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Resumo 
Devido a crescente demanda de energia elétrica no mundo, um 

aproveitamento energético mais eficiente é necessário para que se possa otimizar a 

produção desta energia. O Brasil possui um dos maiores potenciais hidrelétricos do 

mundo, e em 2014 cerca de 70% da energia elétrica foi gerada a partir de fontes 

hídricas, sendo complementas por usinas termoelétricas. Porém, devido a atuais 

condições desfavoráveis, uma redução na oferta de energia hídrica vem 

acontecendo gradativamente. Fatores importantes como volume de água, vazões 

das bacias hidrográficas estão diretamente ligados à quantidade de energia 

produzida por uma usina hidrelétrica. Este trabalho se propõe a realizar diversas 

previsões de vazões médias mensais utilizando uma rede Multi-Layer Perceptron, 

Rede Neural Artificial comumente utilizada em diversas pesquisas para este fim. 

Serão utilizadas configurações diferentes de dados históricos de vazão juntamente 

com o fator de sazonalidade a fim de treinar a rede e, em seguida, análises 

estatísticas serão realizadas a fim de se identificar qual destas configurações 

apresentou um melhor desempenho. 

Palavras-chave : Previsão de vazão, MLP, Redes Neurais Artificiais. 
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Abstract 
Due to growing demand for electricity in the world, more efficient energy use is 

necessary so that we can optimize the production of this energy. Brazil has one of 

the largest hydroelectric potentials in the world, and in 2014 about 70% of the 

electricity was generated from hydro sources, and complemented by power plants. 

However, due to current unfavorable conditions, a reduction in hydropower supply 

has been happening gradually. Important factors such as volume of water, watershed 

flows are directly linked to the amount of energy produced by a hydroelectric plant. 

This study aims to perform various forecasts of average monthly flows using a Multi 

Layer Perceptron network, Artificial Neural Network commonly used in several 

studies for this purpose. Different configurations of historical flow data will be used 

along with the seasonality factor in order to train the network and then statistical 

analyzes will be performed in order to identify which of these configurations 

presented a better performance. 

Keywords : Flow forecast, MLP, Artificial Neural Network. 
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Capítulo 1 

Introdução 
Este capítulo inicia com a descrição do problema e a motivação para a 

realização deste trabalho. Em seguida, são relatados os principais objetivos a 

serem alcançados. Por fim, é detalhada a estrutura dos capítulos seguintes. 

1.1 Motivação e Problema 
A crescente demanda de energia elétrica resulta na necessidade de 

fontes de energia renovável, já que existe a possibilidade de esgotamento de 

recursos naturais em médio prazo. Foi registrado um aumento de 2,9% no 

consumo final de energia elétrica no Brasil na comparação de 2014 com 2013 

(BEN, 2015). Este aumento foi suprido graças à expansão da geração de 

energia térmica, principalmente de usinas movidas a carvão mineral, uma vez 

que devido a condições hidrológicas desfavoráveis houve uma redução na 

oferta de energia hidráulica pelo terceiro ano consecutivo. O decréscimo 

chegou a 5,6% no ano de 2014. Contudo, o Brasil é um dos países com maior 

potencial hidrelétrico do mundo (ANEEL, 2008) e em 2014 cerca de 70% da 

energia elétrica foi gerada a partir de fontes hídricas. 

As empresas responsáveis pela geração de energia elétrica do país 

realizam o Programa Mensal de Operação Energética (PMO) que tem como 

objetivo fornecer metas e diretrizes a serem seguidas pelos órgãos executivos 

de programação diária e de tempo real. Isto define a geração de cada unidade 

da empresa e a comercialização de intercâmbio de energia entre elas 

(VALENÇA, 2010), o que acarreta numa redução de custos na geração 

resultando assim num melhor aproveitamento hídrico e reduzindo a geração 

energética por parte das termoelétricas e por combustíveis fósseis. 

Para a realização deste planejamento existem informações essenciais, 

sendo a vazão natural afluente uma das mais importantes, contudo, esta é uma 

variável estocástica, ou seja, cujo estado é indeterminado, o que torna a sua 
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estimação uma tarefa difícil. Com isso, surge a necessidade de sistemas que 

possam modelar o seu comportamento de forma eficiente. 

A previsão de vazão dos recursos hídricos é uma das estratégias para 

minimizar o impacto da irregularidade dos níveis armazenados nos 

reservatórios, uma vez que estamos lidando com um recurso que apresenta 

uma alta sazonalidade e diversas irregularidades em suas vazões (NETO; 

COELHO; CHIGANER; MEZA; MONTEIRO, 2005). 

Previsões de vazão eram efetuadas seguindo modelos estatísticos, 

contudo, diversas pesquisas foram realizadas para que se pudesse modelar a 

relação de chuva e vazão utilizando Redes Neurais Artificiais (RNAs) (HAYKIN, 

2007). Estas pesquisas chegaram a resultados melhores que aqueles gerados 

pelos modelos estatísticos em diversas usinas hidrelétricas. 

Dessa forma, é justificável um estudo comparativo utilizando redes 

neurais artificiais e informações como sazonalidade numa tentativa de buscar 

melhores resultados para previsão de vazão, proporcionando assim um melhor 

planejamento energético e assim aproveitando melhor os recursos hídricos 

disponíveis. 

1.2 Objetivos 

1.2.1 Objetivos Gerais 

O objetivo geral desta monografia é realizar um estudo comparativo 

entre diferentes configurações (adição de informação de sazonalidade e 

variação de informações passadas) para uma Rede Neural Artificial na previsão 

de vazão mensal, e determinar quais destas apresentam um resultado mais 

próximo do esperado. 

1.2.2 Objetivos Específicos 

Os objetivos específicos deste trabalhão são: 

• Implementar a RNA na linguagem de programação JAVA. 

• Tratamento das bases de dados para realização das simulações. 
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• Realizar previsões mensais de vazão para um determinado tempo 

“t” utilizando valores históricos como entrada. 

• Realizar uma análise para verificar se os valores obtidos 

correspondem à realidade das usinas observadas. 

1.3 Estrutura da Monografia 
O capítulo 2 explana a fundamentação teórica imprescindível para a 

compreensão do trabalho proposto, a saber: o planejamento energético 

brasileiro e redes neurais artificiais, com enfoque na arquitetura escolhida para 

este trabalho, a Multi-Layer Perceptron (MLP). O capítulo 3 descreve a 

metodologia utilizada para alcançar o objetivo geral desta monografia, tais 

como o pré-processamento dos dados e a utilização da rede MLP, bem como 

os parâmetros utilizados. No capítulo 4, são mostrados os resultados obtidos 

após as simulações de diferentes configurações da rede MLP. Por fim, o 

capítulo 5 apresenta um resumo do trabalho final, dificuldades encontradas, 

discussões obtidas, tais como melhorias propostas para trabalhos futuros. 
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Capítulo2 

Fundamentação Teórica 
Este capítulo descreve brevemente todo o conteúdo teórico utilizado 

como base para tentar resolver o problema descrito no capítulo 1. A seção 2.1 

discorre a respeito da energia hidrelétrica. A seção 2.2 aborda sobre Redes 

Neurais Artificiais (RNAs), um conjunto de técnicas da Inteligência 

Computacional que vem se provando uma excelente ferramenta para 

problemas de previsão e classificação. Concluindo, a seção 2.3 trata sobre a 

arquitetura da MLP, tal como seus conceitos e aplicações. 

2.1 Planejamento Energético do Brasil 
A matriz energética brasileira é composta por mais de 30 usinas 

hidrelétricas, sendo responsáveis por suprir cerca de 70% da demanda 

energética nacional, e complementada por usinas termoelétricas (ANEEL, 

2008). Assim, com a crescente demanda de energia, deve-se obter uma 

produção energética maior e mais eficiente. Para tal, as empresas 

responsáveis pela geração de energia realizam o planejamento energético do 

país, que tem como objetivo de aumentar a produção de energia através de 

fontes limpas e renováveis, como as hidrelétricas, e minimizando assim o uso 

de energia proveniente de termoelétricas. 

Foram desenvolvidos três modelos de planejamento do sistema elétrico 

CEPEL (Centro de Energia e Pesquisas Elétricas): 

• Modelos de curto prazo: no modelo de curto prazo, os blocos de geração 

energética definidos a longo prazo para o primeiro mês são divididos em 

metas semanais. A previsão é realizada para semanas à frente. 

Segundo Costa, todos os modelos de curto prazo consideram as vazões 

como determinísticas (COSTA, 2003). 

• Modelos de médio prazo: neste modelo as vazões são consideradas 

estocásticas. Apresenta um horizonte de planejamento muito maior, 
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geralmente de 12 meses à frente. A partir desse modelo é definida a 

quantidade de energia a ser utilizada pelo país (MACIEIRA; FALCÃO; 

PENNA, 2001). 

• Modelos de operação: o modelo de operação deve definir a geração de 

cada unidade para cada instante de forma que a demanda seja atendida 

a um custo mínimo. Dessa forma, há a realização de previsões 

semanais podendo chegar a até duas semanas à frente. Considerado 

determinístico, é um modelo que utiliza tanto fatores internos, como 

dados de vazões anteriores, quanto fatores externos, como a 

precipitação da chuva, para realizar as previsões (COSTA; DAMÁZIO; 

CARVALHO, 2000). 

2.2 Redes Neurais Artificiais 
As redes neurais artificiais consistem em modelos matemáticos que tem 

como base o funcionamento do cérebro humano. Elas possuem uma 

capacidade de aprendizado e adquirem conhecimento através da experiência 

(HAYKIN, 2007). 

O cérebro humano é composto por cerca de 10 bilhões de neurônios - 

células que compõe o sistema nervoso (ilustrado na figura 1). Cada um desses 

neurônios possui seu corpo celular formado por dendritos, que agem como 

terminais de entrada para sinais de impulsos nervosos; a informação é 

transmitida e processada e pelo corpo central até chegar aos terminais de 

saída dos axônios. O encontro dos axônios de um neurônio com os dendritos 

de outro é chamado de sinapse, sendo esta uma região de transmissão do 

impulso nervoso entre dois neurônios. 

Os neurônios seguem a Lei do Tudo ou Nada. Segundo Valença, esta é 

uma das características mais importantes para se entender o funcionamento 

dos neurônios biológicos. A Lei do Tudo ou Nada está relacionada ao a 

intensidade do estímulo, denominado limiar excitatório. A partir disto o neurônio 

dispara ou não o impulso nervoso. Se o estímulo for muito pequeno, sua 

intensidade será inferior ao limiar excitatório e não haverá transmissão do 

impulso nervoso. Por outro lado, passado esse limiar, o potencial de ação do 
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neurônio será sempre o mesmo, independente da intensidade do estímulo 

(VALENÇA, 2010). 

Figura 1. Representação da estrutura de um neurônio biológic o. 

 

[Fonte: http://www.portalsaofrancisco.com.br] 

O primeiro modelo matemático para representação de um neurônio 

artificial foi proposta por McCulloch e Pitts (ilustrado na figura 2), um 

neurofisiologista e um Matemático respectivamente, que apresentaram seus 

estudos em 1943 (VALENÇA, 2010). 

O modelo propõe uma abordagem bastante simples com o intuito de 

representar o neurônio biológico através de uma regra de propagação e uma 

função de ativação. A emissão de sinal pelo neurônio faz uma analogia com a 

Lei do Tudo ou Nada e é baseada em um limiar (BRAGA; PONCE DE LEON; 

BERNARDA LUDERMIR, 2000). 

O modelo apresentado é bastante simples e possui um conjunto de 

entradas ��, ��, ��,..., ��, uma unidade de processamento e uma saída y, 

representando assim respectivamente os dendritos, o corpo celular e os 

axônios. A entrada líquida do neurônio � é calculada pela regra de propagação 

descrita na equação 2.1 a seguir:  

 
�	
� �	����. �� � 	�

�

���
 

(2.1) 
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Figura 2. Representação gráfica de um neurônio artificial de  acordo com a 

proposta apresentada por McCulloch & Pitts. 

 

 [Fonte: (FIORIN, 2011)] 

Temos, ��� que representam os pesos sinápticos e �, o limiar. Os pesos 

indicam a relevância da entrada a que está associado para aquele neurônio, 

sendo assim, quanto maior o peso, mais importante será aquela entrada.  

Segundo Haykin, os pesos sinápticos devem possuir valores que, ao 

realizar seu produto com as entradas, o valor da saída se aproxime ao valor 

desejado. Sendo assim, a inteligência de um modelo estará nos pesos que o 

constituem (HAYKIN, 2007). 

Os primeiros modelos propostos foram o Perceptron, proposto por Frank 

Rosemblatt em 1957, que se utiliza de uma função de ativação degrau para 

definir sua saída (HAYKIN,2007). A equação 2.2 a seguir representa a função 

de saída: 

 �� � ���	
� �1, ����	�	
� 	� 0
0, ����	�	
� 	! 0 (2.2) 

Dessa forma, o Perceptron o só é capaz de lidar com funções de saídas 

discretas. Isto levou Bernard Widrow e Ted Hoff a proporem o modelo do 

Adaline, que permite trabalhar com saídas em um universo contínuo, uma vez 

que pode ser utilizada uma função contínua como função de ativação para 

cálculo da saída (VALENÇA, 2010). As funções mais utilizadas são a linear, a 

sigmoide logística e a tangente hiperbólica, representadas nas equações 2.3, 

2.4 e 2.5, respectivamente, a seguir: 
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 � � ���	
�� � 	�	
� (2.3) 

 � � ���	
�� � 	 1
1 " 	#�$%& 

(2.4) 

 � � ���	
�� � 	 	
�$%& � 	#�$%&
	�$%& " 	#�$%& 

(2.5) 

Uma limitação do Perceptron e do Adaline é a capacidade de só poder 

resolver problemas linearmente separáveis (ver figura 3). Com o objetivo de 

buscar solução para este problema, foi proposta o modelo de múltiplas 

camadas conhecido como Multi-Layer Perceptron (MLP). 

Figura 3. Diferença entre problemas linearmente separáveis e  não-

linearmente separáveis. 

 

2.3 Multi-Layer Perceptron 
Pode-se considerar que a rede Multi-Layer Perceptron (MLP) é uma 

generalização da rede Perceptron simples com a adição de pelo menos uma 

camada intermediária ou escondida. Esta, por sua vez, recebe essa 

denominação por estar inserida entre as camadas de entrada e de saída; e é a 

responsável pela resolução de problemas não-lineares. Os neurônios nesta 

camada apresentam geralmente uma função de ativação sigmoidal que pode 

ser a logística ou a tangente hiperbólica (VALENÇA, 2010). Por esta 

característica as redes Multi-Layer Perceptron são capazes de resolver 

problemas do mundo real, que são considerados não-linearmente separáveis. 
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Segundo Haykin, uma rede que apresenta mais de uma camada intermediária 

pode fazer a aproximação de qualquer função matemática (HAYKIN, 2007). 

A camada de entrada, assim como no Perceptron e no Adaline, é onde 

os neurônios representam as variáveis de entrada da rede; e a camada de 

saída representa a resposta da rede e onde se encontra a resposta desejada. 

Os neurônios desta camada podem apresentar tanto uma função de ativação 

sigmoidal como também uma função do tipo linear. 

A figura 4 representa uma rede Multi-Layer Perceptron com três 

camadas e uma saída. 

Figura 4. Representação gráfica de uma rede Multi-Layer Perceptron com 

duas camadas intermediárias. 

 

 [Fonte: (FIORIN; SCHUCH, 2011)] 

A fim de minimizar os erros, os pesos da rede devem ser ajustados até 

que um conjunto de pesos ótimos seja estabelecido. Para tal, é executado um 

algoritmo de otimização, sendo o algoritmo Backpropagation, uma 

generalização da regra delta, o mais utilizado (VALENÇA, 2010). 

2.3.1 Algoritmo Backpropagation 

O algoritmo Backpropagatio, também conhecida como técnica do 

gradiente descendente. Foi proposto em 1974 por Paul Werbos, mas só veio a 

se popularizar na década de 80 com os trabalhos de Hinton, Rumelhart e 

Williams (VALENÇA, 2010). 
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As redes MLP apesar de eficientes apresentam um problema: após a 

inclusão de pelo menos uma camada escondida o erro destas camadas, 

necessário para realizar o ajuste dos pesos, é desconhecido. Como alternativa 

para solucionar este problema, o algoritmo Backpropagation se propõe a 

realizar uma propagação recursiva dos erros (VALENÇA, 2010). 

Este algoritmo é divido em duas fases: a fase Forward e a fase 

Backward. 

Fase Forward 

Durante esta fase, os sinais são propagados progressivamente. A 

propagação ocorre da camada de entrada para a camada de saída. Ao fim 

desta fase, o erro é calculado a partir da diferença entre o valor calculado e o 

desejado, enquanto os pesos permanecem fixos. 

Fase Backward 

Durante esta fase, o sinal se propaga da camada de saída para a 

camada de entrada e os pesos são ajustados recursivamente seguindo a regra 

delta generalizada. 

A equação 2.6 é responsável pelo cálculo do ajuste dos pesos (regra 

delta generalizada): 

 '�,�(�
 + 1� = '�,�(�
� + ). *�(�(#�+�	
�(#�, + -. ∆'�,�(�
 − 1� (2.6) 

Tem-se, 

• W0,12�t + 1� é o novo valor atribuído ao �-ésimo peso do neurônio 4; 
• '�,�(�
� é o valor atual do �-ésimo peso do neurônio 4 no instante 
; 

• �(#�+�	
�(#�, são os sinais de entrada emitidos pelos neurônios da 

camada anterior; 
• ∆'�,�(�
 − 1� é a variação dos valores novo e anterior do �-ésimo peso do 

neurônio 4 no instante 
 − 1; 
• ) é a taxa de aprendizagem; 
• *�( é a sensibilidade do neurônio; 
• - é a taxa de momento. 

O cálculo da sensibilidade para a camada de saída é obtida pela 

equação 2.7 a seguir: 
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 *�( = �5� − ���. �′��	
�� (2.7) 

Tem-se, 

• 5� é a saída desejada; 
• �� é a saída encontrada após o treinamento; 
• �′��	
�� é a derivada da função de ativação da camada. 

Para as outras camadas, o cálculo da sensibilidade segue a equação 2.8 

a seguir: 

 *�(#� = �7(#���	
�(#��. � ���(. *�(
8

���  
(2.8) 

Tem-se, 

• *�( é a sensibilidade propagada pelo �-ésimo neurônio da camada 
seguinte; 

• ���( é o peso 4 do neurônio �; 
• 9 é o número de neurônios naquela camada; 

• �7(#���	
�(#�� é a derivada da função de ativação da camada anterior. 

2.3.2 Critério de Parada 

Enquanto a rede está sendo treinada, diversos padrões são 

apresentados à rede por diversas vezes e com isso é possível mensurar o 

número de ciclos que serão executados no treinamento. Este número pode 

variar bastante dependendo do problema em questão. Critérios de parada 

como fixação de um número máximo de ciclos ou de um erro mínimo têm sido 

utilizados em diversos estudos, porém, estes critérios não levam em conta o 

processo iterativo, podem não ser os mais adequados. 

Quando uma rede é treinada em excesso ocorre um fenômeno chamado 

de overfitting, onde a rede fica superajustada e começa a perder sua 

capacidade de generalização, passando a memorizar os padrões 

apresentados. Quando o treinamento de uma rede é encerrado antes do tempo 

ocorre um fenômeno contrário chamado de underfitting, onde a rede fica 

subajustada e então ela não conseguirá generalizar o suficiente. Para evitar 
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estes dois problemas utiliza-se o critério da validação cruzada como critério de 

parada para o treinamento adicionado a um número total de ciclos. 

Na validação cruzada os dados são divididos em dados de treinamento, 

dados de validação e dados de teste. A validação cruzada é realizada da 

seguinte forma: 

• Os dados de treinamento (cerca de 50% do total de dados) são 

apresentados à rede a fim de ajustar seus pesos. Ao terminar 

apresentação de todos os dados é dito que se realizou um ciclo 

(também chamado de época). 

• Ao fim de cada ciclo, os dados de validação (cerca de 25% do total de 

dados) são apresentados à rede a fim de se calcular o erro para este 

ciclo. Estes dados não serão usados para realizar o ajuste dos pesos. 

• Enquanto o erro da validação diminuir, é sinal de que a rede continua 

aprendendo, já que esses dados serão sempre inéditos a rede. 

• O treinamento será interrompido quando o erro da validação começar a 

aumentar. Isso quer dizer que a rede está passando por overfitting e 

está começando a decorar os padrões apresentados no treinamento. 

• Com o treinamento finalizado, os dados de teste são submetidos à rede 

a fim avaliar seu desempenho e precisão. 
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Capítulo 3 

Metodologia 
Este capítulo detalha a metodologia utilizada para o desenvolvimento do 

projeto de acordo com as teorias apresentadas no capítulo anterior. 

3.1 Base de Dados 
A base de dados utilizada nos experimentos deste projeto utiliza dados 

reais pertencentes a quatro usinas hidrelétricas: Furnas, Governador Bento 

Munhoz da Rocha Netto, Três Marias e Tucuruí. Estes dados foram cedidos 

pelo Operador Nacional do Sistema Elétrico (ONS) – órgão responsável pela 

coordenação e controle da operação das instalações de geração e transmissão 

de energia elétrica no Sistema interligado nacional (SIN), sob a fiscalização e 

regulação da Agência Nacional de Energia Elétrica (ANEEL) (ONS,2015). 

Os dados das vazões mensais de todas as quatro usinas foram 

coletados desde Janeiro de 1931 a Dezembro de 2013. 

Os dados das vazões mensais de todas as quatro usinas foram 

coletados desde Janeiro de 1931 a Dezembro de 2013. 

A usina hidrelétrica de Furnas (figura 5) está localizada no curso médio 

do rio Grande, em Minas Gerais. Sua primeira unidade entrou em operação em 

1963. Após passar por ampliação na década de 70, passou a estar entre uma 

das maiores hidrelétricas da América Latina. Possui uma área alagada de 

1.440 km² e uma capacidade de 1.216 MW de potência.  

A Tabela 1 a seguir contem informações estatísticas sobre a série temporal da 

usina de Furnas. 

Tabela 1.  Características estatísticas da série temporal Furn as 

Mínimo (m³/s) Máximo (m³/s) Média Variância Desvio-Padrão 

204 3.757 924,601 377.386,1137 614,3176 
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Figura 5. Usina Hidrelétrica de Furnas – MG  

 

[Fonte: http://www.furnas.com.br] 

A usina hidrelétrica de Governador Bento Munhoz da Rocha Netto 

(figura 6), mais conhecida como usina hidrelétrica de Foz do Areia, está 

localizada no rio Iguaçu, distante 5 km da jusante da foz do rio Areia, no 

Paraná. Construída de 1975 a 1979, sua operação teve início em 1980. Possui 

uma área alagada de x km² e uma capacidade de 1.676 MW de potência.  

Figura 6. Usina Governador Bento Munhoz da Rocha Netto - PR 

 

[Fonte: http://www.vedacit.com.br] 

A Tabela 2 a seguir contem informações estatísticas sobre a série 

temporal da usina de Governador Bento Munhoz da Rocha Netto. 
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Tabela 2.  Características estatísticas da série temporal Gove rnador 

Bento Munhoz da Rocha Netto  

Mínimo (m³/s) Máximo (m³/s) Média Variância Desvio-Padrão 

80 5.150 657,5447 244.980,65 494,9552 

A usina hidrelétrica de Três Marias (figura 7) está localizada no rio São 

Francisco, em Minas Gerais. Teve sua operação iniciada em 1962. Possui uma 

área alagada de 1.040 km² e uma capacidade de 396 MW de potência. 

Figura 7. Usina de Três Marias - MG 

 

[Fonte: http://www.setelagoas.com.br] 

A Tabela 3 a seguir contem informações estatísticas sobre a série 

temporal da usina de Três Marias. 

Tabela 3.  Características estatísticas da série temporal Três  Marias  

Mínimo (m³/s) Máximo (m³/s) Média Variância Desvio-Padrão 

58 4435 687,9437 363.715,7388 603,0885 
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A usina de Tucuruí (figura 8) está localizada no rio Tocantins, no Pará. Teve 

sua operação iniciada em 1984. Possui uma área alagada de 2.850 km² e uma 

capacidade de 8.370 MW de potência. 

A Tabela 4 a seguir contem informações estatísticas sobre a série 

temporal da usina de Tucuruí. 

Figura 8. Usina de Tucuruí - PA 

 

[Fonte: http://oglobo.globo.com/economia/polemica-usina-de-belo-

monte-opcao-mais-barata-menos-poluente-3053038] 

Tabela 4.  Características estatísticas da série temporal Tucu ruí  

Mínimo (m³/s) Máximo (m³/s) Média Variância Desvio-Padrão 

1.269 51.539 10.964,82 84.725.949,81 9.204,67 

3.2 Pré-processamento dos Dados 
Durante a fase de pré-processamento, inicialmente realiza-se a 

normalização dos valores. Dessa forma, valores altos não influenciarão de 

forma exagerada nos cálculos realizados pela rede e valores baixos não 

passarão despercebidos. Com isso, todas as variáveis receberão a mesma 

atenção durante a fase de treinamento. 

As variáveis devem ter seus valores proporcionais aos limites da função 

de ativação usada na camada de saída. Caso a função utilizada seja a 
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sigmoide logística, seus valores estão limitados entre [0 e 1], então os dados 

serão geralmente normalizados entre os intervalos [0,10 e 0,90] ou [0,15 e 

0,85] (VALENÇA. 2011). 

A normalização é descrita na equação a 3.1 a seguir: 

 � =  �: − ����� − �20; ���(<= − �(��� + � 
(3.1) 

Temos, 

• � é o valor normalizado; 
• �� é o valor original; 
• �(�� e �(<= são os valores mínimos e máximos de �, respectivamente; 
• � e : são os valores limites escolhidos. Para este trabalho foi definido 

que � = 0,10 e : = 0,90. 

3.3 Predizendo os valores de vazão mensal 
com a MLP 

A rede MLP necessita que muitos de seus parâmetros devam ser 

configurados, e a escolha dessas configurações influenciará diretamente no 

resultado da previsão realizada. 

A seguir, foram listados os principais parâmetros da rede MLP e do 

algoritmo Backpropagation: 

• Número de neurônios na camada de entrada. 

• Número de neurônios na camada intermediária. 

• Número de neurônios na camada de saída. 

• Funções de ativação. 

• Critério de parada. 

• Taxa de aprendizado. 

• Momento. 

• Número máximo de ciclos. 
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O número de entradas varia de acordo com a base de dados utilizada e 

a saída conterá um valor, referente ao horizonte de previsão de um mês à 

frente. 

O algoritmo de treinamento utilizado é o Backpropagation (ver 2.3.1). A 

função de ativação escolhida para os neurônios da camada de intermediária e 

da camada de saída é a sigmoide logística, descrita na equação 3.2 a seguir: 

 � = 11 + 	#�$%& 
(3.2) 

Temos, 

• � é o valor da saída. Limitado dentro do intervalo [0, 1]; 
• �	
� é a média ponderada dos pesos com as entradas do �-ésimo 

neurônio. 

3.4 Configurações das redes Multi-Layer 
Perceptron 

Os experimentos com a MLP foram realizados utilizando valores 

diferentes para os parâmetros da rede neural. Todas as configurações 

utilizadas estão descritas nas próximas seções. 

3.4.1 Critério de Parada 

O critério de parada utilizado foi o de validação cruzada, desta forma o 

conjunto de dados foi dividido em três grupos. O primeiro grupo contêm 50% 

dos dados e foi destinado para realização do treinamento da rede. O segundo 

grupo contêm 25% dos dados e foi destinado para realização da validação 

cruzada (vide subseção 2.3.2). O terceiro grupo também contêm 25% e foi 

destinado para realização de testes e avaliação do desempenho da rede. Um 

número máximo de 600 ciclos foi definido caso o critério utilizado não chegue a 

convergir de forma aceitável. 

3.4.2 Seleção de Variáveis 

Normalmente, previsões de vazão são feitas utilizando dados de até 12 

meses passados para se prever 1 mês à frente. Para este trabalho, serão 
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comparados os resultados de previsão utilizando dados de 3, 6 e 12 meses 

passados. 

A sazonalidade é outra variável que pode melhorar o desempenho de 

previsão da rede. Para representar a sazonalidade, serão testados 2 

codificações diferentes: 

• 2 neurônios a mais: estes dois neurônios representam a 

sazonalidade pelo seno e cosseno do mês que esteja sendo 

codificado. A representação será feita pelas equações 3.3 e 3.4 a 

seguir: 

�� = ?	��2A912 � 
(3.3) 

�� = BC?�2A912 � 
(3.4) 

Temos que 9 representa o número do mês correspondente. 

• 12 neurônios a mais: esta codificação representa o mês 

correspondente por 12 bits. Janeiro será representado por 

100000000000, Fevereiro por 010000000000, Março por 

001000000000, e assim por diante. 

Esta combinações de variáveis somadas aos dados históricos de 4 

usinas diferentes resultam num total de 36 cenários diferentes. 

3.5 Experimentos 
Foram realizados 30 experimentos para cada configuração da rede 

neural (JURISTO, 2010), o que é considerado um número satisfatório para que 

os dados possam convergir para uma distribuição normal. 

Após realizar vários experimentos variando os valores dos parâmetros, 

os valores que apresentaram as melhores previsões para os experimentos 

foram: 

• Número máximo de ciclos: 600; 

• Taxa de aprendizado: 0,6; 
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• Taxa de Momento: 0,4; 

• Número de neurônios da camada intermediária: 60; 

• Algoritmo de treinamento: Backpropagation; 

• Função de ativação da camada intermediária: Sigmoide logística; 

• Função de ativação da camada de saída: Sigmoide logística. 

Ao fim de cada experimento, foi calculado o Erro Percentual Médio 

Absoluto (EPMA), do resultado da vazão calculado em relação ao resultado 

desejado. O cálculo do EPMA é descrito pela equação 3.5 a seguir: 

DEFG = ∑ I5� − ��5� I . 100���� �  

(3.5) 

Tem-se, 

• 5� é a saída desejada para a �-ésima previsão; 

• �� é a saída prevista para a �-ésima previsão; 

• � é quantidade de simulações realizadas. 

Posteriormente ao cálculo dos EPMAs, calculou-se a média entre os 

erros e testes estatísticos foram realizados a fim de concluir qual configuração 

apresentou melhor desempenho na previsão. 

3.6 Testes Estatísticos 
Após a execução dos 30 experimentos para cada uma das 

configurações testadas da rede, testes estatísticos foram realizados a fim de 

avaliar qual configuração apresentou melhor desempenho na previsão de 

vazão ou se seus resultados podem ser considerados estatisticamente iguais. 

Existem diversos testes estatísticos, entre eles o t-Student e o teste de 

Wilcoxon, os quais foram utilizados para este trabalho. Para realizar o teste t-

Student, dois pré-requisitos são necessários: as amostras devem estar 

normalmente distribuídas. Para realizar a verificação desses requisitos são 

realizados mais dois testes: o de Shapiro-Wilk e o teste F. Caso seus 
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resultados sejam satisfeitos, aplica-se o teste t-Student. Caso contrário, aplica-

se o teste de Wilcoxon. 

3.6.1 Teste de Shapiro-Wilk 

O teste de Shapiro-Wilk foi proposto em 1965, e é baseado na estatística 

W (mostrado na equação 3.6 a seguir). 

 ' = :�∑ ����� − �̅������  
(3.6) 

Temos, 

• ���� são os valores das amostras ordenados; 

• : é uma constante determinada da seguinte forma: 

 

: =
KLM
LN � ��#�O�. ����#�O�� − �����  ?	 � é �����

���
� ��#�O�. ����#�O�� − �����  ?	 � é íR�����O���

���
 

(3.7) 

Onde, ��#�O� são constantes geradas pelas variâncias, covariâncias e 

médias das estatísticas de uma amostra de tamanho � de uma distribuída 

normalmente; 

Para realizar o teste, são executados os seguintes passos: 

1. Formulação da hipótese: 

�    ST:             G �RC?
�� ��CVêR 5	 XR� �C�XY�çãC 9C�R�Y     S�:      G �RC?
�� �ãC ��CVêR 5	 XR� �C�XY�çãC 9C�R�Y 
2. Estabelecer o nível de significância do teste (α) em 0,05; 
3. Calcular a estatística de teste: 

i. Ordenar as � observações da amostra: ����, ����, ����, ..., ����; 
ii. Calcular: 

 � ����� − �̅�
��� �� (3.8) 

iii. Calcular b; 
iv. Calcular W. 

4. Tomar a decisão: rejeitar ST ao nível de significância α se '\<]\^]<_` < 'a. 
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3.6.2 Teste F 

O teste F é uma ferramenta que tem como objetivo verificar se a 

igualdade entre duas variâncias de populações Normais independentes. Para 

realizar o teste, determina-se a maior (b��) e a menor (b��) variância entre as 

amostras e calcula-se a razão entre estas variâncias como mostrado a seguir: 

 c = b��b�� 
(3.9) 

O valor de c\<]\^]<_` é comparado a um c\dí%�\` obtido através de uma 

tabela de distribuição F, considerando o nível de significância adotado, os 

graus de liberdade do numerador (�� − 1� e os graus de liberdade do 

denominador (�� − 1�. 
Para realizar o teste F, são executados os seguintes passos: 

1. Formulação da hipótese: 

�ST:       b�� = b��S�:       b�� ≠ b�� 

2. Comparam-se os valores de F previamente calculados e o valor 
crítico encontrado na tabela. Se o valor de F é menor que o encontrado 
na tabela, não se pode rejeitar a hipótese ST. Neste caso, a 
probabilidade de F é maior que o nível de significância adotado. Caso o 
valor de F seja maior ou igual ao valor encontrado na tabela rejeita-se a 
hipótese ST e conclui-se que as variâncias são diferentes e não 
pertencem a mesma população. 

3.6.3 Teste t-Student 

O teste t-Student tem como objetivo a comparação das médias de duas 

amostras independentes de uma distribuição normal. Como pré-condição para 

a aplicação do teste, é necessário garantir que as amostras sejam 

normalmente distribuídas e que elas pertencem a uma mesma população, em 

outras palavras, os valores de suas variâncias são estaticamente iguais. 

Para realizar o teste t-Student, os seguintes passos são executados: 

1. Formulam-se as hipóteses: 

�ST:     �̅� ≥ �̅�S�:     �̅� < �̅� 
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Onde, �̅� e �̅� são as médias das amostras. 

2. Calcula-se o valor de 
 (segue equação 3.10 abaixo) e procura-se 
o valor de 
\dí%�\` na tabela: 

 
 = ��fff − ��fffDE�=gffff#=hffff� 
(3.10) 

Tem-se, 

• ��fff − ��fff é a diferença entre as médias das duas amostras; 
• DE é o erro padrão, que pode ser calculado através da equação 

3.8 a seguir: 

 DE�=gffff#=hffff� = ibj��� + bj��� 
(3.11) 

 bj� = ��� − 1�b�� + ��� − 1�b���� + �� − 2  
(3.12) 

3. Compara-se o valor calculado de 
 com o valor de 
\dí%�\` 
encontrado na tabela de distribuição, considerando ��� + �� − 2� graus 
de liberdade e tipo de teste de hipótese como unilateral. 

i. Se o valor de 
 é maior que o encontrado na tabela, a hipótese ST 
não é rejeitada, ou seja, a probabilidade de 
 é maior que o nível 
de significância adotado. 

ii. Rejeitamos a hipótese ST quando 
 for menor ou igual ao valor da 
tabela. 

3.6.4 Teste da Soma dos Postos Wilcoxon 

É um teste que tem como objetivo testar a hipótese nula de que duas 

amostras independentes provêm de populações com medianas iguais. A 

hipótese alternativa é de que as medianas das duas populações são diferentes. 

�ST:     � = �TS�:     � ≠ �T 

Por ser um teste não-paramétrico, parte-se do pressuposto que os 

dados não são normalmente distribuídos, ou que não existe um número 

suficiente de dados para afirmar que seja. 

Pré-condições para que o teste seja utilizado são: 
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• Existir duas amostras independentes selecionados de forma aleatória; 
• A distribuição amostral será aproximadamente normal, com média k e 

desvio padrão ), uma vez que os tamanhos amostrais forem maiores do 
que 10; 

• Não existe qualquer restrição de que as duas populações tenham uma 
distribuição normal ou qualquer outra. 

Com isso, o cálculo do teste de Wilcoxon se dá através das equações a 

seguir: 

 l = m − knon  
   (3.13) 

 kn = ����� + �� + 1�2  
   (3.14) 

 on = i������� + �� + 1�12  
(3.15) 

Temos, 

• �� e �� são os tamanhos das amostras 1 e 2 respectivamente; 
• m é a soma dos postos da amostra de tamanho ��; 
• kn é a média dos valores amostrais m; 
• on é o desvio padrão dos valores amostrais de m. 
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Capítulo 4 

Resultados 
Este capítulo mostra os resultados alcançados através da aplicação da 

metodologia detalha no Capítulo 3. 

4.1 Base de Furnas 
A seguir serão descritos os resultados dos experimentos realizados nos 

cenários para a usina hidrelétrica de Furnas. 

4.1.1 Cenário 1: Últimos 3, 6 e 12 meses 

Neste primeiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, sem utilizar a representação da sazonalidade, para 

realizar a previsão de vazão com um mês de horizonte. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 6 meses. 

•  Amostra 3: Últimos 12 meses. 

A tabela 5 indica a média dos EPMAs obtidos nas 30 experimentos para 

cada uma das configurações: 

Tabela 5.  Média dos EPMAs para as configurações do cenário 1 para a 

base de Furnas 

Configuração EPMA 

Amostra 1 31.26 % 

Amostra 2 32.36 % 

Amostra 3 31.60 % 
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A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 6 a seguir: 

Tabela 6.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 1 para a base de Furnas 

Teste p-value 

Shapiro-Wilk para amostra 1 0.0007582 

Shapiro-Wilk para amostra 2 8.67E-06 

Shapiro-Wilk para amostra 3 1.97E-07 

 

Como os resultados de p-value foram todos menores que 0,05 (nível de 

significância adotado) então a hipótese ST de que a distribuição é normal é 

refutada, e com o isso o teste estatístico t-Student não pode ser utilizado, 

passando assim para o teste de Wilcoxon. Os resultados para os testes de 

Wilcoxon são apresentados na tabela 7 a seguir: 

Tabela 7.  Valores de p-value para teste de Wilcoxon das confi gurações 

do cenário 1 para a base de Furnas 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.7635 

Wilcoxon entre amostras 1 e 3 0.05324 

Wilcoxon entre amostras 2 e 3 0.03997 

 

Como os resultados de p-value para o teste de Wilcoxon entre as 

amostras 1 e 2, e entre as amostras 1 e 3 foram maiores que 0,05 então pode-

se dizer que não existe diferença estatística entre os modelos comparados. 

Sendo assim, para estes casos será considerado como melhor configuração 
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aquela que apresentar menor média de EPMA. Para os dois casos será 

escolhida a amostra 1. 

Entre as amostras 2 e 3, o p-value foi menor que 0,05, logo o modelo 

que apresenta uma mediana mais adequada ao problema é o melhor, neste 

caso será a configuração da amostra 3. 

Para o cenário 1, a amostra com 3 meses passados será considerada a 

de melhor desempenho. 

4.1.2 Cenário 2: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em seno e cosseno 

Neste segundo cenário, foram utilizadas as configurações com os 

últimos três, seis e doze meses, utilizando a representação da sazonalidade 

codificada em seno e cosseno para realizar a previsão de vazão com um mês 

de horizonte. As amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 

seno e cosseno. 

•  Amostra 3: Últimos 12 meses com sazonalidade codificada em 

seno e cosseno. 

A tabela 8 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 8.  Média dos EPMAs para as configurações do cenário 2 para a 

base de Furnas 

Configuração EPMA 

 Amostra 1 25.47 % 

Amostra 2 27.62 % 

Amostra 3 27.06 % 
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 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 9 a seguir:  

Tabela 9.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 2 para a base de Furnas 

Teste p-value 

Shapiro-Wilk para amostra 1 0.03612 

Shapiro-Wilk para amostra 2 4.07E-07 

Shapiro-Wilk para amostra 3 1.14E-06 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 10 a seguir: 

Tabela 10.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 2 para a base de Furnas 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.2601 

Wilcoxon entre amostras 1 e 3 0.2794 

Wilcoxon entre amostras 2 e 3 0.9824 

 

Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 2 será considerado 
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como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 3 meses passados com sazonalidade. 

4.1.3 Cenário 3: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em 12 bits 

Neste terceiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, utilizando a representação da sazonalidade codificada 

em 12 bits para realizar a previsão de vazão com um mês de horizonte. As 

amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 12 

bits. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 12 

bits. 

• Amostra 3: Últimos 12 meses com sazonalidade codificada em 12 

bits. 

A tabela 11 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 11.  Média dos EPMAs para as configurações do cenário 3 para 

a base de Furnas 

Configuração EPMA 

Amostra 1 25.97 % 

Amostra 2 24.52 % 

Amostra 3 25.18 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 12 a seguir: 
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Tabela 12.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 3 para a base de Furnas 

Teste p-value 

Shapiro-Wilk para amostra 1 1.82E-08 

Shapiro-Wilk para amostra 2 3.03E-07 

Shapiro-Wilk para amostra 3 0.002048 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 13 a seguir: 

Tabela 13.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 3 para a base de Furnas 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.9941 

Wilcoxon entre amostras 1 e 3 0.4232 

Wilcoxon entre amostras 2 e 3 0.398 

 

Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 3 será considerado 

como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 6 meses passados com sazonalidade. 
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4.1.4 Comparativo entre as melhores configurações 

Será realizada uma comparação para que seja definida estatisticamente 

quais das configurações consideradas melhores nos 3 cenários, é a mais 

adequada para a previsão de vazão da usina de Furnas. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 3: Últimos 6 meses com sazonalidade codificada em 12 

bits. 

A tabela 14 indica as médias dos EPMAs obtidos nas 30 simulações 

para cada uma das configurações consideradas melhores e tabela 15 indica os 

valores de p-value para o teste de Shapiro-Wilk: 

Tabela 14.  Média dos EPMAs para as configurações consideradas 

melhores para a base de Furnas  

Configuração EPMA 

Amostra 1 31.26 % 

Amostra 2 25.47 % 

Amostra 3 24.52 % 

 

Tabela 15.  Valores de p-value para teste de Shapiro-Wilk das 

configurações consideradas melhores para a base de Furnas 

Teste p-value 

Shapiro-Wilk para amostra 1 0.0007582 

Shapiro-Wilk para amostra 2 0.03612 

Shapiro-Wilk para amostra 3 3.03E-07 
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Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 16 a seguir: 

Tabela 16.  Valores de p-value para teste de Wilcoxon das 

configurações consideradas melhores para a base de Furnas 

Teste p-value 

Wilcoxon entre amostras 1 e 2 4.371e-05 

Wilcoxon entre amostras 1 e 3 3.43e-08 

Wilcoxon entre amostras 2 e 3 0.1973 

 Os valores de p-value do teste de Wilcoxon entre as amostras 1 e 2 e 

entre as amostras 1 e 3 foram menores do que 0,05, com isso a melhor 

configuração será aquela que apresente uma mediana mais adequada ao 

problema. Para o primeiro caso, será a configuração da amostra 2. Para o 

segundo caso, será a configuração da amostra 3. 

O teste de Wilcoxon entre a amostra 2 e 3 apresentou p-value maior que 

0,05, logo a melhor configuração será aquela com menor média de EPMAs, 

que neste caso será o modelo da amostra 3. 

Para a usina de Furnas, foi considerada como melhor configuração 

aquela que utiliza 6 meses passados com sazonalidade codificada em 12 bits.  

4.2 Base de Gov. Bento M. da Rocha Netto 
A seguir serão descritos os resultados dos experimentos realizados nos 

cenários para a usina hidrelétrica de Gov. Bento Munhoz da Rocha Netto. 

4.2.1 Cenário 1: Últimos 3, 6 e 12 meses 

Neste primeiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, sem utilizar a representação da sazonalidade, para 



Capítulo 4 – Resultados 

Thiago Ferreira Machado   33 

realizar a previsão de vazão com um mês de horizonte. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 6 meses. 

• Amostra 3: Últimos 12 meses. 

A tabela 17 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 17.  Média dos EPMAs para as configurações do cenário 1 para 

a base de Governador  Bento Munhoz da Rocha Netto 

Configuração EPMA 

Amostra 1 60.69 % 

Amostra 2 68.59 % 

Amostra 3 70.48 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 18 a seguir: 

Tabela 18.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 1 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Shapiro-Wilk para amostra 1 0.003513 

Shapiro-Wilk para amostra 2 1.68E-08 

Shapiro-Wilk para amostra 3 7.63E-07 
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Como os resultados de p-value foram todos menores que 0,05 (nível de 

significância adotado) então a hipótese ST de que a distribuição é normal é 

refutada, e com o isso o teste estatístico t-Student não pode ser utilizado, 

passando assim para o teste de Wilcoxon. Os resultados para os testes de 

Wilcoxon são apresentados na tabela 19 a seguir: 

Tabela 19.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 1 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.7524 

Wilcoxon entre amostras 1 e 3 0.4232 

Wilcoxon entre amostras 2 e 3 0.7973 

 

 Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 1 será considerado 

como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 3 meses passados. 

4.2.2 Cenário 2: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em seno e cosseno 

Neste segundo cenário, foram utilizadas as configurações com os 

últimos três, seis e doze meses, utilizando a representação da sazonalidade 

codificada em seno e cosseno para realizar a previsão de vazão com um mês 

de horizonte. As amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 

seno e cosseno. 
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•  Amostra 3: Últimos 12 meses com sazonalidade codificada em 

seno e cosseno. 

A tabela 20 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 20.  Média dos EPMAs para as configurações do cenário 2 para 

a base de Governador  Bento Munhoz da Rocha Netto 

Configuração EPMA 

Amostra 1 65.40 % 

Amostra 2 64.45 % 

Amostra 3 75.12 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 21 a seguir: 

Tabela 21.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 2 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Shapiro-Wilk para amostra 1 0.0003527 

Shapiro-Wilk para amostra 2 1.08E-05 

Shapiro-Wilk para amostra 3 8.27E-06 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 22 a seguir: 
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Tabela 22.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 2 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.3136 

Wilcoxon entre amostras 1 e 3 0.592 

Wilcoxon entre amostras 2 e 3 0.03713 

 

Como os resultados de p-value para o teste de Wilcoxon entre as 

amostras 1 e 2 e entre as amostras 1 e 3 foram maiores que 0,05 então pode-

se dizer que não existe diferença estatística entre os modelos comparados. 

Sendo assim, para estes casos será considerado como melhor configuração 

aquela que apresentar menor média de EPMA, para o primeiro caso será a 

configuração da amostra 2 e para o segundo caso será a amostra 1. 

Entre as amostras 2 e 3, o p-value foi menor que 0,05, logo o modelo 

que apresenta uma mediana mais adequada ao problema é o melhor, neste 

caso será a configuração da amostra 2. 

Para o cenário 2, a amostra com 6 meses passados com sazonalidade 

codificada em seno e cosseno será considerada a de melhor desempenho. 

4.2.3 Cenário 3: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em 12 bits 

Neste terceiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, utilizando a representação da sazonalidade codificada 

em 12 bits para realizar a previsão de vazão com um mês de horizonte. As 

amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 12 

bits. 



Capítulo 4 – Resultados 

Thiago Ferreira Machado   37 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 12 

bits. 

• Amostra 3: Últimos 12 meses com sazonalidade codificada em 12 

bits. 

A tabela 23 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 23.  Média dos EPMAs para as configurações do cenário 3 para 

a base de Governador  Bento Munhoz da Rocha Netto 

Configuração EPMA 

Amostra 1 58.89 % 

Amostra 2 65.07 % 

Amostra 3 77.37 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 24 a seguir: 

Tabela 24.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 3 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Shapiro-Wilk para amostra 1 0.02414 

Shapiro-Wilk para amostra 2 0.03792 

Shapiro-Wilk para amostra 3 4.61E-08 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 
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estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 25 a seguir: 

Tabela 25.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 3 para a base de Governado r Bento Munhoz 

da Rocha Netto 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.1342  

Wilcoxon entre amostras 1 e 3 0.09646 

Wilcoxon entre amostras 2 e 3 0.9007 

 

Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 3 será considerado 

como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 3 meses passados com sazonalidade. 

4.2.4 Comparativo entre as melhores configurações 

Será realizada uma comparação para que seja definida estatisticamente 

quais das configurações consideradas melhores nos 3 cenários, é a mais 

adequada para a previsão de vazão da usina de Governador Bento Munhoz da 

Rocha Netto. As amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 3: Últimos 3 meses com sazonalidade codificada em 12 

bits. 
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A tabela 26 indica as médias dos EPMAs obtidos nas 30 simulações 

para cada uma das configurações consideradas melhores e tabela 27 indica os 

valores de p-value para o teste de Shapiro-Wilk: 

Tabela 26.  Média dos EPMAs para as configurações consideradas 

melhores para a base de Governador Bento Munhoz da Rocha Netto 

Configuração EPMA 

Amostra 1 60.69 % 

Amostra 2 64.45 % 

Amostra 3 58.89 % 

 

Tabela 27.  Valores de p-value para teste de Shapiro-Wilk das 

configurações consideradas melhores para a base de Governador 

Bento Munhoz da Rocha Netto 

Teste p-value 

Shapiro-Wilk para amostra 1 0.003513 

Shapiro-Wilk para amostra 2 1.08E-05 

Shapiro-Wilk para amostra 3 4.61E-08 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 28 a seguir: 
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Tabela 28.  Valores de p-value para teste de Wilcoxon das 

configurações consideradas melhores para a base de Governador 

Bento Munhoz da Rocha Netto 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.843 

Wilcoxon entre amostras 1 e 3 0.7973 

Wilcoxon entre amostras 2 e 3 0.9824 

  

 Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados.  Será então considerado como melhor configuração 

aquela que apresentar menor média de EPMA. 

Logo, para a usina de Governador Bento Munhoz da Rocha Netto, o 

modelo com 3 meses passados com sazonalidade codificada em 12 bits foi 

considerado como melhor configuração. 

4.3 Base de Três Marias 
A seguir serão descritos os resultados dos experimentos realizados nos 

cenários para a usina hidrelétrica de Três Marias. 

4.3.1 Cenário 1: Últimos 3, 6 e 12 meses 

Neste primeiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, sem utilizar a representação da sazonalidade, para 

realizar a previsão de vazão com um mês de horizonte. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 6 meses. 

• Amostra 3: Últimos 12 meses. 
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A tabela 29 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 29.  Média dos EPMAs para as configurações do cenário 1 para 

a base de Três Marias 

Configuração EPMA 

Amostra 1 68.47 % 

Amostra 2 55.44 % 

Amostra 3 54.55 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 30 a seguir: 

Tabela 30.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário para a base de Três Marias  

Teste p-value 

Shapiro-Wilk para amostra 1 4.37E-11 

Shapiro-Wilk para amostra 2 0.0001431 

Shapiro-Wilk para amostra 3 1.77E-06 

 

Como os resultados de p-value foram todos menores que 0,05 (nível de 

significância adotado) então a hipótese ST de que a distribuição é normal é 

refutada, e com o isso o teste estatístico t-Student não pode ser utilizado, 

passando assim para o teste de Wilcoxon. Os resultados para os testes de 

Wilcoxon são apresentados na tabela 31 a seguir: 
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Tabela 31.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 1 para a base de Três Mari as 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.3738 

Wilcoxon entre amostras 1 e 3 0.1727 

Wilcoxon entre amostras 2 e 3 0.06992 

 

 Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 1 será considerado 

como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 12 meses passados. 

4.3.2 Cenário 2: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em seno e cosseno 

Neste segundo cenário, foram utilizadas as configurações com os 

últimos três, seis e doze meses, utilizando a representação da sazonalidade 

codificada em seno e cosseno para realizar a previsão de vazão com um mês 

de horizonte. As amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 

seno e cosseno. 

•  Amostra 3: Últimos 12 meses com sazonalidade codificada em 

seno e cosseno. 

A tabela 32 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 
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Tabela 32.  Média dos EPMAs para as configurações do cenário 2 para 

a base de  Três Marias 

Configuração EPMA 

Amostra 1 42.26 % 

Amostra 2 42.38 % 

Amostra 3 50.79 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 33 a seguir: 

Tabela 33.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 2 para a base de Três Mari as 

Teste p-value 

Shapiro-Wilk para amostra 1 9.04E-06 

Shapiro-Wilk para amostra 2 0.02755 

Shapiro-Wilk para amostra 3 4.05E-05 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 34 a seguir: 
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Tabela 34.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 2 para a base de Três Mari as 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.2996 

Wilcoxon entre amostras 1 e 3 0.002222 

Wilcoxon entre amostras 2 e 3 0.01759 

 

Como os resultados de p-value para o teste de Wilcoxon entre as 

amostras 1 e 2 foram maiores que 0,05 então pode-se dizer que não existe 

diferença estatística entre os modelos comparados. Sendo assim, para este 

caso será considerado como melhor configuração aquela que apresentar 

menor média de EPMA, neste caso será a configuração da amostra 1. 

Os valores de p-value entre as amostras de 1 e 3 e entre as amostras 2 

e 3 foram menores que 0,05, logo o modelo que apresenta uma mediana mais 

adequada ao problema é o melhor. Para o primeiro caso será a configuração 

da amostra 1 e para a segundo caso será a configuração da amostra 2. 

Para o cenário 2, foi considerado como melhor configuração o modelo 

com 3 meses passados com sazonalidade. 

4.3.3 Cenário 3: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em 12 bits 

Neste terceiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, utilizando a representação da sazonalidade codificada 

em 12 bits para realizar a previsão de vazão com um mês de horizonte. As 

amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 12 

bits. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 12 

bits. 
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• Amostra 3: Últimos 12 meses com sazonalidade codificada em 12 

bits. 

A tabela 35 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 35.  Média dos EPMAs para as configurações do cenário 3 para 

a base de Três Marias 

Configuração EPMA 

Amostra 1 48.95 % 

Amostra 2 46.31 % 

Amostra 3 40.80 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 36 a seguir: 

Tabela 36.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 3 para a base de Três Mari as 

Teste p-value 

Shapiro-Wilk para amostra 1 9.29E-07 

Shapiro-Wilk para amostra 2 1.23E-05 

Shapiro-Wilk para amostra 3 8.29E-08 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 37 a seguir: 
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Tabela 37.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 1 para a base de Três Mari as 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.6865 

Wilcoxon entre amostras 1 e 3 0.1823 

Wilcoxon entre amostras 2 e 3 0.3738 

 

Como os resultados de p-value para o teste de Wilcoxon foram todos 

maiores que 0,05 então pode-se dizer que não existe diferença estatística entre 

os modelos comparados. Sendo assim, para o cenário 3 será considerado 

como melhor configuração aquela que apresentar menor média de EPMA, 

neste caso, o modelo que utiliza 12 meses passados com sazonalidade. 

4.3.4 Comparativo entre as melhores configurações 

Será realizada uma comparação para que seja definida estatisticamente 

quais das configurações consideradas melhores nos 3 cenários, é a mais 

adequada para a previsão de vazão da usina de Três Marias. As amostras 

testadas foram as seguintes: 

• Amostra 1: Últimos 12 meses. 

• Amostra 2: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 3: Últimos 12 meses com sazonalidade codificada em 12 

bits. 

A tabela 38 indica as médias dos EPMAs obtidos nas 30 simulações 

para cada uma das configurações consideradas melhores e tabela 39 indica os 

valores de p-value para o teste de Shapiro-Wilk: 
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Tabela 38.  Média dos EPMAs para as configurações consideradas 

melhores para a base de Três Marias 

Configuração EPMA 

Amostra 1 54.55 % 

Amostra 2 42.26 % 

Amostra 3 40.80 % 

 

Tabela 39.  Valores de p-value para teste de Shapiro-Wilk das 

configurações consideradas melhores para a base de Três Marias 

Teste p-value 

Shapiro-Wilk para amostra 1 1.77E-06 

Shapiro-Wilk para amostra 2 9.04E-06 

Shapiro-Wilk para amostra 3 8.29E-08 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 40 a seguir: 

Tabela 40.  Valores de p-value para teste de Wilcoxon das 

configurações consideradas melhores para a base de Três Marias 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.001795 

Wilcoxon entre amostras 1 e 3 4.371e-05 

Wilcoxon entre amostras 2 e 3 0.786 
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Os valores de p-value do teste de Wilcoxon entre as amostras 1 e 2 e 

entre as amostras 1 e 3 foram menores do que 0,05, com isso a melhor 

configuração será aquela que apresente uma mediana mais adequada ao 

problema. Para o primeiro caso, será a configuração da amostra 2. Para o 

segundo caso, será a configuração da amostra 3. 

O teste de Wilcoxon entre a amostra 2 e 3 apresentou p-value maior que 

0,05, logo a melhor configuração será aquela com menor média de EPMAs, 

que neste caso será o modelo da amostra 3. 

Para a usina de Três Marias, foi considerada como melhor configuração 

aquela que utiliza 12 meses passados com sazonalidade codificada em 12 bits. 

4.4 Base de Tucuruí 
A seguir serão descritos os resultados dos experimentos realizados nos 

cenários para a usina hidrelétrica de Tucuruí. 

4.4.1 Cenário 1: Últimos 3, 6 e 12 meses 

Neste primeiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, sem utilizar a representação da sazonalidade, para 

realizar a previsão de vazão com um mês de horizonte. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 3 meses. 

• Amostra 2: Últimos 6 meses. 

• Amostra 3: Últimos 12 meses. 

A tabela 41 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 
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Tabela 41.  Média dos EPMAs para as configurações do cenário 1 para 

a base de Tucuruí 

Configuração EPMA 

Amostra 1 44.76 % 

Amostra 2 33.82 % 

Amostra 3 39.08 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 42 a seguir: 

Tabela 42.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário para a base de Tucuruí 

Teste p-value 

Shapiro-Wilk para amostra 1 3.61E-05 

Shapiro-Wilk para amostra 2 0.003482 

Shapiro-Wilk para amostra 3 1.11E-10 

 

Como os resultados de p-value foram todos menores que 0,05 (nível de 

significância adotado) então a hipótese ST de que a distribuição é normal é 

refutada, e com o isso o teste estatístico t-Student não pode ser utilizado, 

passando assim para o teste de Wilcoxon. Os resultados para os testes de 

Wilcoxon são apresentados na tabela 43 a seguir: 
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Tabela 43.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 1 para a base de Tucuruí 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.0001748 

Wilcoxon entre amostras 1 e 3 1.43E-06 

Wilcoxon entre amostras 2 e 3 0.0017 

 

 Como os resultados de p-value para o teste de Wilcoxon foram todos 

menores que 0,05 então as amostras possuem medianas diferentes. Para o 

cenário 1 será considerado como melhor configuração aquela que apresentar a 

mediana mais adequada ao problema, neste caso, o modelo que utiliza 12 

meses passados. 

4.4.2 Cenário 2: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em seno e cosseno 

Neste segundo cenário, foram utilizadas as configurações com os 

últimos três, seis e doze meses, utilizando a representação da sazonalidade 

codificada em seno e cosseno para realizar a previsão de vazão com um mês 

de horizonte. As amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 2: Últimos 6 meses com sazonalidade codificada em 

seno e cosseno. 

•  Amostra 3: Últimos 12 meses com sazonalidade codificada em 

seno e cosseno. 

A tabela 44 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 
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Tabela 44.  Média dos EPMAs para as configurações do cenário 2 para 

a base de Tucuruí 

Configuração EPMA 

Amostra 1 27.34% 

Amostra 2 30.26 % 

Amostra 3 28.44 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 45 a seguir: 

 

Tabela 45.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 2 para a base de Tucuruí 

Teste p-value 

Shapiro-Wilk para amostra 1 5.73E-06 

Shapiro-Wilk para amostra 2 1.49E-05 

Shapiro-Wilk para amostra 3 4.04E-07 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 46 a seguir: 
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Tabela 46.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 2 para a base de Tucuruí 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.04458 

Wilcoxon entre amostras 1 e 3 0.3504 

Wilcoxon entre amostras 2 e 3 0.2025 

 

Como o resultado de p-value para o teste de Wilcoxon entre as amostras 

1 e 2 foi menor que 0,05 então sabe-se que estas amostras possuem medianas 

diferentes. Sendo assim, para este caso será considerado como melhor 

configuração aquela que apresentar uma mediana mais adequada ao 

problema, neste caso será a configuração da amostra 3. 

Os valores de p-value entre as amostras 1 e 3 e entre as amostras 2 e 3 

foram maiores que 0,05, com isso pode-se dizer que não existe diferença 

estatística entre os modelos. Será considerada a melhor configuração aquela 

que apresentou a menor média de EPMAs. Para o primeiro caso será 

considerada melhor a configuração da amostra 1 e para a segundo caso a 

configuração da amostra 3. 

Para o cenário 2, foi considerado como melhor configuração o modelo 

que utiliza 3 meses passados com sazonalidade. 

4.4.3 Cenário 3: Últimos 3, 6 e 12 meses com sazona lidade 
codificada em 12 bits 

Neste terceiro cenário, foram utilizadas as configurações com os últimos 

três, seis e doze meses, utilizando a representação da sazonalidade codificada 

em 12 bits para realizar a previsão de vazão com um mês de horizonte. As 

amostras testadas foram as seguintes: 

• Amostra 1: Últimos 3 meses com sazonalidade codificada em 12 

bits. 
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• Amostra 2: Últimos 6 meses com sazonalidade codificada em 12 

bits. 

• Amostra 3: Últimos 12 meses com sazonalidade codificada em 12 

bits. 

A tabela 47 indica a média dos EPMAs obtidos nas 30 simulações para 

cada uma das configurações: 

Tabela 47.  Média dos EPMAs para as configurações do cenário 3 para 

a base de Tucuruí 

Configuração EPMA 

Amostra 1 25.34 % 

Amostra 2 30.20 % 

Amostra 3 34.80 % 

 

 A seguir foram realizados testes de Shapiro-Wilk para verificar a 

normalidade das amostras. Os resultados dos testes são apresentados na 

tabela 48 a seguir: 

Tabela 48.  Valores de p-value para teste de Shapiro-Wilk das 

configurações do cenário 3 para a base de Tucuruí 

Teste p-value 

Shapiro-Wilk para amostra 1 1.88E-07 

Shapiro-Wilk para amostra 2 5.09E-06 

Shapiro-Wilk para amostra 3 0.0002015 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 
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Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 49 a seguir: 

Tabela 49.  Valores de p-value para teste de Wilcoxon das 

configurações do cenário 3 para a base de Tucuruí 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.02073 

Wilcoxon entre amostras 1 e 3 3.26E-05 

Wilcoxon entre amostras 2 e 3 0.06992 

 

Como os resultados de p-value para o teste de Wilcoxon entre as 

amostras 1 e 2 e entre as amostras 1 e 3 foram menores que 0,05 então pode-

se dizer que os modelos comparados não apresentam mesma mediana. Sendo 

assim, para estes casos será considerado como melhor configuração aquela 

que apresentar uma mediana mais adequada ao problema. Para ambos os 

caso a configuração da amostra 1 será considerada a melhor. 

Entre as amostras 2 e 3, o p-value foi maior que 0,05, com isso pode-se 

dizer que não existe diferença estatística entre os modelos. Será considerada a 

melhor configuração aquela que apresentou a menor média de EPMAs, neste 

caso será a configuração da amostra 2. 

Para o cenário 3, será considerada como melhor configuração o modelo 

que utiliza 3 meses passados com sazonalidade. 

4.4.4 Comparativo entre as melhores configurações 

Será realizada uma comparação para que seja definida estatisticamente 

quais das configurações consideradas melhores nos 3 cenários, é a mais 

adequada para a previsão de vazão da usina de Tucuruí. As amostras testadas 

foram as seguintes: 

• Amostra 1: Últimos 12 meses. 
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• Amostra 2: Últimos 3 meses com sazonalidade codificada em 

seno e cosseno. 

• Amostra 3: Últimos 3 meses com sazonalidade codificada em 12 

bits. 

A tabela 50 indica as médias dos EPMAs obtidos nas 30 simulações 

para cada uma das configurações consideradas melhores e tabela 51 indica os 

valores de p-value para o teste de Shapiro-Wilk: 

Tabela 50.  Média dos EPMAs para as configurações consideradas 

melhores para a base de Tucuruí 

Configuração EPMA 

Amostra 1 39.08 % 

Amostra 2 27.24 % 

Amostra 3 25.34 % 

 

Tabela 51.  Valores de p-value para teste de Shapiro-Wilk das 

configurações consideradas melhores para a base de Tucuruí 

Teste p-value 

Shapiro-Wilk para amostra 1 1.11E-10 

Shapiro-Wilk para amostra 2 5.73E-06 

Shapiro-Wilk para amostra 3 1.88E-07 

 

Como os resultados de p-value foram todos menores que 0,05 então a 

hipótese ST de que a distribuição é normal é refutada, e com o isso o teste 

estatístico t-Student não pode ser utilizado, passando assim para o teste de 

Wilcoxon. Os resultados para os testes de Wilcoxon são apresentados na 

tabela 52 a seguir: 
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Tabela 52.  Valores de p-value para teste de Wilcoxon das 

configurações consideradas melhores para a base de Tucuruí 

Teste p-value 

Wilcoxon entre amostras 1 e 2 0.01487 

Wilcoxon entre amostras 1 e 3 9.532e-05 

Wilcoxon entre amostras 2 e 3 0.04146 

  

 Como os resultados de p-value para o teste de Wilcoxon foram todos 

menores que 0,05 então as amostras possuem medianas diferentes. Neste 

caso, será considerado como melhor configuração aquela que apresentar a 

mediana mais adequada ao problema. 

Logo, a melhor configuração para realizar previsões de vazão para a 

usina de Tucuruí é modelo que utiliza 3 meses passados com sazonalidade 

codificada em 12 bits. 

4.5 Conclusões dos Experimentos 
Foi possível otimizar os resultados dos experimentos em todos os 

cenários através da adição da informação da sazonalidade. Como resultado 

preliminar, a codificação em 12 bits se apresentou como mais satisfatória uma 

vez que discretiza mais a informação passada a rede. 

As configurações consideradas como melhores para cada usina foram 

encontradas e listadas a seguir: 

• Base de Furnas: configuração utilizando 6 meses passados com 

informação de sazonalidade codificada em 12 bits. 

• Base de Governador Bento Munhoz da Rocha Netto: configuração 

utilizando 3 meses passados com informação de sazonalidade 

codificada em 12 bits. 
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• Base de Três Marias: configuração utilizando 12 meses passados 

com informação de sazonalidade codificada em 12 bits. 

• Base de Tucuruí: configuração utilizando 3 meses passados com 

informação de sazonalidade codificada em 12 bits. 
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Capítulo 5 

Considerações Finais 

5.1 Conclusões 
O planejamento energético nacional é de suma importância para um 

melhor aproveitamento dos recursos hídricos, uma vez que esta é a maior fonte 

energética do Brasil. Com isso, diversas são as pesquisas que buscam prever 

com mais fidelidade a vazão para as diversas usinas. 

Como objetivo principal, este trabalho realizou diversas investigações a 

fim de chegar a modelos de redes neurais que melhorassem o desempenho 

das previsões já realizadas na atualidade. Após todas as simulações chegou-

se a configurações otimizadas diferentes para as 4 usinas investigadas, porém 

constatou-se que em todas elas a utilização da variável de sazonalidade 

codificada em 12 bits apresentou ganhos nos resultados alcançados em 

proporções diferentes para cada usina. 

Estudos continuarão a ser realizados, pois os resultados encontrados 

não foram melhores do que as redes utilizadas pela ONS. Então, mais 

simulações serão realizadas testando outras configurações de parâmetros para 

a rede MLP. 

5.2 Trabalhos Futuros 
Com bases nos resultados obtidos, pretende-se aprofundar os estudos 

deste trabalho utilizando outros modelos de redes neurais, como Reservoir 

Computing. 

Espera-se aplicar os resultados alcançados em outras bases de dados a 

fim de avaliar seu desempenho em outros cenários, e, se necessário, analisar 

outras tendências dos dados a fim de obter melhores resultados a fim de 

determinar uma previsão dentro do que seja considerável aceitável. 
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