
Uma arquitetura de software para sistemas de
gerenciamento baseados em IoT

Trabalho de Conclusão de Curso

Engenharia de Computação

Rubens Euclides Carneiro
Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Rubens Euclides Carneiro

Uma arquitetura de software para sistemas de
gerenciamento baseados em IoT

Monografia apresentada como requisito par-
cial para obtenção do diploma de Bacharel
em Engenharia de Computação pela Escola
Politécnica de Pernambuco – Universidade de
Pernambuco.

Engenharia de Computação

Escola Politécnica de Pernambuco

Universidade de Pernambuco

Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Recife - PE, Brasil
novembro de 2019

Euclides Carneiro, Rubens
Uma arquitetura de software para sistemas de gerenciamento baseados em IoT/

Rubens Euclides Carneiro. – Recife - PE, Brasil, novembro de 2019-
52 p.
Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Trabalho de Conclusão de Curso – Engenharia de Computação
Escola Politécnica de Pernambuco
Universidade de Pernambuco, novembro de 2019.
1. Arquitetura de Software. 2. IoT. 3. Mobile. I. Prof. Dr. Fernando Buarque de

Lima Neto. II. Universidade de Pernambuco. III. Escola Politécnica. IV. Título.

MONOGRAFIA DE FINAL DE CURSO

Avaliação Final (para o presidente da banca)*

No dia 10/12/2019, às 8h30min, reuniu-se para deliberar sobre a defesa da monografia de
conclusão de curso do(a) discente RUBENS EUCLIDES CARNEIRO, orientado(a) pelo(a)
professor(a) FERNANDO BUARQUE DE LIMA NETO, sob título Uma arquitetura de
software para sistemas de gerenciamento baseados em IoT, a banca composta pelos professores:

LARISSA TENÓRIO FALCÃO ARRUDA (PRESIDENTE)
FERNANDO BUARQUE DE LIMA NETO (ORIENTADOR)

Autorização de publicação de PFC

Eu, Rubens Euclides Carneiro autor(a) do projeto final de curso intitulado: Uma
arquitetura de software para sistemas de gerenciamento baseados em IoT;
autorizo a publicação de seu conteúdo na internet nos portais da Escola Politécnica de
Pernambuco e Universidade de Pernambuco.

O conteúdo do projeto de final de curso é de responsabilidade do autor.

Resumo
Recentemente houve um crescimento exponencial na disponibilidade de dispositivos móveis
com amplo acesso à internet e grande poder de processamento, fato que mudou a forma
em que as pessoas consomem softwares, agora chamados de aplicações ou apps. Junto a
esta mudança de paradigma surgiu uma dificuldade para os desenvolvedores, um mesmo
sistema precisa ser programado individualmente para diversas plataformas utilizando
diversas linguagens de programação. A utilização de frameworks multiplataforma visa
trazer a agilidade e mantenabilidade do desenvolvimento de softwares tradicionais ao
mundo das aplicações. A Internet das Coisas (IoT) também está em pleno crescimento
devido ao barateamento e popularização de novas plataformas de hardware. As redes
de dispositivos conectados na IoT trazem a necessidade de uma infraestrutura capaz de
suportar o grande volume de dados que elas produzem. Sistemas de gerenciamento são
um dos principais usos da tecnologia IoT e demandam formas concisas de visualização e
meios interação com seus dados. Este projeto definiu uma arquitetura de softwares capaz
de integrar aplicações móveis multiplataforma a sistemas IoT através da Computação em
Nuvem visando a escalabilidade, confiabilidade e mantenabilidade do sistema e a agilidade
em seu desenvolvimento. A arquitetura proposta descreveu a infraestrutura necessária
para suportar tais sistemas na nuvem e a estrutura do servidor e interface gráfica da
aplicação multiplataforma. Um exemplo sem detalhamento está apresentado no final desta
monografia.

Palavras-chave: Arquitetura de Software. IoT. Computação em Nuvem. Mobile. Multi-
plataforma.

Abstract
Recently we had an exponential growth in the availability of mobile devices with wide
internet connectivity and high computing power. This changed the way people consume
software, which are now called applications or apps. With this paradigm shift, a new
problem emerged for developers; a single system needs to be programmed individually
for multiple platforms using different programming languages. The use of cross-platform
frameworks brings the agility and maintainability of traditional software development to
the application world. The Internet of Things (IoT) is also growing due to cost reduction
and popularization of new hardware platforms. Device networks connected to the IoT
raise the need for an infrastructure capable of handling the large amount of data that
they produce. Management systems are one of the main uses of IoT and demand concise
visualizations and means of interaction with the data. This project defined a software
architecture capable of integrating mobile application with IoT systems through cloud
computing while simultaneously considering the scalability, reliability and maintainability
of the system and its agile development. This proposed architecture describes the necessary
cloud infrastructure to support the system and the structure of both the server and user
interface of the cross-platform application. An overview example is provided in the end of
this monograph.

Keywords: Software Architecture. IoT. Cloud Computing. Mobile. Multi-platform.

Lista de ilustrações

Figura 1 – Visão técnica da IoT. 17
Figura 2 – Modelos de serviços da nuvem. 21
Figura 3 – Aplicação executando nas plataformas iOS e Android, respectivamente. 24
Figura 4 – Diagrama UML do padrão MVC. 25
Figura 5 – Diagrama de sequência de um sistema interativo que utiliza o padrão

MVC. 25
Figura 6 – Estrutura do Docker . 30
Figura 7 – Diagrama de arquitetura da nuvem . 32
Figura 8 – Diagrama de arquitetura da nuvem AWS 33
Figura 9 – Exemplo de resposta do tipo application/json 35
Figura 10 – Diagrama de sequência de uma API implementada com o padrão MVC. 36
Figura 11 – API estruturada em camadas . 37
Figura 12 – Diagrama UML do Modelo utilizando o padrão Repository 38
Figura 13 – Exemplo de consulta de dados utilizando o padrão Repository e ORM . 39
Figura 14 – Exemplo de componente em React Native 40
Figura 15 – Diagrama do padrão Flux. 41
Figura 16 – Propagação de estado com e sem Flux. 42
Figura 17 – Cliente HTTP realizando requisição de produtos à API. 43
Figura 18 – Diagrama da arquitetura . 44
Figura 19 – Aplicação nas plataformas iOS e Android, respectivamente 45
Figura 20 – Diagramas de casos de uso do sistema 46
Figura 21 – Telas de condição dos aparelhos e componentes 47
Figura 22 – Telas de painel de aparelhos e de indicadores do sistema 48

Lista de tabelas

Tabela 1 – Projeção de custo mensal da nuvem AWS 34

Lista de abreviaturas e siglas

IoT Internet of Things

IDE Integrated Development Environment

SDK Software Development Kit

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

CSS Cascading Style Sheet

UX User Experience

REST Representational State Transfer

JSON Javascript Object Notation

JWT JSON web token

API Application Programming Interface

MVC Model-View-Controller

ORM Object-Relational Mapping

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

NIST National Institute of Standards and Technology

AWS Amazon Web Services

UID Unique Identifier

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

SSD Solid State Disk

S3 Simple Storage Service

RDS Relational Database Service

IAM Identity and Access Management

SNS Simple Notification Service

EC2 Elastic Compute Cloud

Sumário

1 INTRODUÇÃO . 14
1.1 Motivação e Caracterização do Problema 14
1.2 Objetivo Geral . 15
1.3 Objetivos Específicos . 15
1.4 Estrutura do Documento . 15

2 FUNDAMENTAÇÃO TEÓRICA . 16
2.1 Internet das Coisas . 16
2.1.1 Características . 17
2.1.2 Requisitos de Alto Nível . 18
2.2 Computação em Nuvem . 19
2.2.1 Características . 19
2.2.2 Modelos de Serviço . 20
2.2.3 Plataformas . 21
2.3 Dispositivos Móveis . 22
2.3.1 Plataforma iOS . 22
2.3.2 Plataforma Android . 22
2.3.3 Multiplataforma . 23
2.4 Arquitetura de Software . 23
2.4.1 Padrões Arquiteturais . 23
2.4.2 Model-View-Controller . 24
2.4.3 Representational State Transfer . 25

3 ARQUITETURA PROPOSTA . 27
3.1 Infraestrutura . 27
3.1.1 Acesso à Nuvem . 27
3.1.2 Armazenamento . 28
3.1.3 Computação . 29
3.1.4 Notificação . 30
3.1.5 Integração . 31
3.1.6 Implantação . 32
3.1.7 Custo . 34
3.2 Back-end . 34
3.2.1 RESTful API . 35
3.2.2 Estrutura . 36
3.2.3 Middlewares . 37

3.2.4 Acesso aos dados . 37
3.2.5 Caching de dados . 38
3.3 Front-end . 39
3.3.1 Componentes . 39
3.3.2 Padrão Flux . 40
3.3.3 Armazenamento . 42
3.3.4 Cliente HTTP . 42

4 RESULTADOS . 44
4.1 Modelo . 44
4.2 Prova de Conceito . 45
4.2.1 Estrutura . 45
4.2.2 Aplicação Multiplataforma . 46

5 CONCLUSÕES E TRABALHOS FUTUROS 49

REFERÊNCIAS . 50

14

1 Introdução

Este trabalho de conclusão de curso propõe-se ao estudo e desenvolvimento de uma
arquitetura de software para o desenvolvimento de aplicações móveis multiplataforma para
gerenciamento baseado em sistemas de internet das coisas.

O crescimento na disponibilidade de sensores e plataformas de hardware para
internet das coisas, e a onipresença de dispositivos móveis na sociedade atual foram alguns
dos fatores que desencadearam a escolha deste tema.

Este Capítulo descreve a introdução da monografia, e está organizado em 3 seções.
Na Seção 1.1 são descritas tanto a motivação para a execução deste trabalho, quanto a
definição do problema.

Posteriormente, nas Seções 1.2 e 1.3 são apresentados os objetivos gerais e específicos,
bem como a proposta de solução do projeto. Por fim, a Seção 1.4 detalha a organização
da monografia.

1.1 Motivação e Caracterização do Problema
A Internet das Coisas, do inglês Internet of Things (IoT), é definida como uma

infraestrutura global para a sociedade da informação, possibilitando serviços avançados
ao interconectar objetos (físicos e virtuais) graças a interoperabilidade de tecnologias da
informação e comunicação, atuais e futuras [1].

De acordo com [2], é esperado que em 2022 o investimento em tecnologias IoT
alcance $1,2 trilhões com as áreas mais promissoras sendo monitoramento ambiental,
medição inteligente e inventário inteligente. Estas áreas podem usufruir de sistemas de
gerenciamento onde seja possível visualizar os dados monitorados e realizar decisões, que
por sua vez pode ser feita através de comandos enviados aos objetos da IoT. Atualmente
uma das quatro maiores dificuldades da adoção da tecnologia por empresas é a falta de
infraestrutura tecnológica para integrar os sistemas existentes às redes IoT.

Uma das dimensões que necessita apoio computacional é justamente um mecanismo
para engajar o usuário final nos sistemas que utilizam Inteligência Artificial. Portanto,
é importante que a interface gráfica de aplicações de gerenciamento com integração a
sistemas IoT sejam acessíveis e intuitivas. Atualmente estes requisitos são pouco atendidos
em dispositivos móveis como celulares e tablets.

Desenvolver uma solução voltada a essa tecnologia se torna portanto essencial visto
que o uso diário médio de dispositivos móveis está aumentando a cada ano, principalmente

Capítulo 1. Introdução 15

entre usuários na faixa de idade entre 16 e 24 anos. Neste ano, por exemplo, deve haver
um volume de $120 bilhões em compras de aplicações móveis (mobile apps) [3].

Devido a diversidade de dispositivos disponíveis no mercado, um problema re-
corrente é a necessidade de codificar separadamente uma mesma aplicação para cada
plataforma [4]. Esta situação dificulta a evolução de empresas já que demanda mais tempo
ou capital humano para o desenvolvimento e manutenção da aplicação. Nesta monografia de
TCC vamos contribuir justamente com a proposição de uma arquitetura para dispositivos
móveis que além de intuitiva, atenda aspectos de IoT, e não necessite de re-escrita para
diferente plataformas através da utilização de frameworks multiplataforma.

1.2 Objetivo Geral
Este projeto tem como objetivo propor uma arquitetura de software para o desenvol-

vimento de aplicações móveis multiplataforma para gerenciamento baseado em sistemas IoT.
A arquitetura definida deve proporcionar o desenvolvimento ágil e a mantenabilidade do
sistema, notadamente sua evolução funcional. A proposta define a infraestrutura necessária,
a organização do servidor de dados (back-end) e a interface de usuário (front-end).

1.3 Objetivos Específicos
A implementação do projeto também envolveu outros fins, os quais foram atingidos:

• A especificação da infraestrutura que permite a integração do sistema IoT ao software;

• A especificação da arquitetura do back-end do software;

• A especificação da arquitetura do front-end do software utilizando uma abordagem
multiplataforma;

1.4 Estrutura do Documento
Este trabalho está dividido em 5 Capítulos, incluindo este que conta com uma

introdução a respeito do tema e objetivos do projeto. Em seguida o Capítulo 2 traz um
estudo a respeito de arquitetura de software, desenvolvimento de aplicações móveis e demais
conceitos necessários para a compreensão da arquitetura desenvolvida neste trabalho.

Já no Capítulo 3, é descrito as etapas do processo que resultou na arquitetura
proposta. O Capítulo 4 apresenta os resultados obtidos.

Finalmente, o Capítulo 5 encerra o trabalho com uma discussão a respeito do que
foi desenvolvido, possíveis melhoramentos e novas ideias para o projeto.

16

2 Fundamentação Teórica

Este Capítulo busca apresentar alguns conceitos fundamentais ao desenvolvimento
da arquitetura proposta. Na Seção 2.1 serão abordadas as definições de internet das coisas.
Em seguida, a Seção 2.2 introduz a computação em nuvem. A Seção 2.3 apresenta os
dispositivos móveis que serão atingidos pelo projeto. Por fim, na Seção 2.4 serão discutidos
as arquiteturas de software em que o projeto se baseia.

2.1 Internet das Coisas
Extendendo a definição que utilizamos na Seção 1.1, a Internet das Coisas, do inglês

Internet of things (IoT), é um sistema composto por computadores, maquinas mecânicas
ou digitais, objetos, animais ou pessoas que possuem um identificador único, do inglês
unique identifier (UID), e a habilidade de transmitir dados através de uma rede sem a
necessidade de interação humano-humano ou humano-maquina [5].

As Coisas são objetos do mundo físico (Coisas físicas) ou do mundo da informação
(Coisas virtuais) que são capazes de serem identificadas e integradas a redes de comunicação.
Coisas físicas são capazes de serem sentidas, atuadas e conectadas, alguns exemplos são o
ambiente, robôs industriais, bens e equipamentos elétricos. Coisas virtuais são capazes de
serem armazenadas, processadas e acessadas, exemplos incluem conteúdos multimedia e
aplicações de software [1].

Uma Coisa física pode ser representada no mundo da informação por uma ou
mais Coisas virtuais através de mapeamentos. Dispositivos podem se comunicar de várias
formas, através de uma rede por meio de um gateway (caso a), através de uma rede sem
um gateway (caso b) e diretamente (caso c).

Redes de comunicação transmitem de forma confiável e eficiente os dados gerados
ou captados pelos dispositivos a aplicações ou outros dispositivos, como também instruções
enviadas por aplicações a dispositivos. A figura 1 é uma visualização destes conceitos.

Capítulo 2. Fundamentação Teórica 17

Figura 1 – Visão técnica da IoT.

Fonte: adaptado de (ITU-T, 2012).

2.1.1 Características

As redes de dispositivos IoT apresentam aspectos distintos em relação a outras
redes de comunicação, como por exemplo redes celulares, permitindo sua utilização em
contextos de escala pessoal até industrial. Abaixo, temos uma visão sobre as características
da Internet das Coisas que nos permite entender sua capacidade e desafios [1].

• Interconectividade: Na IoT, tudo pode se conectar a infraestrutura global de
informação e comunicação.

• Serviços: A IoT é capaz de prover serviços relacionado às Coisas de acordo com
suas restrições, como privacidade e consistência entre a semântica das Coisas físicas
e Coisas virtuais. Para prover novos serviços, as tecnologias no mundo físico e no
mundo da informação precisam se adaptar.

• Heterogeneidade: Dispositivos na IoT são heterogêneos por serem baseados em
diferentes plataformas de hardware. Podendo interagir com outros dispositivos ou
plataformas de serviços através de diferentes redes.

• Mudanças dinâmicas: O estado dos dispositivos mudam dinamicamente, podendo
por exemplo estar adormecidos, ativos, conectados ou desconectados, além de mu-
danças em contextos como localização e velocidade.

Capítulo 2. Fundamentação Teórica 18

• Enorme escala: O número de dispositivos que precisam ser gerenciados e que se
comunicam estarão em ao menos uma ordem de grandeza maior que dispositivos
atualmente conectados à internet. Ainda mais crítico é o gerenciamento dos dados
gerados e sua interpretação para aplicações.

2.1.2 Requisitos de Alto Nível

Para o funcionamento eficaz de uma rede de dispositivos IoT é importante que haja
uma estruturação adequada da infraestrutura física e de software para que os seguintes
requisitos de alto nível sejam atendidos, de acordo com o contexto desejado [1].

• Conectividade baseada em identificação: A conexão entre uma Coisa e a IoT
deve ser baseada no identificador da Coisa. Possivelmente, identificadores heterogê-
neos podem ser processados de uma forma unificada.

• Interoperabilidade: A interoperabilidade precisa ser garantida entre diferentes
dispositivos e sistemas para a produção e consumo de informações e serviços.

• Provisionamento autônomo de rede: Técnicas ou mecanismos autônomos de ge-
renciamento, configuração, recuperação, otimização e proteção devem ser suportados
pela IoT para que se adapte a diferentes domínios de aplicação, diferentes ambientes
de comunicação e ao grande número e tipos de dispositivos.

• Provisionamento autônomo de serviços: Os serviços precisam ser providos a
partir da captura, comunicação e processamento automático dos dados das Coisas,
baseando-se em regras configuradas pelos operadores ou usuários finais.

• Localização: A IoT deve suportar comunicações e serviços dependentes da loca-
lização de Coisas e seus usuários. Estas operações podem ser restritas por leis e
regulações, além de que precisam aderir a requisitos de segurança.

• Segurança: Na IoT todas as Coisas estão conectadas, desta forma surgem ameaças
de segurança sobre a confidencialidade, autenticidade e integridade dos dados e
serviços. Serviços autônomos podem depender de técnicas automáticas como data
fusion e mineração de dados.

• Privacidade: Proteção a privacidade precisa ser suportado pela IoT. Dados adqui-
ridos pelas Coisas podem conter informações privadas sobre seus donos ou usuários.
A proteção precisa estar presente na transmissão, agregação, armazenamento, mine-
ração e processamento dos dados.

Capítulo 2. Fundamentação Teórica 19

• Serviços baseados no corpo humano: Serviços e segurança de alta qualidade
precisam ser suportados para serviços baseados no corpo humano. Tais serviços
incluem a captura, comunicação e processamento de dados relacionados a caracte-
rísticas do corpo humano e seu comportamento. Países possuem leis e regulações
diferentes para estes serviços.

• Gerenciamento: A capacidade de gerenciamento precisa ser suportada na IoT
para garantir o funcionamento das operações de rede. Aplicações IoT normalmente
trabalham automaticamente, mas o processo deve ser gerenciável pelas pessoas
envolvidas.

2.2 Computação em Nuvem
Computação em nuvem, do inglês cloud computing, é um modelo que permite acesso

de rede ubíquo, conveniente e sob demanda a um conjunto compartilhado de recursos
computacionais, como redes, servidores, armazenamento, aplicações e serviços, que podem
ser rapidamente alocados ou liberados com o mínimo de esforço de gerenciamento ou
interferência do provedor do serviço. Este modelo de computação em nuvem é composto
por cinco características e três modelos de serviço [6].

2.2.1 Características

As cinco características de computação em nuvem definidas pelo Instituto Nacional
de Padrões e Tecnologia dos EUA (NIST) [6] são:

• Serviços sob demanda: Um consumidor pode provisionar unilateralmente recursos
computacionais, como tempo de servidor e armazenamento, sem requerer interação
humana com cada provedor de serviços.

• Amplo acesso à rede: Recursos estão disponíveis pela rede e podem ser acessados
através de mecanismos que promovem seu uso por plataformas de cliente, como
dispositivos móveis e computadores.

• Conjunto de recursos: Os recursos computacionais do provedor são compartilha-
dos para atender múltiplos consumidores utilizando um modelo multi-tenant, com
diferentes recursos físicos e virtuais dinamicamente alocados e realocados de acordo
com a demanda do consumidor. Exemplos de recursos incluem armazenamento,
processamento, memória e largura de banda para a rede.

• Elasticidade: Recursos podem ser provisionados e liberados elasticamente, em
alguns casos automaticamente, para escalar externamente e internamente de acordo
com a demanda.

Capítulo 2. Fundamentação Teórica 20

• Serviço de medição: Sistemas em nuvem controlam e otimizam automaticamente
o uso de recursos ao utilizarem ferramentas de medição. O uso de recursos pode
ser monitorado, controlado e reportado oferencendo transparência ao provedor e ao
consumidor do serviço utilizado.

2.2.2 Modelos de Serviço

Provedores de computação em nuvem comumente fornecem serviços divididos
em diferentes camadas para atender necessidades específicas dos consumidores, já que
diferentes níveis de controle sobre a infraestrutura podem ser necessários. A figura 2 trás
uma comparação entre os diferentes modelos de serviço que serão discutidos. O NIST
define estes modelos de serviço [6] como:

• Software como serviço, do inglês Software as a Service (SaaS), é um modelo em
que o consumidor deve utilizar aplicações fornecidas pelo provedor que são executadas
numa infraestrutura de nuvem. As aplicações são acessíveis através de interfaces
de usuário, como navegadores de internet, ou interfaces de programação, do inglês
Application Programming Interface (API). O consumidor não gerencia ou controla
a infraestrutura contratada, sendo limitado apenas a configurações específicas da
aplicação.

• Plataforma como serviço, do inglês Platform as a Service (PaaS), é um modelo
que permite que o consumidor implante aplicações próprias ou adquiridas que foram
criadas utilizando linguagens de programação, bibliotecas, serviços e ferramentas
compatíveis com a infraestrutura de nuvem do provedor. O consumidor não geren-
cia ou controla a infraestrutura contratada, mas tem controle sobre as aplicações
implantadas e possivelmente a configurações do ambiente que hospeda tais aplicações.

• Infraestutura como serviço, do inglês Infrastructure as a Service (IaaS), é um
modelo onde o consumidor é capaz provisionar processamento, armazenamento, rede
e outros recursos computacionais fundamentais para implantar e executar softwares
arbitrários, incluindo sistemas operacionais e aplicações. O consumidor não gerencia
ou controla a infraestrutura física, mas tem controle sobre sistemas operacionais,
armazenamento, aplicações e, possivelmente, componentes de rede como firewalls.

Capítulo 2. Fundamentação Teórica 21

Figura 2 – Modelos de serviços da nuvem.

Fonte: extraído de (Solo Network, 2019).

2.2.3 Plataformas

Os serviços necessários para a estruturação da arquitetura proposta estão disponíveis
na maioria das plataformas de nuvem, como a Amazon Web Services, Microsoft Azure,
Google Cloud e Alibaba Cloud. Devido aos altos índices de disponibilidade, escalabilidade
e performance aliados a um baixo custo inicial foi escolhida a nuvem da Amazon Web
Services como infraestrutura para a prova de conceito desenvolvida neste projeto. Sua
base de clientes envolve milhões de usuários ativos todos os meses e incluem nomes como
a NASA, Netflix, Uber, Formula 1, BMW, Penn State, McDonalds e muitos outros.

A Amazon Web Services (AWS) é uma subsidiaria da Amazon.com, Inc que
fornece plataformas de computação em nuvem e APIs sob demanda para pessoas, empresas e
governos. Os web services oferecidos disponibilizam um conjunto abstrato de infraestrutura
física, bases para computação distribuída e ferramentas.

A tecnologia da AWS é implementada em fazendas de servidores espalhadas pelo
mundo. O custo de utilização é baseado numa combinação de uso, componentes de hard-
ware, software e rede contratados, disponibilidade necessária, redundância e segurança.
Assinantes podem pagar por um único computador virtual da AWS, um computador físico
dedicado ou um conjunto, cluster, de ambos.

Capítulo 2. Fundamentação Teórica 22

Atualmente a AWS fornece 165 serviços que abrangem computação, armazenamento,
redes, bancos de dados, analytics, aprendizado de máquinas, aplicações, implantação e
gerencia de sistemas, ferramentas de desenvolvimento entre outros. Muitos destes serviços
estão disponíveis a partir de APIs acessíveis através de HTTP utilizando a arquitetura
REST que será discutida em seguida.

2.3 Dispositivos Móveis
Dispositivos móveis, mobile ou handheld em inglês, são dispositivos de computação

pequenos o suficiente para serem segurados e operados usando as mãos. Tipicamente estes
dispositivos possuem acesso a internet e pode se conectar a outros aparelhos utilizando
tecnologias como Wi-Fi, Bluetooth e redes celulares. Estes dispositivos são produzidos por
diversas empresas e cada um possui estruturas de hardware e software diferentes [8].

Os dispositivos mais comuns são smartphones, tablets e smartwatches, mas levando
a definição ao pé da letra também temos nesta lista aparelhos como laptops, calculadoras,
videogames portáteis e assistentes pessoais (PDA). A arquitetura proposta neste projeto
será voltada a smartphones já que este é o dispositivo mais utilizado atualmente [3].

Cada smartphone possui um sistema operacional que é a interface entre as aplicações
e as propriedades do hardware do dispositivo como a tela sensível ao toque, camera,
conectividade, GPS e armazenamento. Atualmente o Android e iOS possuem juntos uma
fatia de 98% do mercado de sistemas operacionais para dispositivos móveis, portanto elas
serão as plataformas consideradas durante o projeto [9].

2.3.1 Plataforma iOS

iOS é o sistema operacional para dispositivos móveis desenvolvido pela Apple Inc.
exclusivamente para o iPhone, iPad e iPod.

O desenvolvimento de aplicações para iOS é realizado utilizando o pacote de
desenvolvimento de software, do inglês software development kit (SDK), XCode também
fornecido pela Apple Inc.. Através deste SDK é possível criar, testar e distribuir aplicações
para iOS utilizando as linguagens Swift ou Objective-C.

2.3.2 Plataforma Android

Android é um sistema operacional para dispositivos móveis baseado em uma versão
do núcleo do Linux e outros softwares de código aberto. Seu desenvolvimento é realizado
pelo consorcio Open Handset Alliance, que tem o Google LLC como principal contribuidor.

Aplicações para Android são produzidas utilizando o Android SDK, pacote que
inclui emuladores de dispositivos, bibliotecas de softwares, depuradores, documentações

Capítulo 2. Fundamentação Teórica 23

e guias. O ambiente de desenvolvimento, do inglês Integrated Development Environment
(IDE), oficial para o desenvolvimento de aplicações Android é o AndroidStudio, que é
capaz de criar e testar aplicações escritas em Java, Kotlin ou C++.

2.3.3 Multiplataforma

Devido a diversidade de dispositivos disponíveis no mercado, um problema re-
corrente é a necessidade de codificar separadamente uma mesma aplicação para cada
plataforma. Para mitigar este problema foram criados frameworks multiplataforma, con-
junto de classes que permitem a construção de aplicações multiplataforma com pouco
esforço, especificando apenas as particularidades de cada aplicação. Desta forma é al-
cançada uma maior agilidade no desenvolvimento da aplicação já que apenas um código
precisa ser escrito para executar em ambas plataformas, consequentemente beneficiando a
mantenabilidade do sistema.

O React Native é um framework de código aberto desenvolvido pelo Facebook para
o desenvolvimento de aplicações móveis multiplataforma utilizando o React, uma biblioteca
Javascript para criação de interfaces de usuários. Esta tecnologia permite o completo
desenvolvimento de aplicações utilizando apenas Javascript, ao invés de Objective-C para
a plataforma iOS e Java para plataforma Android.

As interfaces de usuário criadas em React Native são compostas por componentes.
Estes componentes são criados utilizando uma extensão da sintaxe do Javascript chamada
Javascript XML (JSX), uma combinação de código Javascript com uma linguagem de
marcação semelhante a HTML. Desta forma o desenvolvimento de aplicações móveis
se torna bastante semelhante à criação de web pages. A figura 3 mostra uma aplicação
desenvolvida com React Native sendo executada nas plataformas iOS e Android.

2.4 Arquitetura de Software
A arquitetura de software fornece uma visão holística do sistema a ser construído.

Ela representa a estrutura e organização dos componentes de software, suas propriedades
e as conexões entre eles. Os componentes de software incluem módulos de programas e as
várias representações de dados manipuladas pelo programa [11].

2.4.1 Padrões Arquiteturais

Os padrões arquiteturais são guias para resolução de problemas recorrentes a fim
de permitir uma estruturação eficaz de sistemas. Os padrões que serão utilizados neste
projeto serão discutidos.

Capítulo 2. Fundamentação Teórica 24

Figura 3 – Aplicação executando nas plataformas iOS e Android, respectivamente.

Fonte: extraído de (Guerra, 2015).

2.4.2 Model-View-Controller

O padrão Model-View-Controller divide uma aplicação interativa em três camadas.
O Modelo, Model, possui as funcionalidades principais do sistema e os dados. A Visão,
View, exibe informações ao usuário. O Controlador, Controller, trata das entradas do
usuário. As visões e controladores fazem parte da interface de usuário. Um mecanismo de
propagação de mudança garante a consistência entre a interface e o modelo [12].

O diagrama da figura 4 mostra as relações entre as camadas do padrão MVC e a
figura 5 demonstra o fluxo de dados de uma aplicação móvel que utiliza este padrão. Um
usuário inicia sua interação através de uma Visão, como uma interface gráfica, que trata
este evento e aciona o Controlador correspondente. Por sua vez, o Controlador realiza uma
consulta ou requisita uma modificação ao Modelo, que interage com o banco de dados e
notifica o Controlador e a Visão sobre mudanças. O controlador pode então manusear a
resposta do Modelo e enviar o resultado à Visão para ser exibida ao usuário.

A utilização do MVC trás vantagens interessantes a sistemas interativos, a separação
entre o Modelo e a interface de usuário permite que várias Visões diferentes possam ser
implementadas e usem um mesmo Modelo. Esta separação permite a modularização da
interface de usuário, permitindo até a substituição de componentes em run-time. Outra
vantagem é o mecanismo de propagação de mudanças que garante que todos os elementos
dependentes sejam notificados sobre mudanças nos dados da aplicação, mantendo assim a
coerência do sistema [12].

Capítulo 2. Fundamentação Teórica 25

Figura 4 – Diagrama UML do padrão MVC.

Fonte: o autor.

Figura 5 – Diagrama de sequência de um sistema interativo que utiliza o padrão MVC.

Fonte: o autor.

2.4.3 Representational State Transfer

Representational State Transfer (REST), é uma arquitetura de software que define
um conjunto de restrições para a criação de web services, soluções utilizadas para permitir
a integração de sistemas através de uma rede.

A internet opera como um sistema de informação que impõe várias restrições:
Agentes identificam objetos no sistema, chamados de recursos, através de identificadores
uniformes de recursos, do inglês Uniform Resource Identifier (URI).

Capítulo 2. Fundamentação Teórica 26

Agentes representam, descrevem e comunicam o estado de um recurso através
de representações em vários formatos de dados, como por exemplo XML, HTML, CSS,
JPEG, PNG. Agentes trocam representações através de protocolos que utilizam URIs para
identificar e acessar diretamente ou indiretamente os agentes e recursos [13].

A rede REST é um sub conjunto da internet em que agentes utilizam uma interface
semântica uniforme, que essencialmente cria, busca, atualiza e remove recursos, ao invés
de interfaces arbitrárias ou especificas a uma aplicação. Os recursos são manipulados
através da troca de representações. Além disso as interações REST são stateless, ou seja,
o significado da mensagem não depende do estado da conversação [13].

Formalmente as restrições do REST, definidas por [14], são:

• Arquitetura cliente-servidor: Separar as responsabilidades da interface de usuário
das responsabilidades do armazenamento de dados aumenta a portabilidade da
interface de usuário para multiplas plataformas.

• Statelessness: A comunicação cliente-servidor fica restringida a não armazenar
contexto do cliente no servidor entre requisições. Cada requisição do cliente possui
toda informação necessária para completar a operação requisitada.

• Cacheability: O armazenamento temporário, do inglês Caching, de respostas do
servidor pode ser realizado pelo cliente a fim de diminuir a interação cliente-servidor,
desta forma melhorando a eficiência da rede.

• Sistema em camadas: Estrutura o sistema em camadas para permitir a utilização
de balanceadores de carga e a separação de componentes por questões semânticas ou
segurança.

• Interface uniforme: Os quatro elementos que definem a interface são recursos iden-
tificados a partir de URIs; a manipulação de recursos feita através de representações;
mensagens que possuem toda informação necessária para seu processamento; links
providos pelo servidor para que o cliente possa descobrir todas as ações e recursos
disponíveis.

27

3 Arquitetura Proposta

Este Capítulo busca explicar os passos que envolvem o desenvolvimento de cada
módulo da arquitetura de software proposta. O projeto utiliza uma abordagem bottom-up,
começando a partir dos sistemas físicos até a aplicação em software, para tornar mais
evidente os requisitos de cada módulo do sistema. Portanto, segue as seguintes etapas:

I Definição da infraestrutura necessária para a integração entre o sistema IoT e o
software: A Seção 3.1 explora como a interface IoT-Software é organizada.

II Definição da estrutura do back-end do software: Na Seção 3.2 são especificadas as
tecnologias relevantes para o funcionamento do servidor e sua integração com os
dados e a interface de usuário.

III Definição da estrutura do front-end do software utilizando uma abordagem multipla-
taforma: Por fim a Seção 3.3 especifica as tecnologias necessárias para o desenvolver
aplicações mobile multiplataformas.

3.1 Infraestrutura
Para garantir que o sistema atenda requisitos de disponibilidade e confiabilidade é

utilizada uma plataforma de computação em nuvem utilizando o modelo de serviço IaaS,
discutido na Seção 2.2.2. Desta forma os desenvolvedores do sistema não precisam construir
e gerenciar a estrutura física dos servidores, podendo focar apenas em sua configuração,
além disso o custo de implantar e manter um infraestrutura on-premise, em muitos casos,
é bem maior do que contratar uma infraestrutura em nuvem.

3.1.1 Acesso à Nuvem

Usuários conectam-se através de sistema de nomes de domínio em nuvem, do inglês
Domain Name System (DNS), de alta disponibilidade e escalabilidade. Este serviço é
projetado para entregar aos desenvolvedores uma forma confiável e de bom custo beneficio
de rotear usuários finais para aplicações na internet [15]. Através deste serviço é possível
criar um nome de domínio próprio na rede interna da nuvem, para que os usuários possam
acessar seus sistemas através de endereços como "www.empresa.com.br"ao invés de utilizar
um endereço de nuvem como "ec2-33-212-216-103.compute-1.amazonaws.com".

Capítulo 3. Arquitetura Proposta 28

Este serviço também é utilizado para escalar aplicações do tipo white-label, no
qual um mesmo produto pode ser vendido para diferentes clientes com apenas mudanças
estéticas. Neste contexto é possível criar diferentes nomes de domínio para um mesmo
serviço, permitindo que ele seja acessível através dos endereços "www.empresaA.com.br"e
"www.empresaB.com.br", por exemplo.

Para controlar o acesso ao sistema, tanto de clientes ou funcionários, deve ser
utilizado um serviço de controle de acesso. Ele permite o gerenciamento do acesso aos
recursos e serviços da nuvem de forma segura através da criação de usuários e grupos,
efetivamente permitindo ou negando o acesso a partir de um conjunto permissões [16]. Tal
serviço é importante para que requisitos de segurança sejam atendidos, já que é possível,
por exemplo, limitar a visualização de dados nos sistemas de armazenamento utilizados.

É necessário um serviço de integração de dispositivos IoT com a plataforma
de nuvem que permita conexões através dos protocolos HTTP, WebSockets, MQTT e
protocolos específicos a dispositivos. Um sistema de identificação semelhante ao de controle
de acesso de usuários é utilizado para proteger a conexão entre os dispositivos e a nuvem
além de autenticar o envio de comandos, certificando-se que apenas usuários autorizados
possam interagir com os aparelhos e visualizar seus dados [17].

O estado mais recente de um dispositivo conectado pode ser automaticamente
armazenado por este serviço para que possa ser lido e modificado a qualquer momento,
fazendo com que o dispositivo sempre pareça conectado à aplicação. Desta forma é possível
ler a informação mais recente e enviar comandos a dispositivos desconectados, no qual
serão entregues quando a conexão for reestabelecida seguindo regras pre-estabelecidas
pelos desenvolvedores.

3.1.2 Armazenamento

Plataformas de nuvem fornecem serviços de armazenamento de dados em diversos
formatos. A natureza de sistemas IoT trás a necessidade da armazenar os dados em duas
formas, em objetos e em banco de dados. Desta forma podemos dividir a carga de trabalho
necessária para a geração de dados estruturados.

Armazenamento de objetos é uma arquitetura de armazenamento de dados que
trata os dados como objetos, em contraste as arquiteturas de sistemas de arquivos ou
armazenamento em blocos. Cada objeto possui um UID global, metadados e os dados
em si. Essa estrutura permite a utilização de interfaces que podem ser programadas pela
aplicação, funções de gerenciamento como replicação e distribuição de dados em alta
granularidade e espaços de nomes, namespaces, que pode existir em mais de um hardware
físico [18].

Capítulo 3. Arquitetura Proposta 29

Os dispositivos IoT podem realizar simples pre-processamentos e enviar os dados
brutos para o sistema de armazenamento de objetos, a partir disso um sistema com mais
poder computacional pode processar estes dados e estrutura-los para o banco de dados
ou ferramentas de mineração de dados. Devido a infraestrutura das principais nuvens, a
transferência de dados entres os sub-sistemas é bastante eficiente, podendo chegar a taxas
de transmissão de até 100 Gbps.

Deve ser utilizado um sistema de armazenamento de objetos que possa armazenar
informações em qualquer formato. Os consumidores, sejam usuários ou equipamentos IoT,
conectam-se ao sistema e transferem dados utilizando uma conexão direta através de uma
API. Os casos de uso comuns de tais serviços cobrem armazenamento para aplicações,
backups e recuperação, arquivamento e data lakes para análise de dados. [19].

Serviços de armazenamento de objetos podem ser personalizado de acordo com as
necessidades do usuário, para tal são oferecidas classes de armazenamento para acesso
frequente; armazenamento longo com acesso infrequente; e para arquivamento de longo
prazo e preservação digital. Objetos podem ser migrados dinamicamente entre estas classes
de acordo com seu uso, caso o usuário deseje.

Um serviço de banco de dados distribuído é essencial para o funcionamento do
sistema. Estes serviços são oferecidos através de web services desenvolvidos para simplificar
a configuração, operação e escalabilidade de bancos de dados relacionais para aplicações.
Processos administrativos como provisionamento de hardware, atualizações, backups e
recuperações são gerenciados pela plataforma de nuvem. Semelhante ao sistema de arma-
zenamento de objetos, o serviço pode ser configurado através de chamadas de API. Os
bancos de dados suportados, com otimizações de memória, performance e E/S, geralmente
incluem o PostgreSQL, MySQL, Oracle Database, MongoDB e CassandraDB. [20].

3.1.3 Computação

Serviços de computação em nuvem permitem que usuários disponham de um cluster
de computadores disponíveis a todo momento através da internet. As máquinas virtuais
da nuvem possuem atributos que podem ser personalizadas de acordo com a necessidade
do usuário como quantidade de CPUs e GPUs, memória RAM, discos rígidos ou SSD,
sistemas operacionais, rede e aplicações pre-instaladas como servidores web e banco de
dados [21].

Para aprimorar a mantenabilidade e escalabilidade do sistema, dentro da plataforma
pode ser utilizado o Docker, um sistema que gerencia softwares em pacotes chamados de
containers. Um container é uma unidade de software que une código e dependências para
que a aplicação funcione de maneira previsível e confiável em diferentes ambientes.

Capítulo 3. Arquitetura Proposta 30

Múltiplos containers podem ser executados no mesmo computador e compar-
tilhar o kernel do sistema operacional, onde cada um é executado em processos isolados e
com canais bem definidos de comunicação. Devido a sua arquitetura, containers ocupam
menos espaço que máquinas virtuais e podem suportar mais aplicações [22].

Uma imagem de container é um pacote de software leve, independente e executável
que inclui tudo que é necessário para executar uma aplicação: código, runtime, ferramentas
do sistema, bibliotecas e configurações. Imagens são o método principal de armazenamento
e distribuição de aplicações "containerizadas". Desta forma o servidor pode ser dividido
em diversas aplicações, como por exemplo APIs, servidores web e servidores de cache, que
podem se comunicar através de uma rede interna. A figura 6 mostra a organização de um
servidor que utiliza o Docker executando diversas aplicações.

Figura 6 – Estrutura do Docker

Fonte: adaptado de (Docker, 2019).

3.1.4 Notificação

Um dos requisitos principais em uma aplicação de gerenciamento é a capacidade
de notificar o usuário sobre o acontecimento de algum evento. Esta notificação pode ser
realizada de diversas formas, em dispositivos móveis é comum que o envio seja através de
push notifications, emails ou mensagens SMS.

Capítulo 3. Arquitetura Proposta 31

Serviços de mensagem pub/sub com alta disponibilidade e segurança permitem
desacoplar microsserviços, sistemas distribuídos e aplicações serverless. A utilização de
tópicos, conjunto de mensagens em um mesmo contexto, permite o envio de notificações
simultaneamente a um grande número de assinantes [23].

Estes serviços podem ser utilizados em casos onde um ou mais usuários precisem
ser notificados sobre algum acontecimento. Para tanto, basta que o sistema utilize uma
API, já que todo o fluxo de negociação com sistemas de push notifications, provedores de
email e redes telefônicas fica a cargo da plataforma de nuvem.

3.1.5 Integração

Na figura 7 temos a arquitetura de nuvem desenvolvida para suportar a integração
entre aplicações móveis e dispositivos IoT. Separando funcionalmente os componentes
discutidos nós temos as estruturas de acesso, armazenamento, computação e notificação.

A nuvem poderá ser acessada a partir de dois pontos, o sistema de integração IoT
e o DNS de nuvem. Todos os dispositivos IoT utilizados pelo sistema se conectarão ao
serviço de integração utilizando algum dos protocolos suportados. As requisições REST
dos dispositivos móveis serão roteadas para acessar a API através do DNS. Ambos pontos
de acesso utilizam o sistema de controle de acesso para proteger seus recursos e serviços.

O armazenamento de dados brutos gerados pelos dispositivos IoT será feito pelo
serviço de armazenamento de objetos, já a aplicação utilizará o serviço de armazenamento
de dados estruturados em banco de dados. O armazenamento de objetos pode também
ser utilizado para a criação de data lakes, data warehouses e data marts devido a sua
capacidade de escalabilidade automática e suas ferramentas de busca e tratamento de
dados. Os administradores do sistema podem definir regras para a migração automática
de dados antigos, ou de ex-clientes, para a classe de arquivamento a fim de diminuir o
custo com armazenamento.

O serviço de computação hospedará o servidor da aplicação utilizando containers
Docker, para maior performance é interessante que o sistema operacional da máquina seja
Linux para utilizar a integração nativa com o motor do Docker. Todo software necessário
para o funcionamento da aplicação estará nos containers, incluindo servidores web e de
cache, microsserviços e a API que será discutida em detalhes na Seção 3.2.

Por fim, o sistema de notificação realiza o envio de alertas aos usuários por meio de
push notifications, emails e mensagens de celular. Este serviço também pode ser utilizado
para integrar microsserviços ao sistema, como por exemplo um processador de dados,
muitas vezes necessário devido ao grande volume de dados que dispositivos IoT podem
gerar.

Capítulo 3. Arquitetura Proposta 32

Figura 7 – Diagrama de arquitetura da nuvem

Fonte: o autor.

3.1.6 Implantação

Para exemplificar os conceitos da arquitetura de nuvem definida nesta seção, foi
escolhida como plataforma a nuvem da AWS. A implantação de serviços na AWS é feita
completamente através do AWS Console, uma plataforma online onde é possível criar
um ambiente na nuvem e alocar, gerenciar e monitorar serviços. A partir da arquitetura
definida na figura 8 podemos realizar uma implantação inicial alocando os serviços da
seguinte forma:

• O serviço de computação EC2 utilizando uma máquina t2.medium, que possui 2
processadores, 4GB de memória RAM e 8GB de armazenamento SSD, funcionando
24 horas por dia.

• O armazenamento de objetos S3 com capacidade de armazenar 100GB de dados por
mês e realizando 200.000 acessos para criação e leitura de dados.

Capítulo 3. Arquitetura Proposta 33

• O DNS em nuvem Route 53 com um domínio cadastrado e 10 milhões de acessos
mensais.

• O banco de dados relacional RDS utilizando uma máquina t3.small, que possui 2
processadores e 2GB de RAM, funcionando 24 horas por dia.

• O serviço de notificação SNS. Ele fornece 1 milhão de notificações grátis mensais e
cobra $0.50 a partir do segundo milhão de mensagens no mês.

• O armazenamento de objetos de longo prazo Glacier com armazenamento de 2GB
mensais de dados. Existe um custo para acesso aos dados por GB transferido.

• O serviço de integração IoT Core para 10.000 dispositivos IoT enviando mensagens
a cada 5 minutos e que podem receber comandos nesta mesma frequência.

• Tráfego de dados padrão, onde somente o tráfego saindo da nuvem, output, é
cobrado.

Figura 8 – Diagrama de arquitetura da nuvem AWS

Fonte: o autor.

Capítulo 3. Arquitetura Proposta 34

3.1.7 Custo

A nuvem da AWS utiliza um modelo de cobrança sob demanda onde serviços são
cobrados à medida que são utilizados. A tabela 1 mostra uma estimativa de custo mensal
para a implantação da arquitetura com as configurações discutidas quando hospedados
na região US East (North Virginia). Os valores foram obtidos utilizando a calculadora,
Simple Monthly Calculator, da AWS.

Tabela 1 – Projeção de custo mensal da nuvem AWS

Serviço Custo mensal (Dólar)
EC2 34.77
S3 2.32

RDS 27.19
Glacier 0.01

Iot Core 90.00
Route 53 4.50

SNS 0.00
Trafego de dados 1.35

Total 160.14

3.2 Back-end
O Back-end do sistema é o componente que está entre a interface de usuário e o

banco de dados. Sua função é tratar as requisições enviadas pelo usuário, consultar ou
modificar o banco de dados e devolver uma resposta à interface. No caso de sistemas de
gerenciamento, o back-end é um web service no qual a interface de usuário acessa através
de uma API para realizar operações.

É interessante implementar o back-end utilizando linguagens de programação com
bom suporte a operações de comunicação já que o acesso a nossa API será através da
internet. Linguagens com boas ferramentas para a criação de web services incluem Python,
Javascript, PHP e C#, mas qualquer linguagem com suporte a requisições HTTP é
suficiente.

Capítulo 3. Arquitetura Proposta 35

3.2.1 RESTful API

Uma API é dita RESTful quando a mesma adere ao padrão REST discutido na
Seção 2.4.3. A utilização deste padrão pelo servidor proporciona uma integração consistente
com a interface de usuário além de permitir a reutilização de código e mantenabilidade.

O acesso à API é realizado através de requisições HTTP que são compostas por
um URI, comumente chamado de rota, para identificação de recursos, um método HTTP
e opcionalmente um corpo da requisição onde pode ser enviada informações ao servidor.
A resposta a uma requisição é composta por um código de estado HTTP e o corpo da
resposta que trás os dados requisitados ou mensagens de sucesso ou erro.

Os métodos HTTP mais comuns são GET, POST, PUT e DELETE para a busca,
criação, modificação e remoção de recursos da aplicação. A API precisa reconhecer as
cinco classes de códigos de estado HTTP: 1xx para informações, 2xx para sucesso, 3xx
para redirecionamento, 4xx para erro no cliente e 5xx para outros erros [24].

O corpo das requisições e respostas deve ter um formato conhecido pelo cliente
e o servidor, este formato é definido pelo tipo de mídia da comunicação. Os tipos são
definidos em [25] e cobrem de simples mensagens de texto a programas executáveis. O
tipo application/json é o mais utilizado em web services já que o JSON, Javascript
Object Notation, é um formato de dado bastante simples que pode representar quatro tipos
primitivos (strings, números, booleanos e null) e dois tipos de estruturas (objetos e arrays)
[26].

Um exemplo de operação da API é a busca por um recurso específico. A requisição
GET /api/usuarios/27 utiliza o método GET, portanto está buscando um recurso, e a
rota /api/usuarios/27 indica que o recurso em questão é um usuário do sistema com o
identificador 27. Em caso de sucesso, o resultado desta requisição deve ter código 200 e
um corpo num formato semelhante ao da figura 9.

Figura 9 – Exemplo de resposta do tipo application/json

{
"data": {

"id": 27,
"nome": "João Silva",
"cpf": "123.456.789-90",
"criado_em": "2019-11-10 10:32:21"

}
}

Fonte: o autor.

Capítulo 3. Arquitetura Proposta 36

3.2.2 Estrutura

A arquitetura MVC, discutida no item 2.4.2, foi utilizada para a criação do back-end.
Cada rota da API deve utilizar um controlador, responsável por interpretar a requisição
HTTP e requisitar dados ao modelo. O modelo possui a lógica de negócio, as representações
de cada entidade do banco de dados para realizar consultas. A visão neste contexto será o
componente de software responsável por produzir respostas HTTP no formato esperado
pela aplicação móvel.

A figura 10 mostra um exemplo da operação da API ao ser utilizada pela aplicação
móvel para buscar produtos. A aplicação realiza uma requisição GET à API e é roteada
para o controlador de produto. O controlador requisita os dados ao modelo de produto que
por sua vez faz uma consulta ao banco de dados e retorna os dados dos produtos buscados.
O controlador então encaminha os dados para a visão de produto que trata estes dados e
os retorna para o controlador que irá montar e enviar a resposta HTTP para a aplicação.

Figura 10 – Diagrama de sequência de uma API implementada com o padrão MVC.

Fonte: o autor.

Como a interação com este tipo de API é estritamente através de requisições
HTTP, ou seja, sem uma interface gráfica, é comum a união da visão com o controlador.
Desta forma, o início da operação se dá no recebimento da requisição pelo controlador
correspondente, que ao final do processo também produz a resposta HTTP.

Capítulo 3. Arquitetura Proposta 37

3.2.3 Middlewares

A estruturação do sistema em camadas permite a utilização de um componente
de software chamado de middleware, funções que são executadas entre operações para
modificar valores de entrada ou saída. Desta forma podemos aumentar a performance e
mantenabilidade do sistema ao desacoplar a lógica de negócios de códigos de validação de
entrada, autenticação de usuários, Caching de dados entre outros.

A figura 11 mostra o fluxo de dados numa API RESTful que utiliza uma estrutura
em camadas. A aplicação gerencia uma pilha de middlewares de acordo com sua ordem
de execução, os três parâmetros que cada uma destas funções recebem são os objetos de
requisição e resposta e uma função next(), que invoca o próximo middleware da pilha.
Os objetos de requisição e resposta podem ser modificados livremente de acordo com a
finalidade do middleware, que em casos como o de autenticação inválida pode finalizar o
ciclo de requisição-resposta.

Figura 11 – API estruturada em camadas

Fonte: adaptado de (Boronczyk, 2013).

3.2.4 Acesso aos dados

Em uma aplicação que envolve sistemas IoT o acesso aos dados da aplicação
normalmente é realizado de duas maneiras. Dados gerais da aplicação são armazenados em
um banco de dados relacional e os dados provenientes dos dispositivos IoT são armazenado
em um armazenado de objetos em nuvem.

Capítulo 3. Arquitetura Proposta 38

Desta forma é interessante que o Modelo utilize um mecanismo para coordenar o
acesso aos dados nestes locais. O padrão Repository faz a mediação entre o Modelo e
a camada de mapeamento de dados atuando como uma coleção de objetos do domínio.
Repositórios fornecem uma visão orientada a objetos da camada de persistência ao
encapsular os objetos persistidos no armazenamento e suas operações [28]. Este padrão
centraliza o acesso aos dados favorecendo a mantenabilidade da aplicação já que mudanças
nas estruturas de armazenamento causam reescrita de código apenas no repositório.

A figura 12 trás uma visão geral do padrão Repository demonstrando a separação
de formas de acesso a diferentes estruturas de armazenamento de dados, como por exemplo
cache, banco de dados relacional e armazenamento em nuvem.

Figura 12 – Diagrama UML do Modelo utilizando o padrão Repository

Fonte: o autor.

Em conjunto com os repositórios é possível utilizar um ORM, do inglês object-
relational mapping, para tornar as operações com as entidades do Modelo orientada a
objetos. ORMs realizam um mapeamento entre os objetos definidos no back-end com as
entidades que eles representam no banco de dados.

A figura 13 representa um processo de consulta ao banco de dados utilizando
repositórios com ORM, tornando a interação com os dados mais prática e fácil de entender.
O repositório fornece uma forma de consulta que abstrai a implementação das estruturas
de acesso aos dados e o ORM representa os dados através de objetos que possuem os
atributos e relacionamentos das entidades do banco de dados.

3.2.5 Caching de dados

A quantidade de dados gerada por dispositivos IoT pode trazer um grande impacto
à performance da aplicação caso seja necessário realizar computações sobre estes dados a
cada requisição enviada pelos usuários. Uma forma de mitigar este problema é a utilização
de um servidor de cache para armazenar o resultado mais recente de cada rota a medida
que elas são chamadas.

Capítulo 3. Arquitetura Proposta 39

Figura 13 – Exemplo de consulta de dados utilizando o padrão Repository e ORM

let id_produto = 10;
let produto = produtoRepository.getProduto(id_produto);
let nome_produto = produto.getNome();

Fonte: o autor.

Servidores de cache normalmente utilizam uma organização de chave-valor para
o armazenamento dos dados, muitas vezes na memória da sua máquina para diminuir o
tempo de resposta do sistema. É necessário um mecanismo de sincronização para garantir
a validade dos dados, normalmente este mecanismo é acionado pelo back-end a cada vez
que dados relevantes são modificados ou adicionados às estruturas de armazenamento.

A utilização deste sistema segue o fluxo mostrado na figura 11, um middleware
de caching verifica se existe uma resposta armazenada no servidor de cache para cada
requisição recebida, em caso positivo esta resposta é imediatamente enviada ao usuário
sem que seja necessário reprocessar a requisição, caso contrário a requisição é processada e
a resposta é armazenada para futuras consultas.

3.3 Front-end
O Front-end do sistema é a interface que o usuário final utliza, neste caso uma

aplicação móvel disponível para as plataformas iOS da Apple e Android do Google. Para
atender o requisito de mantenabilidade, deve ser utilizado um framework de aplicações
multiplataforma, discutido na Seção 2.3.3.

3.3.1 Componentes

Uma interface de usuário é desenvolvida a partir da combinação de componentes,
funções que normalmente retornam trechos de código em linguagem de marcação. Sua
estruturação é parecida com o HTML usado em web sites, mas utilizando tags próprias,
muitas vezes criadas pelos desenvolvedores.

Um componente é uma função que recebe um parâmetro com suas propriedades,
possui um estado próprio e retorna um código em linguagem de marcação. A maioria dos
componentes podem ser customizados no momento de sua criação através dos parâmetros
de criação, desta forma é possível reutilizá-los facilmente ao longo da aplicação.

Capítulo 3. Arquitetura Proposta 40

O estado é um conjunto variáveis que podem ser alteradas durante a execução da
aplicação modificando funcionalidades e o estilo visual de um componente, podendo ser
definido localmente em um componente ou utilizando o conceito de containers de estado
que será discutido na Seção 3.3.2.

A estilização de aspectos como posicionamento, cores e fontes dos componentes
pode ser feita através de uma propriedade chamada style, utilizando objetos Javascript
que utilizam a mesma nomenclatura e conceitos do CSS, cascading style sheet, utilizado
em web sites.

A figura 14 mostra um exemplo de componente em React Native que define um
cabeçalho para a página, sendo criado através do componente nativo <Text> e que pode
ser utilizado em outros componentes como <Titulo texto="Página Inicial"/>.

Figura 14 – Exemplo de componente em React Native

function Titulo(props) {
const texto = props.texto;
return (

<Text style={{fontSize: 32, padding: 10, fontWeight: ’bold’}}>
{texto}

</Text>
);

}
Fonte: o autor.

Bibliotecas externas, como o Native-Base, fornecem códigos para a criação de
todos os componentes nativos de ambas plataformas. Desta forma é possível deixar o
desenvolvimento mais eficiente ao focar apenas na visualização e funcionalidade dos
componentes ao invés de sua implementação.

3.3.2 Padrão Flux

A natureza de sistemas de gerenciamento em exibir varias informações simultanea-
mente trás a necessidade à aplicação de coordenar o fluxo de dados entre seus diversos
componentes. Desta forma é possível a utilização do padrão Flux, uma variação do padrão
Observer, que centraliza o estado da aplicação e garante um fluxo de dados unidirecional
para permitir a escalabilidade de interfaces de usuário. O padrão Flux pode ser descrito a
partir de três princípios:

1. Fonte única de verdade: O estado da aplicação é armazenado numa árvore de objetos
dentro de um único local chamado de store.

Capítulo 3. Arquitetura Proposta 41

2. O Estado é somente-leitura: A única maneira de modificar o estado é emitindo uma
ação, um objeto que descreve a mudança que deve acontecer.

3. Mudanças são realizadas por funções determinísticas: Funções de redução, reducers,
são utilizadas para especificar como a árvore de estados é transformada por ações.

A figura 15 é uma visão destes princípios e do fluxo de dados no padrão Flux. Um
componente da interface do usuário, View, envia uma ação, Action, ao realizar alguma
operação. O expedidor, Dispatcher, recebe este objeto e o encaminha para o Reducer
adequado, no qual a partir do estado atual do componente e do conteúdo presente na ação
produz um novo estado. Este novo estado é armazenado no Store e encaminhado para o
componente para que possa ser exibido ao usuário.

Figura 15 – Diagrama do padrão Flux.

Fonte: adaptado de (Terpil, 2015).

Com este padrão é possível compartilhar o estado de um componente automati-
camente quando uma mudança ocorrer, mantendo a coerência entre a visualização e os
dados. A figura 16 mostra o processo de propagação do estado de um componente a outros
componentes que estão interessados.

No caso onde o padrão Flux não é utilizado, o componente que teve o estado
alterado precisa propagar esta alteração manualmente a cada componente interessado.
Quando o Flux é utilizado, no momento em que o estado do componente é alterado no Store
todos os outros componentes interessados são notificados automaticamente da mudança e
recebem o novo estado.

Capítulo 3. Arquitetura Proposta 42

Figura 16 – Propagação de estado com e sem Flux.

Fonte: adaptado de (Weck, 2019).

3.3.3 Armazenamento

Aplicações podem armazenar dados na memória interna do dispositivo móvel para
diminuir a carga de requisições ao back-end ou manter as configurações do usuário, por
exemplo. Esta funcionalidade deve ser utilizada com cuidado, componentes críticos da
aplicação não devem ser totalmente dependentes do armazenamento interno já que erros
por falta de espaço de espaço de armazenamento ou permissões de acesso podem ser
comuns.

As formas mais comuns para persistir dados da aplicação são através de bancos
de dados locais como SQLite e armazenamento nativo dos dispositivos chamado de
LocalStorage. Ambas tecnologias são recursos exclusivos de cada aplicação não sendo
possível o compartilhamento de dados entre diferentes aplicações.

Implementações do padrão Flux oferecem integração a estes sistemas, facilitando
ainda mais o manuseio dos dados presentes na aplicação. É comum armazenar as credenciais
dos usuários em uma seção segura do LocalStorage, dessa forma o usuário não necessita
realizar o login cada vez que ele retorne ao aplicativo. Para tanto, o Store é extendido
virtualmente para ter acesso aos armazenamentos locais e manter os dados acessíveis
usando sua interface padrão.

3.3.4 Cliente HTTP

O acesso ao servidor é realizado através de um cliente que se conecta à API através
de requisições HTTP seguindo o padrão REST. Cada framework fornece uma forma de
acesso ao cliente nativo, tornando possível realizar vários tipos de interações HTTP.

Capítulo 3. Arquitetura Proposta 43

Bibliotecas externas podem expandir as funcionalidades do cliente padrão ao utilizar
funções específicas a cada método HTTP como get(), post(), put(), delete() , configurações
globais e requisições concorrentes.

A figura 17 mostra um exemplo do código necessário para realizar uma requisição
à API em Javascript. O cliente HTTP pode ser configurado como um serviço, desta forma
ele é acessível em todas as partes da aplicação e concentra sua configuração, como endereço
da API, cabeçalhos e cookies, em apenas um arquivo para permitir que seja facilmente
mantido.

Figura 17 – Cliente HTTP realizando requisição de produtos à API.

const resposta = await client.get("https://www.empresa.com.br/api/produtos");
let produtos = resposta.data;

Fonte: o autor.

44

4 Resultados

Este Capítulo exibe o resultado da integração entre os componentes da arquitetura
produzida e sua aplicação em um sistema real. Na Seção 4.1 os componentes da arquitetura
são integrados produzindo um novo modelo visual. Por fim, na Seção 4.2 será discutida
uma prova de conceito desta arquitetura que está sendo investigada.

4.1 Modelo
Obtivemos uma arquitetura de software para desenvolvimento de soluções que

englobam sistemas IoT, servidores para tratamento e análise de dados e interfaces de
usuário através de aplicações móveis, tudo isso levando em consideração requisitos de
escalabilidade, mantenabilidade, confiabilidade e a agilidade no desenvolvimento do sistema.

O diagrama da figura 18 mostra a integração entre os três componentes da arquite-
tura discutidos no Capítulo 3. A nuvem especificada na Seção 3.1 integra os dispositivos
IoT à aplicação móvel, sua arquitetura pode ser vista na figura 7. O ponto de acesso dos
dispositivos é a partir do serviço de integração, toda a conexão e troca de mensagens é
coordenada por esse serviço. Já as aplicações móveis acessarão o sistema a partir do DNS
ao utilizarem alguma chamada REST para um domínio controlado por este serviço.

Figura 18 – Diagrama da arquitetura

Fonte: o autor.

Capítulo 4. Resultados 45

4.2 Prova de Conceito
Uma prova de conceito está sendo desenvolvida para uma empresa dos Estados

Unidos utilizando os componentes aqui apresentados. O sistema envolve dispositivos IoT
conectados a aparelhos de refrigeração como ar-condicionados centrais e freezers industriais.
Estes dispositivos coletam dados dos aparelhos e do ambiente, a partir de inúmeros sensores,
e enviam pacotes de informação a cada 7 minutos ao servidor da aplicação para que sejam
processados e tenham o resultado armazenado num banco de dados relacional.

A partir deste dado estruturado, uma aplicação móvel multiplataforma realiza a
exibição das informações do sistema de refrigeração do cliente. Desta forma, atualmente
é possível acompanhar aspectos como consumo de energia, variação de temperatura e o
funcionamento de cada componente dos aparelhos, onde em caso de falhas o cliente é
alertado através de notificações. A figura 19 mostra a aplicação funcionando nas plataformas
iOS e Android.

Figura 19 – Aplicação nas plataformas iOS e Android, respectivamente

Fonte: o autor.

4.2.1 Estrutura

Neste momento já está em estágio de desenvolvimento a infraestrutura do sistema
utilizando a nuvem da AWS como IaaS. O back-end do sistema utiliza a plataforma de
computação EC2, um banco de dados MySQL no serviço RDS e por fim, os dispositivos
IoT enviam seus dados para um armazenamento de objetos S3.

Capítulo 4. Resultados 46

A partir de um back-end construído em Python3 utilizando o framework Django,
uma aplicação para as plataformas iOS e Android escrita em React Native acessa dados de
dispositivos IoT e exibe as diversas informações obtidas a partir da análise destes dados.

Existe a previsão da implementação de um data mart para permitir a escalabilidade
do sistema sem comprometer sua performance. Além disso, os dados disponíveis nessa
estrutura permitirão a utilização de inteligência computacional para o controle automático
dos aparelhos de refrigeração a partir dos dispositivos IoT.

A figura 20 mostra os principais casos de uso de cada ator do sistema. A aplicação
móvel é acessível somente aos Clientes, no qual podem visualizar indicadores do sistema;
visualizar a condição de seus aparelhos; visualizar a condição das partes de cada aparelho;
visualizar o painel do sistema e requisitar suporte. Os atores Suporte e Técnico fazem
parte da empresa e permitem o correto funcionamento dos sistemas do Cliente.

Figura 20 – Diagramas de casos de uso do sistema

Fonte: o autor.

4.2.2 Aplicação Multiplataforma

Os aparelhos dos clientes são conectados a dispositivos IoT que coletam informações
sobre seu funcionamento e condições ambientais. A aplicação permite que clientes possam
visualizar de forma intuitiva estas informações e agir em caso de defeito. Os conceitos
apresentados na Seção 3.3 foram utilizados para o desenvolvimento da aplicação a fim de
permitir uma maior agilidade na entrega de versões para as plataformas iOS e Android.

Capítulo 4. Resultados 47

Os componentes utilizados na interface de usuário são nativos às plataformas
para tornar sua utilização intuitiva e diminuir o tempo de aprendizado necessário para o
uso da aplicação.

A figura 21 mostra os casos de uso de visualização da condição dos aparelhos e
de seus componentes, respectivamente. A tela Monitor mostra ao cliente todos os seus
dispositivos organizados em abas e listas onde é possível ver a condição do aparelho através
de ícones coloridos que representam alertas de estados de funcionamento. Ao selecionar um
aparelho o cliente pode visualizar a condição de cada parte do aparelho e, se necessário,
pode requisitar suporte técnico à empresa.

Figura 21 – Telas de condição dos aparelhos e componentes

Fonte: o autor.

A figura 22 mostra as telas de visão geral do sistema. O painel, Overview, é uma
visualização que simplifica o acesso a informações sobre a condição de todos os aparelhos
monitorados do cliente. A cor de cada célula da tabela representa o estado de um aparelho,
utilizando a mesma escala de cores de estados utilizado ao longo da aplicação para manter
coerência entre as visualizações.

Capítulo 4. Resultados 48

A tela History exibe indicadores de produção, produtividade e qualidade de todo o
sistema do cliente. Desta forma o cliente pode acompanhar o funcionamento e a evolução
de seus equipamentos em relação a performance, economia entre outros aspectos. Esta
visualização também será importante quando o sistema permitir o controle dos aparelhos,
assim o cliente pode perceber mais facilmente se as mudanças realizadas estão surtindo
efeito em seus aparelhos.

Figura 22 – Telas de painel de aparelhos e de indicadores do sistema

Fonte: o autor.

49

5 Conclusões e Trabalhos Futuros

Neste trabalho foi proposta uma arquitetura de software para integração de sistemas
de gerenciamento IoT a aplicações móveis multiplataforma. Esta implementação poderá
ser amplamente utilizada por empresas que fabricam softwares atualmente e que não
contemplam demandas de IoT para monitoramento, o que levará a uma maior agilidade
e assertividade nas suas especificações e desenvolvimentos, possivelmente ajudando a
aumentar a adoção das tecnologias da 4a Revolução Industrial.

O aumento na disponibilidade de dispositivos IoT e na qualidade das infraestruturas
de redes são uma grande oportunidade para o desenvolvimento de sistemas de gerenciamento
para otimizar processos industriais e de aspecto social como, por exemplo, mobilidade
urbana e saúde. Espera-se que os artefatos produzidos na monografia possam embasar o
desenvolvimento de softwares multiplataforma com integração a tais sistemas IoT.

Durante o desenvolvimento da prova de conceito diversas novas tecnologias foram
conhecidas, permitindo novas visões sobre o problema. Algumas delas foram integradas a
arquitetura aqui proposta, outras que ficaram de fora podem oferecer grandes vantagens
aos sistemas que serão implementados e serão comentadas agora.

A utilização de outros serviços disponíveis na nuvem AWS pode aumentar a perfor-
mance do sistema em diversas frentes. Para o manuseio dos dados brutos seria interessante
a aplicação de Data Lakes e Data Marts, oferecido pelos serviços Lake Formation e Redshift.
Desta forma a carga de processamento na API seria reduzida já que dados tratados es-
tariam sempre disponíveis, além de permitir a aplicação de técnicas de aprendizado de
máquina.

Por fim, sistemas de gerenciamento podem ser aprimorados com a utilização
de algoritmos de inteligência artificial para predição de eventos, permitindo atuações
preventivas e corretivas sobre os dispositivos IoT. A AWS também fornece serviços de
inteligência computacional que podem facilitar este processo, incluindo o SageMaker.
Devido a modularização desta arquitetura, novos serviços podem ser adicionados sem
muito esforço, possivelmente aumentando o impacto das soluções que as utilize.

50

Referências

1 ITU-T. Overview of the Internet of things. [S.l.], 2012. Disponível em: <http:
//handle.itu.int/11.1002/1000/11559>. Acesso em: 25 de setembro de 2019. Citado 4
vezes nas páginas 14, 16, 17 e 18.

2 FORBES. 2018 Roundup Of Internet Of Things Forecasts And Market Estimates.
[S.l.], 2018. Disponível em: <https://www.forbes.com/sites/louiscolumbus/2018/12/13/
2018-roundup-of-internet-of-things-forecasts-and-market-estimates>. Acesso em: 20 de
setembro de 2019. Citado na página 14.

3 FORBES. Mobile App ’State of Mobile 2019 Report’ From App Annie. [S.l.],
2019. Disponível em: <https://www.forbes.com/sites/tjmccue/2019/01/30/
mobile-app-state-of-mobile-2019-report-from-app-annie>. Acesso em: 21 de setembro de
2019. Citado 2 vezes nas páginas 15 e 22.

4 LATIF, M. et al. Cross platform approach for mobile application development: A survey.
International Conference on Information Technology for Organizations Development
(IT4OD), February 2016. Citado na página 15.

5 IEEE. Internet of Things (IoT) Ecosystem Study. [S.l.], 2015. Disponível em:
<https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/
other/iot_ecosystem_exec_summary.pdf>. Acesso em: 17 de dezembro de 2019. Citado
na página 16.

6 MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. [S.l.], 2011.
Citado 2 vezes nas páginas 19 e 20.

7 SOLO NETWORK. Diferenças entre IaaS, SaaS e PaaS. [S.l.], 2019. Disponível em:
<https://www.solonetwork.com.br/Produtos/Microsoft/microsoft-azure>. Acesso em: 27
de outubro de 2019. Citado na página 21.

8 POSLAD, S. Ubiquitous Computing: Smart Devices, Environments and Interactions. 1.
ed. [S.l.]: John Wiley & Sons, 2009. Citado na página 22.

9 STATCOUNTER. Mobile Operating System Market Share Worldwide - October
2019. [S.l.], 2019. Disponível em: <https://gs.statcounter.com/os-market-share/mobile/
worldwide>. Acesso em: 9 de novembro de 2019. Citado na página 22.

10 GUERRA, Q. F. Aplicação em diferentes plataformas. [S.l.], 2015. Disponível em:
<https://market.ionicframework.com/starters/multiplatform>. Acesso em: 9 de novembro
de 2019. Citado na página 24.

11 PRESSMAN, R. S. Engenharia de Software - Uma Abordagem Profissional. 7. ed.
[S.l.]: McGrawHill, 2011. Citado na página 23.

12 BUSCHMANN, F. et al. Pattern Oriented Software Architecture: A system of patterns.
[S.l.]: John Wiley & Sons, 2001. v. 1. (Software Design Patterns, v. 1). Citado na página
24.

http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018- roundup-of-internet-of-things-forecasts-and-market-estimates
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018- roundup-of-internet-of-things-forecasts-and-market-estimates
https://www.forbes.com/sites/tjmccue/2019/01/30/mobile-app-state-of-mobile-2019-report-from-app-annie
https://www.forbes.com/sites/tjmccue/2019/01/30/mobile-app-state-of-mobile-2019-report-from-app-annie
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot_ecosystem_exec_summary.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot_ecosystem_exec_summary.pdf
https://www.solonetwork.com.br/Produtos/Microsoft/microsoft-azure
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://market.ionicframework.com/starters/multiplatform

Referências 51

13 W3C. Web Services Architecture. [S.l.], 2004. Disponível em: <https://www.w3.org/
TR/ws-arch/>. Acesso em: 03 de novembro de 2019. Citado na página 26.

14 FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Tese (Doutorado) — University of California, Irvine, 2000. Citado na
página 26.

15 AMAZON WEB SERVICES. Route 53. [S.l.], 2019. Disponível em: <https:
//aws.amazon.com/route53/>. Acesso em: 10 de novembro de 2019. Citado na página 27.

16 AMAZON WEB SERVICES. Identity and Access Management. [S.l.], 2019. Disponível
em: <https://aws.amazon.com/iam/>. Acesso em: 10 de novembro de 2019. Citado na
página 28.

17 AMAZON WEB SERVICES. IoT Core. [S.l.], 2019. Disponível em: <https:
//aws.amazon.com/iot-core/>. Acesso em: 12 de novembro de 2019. Citado na página 28.

18 MESNIER, M.; GANGER, G.; RIEDEL, E. Object-based storage. IEEE
Communications Magazine, v. 41, agosto 2003. Citado na página 28.

19 AMAZON WEB SERVICES. Simple Storage Service. [S.l.], 2019. Disponível em:
<https://aws.amazon.com/s3/>. Acesso em: 10 de novembro de 2019. Citado na página
29.

20 AMAZON WEB SERVICES. Relational Database Service. [S.l.], 2019. Disponível em:
<https://aws.amazon.com/rds/>. Acesso em: 10 de novembro de 2019. Citado na página
29.

21 AMAZON WEB SERVICES. Elastic Compute Cloud. [S.l.], 2019. Disponível em:
<https://aws.amazon.com/ec2/>. Acesso em: 10 de novembro de 2019. Citado na página
29.

22 DOCKER. What is a container? [S.l.], 2019. Disponível em: <https://www.docker.
com/resources/what-container>. Acesso em: 10 de novembro de 2019. Citado na página
30.

23 AMAZON WEB SERVICES. Simple Notification Service. [S.l.], 2019. Disponível em:
<https://aws.amazon.com/sns/>. Acesso em: 10 de novembro de 2019. Citado na página
31.

24 FIELDING, R.; RESCHKE, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. [S.l.], 2014. Disponível em: <https://tools.ietf.org/html/rfc7231>. Acesso
em: 15 de novembro de 2019. Citado na página 35.

25 FREED, N.; KUCHERAWY, M. Media Types. [S.l.], 2019. Disponível em:
<https://www.iana.org/assignments/media-types/media-types.xhtml>. Acesso em: 15 de
novembro de 2019. Citado na página 35.

26 BRAY, T. The JavaScript Object Notation (JSON) Data Interchange Format. [S.l.],
2017. Disponível em: <https://tools.ietf.org/html/rfc8259>. Acesso em: 15 de novembro
de 2019. Citado na página 35.

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/iam/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://aws.amazon.com/sns/
https://tools.ietf.org/html/rfc7231
https://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc8259

Referências 52

27 BORONCZYK, T. Working with Slim Middleware. [S.l.], 2013. Disponível em:
<https://www.sitepoint.com/working-with-slim-middleware/>. Acesso em: 16 de
novembro de 2019. Citado na página 37.

28 FOWLER, M. Patterns of Enterprise Application Architecture. 1. ed. [S.l.]:
Addison-Wesley Professional, 2002. Citado na página 38.

29 TERPIL, J. Redux. From twitter hype to production. [S.l.], 2015. Disponível em:
<https://slides.com/jenyaterpil/redux-from-twitter-hype-to-production>. Acesso em: 28
de setembro de 2019. Citado na página 41.

30 WECK, S. Developing modern offline apps with ReactJS, Redux and Elec-
tron. [S.l.], 2019. Disponível em: <https://blog.codecentric.de/en/2017/12/
developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/>.
Acesso em: 20 de novembro de 2019. Citado na página 42.

https://www.sitepoint.com/working-with-slim-middleware/
https://slides.com/jenyaterpil/redux-from-twitter-hype-to-production
https://blog.codecentric.de/en/2017/12/developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/
https://blog.codecentric.de/en/2017/12/developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/

	Folha de rosto
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação e Caracterização do Problema
	Objetivo Geral
	Objetivos Específicos
	Estrutura do Documento

	Fundamentação Teórica
	Internet das Coisas
	Características
	Requisitos de Alto Nível

	Computação em Nuvem
	Características
	Modelos de Serviço
	Plataformas

	Dispositivos Móveis
	Plataforma iOS
	Plataforma Android
	Multiplataforma

	Arquitetura de Software
	Padrões Arquiteturais
	Model-View-Controller
	Representational State Transfer

	Arquitetura Proposta
	Infraestrutura
	Acesso à Nuvem
	Armazenamento
	Computação
	Notificação
	Integração
	Implantação
	Custo

	Back-end
	RESTful API
	Estrutura
	Middlewares
	Acesso aos dados
	Caching de dados

	Front-end
	Componentes
	Padrão Flux
	Armazenamento
	Cliente HTTP

	Resultados
	Modelo
	Prova de Conceito
	Estrutura
	Aplicação Multiplataforma

	Conclusões e Trabalhos Futuros
	Referências

