Escola Politécnica J Engenharia de Computagéo
di

le Pernambuco

Uma arquitetura de software para sistemas de

gerenciamento baseados em IoT

Trabalho de Conclusao de Curso

Engenharia de Computacao

RUBENS EUCLIDES CARNEIRO

Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Rubens Euclides Carneiro

Uma arquitetura de software para sistemas de

gerenciamento baseados em loT

Monografia apresentada como requisito par-
cial para obtencao do diploma de Bacharel
em Engenharia de Computacgao pela Escola
Politécnica de Pernambuco — Universidade de
Pernambuco.

Engenharia de Computagao
Escola Politécnica de Pernambuco

Universidade de Pernambuco

Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Recife - PE, Brasil

novembro de 2019

Euclides Carneiro, Rubens

Uma arquitetura de software para sistemas de gerenciamento baseados em loT/
Rubens Euclides Carneiro. — Recife - PE, Brasil, novembro de 2019-

52 p.

Orientador: Prof. Dr. Fernando Buarque de Lima Neto

Trabalho de Conclusdo de Curso — Engenharia de Computacao

Escola Politécnica de Pernambuco

Universidade de Pernambuco, novembro de 2019.

1. Arquitetura de Software. 2. loT. 3. Mobile. I. Prof. Dr. Fernando Buarque de
Lima Neto. II. Universidade de Pernambuco. Ill. Escola Politécnica. IV. Titulo.

Escola Politécnica de Pernambuco » J
Graduagao em Engenharia de Computagio
Projeto de Final de Curso Escola Politécnica

eeeeeeeee

MONOGRAFIA DE FINAL DE CURSO

Avaliacao Final (para o presidente da banca)*

No dia 10/12/2019, as 8h30min, reuniu-se para deliberar sobre a defesa da monografia de
conclusdo de curso do(a) discente RUBENS EUCLIDES CARNEIRO, orientado(a) pelo(a)
professor(a) FERNANDO BUARQUE DE LIMA NETO, sob titulo Uma arquitetura de

software para sistemas de gerenciamento baseados em loT, a banca composta pelos professores:

LARISSA TENORIO FALCAO ARRUDA (PRESIDENTE)
FERNANDO BUARQUE DE LIMA NETO (ORIENTADOR)

Apos a apresentagdo da monografia e discussdo entre os membros da Banca, a
mesma foi considerada:

(] Aprovada Aprovada com Restrigbes™ [0 Reprovada
e foi-lhe atribuida nota;: _ 4,0 (~wove)
*(Obrigatério o preenchimento do campo abaixo com comentarios para o autor)

O(A) discente tera _ 15 dias para entrega da versao final da monografia a contar da

data deste documento.

LC\H'I hh ev ‘4\'\0/?\164 ﬁ&cz\(} A‘ Vo Llo\
AVALIADOR 1: Prof (a) LARISSA TENORIO FALCAO ARRUDA

~ AVALIADOR 2: Prof (a

diUARQUE DE LIMA NETO

AVALIADOR 3: Prof (a)

* Este documento devera ser encadernado juntamente com a monografia em verséo final.

Fscola Politécnica de Pernambuco » J

Graduacao em Engenharia de Computacao
¢ 5 P POLI

Projeto de Final de Curso Escola Politécnica

de Pernambuco

Autorizacao de publicacao de PFC

Eu, Rubens Euclides Carneiro autor(a) do projeto final de curso intitulado: Uma
arquitetura de software para sistemas de gerenciamento baseados em IoT;
autorizo a publicagdao de seu contetiddo na internet nos portais da Escola Politécnica de

Pernambuco e Universidade de Pernambuco.

O contetdo do projeto de final de curso é de responsabilidade do autor.

Rulsr €. Compyy”

Rubens Euclides Carneiro

.
Orientador(a): Férngndo BuaVe de Lima Neto
/ /

et

Coorientador(a):

1

Prof, de TCWI Augusto Ribeiro Chaves Data: 10/12/2019

Resumo

Recentemente houve um crescimento exponencial na disponibilidade de dispositivos méveis
com amplo acesso a internet e grande poder de processamento, fato que mudou a forma
em que as pessoas consomem softwares, agora chamados de aplicagoes ou apps. Junto a
esta mudanca de paradigma surgiu uma dificuldade para os desenvolvedores, um mesmo
sistema precisa ser programado individualmente para diversas plataformas utilizando
diversas linguagens de programacao. A utilizagdo de frameworks multiplataforma visa
trazer a agilidade e mantenabilidade do desenvolvimento de softwares tradicionais ao
mundo das aplicagoes. A Internet das Coisas (IoT) também estd em pleno crescimento
devido ao barateamento e popularizacdo de novas plataformas de hardware. As redes
de dispositivos conectados na IoT trazem a necessidade de uma infraestrutura capaz de
suportar o grande volume de dados que elas produzem. Sistemas de gerenciamento sao
um dos principais usos da tecnologia IoT e demandam formas concisas de visualizacao e
meios interagao com seus dados. Este projeto definiu uma arquitetura de softwares capaz
de integrar aplicagdes méveis multiplataforma a sistemas [oT através da Computacao em
Nuvem visando a escalabilidade, confiabilidade e mantenabilidade do sistema e a agilidade
em seu desenvolvimento. A arquitetura proposta descreveu a infraestrutura necessaria
para suportar tais sistemas na nuvem e a estrutura do servidor e interface grafica da
aplicagdo multiplataforma. Um exemplo sem detalhamento esta apresentado no final desta

monografia.

Palavras-chave: Arquitetura de Software. IoT. Computagdo em Nuvem. Mobile. Multi-

plataforma.

Abstract

Recently we had an exponential growth in the availability of mobile devices with wide
internet connectivity and high computing power. This changed the way people consume
software, which are now called applications or apps. With this paradigm shift, a new
problem emerged for developers; a single system needs to be programmed individually
for multiple platforms using different programming languages. The use of cross-platform
frameworks brings the agility and maintainability of traditional software development to
the application world. The Internet of Things (IoT) is also growing due to cost reduction
and popularization of new hardware platforms. Device networks connected to the IoT
raise the need for an infrastructure capable of handling the large amount of data that
they produce. Management systems are one of the main uses of IoT and demand concise
visualizations and means of interaction with the data. This project defined a software
architecture capable of integrating mobile application with IoT systems through cloud
computing while simultaneously considering the scalability, reliability and maintainability
of the system and its agile development. This proposed architecture describes the necessary
cloud infrastructure to support the system and the structure of both the server and user
interface of the cross-platform application. An overview example is provided in the end of

this monograph.

Keywords: Software Architecture. IoT. Cloud Computing. Mobile. Multi-platform.

Lista de ilustracoes

Figura 1 — Visdo técnicada IoT. 17
Figura 2 — Modelos de servicos da nuvem. 21

Figura 3 — Aplicagdo executando nas plataformas iOS e Android, respectivamente. 24

Figura 4 — Diagrama UML do padrao MVC. 25
Figura 5 — Diagrama de sequéncia de um sistema interativo que utiliza o padrao
MVC. .. 25
Figura 6 — Estrutura do Docker 30
Figura 7 — Diagrama de arquitetura danuvem 32
Figura 8 — Diagrama de arquitetura da nuvem AWS 33
Figura 9 — Exemplo de resposta do tipo application/json 35
Figura 10 — Diagrama de sequéncia de uma API implementada com o padrao MVC. 36
Figura 11 — API estruturada em camadas 37
Figura 12 — Diagrama UML do Modelo utilizando o padrao Repository 38
Figura 13 — Exemplo de consulta de dados utilizando o padrao Repository e ORM . 39
Figura 14 — Exemplo de componente em React Native 40
Figura 15 — Diagrama do padrao Fluz. 41
Figura 16 — Propagacao de estado com e sem Flux. 42
Figura 17 — Cliente HTTP realizando requisi¢ao de produtos a API. 43
Figura 18 — Diagrama da arquitetura 44
Figura 19 — Aplicacdo nas plataformas iOS e Android, respectivamente 45
Figura 20 — Diagramas de casos de uso do sistema 46
Figura 21 — Telas de condicao dos aparelhos e componentes 47

Figura 22 — Telas de painel de aparelhos e de indicadores do sistema 48

Lista de tabelas

Tabela 1 — Projegao de custo mensal da nuvem AWS

Lista de abreviaturas e siglas

IoT Internet of Things

IDE Integrated Development Environment
SDK Software Development Kit

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

CSS Cascading Style Sheet

UX User FEzxperience

REST Representational State Transfer
JSON Javascript Object Notation

JWT JSON web token

API Application Programming Interface
MVC Model-View-Controller

ORM Object-Relational Mapping

[aaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

NIST National Institute of Standards and Technology
AWS Amazon Web Services

UID Unique Identifier

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

SSD Solid State Disk

S3

RDS

[AM

SNS

EC2

Simple Storage Service
Relational Database Service
Identity and Access Management
Simple Notification Service

FElastic Compute Cloud

1.1
1.2
1.3
1.4

2.1

2.1.1
2.1.2
2.2

221
2.2.2
2.2.3
2.3

23.1
2.3.2
2.3.3
2.4

24.1
2.4.2
243

3.1

3.1.1
3.1.2
3.1.3
3.1.4
3.15
3.1.6
3.1.7
3.2

3.2.1
3.2.2
3.2.3

Sumario

INTRODUCAO i ittt e e e et e et e 14
Motivacao e Caracterizacao do Problema. 14
Objetivo Geral 15
Objetivos Especificos 15
Estrutura do Documento 15
FUNDAMENTACAO TEORICA 16
Internet das Coisas 16
Caracteristicas 17
Requisitos de Alto Nivel L 18
Computacao em Nuvem 19
Caracteristicas 19
Modelos de Servico 20
Plataformas 21
Dispositivos Méveis 22
Plataforma iOS 22
Plataforma Android 22
Multiplataforma 23
Arquitetura de Software 23
Padrées Arquiteturais 23
Model-View-Controller 24
Representational State Transfer 25
ARQUITETURA PROPOSTA it i i 27
Infraestrutura 27
Acesso a Nuvem 27
Armazenamento L 28
Computacdo 29
Notificacdo 30
Integracdo L 31
Implantacdo 32
Custo e 34
Back-end 34
RESTful APl 35
Estrutura L 36
Middlewares 37

3.24 Acesso aos dados L 37

3.25 Caching dedados 38
3.3 Front-end 39
331 Componentes 39
3.3.2 Padrao Flux 40
333 Armazenamento L L 42
3.34 Cliente HTTP 42
4 RESULTADOS e e e e e e e e e e e e 44
4.1 Modelo 44
4.2 Provade Conceito, 45
421 Estrutura 45
422 Aplicacdo Multiplataforma 46
5 CONCLUSOES E TRABALHOS FUTUROS 49

REFERENCIAS e e e e e e s s i 50

14

1 Introducao

Este trabalho de conclusao de curso propoe-se ao estudo e desenvolvimento de uma
arquitetura de software para o desenvolvimento de aplica¢oes méveis multiplataforma para

gerenciamento baseado em sistemas de internet das coisas.

O crescimento na disponibilidade de sensores e plataformas de hardware para
internet das coisas, e a onipresenca de dispositivos méveis na sociedade atual foram alguns

dos fatores que desencadearam a escolha deste tema.

Este Capitulo descreve a introducao da monografia, e esta organizado em 3 secoes.
Na Secao 1.1 sao descritas tanto a motivacao para a execucao deste trabalho, quanto a

definicao do problema.

Posteriormente, nas Se¢oes 1.2 e 1.3 sao apresentados os objetivos gerais e especificos,
bem como a proposta de solucao do projeto. Por fim, a Se¢ao 1.4 detalha a organizagao

da monografia.

1.1 Motivacao e Caracterizacao do Problema

A Internet das Coisas, do inglés Internet of Things (10T), é definida como uma
infraestrutura global para a sociedade da informacao, possibilitando servigos avancados
ao interconectar objetos (fisicos e virtuais) gragas a interoperabilidade de tecnologias da

informagao e comunicagao, atuais e futuras [1].

De acordo com [2], é esperado que em 2022 o investimento em tecnologias IoT
alcance $1,2 trilhdes com as &reas mais promissoras sendo monitoramento ambiental,
medicao inteligente e inventario inteligente. Estas dreas podem usufruir de sistemas de
gerenciamento onde seja possivel visualizar os dados monitorados e realizar decisoes, que
por sua vez pode ser feita através de comandos enviados aos objetos da IoT. Atualmente
uma das quatro maiores dificuldades da adogao da tecnologia por empresas é a falta de

infraestrutura tecnologica para integrar os sistemas existentes as redes IoT.

Uma das dimensoes que necessita apoio computacional é justamente um mecanismo
para engajar o usuario final nos sistemas que utilizam Inteligéncia Artificial. Portanto,
¢ importante que a interface grafica de aplicacoes de gerenciamento com integracao a
sistemas [oT sejam acessiveis e intuitivas. Atualmente estes requisitos sao pouco atendidos

em dispositivos méveis como celulares e tablets.

Desenvolver uma solugao voltada a essa tecnologia se torna portanto essencial visto

que o uso diario médio de dispositivos moveis estd aumentando a cada ano, principalmente

Capitulo 1. Introdugdo 15

entre usuarios na faixa de idade entre 16 e 24 anos. Neste ano, por exemplo, deve haver

um volume de $120 bilhdes em compras de aplicagdes méveis (mobile apps) [3].

Devido a diversidade de dispositivos disponiveis no mercado, um problema re-
corrente é a necessidade de codificar separadamente uma mesma aplicacdo para cada
plataforma [4]. Esta situagao dificulta a evolugdo de empresas ja que demanda mais tempo
ou capital humano para o desenvolvimento e manutencao da aplicagdo. Nesta monografia de
TCC vamos contribuir justamente com a proposicao de uma arquitetura para dispositivos
moveis que além de intuitiva, atenda aspectos de IoT, e nao necessite de re-escrita para

diferente plataformas através da utilizacao de frameworks multiplataforma.

1.2 Objetivo Geral

Este projeto tem como objetivo propor uma arquitetura de software para o desenvol-
vimento de aplicagboes méveis multiplataforma para gerenciamento baseado em sistemas IoT.
A arquitetura definida deve proporcionar o desenvolvimento agil e a mantenabilidade do
sistema, notadamente sua evolucao funcional. A proposta define a infraestrutura necessaria,

a organizagao do servidor de dados (back-end) e a interface de usudrio (front-end).

1.3 Objetivos Especificos

A implementacao do projeto também envolveu outros fins, os quais foram atingidos:

e A especificacao da infraestrutura que permite a integracao do sistema IoT ao software;
e A especificagao da arquitetura do back-end do software;

e A especificacdo da arquitetura do front-end do software utilizando uma abordagem

multiplataforma;

1.4 Estrutura do Documento

Este trabalho esta dividido em 5 Capitulos, incluindo este que conta com uma
introducao a respeito do tema e objetivos do projeto. Em seguida o Capitulo 2 traz um
estudo a respeito de arquitetura de software, desenvolvimento de aplicagoes méveis e demais

conceitos necessarios para a compreensao da arquitetura desenvolvida neste trabalho.

Ja no Capitulo 3, é descrito as etapas do processo que resultou na arquitetura

proposta. O Capitulo 4 apresenta os resultados obtidos.

Finalmente, o Capitulo 5 encerra o trabalho com uma discussao a respeito do que

foi desenvolvido, possiveis melhoramentos e novas ideias para o projeto.

16

2 Fundamentacao Tedrica

Este Capitulo busca apresentar alguns conceitos fundamentais ao desenvolvimento
da arquitetura proposta. Na Secao 2.1 serao abordadas as defini¢coes de internet das coisas.
Em seguida, a Secao 2.2 introduz a computacao em nuvem. A Segdo 2.3 apresenta os
dispositivos modveis que serdo atingidos pelo projeto. Por fim, na Secao 2.4 serao discutidos

as arquiteturas de software em que o projeto se baseia.

2.1 Internet das Coisas

Extendendo a definicao que utilizamos na Secao 1.1, a Internet das Coisas, do inglés
Internet of things (IoT), é um sistema composto por computadores, maquinas mecanicas
ou digitais, objetos, animais ou pessoas que possuem um identificador inico, do inglés
unique identifier (UID), e a habilidade de transmitir dados através de uma rede sem a

necessidade de interagdo humano-humano ou humano-maquina [5].

As Coisas sao objetos do mundo fisico (Coisas fisicas) ou do mundo da informacao
(Coisas virtuais) que sao capazes de serem identificadas e integradas a redes de comunicagao.
Coisas fisicas sao capazes de serem sentidas, atuadas e conectadas, alguns exemplos sao o
ambiente, robos industriais, bens e equipamentos elétricos. Coisas virtuais sao capazes de
serem armazenadas, processadas e acessadas, exemplos incluem contetdos multimedia e

aplicagoes de software [1].

Uma Coisa fisica pode ser representada no mundo da informacao por uma ou
mais Coisas virtuais através de mapeamentos. Dispositivos podem se comunicar de varias
formas, através de uma rede por meio de um gateway (caso a), através de uma rede sem

um gateway (caso b) e diretamente (caso c).

Redes de comunicagao transmitem de forma confidvel e eficiente os dados gerados
ou captados pelos dispositivos a aplicagoes ou outros dispositivos, como também instrugoes

enviadas por aplicagoes a dispositivos. A figura 1 é uma visualizagao destes conceitos.

Capitulo 2. Fundamentacio Teorica 17

Figura 1 — Visao técnica da IoT.

Mundo da Informagao

Mundo Fisico

_ I:' Dispositivo
O ke el @ [o
E"-.,_con} mcagaoﬁf @ Coisa Fisica

./ Coisa Virtual
b P S ~Q

7/ =T, <« —» Comunicagdo
e @

—.—» Mapeamento
<3-» Comunicagdo por gateway

<b-» Comunicagdo sem gateway

o o o o ol s o

<c-» Comunicagdo direta

Fonte: adaptado de (ITU-T, 2012).

2.1.1 Caracteristicas

As redes de dispositivos IoT apresentam aspectos distintos em relagao a outras
redes de comunicagao, como por exemplo redes celulares, permitindo sua utilizacao em
contextos de escala pessoal até industrial. Abaixo, temos uma visao sobre as caracteristicas

da Internet das Coisas que nos permite entender sua capacidade e desafios [1].

Interconectividade: Na IoT, tudo pode se conectar a infraestrutura global de

informacao e comunicacao.

Servicos: A 10T é capaz de prover servigos relacionado as Coisas de acordo com
suas restricdes, como privacidade e consisténcia entre a semantica das Coisas fisicas
e Coisas virtuais. Para prover novos servigos, as tecnologias no mundo fisico e no

mundo da informagao precisam se adaptar.

e Heterogeneidade: Dispositivos na [oT sao heterogéneos por serem baseados em
diferentes plataformas de hardware. Podendo interagir com outros dispositivos ou

plataformas de servicos através de diferentes redes.

e Mudancas dinamicas: O estado dos dispositivos mudam dinamicamente, podendo
por exemplo estar adormecidos, ativos, conectados ou desconectados, além de mu-

dancas em contextos como localizacao e velocidade.

Capitulo 2. Fundamentacio Teorica 18

e Enorme escala: O ntimero de dispositivos que precisam ser gerenciados e que se
comunicam estarao em ao menos uma ordem de grandeza maior que dispositivos
atualmente conectados a internet. Ainda mais critico é o gerenciamento dos dados

gerados e sua interpretagao para aplicagoes.

2.1.2 Requisitos de Alto Nivel

Para o funcionamento eficaz de uma rede de dispositivos IoT é importante que haja
uma estruturacao adequada da infraestrutura fisica e de software para que os seguintes

requisitos de alto nivel sejam atendidos, de acordo com o contexto desejado [1].

e Conectividade baseada em identificagdo: A conexao entre uma Coisa e a IoT
deve ser baseada no identificador da Coisa. Possivelmente, identificadores heterogé-

neos podem ser processados de uma forma unificada.

e Interoperabilidade: A interoperabilidade precisa ser garantida entre diferentes

dispositivos e sistemas para a producao e consumo de informagoes e servigos.

¢ Provisionamento autonomo de rede: Técnicas ou mecanismos autoénomos de ge-
renciamento, configuragdo, recuperagao, otimizagao e protecao devem ser suportados
pela IoT para que se adapte a diferentes dominios de aplicacao, diferentes ambientes

de comunicacao e ao grande nimero e tipos de dispositivos.

e Provisionamento auténomo de servigos: Os servicos precisam ser providos a
partir da captura, comunicagao e processamento automatico dos dados das Coisas,

baseando-se em regras configuradas pelos operadores ou usudrios finais.

e Localizagao: A IoT deve suportar comunicagoes e servicos dependentes da loca-
lizacdo de Coisas e seus usudrios. Estas operacoes podem ser restritas por leis e

regulagoes, além de que precisam aderir a requisitos de seguranca.

e Seguranca: Na [oT todas as Coisas estao conectadas, desta forma surgem ameacas
de seguranca sobre a confidencialidade, autenticidade e integridade dos dados e
servigos. Servicos autonomos podem depender de técnicas automaticas como data

fusion e mineracao de dados.

e Privacidade: Protecao a privacidade precisa ser suportado pela IoT. Dados adqui-
ridos pelas Coisas podem conter informagoes privadas sobre seus donos ou usudrios.
A protecdo precisa estar presente na transmissao, agregacao, armazenamento, mine-

ragao e processamento dos dados.

Capitulo 2. Fundamentacio Teorica 19

e Servicos baseados no corpo humano: Servicos e seguranca de alta qualidade
precisam ser suportados para servigos baseados no corpo humano. Tais servicos
incluem a captura, comunicacao e processamento de dados relacionados a caracte-
risticas do corpo humano e seu comportamento. Paises possuem leis e regulagoes

diferentes para estes servicos.

e Gerenciamento: A capacidade de gerenciamento precisa ser suportada na IoT
para garantir o funcionamento das operacoes de rede. Aplicagoes IoT normalmente
trabalham automaticamente, mas o processo deve ser gerenciavel pelas pessoas

envolvidas.

2.2 Computacao em Nuvem

Computacao em nuvem, do inglés cloud computing, ¢ um modelo que permite acesso
de rede ubiquo, conveniente e sob demanda a um conjunto compartilhado de recursos
computacionais, como redes, servidores, armazenamento, aplicagoes e servigos, que podem
ser rapidamente alocados ou liberados com o minimo de esfor¢co de gerenciamento ou
interferéncia do provedor do servico. Este modelo de computagdo em nuvem é composto

por cinco caracteristicas e trés modelos de servigo [6].

2.2.1 Caracteristicas

As cinco caracteristicas de computacao em nuvem definidas pelo Instituto Nacional
de Padrdes e Tecnologia dos EUA (NIST) [6] sdo:

e Servicos sob demanda: Um consumidor pode provisionar unilateralmente recursos
computacionais, como tempo de servidor e armazenamento, sem requerer interagao

humana com cada provedor de servigos.

e Amplo acesso a rede: Recursos estao disponiveis pela rede e podem ser acessados
através de mecanismos que promovem seu uso por plataformas de cliente, como

dispositivos moveis e computadores.

e Conjunto de recursos: Os recursos computacionais do provedor sao compartilha-
dos para atender multiplos consumidores utilizando um modelo multi-tenant, com
diferentes recursos fisicos e virtuais dinamicamente alocados e realocados de acordo
com a demanda do consumidor. Exemplos de recursos incluem armazenamento,

processamento, memoria e largura de banda para a rede.

e Elasticidade: Recursos podem ser provisionados e liberados elasticamente, em
alguns casos automaticamente, para escalar externamente e internamente de acordo

com a demanda.

Capitulo 2. Fundamentacio Teorica 20

e Servico de medigao: Sistemas em nuvem controlam e otimizam automaticamente
o uso de recursos ao utilizarem ferramentas de medigao. O uso de recursos pode
ser monitorado, controlado e reportado oferencendo transparéncia ao provedor e ao

consumidor do servico utilizado.

2.2.2 Modelos de Servico

Provedores de computagao em nuvem comumente fornecem servigos divididos
em diferentes camadas para atender necessidades especificas dos consumidores, ja que
diferentes niveis de controle sobre a infraestrutura podem ser necesséarios. A figura 2 tras
uma comparacgao entre os diferentes modelos de servico que serao discutidos. O NIST

define estes modelos de servigo [6] como:

e Software como servigo, do inglés Software as a Service (SaaS), é um modelo em
que o consumidor deve utilizar aplicagoes fornecidas pelo provedor que sao executadas
numa infraestrutura de nuvem. As aplicacdes sao acessiveis através de interfaces
de usuario, como navegadores de internet, ou interfaces de programacao, do inglés
Application Programming Interface (APT). O consumidor ndao gerencia ou controla
a infraestrutura contratada, sendo limitado apenas a configuracoes especificas da

aplicacao.

e Plataforma como servigo, do inglés Platform as a Service (PaaS), é um modelo
que permite que o consumidor implante aplicagbes préprias ou adquiridas que foram
criadas utilizando linguagens de programacao, bibliotecas, servigos e ferramentas
compativeis com a infraestrutura de nuvem do provedor. O consumidor nao geren-
cia ou controla a infraestrutura contratada, mas tem controle sobre as aplica¢oes

implantadas e possivelmente a configuracoes do ambiente que hospeda tais aplicagoes.

e Infraestutura como servigo, do inglés Infrastructure as a Service (IaaS), é um
modelo onde o consumidor é capaz provisionar processamento, armazenamento, rede
e outros recursos computacionais fundamentais para implantar e executar softwares
arbitrarios, incluindo sistemas operacionais e aplicagoes. O consumidor nao gerencia
ou controla a infraestrutura fisica, mas tem controle sobre sistemas operacionais,

armazenamento, aplicagoes e, possivelmente, componentes de rede como firewalls.

Capitulo 2. Fundamentacio Teorica 21

Figura 2 — Modelos de servigos da nuvem.

Plataforma Software
(como servico) (como servico)

I Armazenamento

Tl Empresarial Infraestrutura
(sistema legado) (como servico)

Armazenamento

Armazenamento

Seguranga

Gerenciado pelo cliente

Banco de dados

Sistemas Operacionais

Banco de dados

Sistemas Operacionais

Gerenciado pelo cliente

Virtualizagcdo

Servidores

waAnu ejad opeldualan

Armazenamento

waANnu ejad opepualan

Rede

waAnu ejad opeldualan

Data Centers

Gerenciado pelo cliente

Fonte: extraido de (Solo Network, 2019).

2.2.3 Plataformas

Os servigos necessarios para a estruturacao da arquitetura proposta estao disponiveis
na maioria das plataformas de nuvem, como a Amazon Web Services, Microsoft Azure,
Google Cloud e Alibaba Cloud. Devido aos altos indices de disponibilidade, escalabilidade
e performance aliados a um baixo custo inicial foi escolhida a nuvem da Amazon Web
Services como infraestrutura para a prova de conceito desenvolvida neste projeto. Sua
base de clientes envolve milhoes de usuarios ativos todos os meses e incluem nomes como
a NASA, Netflix, Uber, Formula 1, BMW, Penn State, McDonalds e muitos outros.

A Amazon Web Services (AWS) é uma subsidiaria da Amazon.com, Inc que
fornece plataformas de computacao em nuvem e APIs sob demanda para pessoas, empresas e
governos. Os web services oferecidos disponibilizam um conjunto abstrato de infraestrutura

fisica, bases para computacao distribuida e ferramentas.

A tecnologia da AWS é implementada em fazendas de servidores espalhadas pelo
mundo. O custo de utilizacdo é baseado numa combinacao de uso, componentes de hard-
ware, software e rede contratados, disponibilidade necessaria, redundancia e seguranca.
Assinantes podem pagar por um unico computador virtual da AWS, um computador fisico

dedicado ou um conjunto, cluster, de ambos.

Capitulo 2. Fundamentacio Teorica 22

Atualmente a AWS fornece 165 servigos que abrangem computacao, armazenamento,
redes, bancos de dados, analytics, aprendizado de méaquinas, aplicagoes, implantacao e
gerencia de sistemas, ferramentas de desenvolvimento entre outros. Muitos destes servigos
estao disponiveis a partir de APIs acessiveis através de HT'TP utilizando a arquitetura

REST que sera discutida em seguida.

2.3 Dispositivos Moéveis

Dispositivos moéveis, mobile ou handheld em inglés, sao dispositivos de computagao
pequenos o suficiente para serem segurados e operados usando as maos. Tipicamente estes
dispositivos possuem acesso a internet e pode se conectar a outros aparelhos utilizando
tecnologias como Wi-Fi, Bluetooth e redes celulares. Estes dispositivos sao produzidos por

diversas empresas e cada um possui estruturas de hardware e software diferentes [8].

Os dispositivos mais comuns sao smartphones, tablets e smartwatches, mas levando
a definicdo ao pé da letra também temos nesta lista aparelhos como laptops, calculadoras,
videogames portateis e assistentes pessoais (PDA). A arquitetura proposta neste projeto

serd voltada a smartphones ja que este é o dispositivo mais utilizado atualmente [3].

Cada smartphone possui um sistema operacional que ¢ a interface entre as aplicagoes
e as propriedades do hardware do dispositivo como a tela sensivel ao toque, camera,
conectividade, GPS e armazenamento. Atualmente o Android e iOS possuem juntos uma
fatia de 98% do mercado de sistemas operacionais para dispositivos méveis, portanto elas

serdo as plataformas consideradas durante o projeto [9].

2.3.1 Plataforma iOS

iOS é o sistema operacional para dispositivos méveis desenvolvido pela Apple Inc.

exclusivamente para o iPhone, iPad e iPod.

O desenvolvimento de aplicagdes para iOS ¢ realizado utilizando o pacote de
desenvolvimento de software, do inglés software development kit (SDK), XCode também
fornecido pela Apple Inc.. Através deste SDK é possivel criar, testar e distribuir aplicagoes

para iOS utilizando as linguagens Swift ou Objective-C.

2.3.2 Plataforma Android

Android é um sistema operacional para dispositivos méveis baseado em uma versao
do niicleo do Linux e outros softwares de cédigo aberto. Seu desenvolvimento é realizado

pelo consorcio Open Handset Alliance, que tem o Google LLC' como principal contribuidor.

Aplicagoes para Android sao produzidas utilizando o Android SDK, pacote que

inclui emuladores de dispositivos, bibliotecas de softwares, depuradores, documentagoes

Capitulo 2. Fundamentacio Teorica 23

e guias. O ambiente de desenvolvimento, do inglés Integrated Development Environment
(IDE), oficial para o desenvolvimento de aplicagbes Android é o AndroidStudio, que é

capaz de criar e testar aplicacoes escritas em Java, Kotlin ou C++.

2.3.3 Multiplataforma

Devido a diversidade de dispositivos disponiveis no mercado, um problema re-
corrente é a necessidade de codificar separadamente uma mesma aplicagdo para cada
plataforma. Para mitigar este problema foram criados frameworks multiplataforma, con-
junto de classes que permitem a construgao de aplica¢goes multiplataforma com pouco
esforgo, especificando apenas as particularidades de cada aplicagdo. Desta forma ¢é al-
cancada uma maior agilidade no desenvolvimento da aplicacao ja que apenas um codigo
precisa ser escrito para executar em ambas plataformas, consequentemente beneficiando a

mantenabilidade do sistema.

O React Native é um framework de cdédigo aberto desenvolvido pelo Facebook para
o desenvolvimento de aplica¢coes méveis multiplataforma utilizando o React, uma biblioteca
Javascript para criagao de interfaces de usuarios. Esta tecnologia permite o completo
desenvolvimento de aplicagoes utilizando apenas Javascript, ao invés de Objective-C para

a plataforma iOS e Java para plataforma Android.

As interfaces de usuario criadas em React Native sao compostas por componentes.
Estes componentes sao criados utilizando uma extensao da sintaxe do Javascript chamada
Javascript XML (JSX), uma combinagao de cédigo Javascript com uma linguagem de
marcacao semelhante a HTML. Desta forma o desenvolvimento de aplicacbes moveis
se torna bastante semelhante a criacdo de web pages. A figura 3 mostra uma aplicacao

desenvolvida com React Native sendo executada nas plataformas iOS e Android.

2.4 Arquitetura de Software

A arquitetura de software fornece uma visao holistica do sistema a ser construido.
Ela representa a estrutura e organizacao dos componentes de software, suas propriedades
e as conexoes entre eles. Os componentes de software incluem mddulos de programas e as

varias representagoes de dados manipuladas pelo programa [11].

2.4.1 Padroes Arquiteturais

Os padroes arquiteturais sao guias para resolugdo de problemas recorrentes a fim
de permitir uma estruturacao eficaz de sistemas. Os padroes que serao utilizados neste

projeto serao discutidos.

Capitulo 2. Fundamentacio Teorica 24

Figura 3 — Aplicagdo executando nas plataformas iOS e Android, respectivamente.

eses Airtel T

EIHOUSINGcom B HOUSINGcom

Rentin Mumbai v Rentin Mumbai v

@n Continue Last Search

Continue Last Search al Andheri West, Any BHK, Any price

= Mumbai, Any BHK, Any price

Collections
Collections

Bachelor Friendly Great Nightlife

Fonte: extraido de (Guerra, 2015).

2.4.2 Model-View-Controller

O padrao Model-View-Controller divide uma aplicacdo interativa em trés camadas.
O Modelo, Model, possui as funcionalidades principais do sistema e os dados. A Visao,
View, exibe informacoes ao usuario. O Controlador, Controller, trata das entradas do
usuario. As visoes e controladores fazem parte da interface de usuario. Um mecanismo de

propagagao de mudanca garante a consisténcia entre a interface e o modelo [12].

O diagrama da figura 4 mostra as relagoes entre as camadas do padrao MVC e a
figura 5 demonstra o fluxo de dados de uma aplicacado movel que utiliza este padrao. Um
usuario inicia sua interacao através de uma Visao, como uma interface grafica, que trata
este evento e aciona o Controlador correspondente. Por sua vez, o Controlador realiza uma
consulta ou requisita uma modificagdo ao Modelo, que interage com o banco de dados e
notifica o Controlador e a Visdao sobre mudancgas. O controlador pode entdao manusear a

resposta do Modelo e enviar o resultado a Visao para ser exibida ao usuario.

A utilizagdo do MVC trés vantagens interessantes a sistemas interativos, a separacao
entre o Modelo e a interface de usuario permite que varias Visoes diferentes possam ser
implementadas e usem um mesmo Modelo. Esta separagao permite a modularizacao da
interface de usuario, permitindo até a substituicdo de componentes em run-time. Outra
vantagem é o mecanismo de propagacao de mudangas que garante que todos os elementos
dependentes sejam notificados sobre mudancas nos dados da aplicacao, mantendo assim a

coeréncia do sistema [12].

Capitulo 2. Fundamentacio Teorica 25

Figura 4 — Diagrama UML do padrao MVC.

1 1
Modelo Controlador
Modelo | | | ________ Controlador
Modelo_1 Modelo_n Controlador_1 Controlador_n
/N /N N N
T T L L
| 1 [! 1
1 1 —A_._I | |
| 1 LI ! !
| | — L
| 1 [Visdo [
| 1 o ! 1
| 1 [N ! |
| 1 L\ L\
:_ ___________ : __________________ Visao_1 Visao_n
1
: .
! !
! I
1

Fonte: o autor.

Figura 5 — Diagrama de sequéncia de um sistema interativo que utiliza o padrao MVC.

HO

: Usuario : Visdo : Controlador : Modelo

I |
s 3: Consulta dados Tj
Retorna dados

< _________

4: Trata dados

| 1: Requisita informacdo ’J_

2: Trata evento ’

Atualiza a visdo

. Notifica usudrio] |

Fonte: o autor.

2.4.3 Representational State Transfer

Representational State Transfer (REST), é uma arquitetura de software que define
um conjunto de restrigbes para a criacao de web services, solugoes utilizadas para permitir

a integracao de sistemas através de uma rede.

A internet opera como um sistema de informacao que impoe varias restrigoes:
Agentes identificam objetos no sistema, chamados de recursos, através de identificadores

uniformes de recursos, do inglés Uniform Resource Identifier (URI).

Capitulo 2. Fundamentacio Teorica 26

Agentes representam, descrevem e comunicam o estado de um recurso através
de representagoes em varios formatos de dados, como por exemplo XML, HTML, CSS,
JPEG, PNG. Agentes trocam representacoes através de protocolos que utilizam URIs para

identificar e acessar diretamente ou indiretamente os agentes e recursos [13].

A rede REST é um sub conjunto da internet em que agentes utilizam uma interface
semantica uniforme, que essencialmente cria, busca, atualiza e remove recursos, ao invés
de interfaces arbitrarias ou especificas a uma aplicacao. Os recursos sao manipulados
através da troca de representagoes. Além disso as interagoes REST sdo stateless, ou seja,

o significado da mensagem nao depende do estado da conversagao [13].

Formalmente as restriges do REST, definidas por [14], sdo:

e Arquitetura cliente-servidor: Separar as responsabilidades da interface de usuario
das responsabilidades do armazenamento de dados aumenta a portabilidade da

interface de usuario para multiplas plataformas.

e Statelessness: A comunicagao cliente-servidor fica restringida a nao armazenar
contexto do cliente no servidor entre requisi¢oes. Cada requisi¢ao do cliente possui

toda informacao necessaria para completar a operacao requisitada.

e Cacheability: O armazenamento temporario, do inglés Caching, de respostas do
servidor pode ser realizado pelo cliente a fim de diminuir a interagao cliente-servidor,

desta forma melhorando a eficiéncia da rede.

e Sistema em camadas: Estrutura o sistema em camadas para permitir a utilizacao
de balanceadores de carga e a separacao de componentes por questoes semanticas ou

seguranca.

e Interface uniforme: Os quatro elementos que definem a interface sdo recursos iden-
tificados a partir de URIs; a manipulagao de recursos feita através de representagoes;
mensagens que possuem toda informacao necessaria para seu processamento; links
providos pelo servidor para que o cliente possa descobrir todas as agoes e recursos

disponiveis.

27

3 Arquitetura Proposta

Este Capitulo busca explicar os passos que envolvem o desenvolvimento de cada
modulo da arquitetura de software proposta. O projeto utiliza uma abordagem bottom-up,
comecgando a partir dos sistemas fisicos até a aplicacao em software, para tornar mais

evidente os requisitos de cada médulo do sistema. Portanto, segue as seguintes etapas:

I Definicao da infraestrutura necessaria para a integracao entre o sistema [oT e o

software: A Secao 3.1 explora como a interface loT-Software é organizada.

IT Definicao da estrutura do back-end do software: Na Secao 3.2 sao especificadas as
tecnologias relevantes para o funcionamento do servidor e sua integragdo com os

dados e a interface de usuério.

ITI Defini¢ao da estrutura do front-end do software utilizando uma abordagem multipla-
taforma: Por fim a Segdo 3.3 especifica as tecnologias necessarias para o desenvolver

aplicagoes mobile multiplataformas.

3.1 Infraestrutura

Para garantir que o sistema atenda requisitos de disponibilidade e confiabilidade é
utilizada uma plataforma de computac¢ao em nuvem utilizando o modelo de servigo IaaS,
discutido na Segao 2.2.2. Desta forma os desenvolvedores do sistema nao precisam construir
e gerenciar a estrutura fisica dos servidores, podendo focar apenas em sua configuragao,
além disso o custo de implantar e manter um infraestrutura on-premise, em muitos casos,

¢ bem maior do que contratar uma infraestrutura em nuvem.

3.1.1 Acesso a Nuvem

Usuédrios conectam-se através de sistema de nomes de dominio em nuvem, do inglés
Domain Name System (DNS), de alta disponibilidade e escalabilidade. Este servigo é
projetado para entregar aos desenvolvedores uma forma confiavel e de bom custo beneficio
de rotear usudrios finais para aplicagoes na internet [15]. Através deste servigo é possivel
criar um nome de dominio proprio na rede interna da nuvem, para que os usuarios possam
acessar seus sistemas através de enderecos como "www.empresa.com.br'ao invés de utilizar

um endereco de nuvem como "ec2-33-212-216-103.compute-1.amazonaws.com".

Capitulo 3. Arquitetura Proposta 28

Este servico também ¢é utilizado para escalar aplicagoes do tipo white-label, no
qual um mesmo produto pode ser vendido para diferentes clientes com apenas mudancas
estéticas. Neste contexto é possivel criar diferentes nomes de dominio para um mesmo
servigo, permitindo que ele seja acessivel através dos enderecos "www.empresaA.com.br'e

"www.empresaB.com.br", por exemplo.

Para controlar o acesso ao sistema, tanto de clientes ou funcionarios, deve ser
utilizado um servigo de controle de acesso. Ele permite o gerenciamento do acesso aos
recursos e servicos da nuvem de forma segura através da criagao de usuarios e grupos,
efetivamente permitindo ou negando o acesso a partir de um conjunto permissoes [16]. Tal
servigo é importante para que requisitos de seguranca sejam atendidos, ja que é possivel,

por exemplo, limitar a visualizagao de dados nos sistemas de armazenamento utilizados.

-

E necessario um servigco de integracao de dispositivos IoT com a plataforma
de nuvem que permita conexoes através dos protocolos HT'TP, WebSockets, MQTT e
protocolos especificos a dispositivos. Um sistema de identificacdo semelhante ao de controle
de acesso de usuarios é utilizado para proteger a conexao entre os dispositivos e a nuvem
além de autenticar o envio de comandos, certificando-se que apenas usuarios autorizados

possam interagir com os aparelhos e visualizar seus dados [17].

O estado mais recente de um dispositivo conectado pode ser automaticamente
armazenado por este servico para que possa ser lido e modificado a qualquer momento,
fazendo com que o dispositivo sempre pareca conectado a aplicacdo. Desta forma é possivel
ler a informacado mais recente e enviar comandos a dispositivos desconectados, no qual
serao entregues quando a conexao for reestabelecida seguindo regras pre-estabelecidas

pelos desenvolvedores.

3.1.2 Armazenamento

Plataformas de nuvem fornecem servigos de armazenamento de dados em diversos
formatos. A natureza de sistemas IoT tras a necessidade da armazenar os dados em duas
formas, em objetos e em banco de dados. Desta forma podemos dividir a carga de trabalho

necessaria para a geracao de dados estruturados.

Armazenamento de objetos é uma arquitetura de armazenamento de dados que
trata os dados como objetos, em contraste as arquiteturas de sistemas de arquivos ou
armazenamento em blocos. Cada objeto possui um UID global, metadados e os dados
em si. Essa estrutura permite a utilizagao de interfaces que podem ser programadas pela
aplicacao, funcoes de gerenciamento como replicacao e distribuicdo de dados em alta
granularidade e espagos de nomes, namespaces, que pode existir em mais de um hardware
fisico [18].

Capitulo 3. Arquitetura Proposta 29

Os dispositivos IoT podem realizar simples pre-processamentos e enviar os dados
brutos para o sistema de armazenamento de objetos, a partir disso um sistema com mais
poder computacional pode processar estes dados e estrutura-los para o banco de dados
ou ferramentas de mineracao de dados. Devido a infraestrutura das principais nuvens, a
transferéncia de dados entres os sub-sistemas é bastante eficiente, podendo chegar a taxas

de transmissao de até 100 Gbps.

Deve ser utilizado um sistema de armazenamento de objetos que possa armazenar
informacgoes em qualquer formato. Os consumidores, sejam usudrios ou equipamentos I[oT,
conectam-se ao sistema e transferem dados utilizando uma conexao direta através de uma
API. Os casos de uso comuns de tais servigos cobrem armazenamento para aplicagoes,

backups e recuperacao, arquivamento e data lakes para analise de dados. [19].

Servicos de armazenamento de objetos podem ser personalizado de acordo com as
necessidades do usuario, para tal sao oferecidas classes de armazenamento para acesso
frequente; armazenamento longo com acesso infrequente; e para arquivamento de longo
prazo e preservacao digital. Objetos podem ser migrados dinamicamente entre estas classes

de acordo com seu uso, caso o usuario deseje.

Um servigo de banco de dados distribuido é essencial para o funcionamento do
sistema. Estes servigos sao oferecidos através de web services desenvolvidos para simplificar
a configuracdo, operacgao e escalabilidade de bancos de dados relacionais para aplicagoes.
Processos administrativos como provisionamento de hardware, atualizacoes, backups e
recuperacoes sao gerenciados pela plataforma de nuvem. Semelhante ao sistema de arma-
zenamento de objetos, o servigo pode ser configurado através de chamadas de API. Os
bancos de dados suportados, com otimizagoes de memoria, performance e E/S; geralmente
incluem o PostgreSQL, MySQL, Oracle Database, MongoDB e CassandraDB. [20].

3.1.3 Computacao

Servigos de computagdo em nuvem permitem que usuarios disponham de um cluster
de computadores disponiveis a todo momento através da internet. As maquinas virtuais
da nuvem possuem atributos que podem ser personalizadas de acordo com a necessidade
do usuario como quantidade de CPUs e GPUs, meméria RAM, discos rigidos ou SSD,
sistemas operacionais, rede e aplicacoes pre-instaladas como servidores web e banco de
dados [21].

Para aprimorar a mantenabilidade e escalabilidade do sistema, dentro da plataforma
pode ser utilizado o Docker, um sistema que gerencia softwares em pacotes chamados de
containers. Um container é uma unidade de software que une codigo e dependéncias para

que a aplicagao funcione de maneira previsivel e confiavel em diferentes ambientes.

Capitulo 3. Arquitetura Proposta 30

Multiplos containers podem ser executados no mesmo computador e compar-
tilhar o kernel do sistema operacional, onde cada um é executado em processos isolados e
com canais bem definidos de comunicacao. Devido a sua arquitetura, containers ocupam

menos espago que maquinas virtuais e podem suportar mais aplicagoes [22].

Uma imagem de container é um pacote de software leve, independente e executavel
que inclui tudo que é necessario para executar uma aplicacao: codigo, runtime, ferramentas
do sistema, bibliotecas e configuracoes. Imagens sao o método principal de armazenamento
e distribuicao de aplicagoes "containerizadas". Desta forma o servidor pode ser dividido
em diversas aplicacoes, como por exemplo APIs, servidores web e servidores de cache, que
podem se comunicar através de uma rede interna. A figura 6 mostra a organizacao de um

servidor que utiliza o Docker executando diversas aplicagoes.

Figura 6 — Estrutura do Docker

Aplicacdes Containerizadas

Sistema Operacional

Infraestrutura

Fonte: adaptado de (Docker, 2019).

3.1.4 Notificacao

Um dos requisitos principais em uma aplicagao de gerenciamento é a capacidade
de notificar o usuério sobre o acontecimento de algum evento. Esta notificagao pode ser
realizada de diversas formas, em dispositivos moveis é comum que o envio seja através de

push notifications, emails ou mensagens SMS.

Capitulo 3. Arquitetura Proposta 31

Servigos de mensagem pub/sub com alta disponibilidade e seguranca permitem
desacoplar microsservigos, sistemas distribuidos e aplicagoes serverless. A utilizacao de
topicos, conjunto de mensagens em um mesmo contexto, permite o envio de notificagoes

simultaneamente a um grande nimero de assinantes [23].

Estes servicos podem ser utilizados em casos onde um ou mais usuarios precisem
ser notificados sobre algum acontecimento. Para tanto, basta que o sistema utilize uma
API, ja que todo o fluxo de negociagao com sistemas de push notifications, provedores de

email e redes telefonicas fica a cargo da plataforma de nuvem.

3.1.5 Integracao

Na figura 7 temos a arquitetura de nuvem desenvolvida para suportar a integragao
entre aplicagoes moveis e dispositivos IoT. Separando funcionalmente os componentes

discutidos nés temos as estruturas de acesso, armazenamento, computacao e notificagao.

A nuvem podera ser acessada a partir de dois pontos, o sistema de integracao IoT
e 0 DNS de nuvem. Todos os dispositivos IoT utilizados pelo sistema se conectarao ao
servigo de integracao utilizando algum dos protocolos suportados. As requisicoes REST
dos dispositivos méveis serao roteadas para acessar a API através do DNS. Ambos pontos

de acesso utilizam o sistema de controle de acesso para proteger seus recursos e servicos.

O armazenamento de dados brutos gerados pelos dispositivos [oT sera feito pelo
servico de armazenamento de objetos, ja a aplicacao utilizara o servigo de armazenamento
de dados estruturados em banco de dados. O armazenamento de objetos pode também
ser utilizado para a criacao de data lakes, data warechouses e data marts devido a sua
capacidade de escalabilidade automatica e suas ferramentas de busca e tratamento de
dados. Os administradores do sistema podem definir regras para a migragdo automatica
de dados antigos, ou de ex-clientes, para a classe de arquivamento a fim de diminuir o

custo com armazenamento.

O servigo de computagao hospedara o servidor da aplicagao utilizando containers
Docker, para maior performance é interessante que o sistema operacional da maquina seja
Linux para utilizar a integra¢ao nativa com o motor do Docker. Todo software necessario
para o funcionamento da aplicagao estard nos containers, incluindo servidores web e de

cache, microsservigos e a API que sera discutida em detalhes na Segao 3.2.

Por fim, o sistema de notificacao realiza o envio de alertas aos usuéarios por meio de
push notifications, emails e mensagens de celular. Este servigo também pode ser utilizado
para integrar microsservigos ao sistema, como por exemplo um processador de dados,
muitas vezes necessario devido ao grande volume de dados que dispositivos [oT podem

gerar.

Capitulo 3. Arquitetura Proposta 32

Figura 7 — Diagrama de arquitetura da nuvem

Armazenamento Computacao

E Armazenamento , E Banco de E

1 deobjetos | . Dados '

: ' | Relacional , CACHE
| L | > <«
1 : 1 \ 1

1 . 1 \ 1

: o, - :

L f\ ______ : . 1

Acesso Notificacao
Controle

de loT DNS
Acesso

Fonte: o autor.

3.1.6 Implantacao

Para exemplificar os conceitos da arquitetura de nuvem definida nesta secao, foi
escolhida como plataforma a nuvem da AWS. A implantacao de servigos na AWS ¢é feita
completamente através do AWS Console, uma plataforma online onde é possivel criar
um ambiente na nuvem e alocar, gerenciar e monitorar servigos. A partir da arquitetura
definida na figura 8 podemos realizar uma implantacao inicial alocando os servigos da

seguinte forma:

e O servico de computacao EC2 utilizando uma maquina t2.medium, que possui 2
processadores, 4GB de memodria RAM e 8GB de armazenamento SSD, funcionando

24 horas por dia.

e O armazenamento de objetos S3 com capacidade de armazenar 100GB de dados por

més e realizando 200.000 acessos para criagao e leitura de dados.

Capitulo 3. Arquitetura Proposta

33

mensais.

O DNS em nuvem Route 53 com um dominio cadastrado e 10 milhdes de acessos

e O banco de dados relacional RDS utilizando uma maquina t3.small, que possui 2

processadores e 2GB de RAM, funcionando 24 horas por dia.

e O servico de notificagao SNS. Ele fornece 1 milhdo de notificagoes gratis mensais e

cobra $0.50 a partir do segundo milhdao de mensagens no més.

e O armazenamento de objetos de longo prazo Glacier com armazenamento de 2GB

mensais de dados. Existe um custo para acesso aos dados por GB transferido.

e O servigo de integracao IoT Core para 10.000 dispositivos loT enviando mensagens

a cada 5 minutos e que podem receber comandos nesta mesma frequéncia.

e Trafego de dados padrao, onde somente o trafego saindo da nuvem, output, é

cobrado.
Figura 8 — Diagrama de arquitetura da nuvem AWS
&= Nuvem
Computacao
Armazenamento
Sistemade [cc.
Arquivos .,

|

S3 Glacier

A

Banco de
Dados

E Docker

Acesso

1AM lot Core

Route 53

A

Sistema
Operacional
API
Notificacao
J1 B -
SNS

Fonte: o autor.

Capitulo 3. Arquitetura Proposta 34

3.1.7 Custo

A nuvem da AWS utiliza um modelo de cobranca sob demanda onde servigos sao
cobrados a medida que sao utilizados. A tabela 1 mostra uma estimativa de custo mensal
para a implantagdao da arquitetura com as configuracoes discutidas quando hospedados
na regiao US Fast (North Virginia). Os valores foram obtidos utilizando a calculadora,
Simple Monthly Calculator, da AWS.

Tabela 1 — Projecao de custo mensal da nuvem AWS

Servigo | Custo mensal (Délar)

EC2 | 34.77
S3 | 2.32

RDS | 27.19
Glacier | 0.01

lot Core | 90.00
Route 53 | 4.50

SNS | 0.00
Trafego de dados | 1.35
Total | 160.14

3.2 Back-end

O Back-end do sistema é o componente que esta entre a interface de usuério e o
banco de dados. Sua funcgao é tratar as requisi¢oes enviadas pelo usuario, consultar ou
modificar o banco de dados e devolver uma resposta a interface. No caso de sistemas de
gerenciamento, o back-end ¢ um web service no qual a interface de usuario acessa através

de uma API para realizar operacoes.

E interessante implementar o back-end utilizando linguagens de programacio com
bom suporte a opera¢oes de comunicagao ja que o acesso a nossa API serd através da
internet. Linguagens com boas ferramentas para a criagdo de web services incluem Python,
Javascript, PHP e C#, mas qualquer linguagem com suporte a requisicoes HT'TP ¢é

suficiente.

Capitulo 3. Arquitetura Proposta 35

3.2.1 RESTful API

Uma API é dita RESTful quando a mesma adere ao padrao REST discutido na
Segao 2.4.3. A utilizagao deste padrao pelo servidor proporciona uma integragao consistente

com a interface de usuario além de permitir a reutilizacao de c6digo e mantenabilidade.

O acesso a API é realizado através de requisicoes HT'TP que sdo compostas por
um URI, comumente chamado de rota, para identificacdo de recursos, um método HTTP
e opcionalmente um corpo da requisicdo onde pode ser enviada informagoes ao servidor.
A resposta a uma requisicao é composta por um codigo de estado HT'TP e o corpo da

resposta que tras os dados requisitados ou mensagens de sucesso ou erro.

Os métodos HT'TP mais comuns sao GET, POST, PUT e DELETE para a busca,
criacao, modificacdo e remocao de recursos da aplicacao. A API precisa reconhecer as
cinco classes de codigos de estado HT'TP: 1xx para informagoes, 2xx para sucesso, 3xx

para redirecionamento, 4xx para erro no cliente e 5xx para outros erros [24].

O corpo das requisicoes e respostas deve ter um formato conhecido pelo cliente
e o servidor, este formato é definido pelo tipo de midia da comunicagao. Os tipos sao
definidos em [25] e cobrem de simples mensagens de texto a programas executéaveis. O
tipo application/json ¢ o mais utilizado em web services ja que o JSON, Javascript
Object Notation, ¢ um formato de dado bastante simples que pode representar quatro tipos

primitivos (strings, nimeros, booleanos e null) e dois tipos de estruturas (objetos e arrays)

126].

Um exemplo de operacao da API é a busca por um recurso especifico. A requisicao
GET /api/usuarios/27 utiliza o método GET, portanto estd4 buscando um recurso, e a
rota /api/usuarios/27 indica que o recurso em questao é um usuério do sistema com o
identificador 27. Em caso de sucesso, o resultado desta requisi¢ao deve ter coédigo 200 e

um corpo num formato semelhante ao da figura 9.

Figura 9 — Exemplo de resposta do tipo application/json

{
"data": {
"id": 27,
"nome": "Jodo Silva",
"cpf": "123.456.789-90",
"criado _em": "2019-11-10 10:32:21"
}
}

Fonte: o autor.

Capitulo 3. Arquitetura Proposta 36

3.2.2 Estrutura

A arquitetura MVC, discutida no item 2.4.2, foi utilizada para a criagao do back-end.
Cada rota da API deve utilizar um controlador, responsavel por interpretar a requisicao
HTTP e requisitar dados ao modelo. O modelo possui a légica de negécio, as representagoes
de cada entidade do banco de dados para realizar consultas. A visdo neste contexto sera o
componente de software responsavel por produzir respostas HT'TP no formato esperado

pela aplicagao mével.

A figura 10 mostra um exemplo da operagdo da API ao ser utilizada pela aplicacao
moével para buscar produtos. A aplicacao realiza uma requisicaio GET a API e é roteada
para o controlador de produto. O controlador requisita os dados ao modelo de produto que
por sua vez faz uma consulta ao banco de dados e retorna os dados dos produtos buscados.
O controlador entdo encaminha os dados para a visao de produto que trata estes dados e

os retorna para o controlador que ird montar e enviar a resposta HT'TP para a aplicagao.

Figura 10 — Diagrama de sequéncia de uma API implementada com o padrao MVC.

Front-end Back-end

Cliente HTTP ControladorProduto ModeloProduto VisdoProduto

| | |
1: Requisicio HTTP | :

[

|

= |
’ 1.1: Consulta dados |
|

- _Retorna dados _ I

|

|

1.2: Trata dados retornados pelo Modelo
|

| __ _ Retornadadodformatados
Resposta HTTP |

Fonte: o autor.

Como a interacao com este tipo de API é estritamente através de requisig¢oes
HTTP, ou seja, sem uma interface grafica, ¢ comum a uniao da visdo com o controlador.
Desta forma, o inicio da operacao se da no recebimento da requisi¢ao pelo controlador

correspondente, que ao final do processo também produz a resposta HTTP.

Capitulo 3. Arquitetura Proposta 37

3.2.3 Middlewares

A estruturacao do sistema em camadas permite a utilizagdo de um componente
de software chamado de middleware, fungdes que sdo executadas entre operagoes para
modificar valores de entrada ou saida. Desta forma podemos aumentar a performance e
mantenabilidade do sistema ao desacoplar a logica de negdcios de codigos de validagao de

entrada, autenticacdo de usuarios, Caching de dados entre outros.

A figura 11 mostra o fluxo de dados numa API RESTful que utiliza uma estrutura
em camadas. A aplicacao gerencia uma pilha de middlewares de acordo com sua ordem
de execucao, os trés parametros que cada uma destas fun¢des recebem sao os objetos de
requisicao e resposta e uma func¢ao next (), que invoca o préximo middleware da pilha.
Os objetos de requisicao e resposta podem ser modificados livremente de acordo com a
finalidade do middleware, que em casos como o de autenticacao invalida pode finalizar o

ciclo de requisigao-resposta.

Figura 11 — API estruturada em camadas

Requisicao

1 - Verifica
Autenticacao

2 - Verifica Cache

3 - Armazena Cache

Fonte: adaptado de (Boronczyk, 2013).

3.2.4 Acesso aos dados

Em uma aplicagdo que envolve sistemas IoT o acesso aos dados da aplicacao
normalmente é realizado de duas maneiras. Dados gerais da aplicagao sao armazenados em
um banco de dados relacional e os dados provenientes dos dispositivos IoT sao armazenado

em um armazenado de objetos em nuvem.

Capitulo 3. Arquitetura Proposta 38

Desta forma é interessante que o Modelo utilize um mecanismo para coordenar o
acesso aos dados nestes locais. O padrao Repository faz a mediacao entre o Modelo e
a camada de mapeamento de dados atuando como uma cole¢ao de objetos do dominio.
Repositorios fornecem uma visao orientada a objetos da camada de persisténcia ao
encapsular os objetos persistidos no armazenamento e suas operagoes [28]. Este padrao
centraliza o acesso aos dados favorecendo a mantenabilidade da aplicacao ja que mudangas

nas estruturas de armazenamento causam reescrita de codigo apenas no repositorio.

A figura 12 tras uma visao geral do padrao Repository demonstrando a separagao
de formas de acesso a diferentes estruturas de armazenamento de dados, como por exemplo

cache, banco de dados relacional e armazenamento em nuvem.

Figura 12 — Diagrama UML do Modelo utilizando o padrao Repository

Logica de Negocio Repository

CacheStrategy DBStrategy CloudStrategy

Fonte: o autor.

Em conjunto com os repositorios é possivel utilizar um ORM, do inglés object-
relational mapping, para tornar as operagoes com as entidades do Modelo orientada a
objetos. ORMs realizam um mapeamento entre os objetos definidos no back-end com as

entidades que eles representam no banco de dados.

A figura 13 representa um processo de consulta ao banco de dados utilizando
repositorios com ORM, tornando a interagdo com os dados mais pratica e facil de entender.
O repositério fornece uma forma de consulta que abstrai a implementacao das estruturas
de acesso aos dados e o ORM representa os dados através de objetos que possuem os

atributos e relacionamentos das entidades do banco de dados.

3.2.5 Caching de dados

A quantidade de dados gerada por dispositivos IoT pode trazer um grande impacto
a performance da aplicagao caso seja necessario realizar computagoes sobre estes dados a
cada requisicao enviada pelos usuérios. Uma forma de mitigar este problema ¢ a utilizagao
de um servidor de cache para armazenar o resultado mais recente de cada rota a medida

que elas sao chamadas.

Capitulo 3. Arquitetura Proposta 39

Figura 13 — Exemplo de consulta de dados utilizando o padrao Repository e ORM

let id_produto = 10;
let produto produtoRepository.getProduto(id_produto) ;
let nome_produto = produto.getNome() ;

Fonte: o autor.

Servidores de cache normalmente utilizam uma organizacao de chave-valor para
o armazenamento dos dados, muitas vezes na memoria da sua maquina para diminuir o
tempo de resposta do sistema. E necessario um mecanismo de sincronizacio para garantir
a validade dos dados, normalmente este mecanismo é acionado pelo back-end a cada vez

que dados relevantes sao modificados ou adicionados as estruturas de armazenamento.

A utilizacao deste sistema segue o fluxo mostrado na figura 11, um middleware
de caching verifica se existe uma resposta armazenada no servidor de cache para cada
requisicao recebida, em caso positivo esta resposta ¢ imediatamente enviada ao usuario
sem que seja necessario reprocessar a requisicao, caso contrario a requisicao ¢ processada e

a resposta é armazenada para futuras consultas.

3.3 Front-end

O Front-end do sistema é a interface que o usuario final utliza, neste caso uma
aplicacao moével disponivel para as plataformas iOS da Apple e Android do Google. Para
atender o requisito de mantenabilidade, deve ser utilizado um framework de aplicagoes

multiplataforma, discutido na Secao 2.3.3.

3.3.1 Componentes

Uma interface de usuario é desenvolvida a partir da combinagdo de componentes,
fungoes que normalmente retornam trechos de cédigo em linguagem de marcagao. Sua
estruturacao é parecida com o HI'ML usado em web sites, mas utilizando tags préprias,

muitas vezes criadas pelos desenvolvedores.

Um componente é uma func¢ao que recebe um parametro com suas propriedades,
possui um estado préprio e retorna um codigo em linguagem de marcacao. A maioria dos
componentes podem ser customizados no momento de sua criagao através dos parametros

de criacao, desta forma é possivel reutiliza-los facilmente ao longo da aplicacao.

Capitulo 3. Arquitetura Proposta 40

O estado é um conjunto varidveis que podem ser alteradas durante a execucao da
aplicacao modificando funcionalidades e o estilo visual de um componente, podendo ser
definido localmente em um componente ou utilizando o conceito de containers de estado

que sera discutido na Secao 3.3.2.

A estilizacao de aspectos como posicionamento, cores e fontes dos componentes
pode ser feita através de uma propriedade chamada style, utilizando objetos Javascript
que utilizam a mesma nomenclatura e conceitos do CSS, cascading style sheet, utilizado

em web sites.

A figura 14 mostra um exemplo de componente em React Native que define um
cabecalho para a péagina, sendo criado através do componente nativo <Text> e que pode

ser utilizado em outros componentes como <Titulo texto="Pagina Inicial"/>.

Figura 14 — Exemplo de componente em React Native

function Titulo(props) {
const texto = props.texto;

return (
<Text style={{fontSize: 32, padding: 10, fontWeight: ’bold’}}>
{texto}
</Text>
);

Fonte: o autor.

Bibliotecas externas, como o Native-Base, fornecem cddigos para a criacao de
todos os componentes nativos de ambas plataformas. Desta forma é possivel deixar o
desenvolvimento mais eficiente ao focar apenas na visualizagao e funcionalidade dos

componentes ao invés de sua implementagao.

3.3.2 Padrao Flux

A natureza de sistemas de gerenciamento em exibir varias informacoes simultanea-
mente tras a necessidade a aplicagdo de coordenar o fluxo de dados entre seus diversos
componentes. Desta forma é possivel a utilizacao do padrao Flux, uma variagdo do padrao
Observer, que centraliza o estado da aplicacao e garante um fluxo de dados unidirecional
para permitir a escalabilidade de interfaces de usuéario. O padrao Flux pode ser descrito a

partir de trés principios:

1. Fonte tnica de verdade: O estado da aplicacao é armazenado numa arvore de objetos

dentro de um unico local chamado de store.

Capitulo 3. Arquitetura Proposta 41

2. O Estado é somente-leitura: A tinica maneira de modificar o estado é emitindo uma

acao, um objeto que descreve a mudanga que deve acontecer.

3. Mudancas sao realizadas por funcoes deterministicas: Fungoes de reducao, reducers,

sao utilizadas para especificar como a arvore de estados é transformada por agoes.

A figura 15 é uma visao destes principios e do fluxo de dados no padrao Flux. Um
componente da interface do usuario, View, envia uma agao, Action, ao realizar alguma
operacao. O expedidor, Dispatcher, recebe este objeto e o encaminha para o Reducer
adequado, no qual a partir do estado atual do componente e do contetido presente na ac¢ao
produz um novo estado. Este novo estado é armazenado no Store e encaminhado para o

componente para que possa ser exibido ao usuario.

Figura 15 — Diagrama do padrao Flux.

; Reducer
Actions

Fonte: adaptado de (Terpil, 2015).

Com este padrao é possivel compartilhar o estado de um componente automati-
camente quando uma mudanca ocorrer, mantendo a coeréncia entre a visualizacao e os
dados. A figura 16 mostra o processo de propagacao do estado de um componente a outros

componentes que estdo interessados.

No caso onde o padrao Flux nao é utilizado, o componente que teve o estado
alterado precisa propagar esta alteracdo manualmente a cada componente interessado.
Quando o Flux é utilizado, no momento em que o estado do componente ¢é alterado no Store
todos os outros componentes interessados sao notificados automaticamente da mudanca e

recebem o novo estado.

Capitulo 3. Arquitetura Proposta 42

Figura 16 — Propagacao de estado com e sem Flux.

Sem Padrao Flux Com Padrao Flux

-
Pre o
4 »

{ Store !

N0

‘Componente que Iniciou Mudanga de Estado

Fonte: adaptado de (Weck, 2019).

3.3.3 Armazenamento

Aplicagoes podem armazenar dados na memoria interna do dispositivo mével para
diminuir a carga de requisi¢des ao back-end ou manter as configuragoes do usuario, por
exemplo. Esta funcionalidade deve ser utilizada com cuidado, componentes criticos da
aplicagdo nao devem ser totalmente dependentes do armazenamento interno ja que erros
por falta de espaco de espago de armazenamento ou permissoes de acesso podem ser

comuns.

As formas mais comuns para persistir dados da aplicacido sao através de bancos
de dados locais como SQLite e armazenamento nativo dos dispositivos chamado de
LocalStorage. Ambas tecnologias sao recursos exclusivos de cada aplicagdo nao sendo

possivel o compartilhamento de dados entre diferentes aplicagoes.

Implementacoes do padrao Flux oferecem integragao a estes sistemas, facilitando
ainda mais o manuseio dos dados presentes na aplicacdo. E comum armazenar as credenciais
dos usuarios em uma secao segura do LocalStorage, dessa forma o usuario ndo necessita
realizar o login cada vez que ele retorne ao aplicativo. Para tanto, o Store ¢ extendido
virtualmente para ter acesso aos armazenamentos locais e manter os dados acessiveis

usando sua interface padrao.

3.3.4 Cliente HTTP

O acesso ao servidor é realizado através de um cliente que se conecta a API através
de requisi¢oes HT'TP seguindo o padrao REST. Cada framework fornece uma forma de

acesso ao cliente nativo, tornando possivel realizar varios tipos de interagoes HTTP.

Capitulo 3. Arquitetura Proposta 43

Bibliotecas externas podem expandir as funcionalidades do cliente padrao ao utilizar
fungoes especificas a cada método HTTP como get(), post(), put(), delete() , configuragoes

globais e requisi¢oes concorrentes.

A figura 17 mostra um exemplo do c6digo necessario para realizar uma requisi¢ao
a API em Javascript. O cliente HT'TP pode ser configurado como um servico, desta forma
ele é acessivel em todas as partes da aplicacao e concentra sua configuragdo, como enderego
da API, cabecalhos e cookies, em apenas um arquivo para permitir que seja facilmente

mantido.

Figura 17 — Cliente HTTP realizando requisicao de produtos a API.

const resposta = await client.get("https://www.empresa.com.br/api/produtos");
let produtos resposta.data;
Fonte: o autor.

44

4 Resultados

Este Capitulo exibe o resultado da integracao entre os componentes da arquitetura
produzida e sua aplicacao em um sistema real. Na Secdo 4.1 os componentes da arquitetura
sao integrados produzindo um novo modelo visual. Por fim, na Secao 4.2 sera discutida

uma prova de conceito desta arquitetura que esta sendo investigada.

4.1 Modelo

Obtivemos uma arquitetura de software para desenvolvimento de solugbes que
englobam sistemas [oT, servidores para tratamento e analise de dados e interfaces de
usuario através de aplicagoes moveis, tudo isso levando em consideracao requisitos de

escalabilidade, mantenabilidade, confiabilidade e a agilidade no desenvolvimento do sistema.

O diagrama da figura 18 mostra a integragao entre os trés componentes da arquite-
tura discutidos no Capitulo 3. A nuvem especificada na Secao 3.1 integra os dispositivos
[oT a aplicagao moével, sua arquitetura pode ser vista na figura 7. O ponto de acesso dos
dispositivos ¢ a partir do servigo de integracao, toda a conexao e troca de mensagens ¢é
coordenada por esse servico. Ja as aplicacoes moveis acessarao o sistema a partir do DNS

ao utilizarem alguma chamada REST para um dominio controlado por este servigo.

Figura 18 — Diagrama da arquitetura

Dispositivos Aplicacao
Mével

4

Lo
Y
)

P
I'I

and=X0Id

000

—

Fonte: o autor.

Capitulo 4. Resultados 45

4.2 Prova de Conceito

Uma prova de conceito esta sendo desenvolvida para uma empresa dos Estados
Unidos utilizando os componentes aqui apresentados. O sistema envolve dispositivos IoT
conectados a aparelhos de refrigeracao como ar-condicionados centrais e freezers industriais.
Estes dispositivos coletam dados dos aparelhos e do ambiente, a partir de inimeros sensores,
e enviam pacotes de informagao a cada 7 minutos ao servidor da aplicacdo para que sejam

processados e tenham o resultado armazenado num banco de dados relacional.

A partir deste dado estruturado, uma aplicagdo mével multiplataforma realiza a
exibicao das informagoes do sistema de refrigeragao do cliente. Desta forma, atualmente
¢é possivel acompanhar aspectos como consumo de energia, variacao de temperatura e o
funcionamento de cada componente dos aparelhos, onde em caso de falhas o cliente é

alertado através de notificagoes. A figura 19 mostra a aplicagdo funcionando nas plataformas
iOS e Android.

Figura 19 — Aplicacao nas plataformas iOS e Android, respectivamente

Monitor

a8 lat

Overview History
Overview History

Fonte: o autor.

4.2.1 Estrutura

Neste momento ja esta em estdgio de desenvolvimento a infraestrutura do sistema
utilizando a nuvem da AWS como laaS. O back-end do sistema utiliza a plataforma de
computagao EC2, um banco de dados MySQL no servico RDS e por fim, os dispositivos

[oT enviam seus dados para um armazenamento de objetos S3.

Capitulo 4. Resultados 46

A partir de um back-end construido em Python3 utilizando o framework Django,
uma aplicacdo para as plataformas iOS e Android escrita em React Native acessa dados de

dispositivos [oT e exibe as diversas informacoes obtidas a partir da analise destes dados.

Existe a previsao da implementacao de um data mart para permitir a escalabilidade
do sistema sem comprometer sua performance. Além disso, os dados disponiveis nessa
estrutura permitirao a utilizacao de inteligéncia computacional para o controle automatico

dos aparelhos de refrigeracao a partir dos dispositivos [oT.

A figura 20 mostra os principais casos de uso de cada ator do sistema. A aplicagdo
movel é acessivel somente aos Clientes, no qual podem visualizar indicadores do sistema;
visualizar a condi¢ao de seus aparelhos; visualizar a condi¢ao das partes de cada aparelho;
visualizar o painel do sistema e requisitar suporte. Os atores Suporte e Técnico fazem

parte da empresa e permitem o correto funcionamento dos sistemas do Cliente.

Figura 20 — Diagramas de casos de uso do sistema

]
Aplicacdo Movel
Realizar
Visualizar Reparo
Indicadores Técnico
e] Visualizar
I Condicao dos
aparelhos ~ Requisitar
Cliente ™ _ [~ <zinclude>> Reparo
T~ I
[~ >/ visualizar < <oxthnds> >
Visualizar <<include>> - Condicio dos F
Painel Componentes |
- -\ do Aparelho
<<extend>>S .
- Analisar
— Lo Pedidos de f——
Requisitar Suporte
Suporte Suporte

Fonte: o autor.

4.2.2 Aplicacao Multiplataforma

Os aparelhos dos clientes sdo conectados a dispositivos IoT que coletam informagoes
sobre seu funcionamento e condi¢oes ambientais. A aplicacdo permite que clientes possam
visualizar de forma intuitiva estas informacoes e agir em caso de defeito. Os conceitos
apresentados na Secao 3.3 foram utilizados para o desenvolvimento da aplicagdo a fim de

permitir uma maior agilidade na entrega de versoes para as plataformas iOS e Android.

Capitulo 4. Resultados 47

Os componentes utilizados na interface de usuario sao nativos as plataformas
para tornar sua utilizacao intuitiva e diminuir o tempo de aprendizado necessario para o

uso da aplicacgao.

A figura 21 mostra os casos de uso de visualizagao da condi¢ao dos aparelhos e
de seus componentes, respectivamente. A tela Monitor mostra ao cliente todos os seus
dispositivos organizados em abas e listas onde ¢é possivel ver a condi¢ao do aparelho através
de icones coloridos que representam alertas de estados de funcionamento. Ao selecionar um
aparelho o cliente pode visualizar a condi¢ao de cada parte do aparelho e, se necessério,

pode requisitar suporte técnico a empresa.

Figura 21 — Telas de condicao dos aparelhos e componentes

< PELAR < PELAR

CONTROLLER CONTROLLER

Monitor Monitor
Warehouse
6 3 A/C #2 Condition

Functional Needs Attention
4 w9 &%

Compressor Fans

Warehouse Main Office Operations

A/C #2 (<}

5 % o

Heater #1
Refrigerant Condenser Connection
Ventilation #2

A/C#1

Ventilation #1

Fonte: o autor.

A figura 22 mostra as telas de visao geral do sistema. O painel, Overview, é uma
visualizacao que simplifica o acesso a informagoes sobre a condi¢ao de todos os aparelhos
monitorados do cliente. A cor de cada célula da tabela representa o estado de um aparelho,
utilizando a mesma escala de cores de estados utilizado ao longo da aplicacao para manter

coeréncia entre as visualizagoes.

Capitulo 4. Resultados 48

A tela History exibe indicadores de producao, produtividade e qualidade de todo o
sistema do cliente. Desta forma o cliente pode acompanhar o funcionamento e a evolucao
de seus equipamentos em relagdo a performance, economia entre outros aspectos. Esta
visualizagdo também serd importante quando o sistema permitir o controle dos aparelhos,
assim o cliente pode perceber mais facilmente se as mudancas realizadas estao surtindo

efeito em seus aparelhos.

Figura 22 — Telas de painel de aparelhos e de indicadores do sistema

LAR = ¢« PELAR

CONTROLLER CONTROLLER

Overview History

Appliances Production Productivity Quality

. Consumption (Amps)

Legend: Functional Needs Attention Fault

Temperature (°F)

Fonte: o autor.

49

5 Conclusoes e Trabalhos Futuros

Neste trabalho foi proposta uma arquitetura de software para integracao de sistemas
de gerenciamento IoT a aplicagdes méveis multiplataforma. Esta implementagao podera
ser amplamente utilizada por empresas que fabricam softwares atualmente e que nao
contemplam demandas de IoT para monitoramento, o que levara a uma maior agilidade
e assertividade nas suas especificagoes e desenvolvimentos, possivelmente ajudando a

aumentar a adocao das tecnologias da 4* Revolucao Industrial.

O aumento na disponibilidade de dispositivos IoT e na qualidade das infraestruturas
de redes sao uma grande oportunidade para o desenvolvimento de sistemas de gerenciamento
para otimizar processos industriais e de aspecto social como, por exemplo, mobilidade
urbana e saude. Espera-se que os artefatos produzidos na monografia possam embasar o

desenvolvimento de softwares multiplataforma com integragao a tais sistemas IoT.

Durante o desenvolvimento da prova de conceito diversas novas tecnologias foram
conhecidas, permitindo novas visoes sobre o problema. Algumas delas foram integradas a
arquitetura aqui proposta, outras que ficaram de fora podem oferecer grandes vantagens

aos sistemas que serao implementados e serao comentadas agora.

A utilizagdo de outros servigos disponiveis na nuvem AWS pode aumentar a perfor-
mance do sistema em diversas frentes. Para o manuseio dos dados brutos seria interessante
a aplicacao de Data Lakes e Data Marts, oferecido pelos servigos Lake Formation e Redshift.
Desta forma a carga de processamento na API seria reduzida ja que dados tratados es-
tariam sempre disponiveis, além de permitir a aplicagao de técnicas de aprendizado de

maquina.

Por fim, sistemas de gerenciamento podem ser aprimorados com a utilizacao
de algoritmos de inteligéncia artificial para predicdo de eventos, permitindo atuacgoes
preventivas e corretivas sobre os dispositivos IoT. A AWS também fornece servigos de
inteligéncia computacional que podem facilitar este processo, incluindo o SageMaker.
Devido a modularizacao desta arquitetura, novos servigos podem ser adicionados sem

muito esforgo, possivelmente aumentando o impacto das soluc¢oes que as utilize.

50

Referencias

1 ITU-T. Overview of the Internet of things. [S.l.], 2012. Disponivel em: <http:
//handle.itu.int/11.1002/1000/11559>. Acesso em: 25 de setembro de 2019. Citado 4
vezes nas paginas 14, 16, 17 e 18.

2 FORBES. 2018 Roundup Of Internet Of Things Forecasts And Market Estimates.
[S.L.], 2018. Disponivel em: <https://www.forbes.com/sites/louiscolumbus/2018/12/13/
2018-roundup-of-internet-of-things-forecasts-and-market-estimates>. Acesso em: 20 de
setembro de 2019. Citado na pagina 14.

3 FORBES. Mobile App ’State of Mobile 2019 Report’ From App Annie. [S.1.],
2019. Disponivel em: <https://www.forbes.com/sites/tjmccue/2019/01/30/
mobile-app-state-of-mobile-2019-report-from-app-annie>. Acesso em: 21 de setembro de
2019. Citado 2 vezes nas paginas 15 e 22.

4 LATIF, M. et al. Cross platform approach for mobile application development: A survey.
International Conference on Information Technology for Organizations Development
(IT4OD), February 2016. Citado na pagina 15.

5 IEEE. Internet of Things (loT) Ecosystem Study. [S.l.], 2015. Disponivel em:
<https://standards.ieee.org/content /dam /ieee-standards/standards/web/documents/
other/iot__ecosystem__exec_summary.pdf>. Acesso em: 17 de dezembro de 2019. Citado
na pagina 16.

6 MELL, P.,; GRANCE, T. The NIST Definition of Cloud Computing. [S.1.], 2011.
Citado 2 vezes nas paginas 19 e 20.

7 SOLO NETWORK. Diferencas entre IaaS, SaaS e PaaS. [S.1.], 2019. Disponivel em:
<https://www.solonetwork.com.br /Produtos/Microsoft /microsoft-azure>. Acesso em: 27
de outubro de 2019. Citado na péagina 21.

8 POSLAD, S. Ubiquitous Computing: Smart Devices, Environments and Interactions. 1.
ed. [S.1]: John Wiley & Sons, 2009. Citado na pagina 22.

9 STATCOUNTER. Mobile Operating System Market Share Worldwide - October
2019. [S.1.], 2019. Disponivel em: <https://gs.statcounter.com/os-market-share/mobile/
worldwide>. Acesso em: 9 de novembro de 2019. Citado na pagina 22.

10 GUERRA, Q. F. Aplicacao em diferentes plataformas. [S.1.], 2015. Disponivel em:
<https://market.ionicframework.com/starters/multiplatform>. Acesso em: 9 de novembro
de 2019. Citado na pagina 24.

11 PRESSMAN, R. S. Engenharia de Software - Uma Abordagem Profissional. 7. ed.
[S.1.]: McGrawHill, 2011. Citado na pagina 23.

12 BUSCHMANN, F. et al. Pattern Oriented Software Architecture: A system of patterns.
[S.1.]: John Wiley & Sons, 2001. v. 1. (Software Design Patterns, v. 1). Citado na pagina
24.

http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018- roundup-of-internet-of-things-forecasts-and-market-estimates
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018- roundup-of-internet-of-things-forecasts-and-market-estimates
https://www.forbes.com/sites/tjmccue/2019/01/30/mobile-app-state-of-mobile-2019-report-from-app-annie
https://www.forbes.com/sites/tjmccue/2019/01/30/mobile-app-state-of-mobile-2019-report-from-app-annie
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot_ecosystem_exec_summary.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/iot_ecosystem_exec_summary.pdf
https://www.solonetwork.com.br/Produtos/Microsoft/microsoft-azure
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://market.ionicframework.com/starters/multiplatform

Referéncias 51

13 W3C. Web Services Architecture. [S.1.], 2004. Disponivel em: <https://www.w3.org/
TR/ws-arch/>. Acesso em: 03 de novembro de 2019. Citado na péagina 26.

14 FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Tese (Doutorado) — University of California, Irvine, 2000. Citado na
pagina 26.

15 AMAZON WEB SERVICES. Route 53. [S.l.], 2019. Disponivel em: <https:
//aws.amazon.com/routeb3/>. Acesso em: 10 de novembro de 2019. Citado na pégina 27.

16 AMAZON WEB SERVICES. Identity and Access Management. [S.1.], 2019. Disponivel
em: <https://aws.amazon.com/iam/>. Acesso em: 10 de novembro de 2019. Citado na
pagina 28.

17 AMAZON WEB SERVICES. IoT Core. [S.l.], 2019. Disponivel em: <https:
//aws.amazon.com/iot-core/>. Acesso em: 12 de novembro de 2019. Citado na pégina 28.

18 MESNIER, M.; GANGER, G.; RIEDEL, E. Object-based storage. IEEFE
Communications Magazine, v. 41, agosto 2003. Citado na pagina 28.

19 AMAZON WEB SERVICES. Simple Storage Service. [S.1.], 2019. Disponivel em:
<https://aws.amazon.com/s3/>. Acesso em: 10 de novembro de 2019. Citado na pagina
29.

20 AMAZON WEB SERVICES. Relational Database Service. [S.1.], 2019. Disponivel em:
<https://aws.amazon.com/rds/>. Acesso em: 10 de novembro de 2019. Citado na pagina
29.

21 AMAZON WEB SERVICES. Elastic Compute Cloud. [S.1.], 2019. Disponivel em:
<https://aws.amazon.com/ec2/>. Acesso em: 10 de novembro de 2019. Citado na pégina
29.

22 DOCKER. What is a container? [S.1.], 2019. Disponivel em: <https://www.docker.
com/resources/what-container>. Acesso em: 10 de novembro de 2019. Citado na pagina

30.

23 AMAZON WEB SERVICES. Simple Notification Service. [S.1.], 2019. Disponivel em:
<https://aws.amazon.com/sns/>. Acesso em: 10 de novembro de 2019. Citado na pégina
31.

24 FIELDING, R.; RESCHKE, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. [S.1.], 2014. Disponivel em: <https://tools.ietf.org/html/rfc7231>. Acesso
em: 15 de novembro de 2019. Citado na pagina 35.

25 FREED, N.; KUCHERAWY, M. Media Types. [S.l.], 2019. Disponivel em:
<https://www.iana.org/assignments/media-types/media-types.xhtml>. Acesso em: 15 de
novembro de 2019. Citado na pagina 35.

26 BRAY, T. The JavaScript Object Notation (JSON) Data Interchange Format. [S.1.],
2017. Disponivel em: <https://tools.ietf.org/html/rfc8259>. Acesso em: 15 de novembro
de 2019. Citado na pagina 35.

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/iam/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://aws.amazon.com/sns/
https://tools.ietf.org/html/rfc7231
https://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc8259

Referéncias 52

27 BORONCZYK, T. Working with Slim Middleware. [S.1.], 2013. Disponivel em:
<https://www.sitepoint.com/working-with-slim-middleware/>. Acesso em: 16 de
novembro de 2019. Citado na pagina 37.

28 FOWLER, M. Patterns of Enterprise Application Architecture. 1. ed. [S.1]:
Addison-Wesley Professional, 2002. Citado na pagina 38.

29 TERPIL, J. Reduz. From twitter hype to production. [S.l.], 2015. Disponivel em:
<https://slides.com/jenyaterpil /redux-from-twitter-hype-to-production>. Acesso em: 28
de setembro de 2019. Citado na pagina 41.

30 WECK, S. Developing modern offline apps with ReactJS, Redux and Elec-
tron. [S.1.], 2019. Disponivel em: <https://blog.codecentric.de/en/2017/12/
developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/>.
Acesso em: 20 de novembro de 2019. Citado na pagina 42.

https://www.sitepoint.com/working-with-slim-middleware/
https://slides.com/jenyaterpil/redux-from-twitter-hype-to-production
https://blog.codecentric.de/en/2017/12/developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/
https://blog.codecentric.de/en/2017/12/developing-modern-offline-apps-reactjs-redux-electron-part-3-reactjs-redux-basics/

	Folha de rosto
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação e Caracterização do Problema
	Objetivo Geral
	Objetivos Específicos
	Estrutura do Documento

	Fundamentação Teórica
	Internet das Coisas
	Características
	Requisitos de Alto Nível

	Computação em Nuvem
	Características
	Modelos de Serviço
	Plataformas

	Dispositivos Móveis
	Plataforma iOS
	Plataforma Android
	Multiplataforma

	Arquitetura de Software
	Padrões Arquiteturais
	Model-View-Controller
	Representational State Transfer

	Arquitetura Proposta
	Infraestrutura
	Acesso à Nuvem
	Armazenamento
	Computação
	Notificação
	Integração
	Implantação
	Custo

	Back-end
	RESTful API
	Estrutura
	Middlewares
	Acesso aos dados
	Caching de dados

	Front-end
	Componentes
	Padrão Flux
	Armazenamento
	Cliente HTTP

	Resultados
	Modelo
	Prova de Conceito
	Estrutura
	Aplicação Multiplataforma

	Conclusões e Trabalhos Futuros
	Referências

