científica com vasto suporte a algoritmos de aprendizado de máquina
(COLLOBERT; KAVUKCUOGLU; FARABET, 2011). A linguagem de programação utili-
zada foi Lua, mantendo integração com códigos escritos para a plataforma de computação
paralela CUDA (SANDERS; KANDROT, 2010). Para o HMM, em especial, optou-se por
uma implementação customizada em Java, dado seu relativo baixo custo computacional,
sendo integrada posteriormente à plataforma do projeto.

Visando a normalização dos dados de entrada, duas operações são realizadas no
pré-processamento: padronização das características e normalização de contraste local.
Neste caso, a primeira padroniza a escala dos dados de forma a terem média zero e variância
unitária, enquanto a última busca reduzir o impacto causado pela diferença de iluminação
e/ou cor de pele. Exemplos do pré-processamento podem ser visualizados na Figura 13.

Figura 13 – Exemplo de imagens da base Cohn-Kanade após o padronização das caracte-
rísticas e normalização de contraste.

Para cada experimento realizado foram executadas 5 simulações, obtendo-se a
média e desvio padrão. A seleção das imagens a serem utilizadas para treino e para teste
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foram realizadas de forma aleatória. Em todos os experimentos a mesma arquitetura de
CNN e HMM foram utilizadas, como apresentado nas seções anteriores. Em cada simulação,
o treinamento da CNN foi limitado a 10 épocas, escolhendo-se o modelo que apresentou as
melhores taxas de classificação. Três experimentos foram realizados, sendo eles:

Experimento 1 (E1): Partindo da base ampliada, 40% das imagens para treino da CNN,
40% para treino da HMM e 20% para teste individual de cada etapa e do modelo
geral;

Experimento 2 (E2): Partindo da base original (i.e.: não-ampliada, limitação proposi-
tal), 40% das imagens para treino da CNN, 40% para treino da HMM e 20% para
teste individual de cada etapa e do modelo geral;

Experimento 3 (E3): Partindo da base ampliada, 60% das imagens compartilhadas
para treino tanto da CNN quanto da HMM (limitação proposital), utilizando o
restante para teste em todas as etapas.

5.5 Resultados
A Tabela 1 apresenta a taxa de acerto média obtida para cada um dos experimentos

realizados, assim como o desvio padrão. Observa-se que o experimento que obteve a maior
taxa de acerto foi o E1, como esperado, visto que este não contém as limitações dos outros
experimentos. O E2, por não ter realizado a ampliação da base de dados, tem a sua etapa
de treinamento prejudicada, pendendo para overfitting.

Destaca-se, no E3, a demonstração do impacto do compartilhamento da base
de treinamento entre a etapa de classificação das zonas (CNN) e a de classificação de
sequências (HMM). Caso a CNN memorize a base de treino, obtendo alta porcentagem
de acerto na mesma, o HMM terá poucos exemplos ruidosos para tomar como exemplo
em seu aprendizado, prejudicando seu poder de generalização. Por isso, recomenda-se a
separação da base de treino das duas etapas, como feito em E1.

Tabela 1 – Taxa de acerto média e desvio padrão para cada experimento rea-
lizado.

Experimento Taxa de acerto Desvio Padrão
E1 93,81% 1,1%
E2 73,16% 1,6%
E3 80,10% 1,2%

A Tabela 2 apresenta exemplos das taxas de acerto obtidas pela CNN (i.e.: etapa
de classificação de zonas). Observa-se que o modelo proposto foi capaz de otimizar a
classificação realizada pela CNN, melhorando a taxa final, nos experimentos E1 e E3.
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Já no experimento E2, o modelo proposto fez com que o resultado da classificação total
tendesse para a classificação da zona melhor reconhecida.

Tabela 2 – Exemplo de taxa de acerto da CNN em diferentes zonas, por expe-
rimento.

Experimento Zona 1 Zona 2 Zona 3 Zona 4
E1 67,05% 84,04% 83,71% 91,90%
E2 62,82% 69,73% 65,13% 74,01%
E3 62,23% 65,46% 65,87% 75,71%

A Tabela 3 apresenta um exemplo de matriz de confusão obtida durante o trei-
namento de uma zona 1 pela CNN do experimento E3. Observa-se um grande número
de erros no reconhecimento das imagens da classe Neutra. Este comportamento pode ser
explicado pela falta de características determinantes para esta classe: suas imagens são,
em grande maioria, genéricas.

Tabela 3 – Exemplo de matriz de confusão para a zona 1, experimento E3.
As linhas representam as classes encontrada pela CNN, enquanto
as colunas indicam a classificação correta. O valor indicado é re-
ferente a quantidade de exemplos da classe da coluna que foram
classificados como a classe da linha.

Negativa Neutra Positiva
Negativa 5658 241 2885
Neutra 928 196 2896
Positiva 932 405 7843

Por fim, conclui-se que o modelo proposto demonstra-se competitivo com o estado da
arte na classificação da positividade de expressões faciais da base Cohn-Kanade, obtendo
resultados similares aos encontrados em outros trabalhos como (BARROS; WEBER;
WERMTER, 2015), como observado na Tabela 4.

Tabela 4 – Comparação entre os melhores resultados obtidos pelo modelo pro-
posto e a CCCNN proposta por (BARROS; WEBER; WERMTER,
2015).

Modelo Taxa de acerto Desvio Padrão
CCCNN 92,50% 2,5%
Abordagem híbrida 93,81% 1,1%
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6 Considerações Finais

6.1 Conclusões
O objetivo deste trabalho é a proposição de um modelo híbrido para reconhecimento

de padrões em imagens através da combinação de classificadores estocásticos de cadeias
com técnicas estado-da-arte de reconhecimento de padrões em imagens digitais, aplicando-o
no problema de reconhecimento de expressões faciais. Para isto, fez-se necessário o estudo
de técnicas de reconhecimento de padrão, redes neurais, redes de arquitetura profunda e
classificadores de sequências.

A arquitetura aplicada nos experimentos de classificação de expressões faciais fez
uso das técnicas CNN e HMM. Os resultados obtidos apresentaram-se satisfatórios, identi-
ficando classificações semelhantes ao estado-da-arte, apesar da utilização de arquiteturas
básicas nas redes de suas camadas.

Deve-se salientar, entretanto, que o modelo aqui proposto não impõe limitações
quanto a rede neural ou o classificador de sequências a ser utilizado. Pelo contrário, um
dos seus pontos diferenciais em destaque é a possibilidade de utilização de múltiplas redes
especialistas.

6.2 Trabalhos Futuros
O modelo aqui proposto possui vários pontos de extensão, além de diversas outras

análises que podem ser desenvolvidas. Dentre elas:

• Avaliação do desempenho de diferentes redes neurais no problema de reconhecimento
de expressões faciais, utilizando a melhor rede para cada zona;

• Availação do desempenho de diferentes classificadores de sequência, como DTW.

• Uso de zoneamento adaptativo: criação de zonas diretamente em pontos de interesse,
como exclusivamente nos olhos, ou observando determinada parte da face;

• Estudo do poder de generalização através da realização de experimentos com dife-
rentes bases de imagens.
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